
Intercept Tags: Enhancing Intercept-based Systems

David J. Zielinski, Regis Kopper∗

Duke immersive Virtual Environment
Duke University

Ryan P. McMahan†

Dept. of Computer Science
University of Texas at Dallas

Wenjie Lu, Silvia Ferrari‡

Dept. of Mechanical Engineering
Duke University

Abstract

In some virtual reality (VR) systems, OpenGL intercept methods
are used to capture and render a desktop application’s OpenGL calls
within an immersive display. These systems often suffer from lower
frame rates due to network bandwidth limitations, implementation
of the intercept routine, and in some cases, the intercepted applica-
tion’s frame rate. To mitigate these issues and to enhance intercept-
based systems in other ways, we present intercept tags, which are
OpenGL geometries that are interpreted instead of rendered. We
have identified and developed several uses for intercept tags, includ-
ing hand-off interactions, display techniques, and visual enhance-
ments. To demonstrate the value of intercept tags, we conducted a
user study to compare a simple virtual hand technique implemented
with and without intercept tags. Our results show that intercept tags
significantly improve user performance and experience.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Virtual reality;

Keywords: virtual reality, intercept tags, intercept-based systems

1 Introduction

In some VR systems, an OpenGL intercept method is used to
capture and render a desktop application’s OpenGL calls within
an immersive display, such as a CAVE or a head-mounted dis-
play (HMD). Examples of such intercept-based VR systems in-
clude Chromium [Humphreys et al. 2002], TechViz [Raffin et al.
2006], and some Allosphere applications [Höllerer et al. 2007].
More recently, an open-source project called ML2VR has been used
to interact with MATLAB visualizations in VR systems through
OpenGL intercept [Zielinski et al. 2013].

A common problem for intercept-based VR systems is slower frame
rates. In cluster-based systems, this issue most commonly stems
from network bandwidth limitations and how the intercept routine
is implemented to synchronize the OpenGL frames across the clus-
ter. In other systems, lower frame rates are a result of the inter-
cepted application’s frame rate. For instance, MATLAB and other
computational software packages are known to render visualiza-
tions slower than most graphical applications due to data-intensive
computations [Choy and Edelman 2005].

In this paper, we present the concept of intercept tags, which are
OpenGL geometry calls that are not rendered, but instead inter-
preted as scene information, cues, or even function calls. Intercept

∗e-mail:[djzielin,regis.kopper]@duke.edu
†e-mail:rymcmaha@utdallas.edu
‡e-mail:[wl72,sferrari]@duke.edu

tags can be used in several ways to enhance intercept-based sys-
tems, including increasing the overall frame rate. We categorize
these uses as hand-off techniques, display techniques, and visual
enhancements. Hand-off techniques simply allow the intercepted
application to hand off control of an interaction technique to the
intercepting application, which can operate, through optimized ren-
dering routines and lack of simulation computation load, at a faster
frame rate then the intercepted application. The display techniques
we discuss also improve frame rates by reducing the transmission
of redundant or expected geometry data. Finally, we explain how
intercept tags can be used to improve animations through interpo-
lation and enhance visuals by providing advanced shaders.

To show the benefits of our new intercept tags, we conducted a user
study comparing a virtual hand technique implemented in a MAT-
LAB simulation with and without intercept tags. Our results show
that intercept tags can significantly improve user performance and
experience. We conclude by discussing the advantages and limita-
tions of intercept tags.

2 Related Work

Using an OpenGL intercept technique is one common method for
enabling cluster-based VR systems [Raffin et al. 2006]. A common
intercept approach is to use a replacement driver to process calls
before they are passed on to the true OpenGL driver. This allows a
system to intercept and distribute an application’s OpenGL calls to
a cluster of computers for rendering.

One of the first intercept-based systems was WireGL, which used
an intercept method to submit OpenGL commands to one or more
pipeservers [Humphreys et al. 2001]. WireGL shortly evolved
into the better-known Chromium, a software library for distribut-
ing streams of graphics calls in a cluster-based system [Humphreys
et al. 2002]. Chromium has since been used to intercept the graph-
ics calls of applications, including closed-source ones, to be dis-
played in immersive VR systems. One such example is the Allo-
sphere at UCSB [Höllerer et al. 2007].

