Reducing Unequal Representation:
The Impact of Labor Unions on Legislative Responsiveness in the US Congress

Michael Becher† Daniel Stegmueller‡

This version: February 2020
Forthcoming, Perspectives on Politics

Abstract
It has long been recognized that economic inequality may undermine the principle of equal responsiveness that lies at the core of democratic governance. A recent wave of scholarship has highlighted an acute degree of political inequality in contemporary democracies in North America and Europe. In contrast to the view that unequal responsiveness in favor of the affluent is nearly inevitable when income inequality is high, we argue that organized labor can be an effective source of political equality. Focusing on the paradigmatic case of the US House of Representatives, our novel dataset combines income-specific estimates of constituency preferences based on 223,000 survey respondents matched to roll-call votes with a measure of district-level union strength drawn from administrative records. We find that local unions significantly dampen unequal responsiveness to high incomes: a standard deviation increase in union membership increases legislative responsiveness towards the poor by about 6 to 8 percentage points. As a result, in districts with relatively strong unions legislators are about equally responsive to rich and poor Americans. We rule out alternative explanations using flexible controls for policies, institutions and economic structure, as well as a novel instrumental variable for unionization based on history and geography. We also show that the impact of unions operates via campaign contributions and partisan selection.

For valuable feedback on previous versions, we are grateful to participants at the annual meetings of APSA (2017), MPSA (2018), University of Geneva workshops on Unions and the Politics of Inequality (2018) and Unequal Democracies (2019), IPErG seminar at University of Barcelona, the Instituto Carlos III-Juan March, the Nuffield Politics seminar at University of Oxford, IE University, and IAST. Becher acknowledges IAST funding from the French National Research Agency (ANR) under the Investments for the Future (Investissements d’Avenir) program, grant ANR-17-EURE-0010. Stegmueller’s research was supported by the National Research Foundation of Korea (NRF-2017S1A3A2066657).

†Institute for Advanced Study in Toulouse, University of Toulouse 1 Capitole, michael.becher@iast.fr
‡Duke University, daniel.stegmueller@duke.edu
Introduction

Democratic theory holds that people’s preferences should be equally represented in collective decision making regardless of their income and wealth. But it has long been recognized that there is a potentially fateful tension between the ideal of political equality and factual economic inequality. Considering the role of campaign contributions, for instance, it is easy to see that advantages in economic resources can lead to advantages in political representation even when elections are free and fair (Campante 2011). Over the last two decades, political science research assessing the degree of unequal representation in the US and Europe has boomed. It has highlighted worrying disparities in political responsiveness. What has been explored far less is evidence on what policies or institutions can dampen political inequality.

Larry Bartels’ (2008) pioneering study revealed that US senators casting roll call votes respond much more to the views of the affluent than to middle income constituents. The preferences of the poor seem to be virtually ignored. Evidence of unequal representation has also been found for the House of Representatives, party platforms, and national and state policy (e.g., see Bartels 2016; Bhatti and Erikson 2011; Flavin 2012; Gilens 2012; Hertel-Fernandez, Mildenberger, and Stokes 2019; Lax, Phillips, and Zelizer 2019; Rhodes and Schaffner 2017; Rigby and Wright 2013). Beyond the American context, recent scholarship documents similar patterns across a range of political systems in advanced industrialized democracies (Bartels 2017; Elsässer, Hense, and Schäfer 2018). Thus, it may appear that unequal democracy is a constant feature of capitalism. In contrast, we argue that organized labor can be an effective source of political equality in the US even in times of high economic inequality.

We contribute to this research agenda by analyzing the causal role labor unions play in increasing legislative responsiveness to low income constituents and thereby enhancing political equality in a paradigmatic case. A large literature in political science, economics, and sociology examines the effect of unions on economic inequality and redistributive politics, and there are competing views on whether unions are a force for political equality (Ahlquist 2017). However, as noted by Kathleen Thelen in her recent presidential address, the study of labor unions typically “does not come up in the mainstream literature on American Politics” (Thelen 2019: 12). Scholars have shown that unions are one of the few membership organizations in national politics that advocate on behalf of non-managerial workers (Schlozman, Verba, and Brady 2012) and sometimes even strike in