More-recent intercept-based systems have also been developed.
One open-source project called ML2VR has been developed to al-
low users to easily port their MATLAB visualizations to a VR sys-
tem and add 3D interactions [Zielinski et al. 2013]. In a research-
oriented project, OpenGL interception was also used to create
an image-parallel distribution system for more-efficient ray trac-
ing [Brownlee et al. 2013].

In addition to duplicating the intercept OpenGL stream, one can
also modify the contents of the stream. One example of this is
HijackGL [Mohr and Gleicher 2002]. By modifying the incoming
stream, HijackGL can create several stylized rendering effects (e.g.,
pencil sketch, blue print, cartoon).

Though intercept-based systems are still being used and developed,
a common problem for many of these systems is slower frame rates.
A major cause of this problem is the limitations of network band-
widths among nodes. This is sometimes further complicated by
computationally intense applications that have low frame rates prior
to being intercepted.



3 Concept of Intercept Tags

The original inspiration for our development of intercept tags was
the need to reduce the latency of interacting with a MATLAB-based
robotics simulation that we were intercepting and displaying in a
CAVE application. In addition to intercepting MATLAB’s OpenGL
calls, our system architecture allowed MATLAB to access the event
data of the CAVE’s 6-degree-of-freedom (DOF) wand. We used
this data to implement a simple virtual hand technique for the user
to move objects around within the simulation. A major limitation of
this method was the simulation’s slow frame rate, which caused no-
ticeable latency in the virtual hand technique. Improving the simu-
lation’s frame rate was not feasible without significantly reworking
its computations.

As an alternative solution, we determined that MATLAB should
hand off control of the virtual hand technique to the intercepting
CAVE application, which ran at a faster frame rate than the robotics
simulation. One issue was that MATLAB could not easily inform
the CAVE application which object to control without using com-
plex messages that referenced the OpenGL stream. We determined
that such complexity could be avoided if the control messages were
embedded in the OpenGL stream. Thus intercept tags were born.

Intercept tags are predefined OpenGL geometry calls that are
checked for during the decoding of an intercepted OpenGL stream
and are interpreted as scene information, cues, or even function
calls, instead of being rendered.

Because intercept tags are interpreted and not rendered when de-
coded, the OpenGL geometry chosen to define a tag must be care-
fully chosen. In practice, we have chosen geometries that would
never appear in our intercepted applications, such as empty poly-
gons (e.g., a triangle with all three vertices at (0, 0, 0)). We can
also vary the specific values of the points in the empty polygon to
encode different types of tags (e.g. (1,1,1)).

Like HTML or XML tags, intercept tags are normally used in pairs,
with a start tag and an end tag enclosing a block of OpenGL calls.
When the first tag is decoded, it provides additional information
about the upcoming OpenGL calls or signifies that they should be
specially handled. When the second tag is decoded, it is interpreted
as the end of the information or special handling. As with XML
tags, intercept tags can also be nested.

4 Uses of Intercept Tags

Through the course of our research, we have identified several po-
tential uses of intercept tags. We discuss those uses here.

4.1 Hand-Off Techniques

Hand-off techniques use intercept tags to signal the intercepting ap-
plication to use a particular interaction technique on a portion of
the OpenGL scene. This method allows the interaction technique
to function at the frame rate of the intercepting application, as op-
posed to the frame rate of the slower intercepted application.

4.1.1 Hand-Off Manipulation

The virtual hand technique, our inspiration for intercept tags, es-
sentially consists of three phases: selection of the desired object,
manipulation of its position and orientation, and object release. In
our MATLAB-based simulation, selection and release of the object
functioned well thanks to the event-based input data available from
the wand. But, due to the slow frame rate of the simulation, ma-
nipulation of the object’s position and orientation was noticeably
affected by latency.

We have used intercept tags to hand off the manipulation of the
object from our MATLAB simulation to the CAVE application in-
tercepting the OpenGL calls. Once the simulation determines that
an object is selected, a pair of intercept tags is used to enclose the
OpenGL geometry of that object. Upon intercepting the first hand-
off tag, the CAVE application uses a glPushMatrix and an appro-
priate glMultMatrix command to translate and rotate the upcoming
geometry relative to the wand’s current position. Once the second
hand-off tag is intercepted, the CAVE application uses glPopMa-
trix to leave the remaining scene geometry unchanged. When the
object is released, the simulation stops calling the intercept tags, ef-
fectively ending hand-off manipulation. While the object has been
handed off, the MATLAB simulation can still update some object
properties of the object (e.g. color, size, shape).