1There is a large literature on the role of unions in political life in general. For instance, it has been documented that union membership is associated with lower income differentials in political participation (Leighley and Nagler 2007) or knowledge (Macdonald 2019). Recently, the politics of teachers’ unions has received increasing scholarly attention (Moe 2011). While providing important insight into the strategic actions of unions and their impact on individual political behavior, this literature does not address their impact on citizens’ unequal representation in the actual decision making of lawmakers.
the interest of others (Ahlquist and Levy 2013). Yet, few scholars have directly addressed
the question whether stronger unions translate into less income-biased responsiveness by
elected representatives. Studying the 110th House of Representatives, Ellis (2013) finds
that district-level unionization is related to a smaller rich-poor gap for key legislative votes.
Flavin (2018) conducts a cross-sectional state-level analysis and shows that American
states with stronger unions exhibit less unequal representation. Gilens and Page (2014)
conclude that mass-based interest groups have little to no independent influence on
national policy in the US.

The existing evidence is of somewhat limited scope. Prior scholarship does not disen-
tangle whether union strength merely correlates with or actually causes higher political
equality. One major threat of endogeneity stems from the potential of policy feedback. As
John Ahlquist points out in a recent review, unions may influence “parties and policy, but
policy and institutions also affect unionization rates” (Ahlquist 2017: 427). Weaker unions
may be more of a symptom rather than a cause of biased representation. State and local
politicians set varying rules that affect costs and benefits of union membership. Recent
research highlights the political logic behind the expansion of public sector union laws
in the 1960s and 1970s (Anzia and Moe 2016; Flavin and Hartney 2015) as well as the
countervailing success of conservative groups to demobilize public sector unions since the
early 2000s (Hertel-Fernandez 2018). In the private sector, ‘right-to-work’ laws hamper
unionization efforts with often profound political impact (Feigenbaum, Hertel-Fernandez,
and Williamson 2018). Furthermore, any relationship between union strength and equal
legislative responsiveness may be spuriously driven by the same underlying determinants.
Following seminal research on the importance of social capital for making democracy
work (Putnam 1993, 2000), workers in congressional districts with more social capital
may be better represented in both their workplace and in Congress without a causal arrow
running from the former to the latter.

In addition to concerns about causality, the literature on unequal representation faces
the challenge of how to measure public preferences. When standard election surveys
are sliced by income groups in subnational units (e.g., states or congressional districts)
small sample noise may produce “wobbly estimates” that hinder a decisive verdict (Bhatti
and Erikson 2011). Random measurement error generally leads to underestimation of
the effect of public opinion on policy. While this concern can be mitigated by using the
large Cooperative Congressional Election Study (CCES), it (and other large surveys) are
not designed to be representative at the level of congressional districts. One may thus
worry that the seeming legislative underrepresentation of the poor may be an artifact of
systematic sampling error.2

2Other empirical issues have been raised with respect to research on policy adoption (Gilens 2012; Gilens
and Page 2014). For instance, see Bashir (2015); Enns (2015); Erikson (2015); Soroka and Wlezien
(2008). Distortions based on party rather than income are discussed in our conclusion.
We tackle these problems using corrected estimates of policy preferences for congressional districts, fine-grained data on local unions and a three-pronged empirical strategy to account for alternative explanations. We examine the impact of unions on the preference-roll call link in the contemporary US Congress, where unequal responsiveness by legislators (and their staff) has been well documented (Bartels 2008, 2016; Ellis 2013; Hertel-Fernandez, Mildenberger, and Stokes 2019; Rhodes and Schaffner 2017). We focus on members of the House of Representatives during the 109–112th Congress (2005-2012) since this setting enables us to capture within-state variation in union strength and within-district variation in preference polarization by income across a range of contested policy issues.