4.1.2 Hand-Off Slice Plane

A slice plane is a useful technique that enables the user to control
their view of the structure and internal volume of geometric ob-
jects and shapes. Using intercept tags, we have implemented a slice
plane technique. Like hand-off manipulation, a pair of slice-plane
tags is used to enclose the intended OpenGL geometry, and the in-
tercepting application employs a slice plane technique at its faster
frame rate.

A major advantage of using intercept tags to implement the slice
plane technique is the ability to control which geometry is slice-
able. Most slice plane implementations normally affect the entire
scene, which makes it difficult to slice one object without affect-
ing the view of nearby objects. By using intercept tags to enclose
the desired geometry, the entire scene or only particular objects can
be designated as sliceable by the slice plane technique. Figure 1
demonstrates this unique capability of our technique.

	  
Figure 1: Hand-off slice plane technique. The rainbow surface is
the only object affected by the slice plane, which is handled by the
intercepting application..

4.2 Display Techniques

In addition to handing off control of interaction techniques to the
intercepting application, intercept tags can also be used to specify
how and when parts of the OpenGL scene should be displayed by
the intercepting application.

4.2.1 Display Lists

In some applications, portions of the intercepted scene may be
static from frame to frame. Using normal intercept techniques,



these static geometries are intercepted, encoded, and decoded ev-
ery frame. This decreases the overall frame rate of the entire system
due to transmitting the same geometries every frame.

Our solution is to use intercept tags to create display lists, which
behave as geometry caches that are transmitted once. If a portion
of the OpenGL scene is known to be static in upcoming frames, a
unique pair of display-list tags can be used to enclose the scene por-
tion. Upon interpreting the tags, the intercepting application caches
and renders the enclosed geometry. In later frames, the intercepted
application calls the display-list tag instead of the geometry calls
associated with the static scene. When the intercepting applica-
tion interprets the single display-list tag, it renders the associated
geometries from its cache, thus negating the need to transmit the
same geometries every frame and increasing the overall frame rate.

4.2.2 Level of Detail

Intercept tags can also be used to specify different levels of detail
(LOD). Instead of requiring the intercepted application to determine
the current level of detail every frame for each object, intercept tags
can be used in the initial frame to pass all LOD instances of an
object to the intercepting application to be cached. After the initial
lengthy frame, the intercepting application then has the capability
to adjust the LOD for an object based on the user’s current position,
given the cached LOD geometry.

4.3 Visual Enhancements

Finally, we have also determined that intercept tags can be used to
visually enhance an intercepted application’s graphics.

4.3.1 Interpolated Animations

A noticeable problem with our MATLAB simulations is that the
slower frame rates cause time-based animations to appear clunky
and not smooth. The positions of objects during these animations
are correct when a frame is first intercepted, but until the next inter-
cepted frame, the positions quickly become outdated.

A remedy to these clunky animations is to use intercept tags to in-
terpolate animated movements. In the simulation, a pair of interpo-
lation tags is used to enclose the moving geometry. When the tags
are interpreted by the intercepting application, the current geome-
try and time are cached. A linear interpolation method is then used
to render the animation based on the previously cached geometry,
the most recently cached geometry, and the time that has passed
since the last intercepted frame. Because the intercepting applica-
tion runs faster than the simulation, the result is a smoother-looking
animation.

4.3.2 Advanced Shaders

Another use of intercept tags for visual enhancement is to call ad-
vanced shaders. Some types of intercepted applications, such as
MATLAB, do not support advanced shaders. As a solution, we
propose using intercept tags to call for advanced shaders to be ap-
plied to the OpenGL scene by the intercepting application. This
would allow for lighting, bump mapping, shadows, specular high-
lights, and other types of shaders to be incorporated into even the
most basic of intercepted OpenGL applications.

5 Evaluation of Intercept Tags

To demonstrate how intercept tags can improve the quality of the
user experience, we conducted a user study comparing our original
virtual hand implementation without intercept tags to our current
implementation that utilizes hand-off manipulations.