At its core, our dataset combines income-specific measures of constituency preferences based on 223,000 survey respondents matched to roll-call votes with information on local unions extracted from more than 350,000 administrative records. We measure district-level preferences using multiple waves of the CCES and calculate preferences on 27 concrete policies, which can be matched to 37 roll-call votes, for each income group in each congressional district. We employ small area estimation using individual-level census data (this circumvents sampling issues with the CCES; but note that our findings are robust when using multilevel regression and poststratification [MRP] instead). Drawing on recent work by Becher, Stegmueller, and Kaeppner (2018), we measure the district-level strength of unions using mandatory reports filed by local unions to the Department of Labor.3

Our empirical analysis traces the legislative responsiveness of House members to the preferences of different income groups in their constituency conditional on district-level union strength. In line with previous research, we find that on average legislative votes are significantly less responsive to the policy preferences of low-income than high-income constituents. However, this gap in responsiveness is smaller where unions are stronger. Our estimates suggest that a standard deviation increase in unionization increases responsiveness towards the poor by about 6 to 8 percentage points and it somewhat reduces responsiveness to higher incomes. As a result, in districts with relatively strong unions legislators are about equally responsive to rich and poor Americans.

To rule out alternative explanations, we start by controlling for factors that may also condition legislative responsiveness. They include state-level policies toward public and private sector unions, state fixed effects, rich district socio-demographics and proxies for social capital. For more robust causal identification, we then conduct an instrumental variable analysis. It leverages plausibly exogenous variation in union strength that stems from geography and the history of union mobilization in the middle of the twentieth century. At the time, virtually all coal and metal mines were unionized throughout the

3The study of Becher, Stegmueller, and Kaeppner (2018) examines the effect of union density and union concentration on legislative ideology. It does not measure constituency preferences and thus cannot examine the extent of income-biased responsiveness. Furthermore, it lacks the exogenous source of variation in union density that we introduce in this paper.
country. The location of these industries is mainly determined by nature, and initial unionization caused subsequent spillovers in union membership in other industries (Holmes 2006). This suggest we can use local employment in mining in the 1950s as a valid instrumental variables for union membership more than five decades later. To further probe the robustness of our findings with respect omitted variable bias and functional form assumptions, we also employ a general post-double-selection estimator, which combines machine learning variable selection with causal inference methods. These additional tests confirm the initial regression results.

Our findings have important implication for the debate about the functioning of democracy in unequal times. Scholars and pundits often find it straightforward to explain why the views of the poor are poorly represented. By definition, those in the lower part of the income distribution have less resources, and many studies have shown that they are less likely to participate in politics. In contrast, our results show that unequal legislative responsiveness is not hardwired into the fabric of American democracy. In the congressional arena, local unions are a countervailing force. Related work on poverty policy, which uses a priori defined interests of the poor rather than their stated preferences, concludes that the poor are not represented by Congress as a whole. It also highlights that legislative efforts on behalf of the poor often come from “surrogate representatives” in other districts and not from a direct electoral connection (Miler 2018). Our results, however, imply that local unions provide some scope for the direct representation of the preferences of the relatively poor in the democratic process. Our findings also qualify the argument made by some comparative scholars that unions do not matter for equality unless there is a national institutional arrangement of centralized or coordinated bargaining between unions and employers (Iversen 1999; Mares 2006). The sizable impact of strong unions might also explain why unions remain under sustained attack by conservative groups (Hertel-Fernandez 2018).

Our study is complementary to research on contributions, political participation, or partisanship as important determinants of unequal legislative responsiveness (Barber 2016; Leighley and Oser 2018; Rhodes and Schaffner 2017). From our theoretical perspective, these factors are mechanisms through which unions affect representation, and we provide some evidence in line with this.4

Theoretical Considerations

Various strands of scholarship in political science and related fields suggest that labor unions may be one of the few mass-membership organization that provide collective voice to lower income individuals (Ahlquist 2017; Ellis 2013; Flavin 2018; Freeman and Medoff

4Also complementarily, a large literature examines how formal political institutions affect how the poor are represented across countries (e.g., Iversen and Soskice 2006; Long Jusko 2017).
Consistent with a central premise of the collective voice perspective, contemporary unions in the US tend to take positions favored by less affluent citizens. However, shared preferences between the less well-off and organized labor are by no means sufficient to alter inequalities in political representation. This requires an effective political transmission mechanism. Several prominent scholars of representation are skeptical that unions can fulfill that role. They suggest that unions have become too weak, too narrow, or too fragmented to have a significant egalitarian political impact in national politics (e.g., Gilens 2012: 175; Hacker and Pierson 2010: 143). However, as discussed above, the endogeneity of union organization to politics means that conclusions based on correlations between union density and political equality might be premature. What is needed is an analysis using a more credible research design (Ahlquist 2017).

The ability of unions to increase the rate of political participation—including contacting officials, attending rallies, making donations, and voting—of low- and middle-income citizens is often considered to be their key channel of political influence. Importantly, unions may also increase participation among non-members with similar policy preferences through get-out-the-vote campaigns and social networks (Leighley and Nagler 2007; Rosenfeld 2014; Schlozman, Verba, and Brady 2012). Making contributions to favored candidates and campaigns complements the ability of unions to communicate with and mobilize members or to provide campaign volunteers. Indeed, unions are among the leading contributors to political action committees (PAC), accounting for a quarter of total PAC spending in 2009 (Schlozman, Verba, and Brady 2012: ch. 14). In contrast to corporations and business organizations, union contributions “represent the aggregation
of a large number of small individual donations” (Schlozman, Verba, and Brady 2012: 428).

Unions’ mobilization capacity can affect policy decisions by representatives in two general ways. First, it may shape who is elected in a given electoral district. If politicians are not exchangeable (because they differ in their commitments and beliefs), political selection is important. In an age of elite polarization, the partisan identity of a representative is often crucial for determining legislative voting (Bartels 2016; Rhodes and Schaffner 2017; Lee, Moretti, and Butler 2004). Since the New Deal era, unions and union members have largely allied with the Democratic Party, given its stronger support for many of their broader policy demands (Lichtenstein 2013; Schlozman 2015).

Second, unions’ mobilization potential shapes the incentives of elected representatives, beyond their partisan affiliation and personal traits. Policymakers’ rational anticipation of public reactions plays a central role in theories of accountability and dynamic responsiveness (Arnold 1990; Stimson, Mackuen, and Erikson 1995). While many individual legislative votes do not affect the reelection prospects of representatives, on potentially salient votes they can face hard choices between party ideology and competing constituency preferences. On international trade agreements, for instance, Democratic representatives have faced cross-pressures between a more skeptical stance taken by unions and low-income constituents versus that of their own party (Box-Steffensmeier, Arnold, and Zorn 1997). On the other side of the aisle, Republican legislators, in the wake of the financial crisis, found themselves torn between their own partisan views on stimulus spending and the pressure from less well-off constituents (Mian, Sufi, and Trebbi 2010).

Politicians’ incentives are also linked to information. Theories of representation emphasize that members of Congress, and especially the House, face numerous voting decisions in each term, and it would be unrealistic to assume that they have access to reliable, unbiased polling data on constituency preferences on all the issues they face (Arnold 1990; Miller and Stokes 1963). Instead, representatives—with the help of their staffers—rely on alternative methods to assess public opinion, including constituent correspondence, town halls, contacts with community leaders, or local organizations. In this limited information context, local unions can enhance the visibility and perception of constituent preferences (Hertel-Fernandez, Mildenberger, and Stokes 2019).

What matters is that stronger local unions in a congressional district pose a credible mobilization threat. Given such a treat, not all elections will be competitive because strong challengers may be scared off. Relatedly, career-oriented incumbents will try to anticipate

8While evidence on the direct effect of contributions on legislative behavior is mixed, recent field-experimental results demonstrate that contributions help to provide access (Kalla and Broockman 2016) or sway congressional staffers (Hertel-Fernandez, Mildenberger, and Stokes 2019).

9Political selection may also be based on descriptive characteristics of representatives, such as their class background or race (Butler 2014; Carnes 2013).
union responses to their legislative actions. This logic has important implications for our analysis of mechanisms later on in the paper.

Taken together, this reasoning implies the hypothesis that the district-level strength of labor unions increases the responsiveness by members of Congress to the poor at the expense of the affluent. While we know from previous work that politicians are considerably more responsive to the preferences of those with higher incomes, stronger unions should mitigate this bias and thus move responsiveness more toward the ideal of political equality. Moreover, we will assess whether unions shape legislative responsiveness through partisan selection based on their capacity for electoral mobilization.