5.1 Experiment Overview

We evaluated the task of placing a solid cube completely inside a
wireframe cube that varied in size (how much larger than the solid
cube) on a graphically complex MATLAB simulation, which ran at
about 5 frames per second (fps). The goal of the evaluation was to
assess usability and performance benefit of hand-off manipulation
over a traditional virtual hand technique.

5.1.1 Design

The study used a within-subjects design with two independent vari-
ables – interaction method (original virtual hand, hand-off manipu-
lation) and target size (10%, 20%, and 40% wireframe cube larger
than solid cube). Time to successfully complete the task and num-
ber of object drops (clutches) were measured. The order of interac-
tion method was counterbalanced and each set of three target sizes
was performed 18 times for each method. The order of target size
within each set was predetermined randomly. Thus, each partici-
pant performed a total of 108 placement tasks.

5.1.2 Apparatus

We used a six-sided CAVE-like display to perform the experiment.
Tracking was provided by an Intersense IS-900 tracker, which
tracked the participant’s head and wand input device. Active shutter
glasses provided 3D stereoscopic graphics. The intercepted appli-
cation was written in MATLAB, and ML2VR [Zielinski et al. 2013]
was used as the OpenGL intercept library to render graphics in the
CAVE. The MATLAB simulation ran at about 5fps. In the original
virtual hand condition, the intercepting application in the CAVE ran
at the same frame rate as the MATLAB simulation (~5fps). For the
hand-off manipulation interaction method, the cube dragging up-
dated at about 55fps. Selection and drop events were handled by
MATLAB at 5fps.

5.1.3 Participants

Fourteen unpaid participants (3 female), with ages ranging from 22
to 60 years (M=38.5, SD=14.3) volunteered to participate in the
study. Three participants were left-handed and all participants held
the wand with their preferred hand.

5.1.4 Procedure

After signing the informed consent form, participants filled out a
demographics and background questionnaire. After that, partici-
pants were introduced to the display and practiced in a standard ap-
plication for 5 minutes to get used to the CAVE environment. Par-
ticipants were then instructed to stand and remain on a piece of car-
pet placed in the center of the CAVE and practice one experimental
task, after which data collection began. After completing each set
of 54 tasks per interaction method, participants took a break and
filled out presence, usability and simulator sickness questionnaires.
At the end of the final session, participants were asked to determine
their preferred technique and to provide additional feedback.

5.2 Results

Participants had at most 30 seconds to complete each placement
task, after which the task would be deemed incomplete and the next
task would begin. 4.8% of the tasks timed out and were removed
from the analysis.

We performed a factorial ANOVA with repeated measures on both
dependent variables: mean time to complete a task and mean num-
ber of clutches. For questionnaires, we conducted paired-samples
t-tests on the sum scores for each interaction method.



5.2.1 Time

Hand-off manipulation (M=4.9, SE=.26) was significantly faster
than the traditional virtual hand (M=9.76, SE=.77) overall
(F1,13=44.085, p<.0001). There was a main effect of target size
overall for time (F2,26=188.879, p<.0001). Pairwise comparisons
showed that larger targets yielded significantly lower task times
(means 11.8s, 6.1 and 4.2). A significant interaction effect be-
tween target size and interaction method was observed for time
(F2,26=12.07, p<.0001). Pairwise comparisons showed that hand-
off manipulation was always faster than the traditional virtual hand,
but the mean difference decreased as targets got larger (figure 2).

	  
Figure 2: Interaction between target size and interaction method.

5.2.2 Clutches

Hand-off manipulation (M=.272, SE=.04) yielded significantly
fewer clutches than the traditional virtual hand (M=.587, SE=.13)
overall (F1,13=7.509, p<.05). There was a main effect of tar-
get size overall for clutches (F2,13=40.177, p<.0001). Pairwise
comparisons showed that larger targets yielded significantly fewer
clutches (means respectively .85, .28 and .15). No significant in-
teraction effect between target size and interaction method was ob-
served for clutches (F2,26=2.164, p=.135).

5.2.3 Questionnaires

A main effect was found for usability (t13=4.426, p<.005), with
hand-off manipulation rated significantly more usable than the tra-
ditional technique. Hand-off manipulation caused significantly
higher presence (t13=−2.621, p<.05) and significantly lower sim-
ulator sickness (t13=−2.104, p<.001) when compared to the tradi-
tional technique. No participant reported more than slight simulator
sickness in the handoff manipulation. All but one participant pre-
ferred hand-off manipulation overall. The participant who preferred
the traditional technique indicated he did so because he developed
a strategy that minimized clutching.

6 Discussion

We evaluated an intercept tag that improved the performance and
experience of an interaction task running at a low frame rate MAT-
LAB simulation. The improved performance with hand-off manip-
ulation indicates that, even with the button events being transmit-
ted at the slow rate of the simulation, the high quality perceptual
feedback loop provided by the smooth dragging allowed users to
complete the task faster than when the whole application ran at the
simulation rate. The artifact of simulator sickness caused by low
frame rate immersive systems, verified by reports of moderate to
high sickness in the traditional technique, was mitigated by hand-
off manipulation, where no participants reported a high level of sim-
ulator sickness. Another important aspect of immersive systems is

presence, which was positively affected by the intercept tag. Con-
versely, participants rated the hand-off manipulation technique as
significantly more usable than the original virtual hand technique.

There are some limitations to the advantages of intercept tags. The
most obvious limitation is that intercept tags only work in intercept-
based systems. While these types of systems are not the most popu-
lar or used, there are some VR systems that require intercept-based
methods to display an application immersively. Another limitation
of intercept tags is that the order of OpenGL calls must be con-
trollable. Intercept tags will not function properly if they do not
enclose their affected geometry. In most low-level systems, such as
MATLAB, it is easy to define the order of OpenGL commands. In
higher-level systems, such as game engines, it may not be possible
to define the order, or it may require additional functionality, such
as Unity’s subshader tags.

7 Conclusion

We have proposed the concept of intercept tags as a way to en-
hance intercept-based systems. We empirically demonstrated the
benefits of a common application of intercept tags – handing off
control of the interaction to the intercepting application. Apart
from the empirical evaluation, we presented and discussed hand-
off and display techniques and visual enhancements provided by
intercept tags. The frame rate of the intercepting application can be
increased by decoupling it from the original application (hand-off
techniques). Performance of the intercepted application can be im-
proved by using display techniques such as display lists and levels
of detail. Further, visual enhancements, such as smoothed anima-
tions and advanced shaders can be implemented in the intercepting
application through the use of intercept tags.

Acknowledgements

This work has been supported by the National Science Foundation,
under IGERT Grant No. DGE-1068871.

References

BROWNLEE, C., IZE, T., AND HANSEN, C. D. 2013. Image-
parallel ray tracing using opengl interception. In Proc. EGPGV,
65–72.

CHOY, R., AND EDELMAN, A. 2005. Parallel MATLAB: Doing it
right. Proc. IEEE 93, 2, 331–341.

HÖLLERER, T., KUCHERA-MORIN, J., AND AMATRIAIN, X.
2007. The Allosphere: a large-scale immersive surround-view
instrument. In Proc. EDT.

HUMPHREYS, G., ELDRIDGE, M., BUCK, I., STOLL, G., EV-
ERETT, M., AND HANRAHAN, P. 2001. WireGL: a scalable
graphics system for clusters. In Proc. SIGGRAPH, 129–140.

HUMPHREYS, G., HOUSTON, M., NG, R., FRANK, R., AH-
ERN, S., KIRCHNER, P. D., AND KLOSOWSKI, J. T. 2002.
Chromium: a stream-processing framework for interactive ren-
dering on clusters. In Proc. SIGGRAPH, 693–702.

MOHR, A., AND GLEICHER, M. 2002. HijackGL: reconstructing
from streams for stylized rendering. In Proc. NPAR.

RAFFIN, B., SOARES, L., NI, T., BALL, R., SCHMIDT, G., LIV-
INGSTON, M., STAADT, O., AND MAY, R. 2006. PC clusters
for virtual reality. In Proc. IEEE VR, 215–222.

ZIELINSKI, D. J., MCMAHAN, R. P., LU, W., AND FERRARI, S.
2013. ML2VR: Providing MATLAB users an easy transition to
virtual reality and immersive interactivity. In Proc. IEEE VR.