Data and Measurement

Any effort to test the relevance of unions for unequal representation confronts major challenges of measurement and causal inference. Our empirical approach allows us to address these issues to an extent previously impossible. For the House of Representatives in the 109th to the 112th Congress, we created a panel of legislators’ roll call votes matched to income-specific policy preferences at the district level, and district-level measures of union membership, based on digitized administrative records from the Department of Labor.\(^\text{10}\) Using data for 223,000 CCES respondents being asked about 27 specific roll calls, we estimate policy preferences for low and high income constituents in each district for these issues, adjusting for the fact that the CCES is not a representative sample of district populations.

Measuring district preferences by income group

The CCES is an ideal starting point for our analysis, since it is a nationally representative internet study, includes a considerable number of roll call questions, and provides us with a large enough sample size to decompose income-group preferences by district. It largely addresses the problem that the number of observation in each subgroup defined by income and congressional district is too low (Bhatti and Erikson 2011). The roll calls included in the CCES concern key votes as identified by Congressional Quarterly and the Washington Post and cover a broad range of issues (Ansolabehere and Jones 2010). Respondents are presented with the key wording of the bill (as used on the floor and in media reports) and are then asked to cast their own vote: “What about you? If you were faced with this decision would you vote for, against, or not sure?” Contrary to widely used agree–disagree survey measures of issue preferences, matched roll call votes provide us with more clear-cut evidence of legislators’ responsiveness to citizens (Jessee 2009, \(^\text{10}\)Our analysis focuses on one apportionment period, which generally holds district boundaries constant (we show that the results are robust to cases of mid-period redistricting).
We match 27 roll call items in the 2006-2012 CCES to roll 37 call votes cast in the House of the 109th to 112th Congress. These cover important legislative decisions, such as Dodd-Frank, the Affordable Care Act (and attempts to repeal it), the minimum wage increase, the ratification of the Central America Free Trade Agreement, or the Lilly Ledbetter Fair Pay Act. Table A.2 in the Appendix lists all matched CCES items and House bills included in our estimation sample.

The CCES provides a comparatively large sample size per district. However, it is not designed to be representative for congressional district populations. Thus, individuals with certain characteristics, such as particular combinations of income, race and education, may be underrepresented in the CCES sample of a given district. If this is the case, unadjusted policy preferences from the CCES will not reflect the target population and using them can lead to biased estimates of unequal representation in Congress.

Our solution to this problem is a small area estimation procedure that rebalances the survey sample to represent the district population using fine-grained Census data and flexible machine learning matching tools. The basic idea is to combine the survey data on voter preferences from the CCES, which may not be representative for districts, with accurate data on the distribution of population characteristics in a given district from the Census Bureau's American Community Survey (ACS). The machine learning solution we propose is relatively new to the representation literature in political science. It has attractive properties that merit its application to this topic. However, our findings do not depend on this particular approach. We obtain qualitatively comparable results when using the MRP approach widely used by political scientists (Lax and Phillips 2009).

However, it should be kept in mind that 'survey roll calls' differ from legislative roll calls in important aspects. Survey respondents do not face the same incentives and constraints, nor do they have the same information as sitting legislators. Relatedly, experiments demonstrate that responses to roll call questions in surveys are affected by partisan and other cues (e.g., Hill and Huber 2019). That said, several features of our analysis mitigate concerns about the use of CCES roll call items. First, our analysis focuses on responsiveness rather than congruence. Responsiveness between legislators and citizens is well defined and may be recovered even if mass survey responses can be shifted systematically by additional information (e.g., imagine adding a constant to citizens' response probabilities). In some of our models, these shifts may be district specific and issue specific (see the discussion in Appendix E and Table E.1). Second, our estimation of mass preferences is based on all respondents, not just partisans (as in Hill and Huber 2019), whose answers are more sensitive to partisan information. Given asymmetric information between elites and citizens, some go so far to argue that legislators should not respond (i.e., “pander”) to stated public preferences at all. However, this perspective does not justify why legislators’ votes would be systematically biased, on average, in favor of high incomes (especially for redistributive issues).

The literature has studied how an internet-based design varies from in-person interviews based on traditional probability sampling as well as phone interview. In all cases some form of reweighting is usually required to deal with sample selection issues. For instance, see the discussion in Ansolabehere and Schaffner (2014); Hill et al. (2007) and Vavreck and Rivers (2008).

Online Appendix B.1 provides a more detailed description of our procedure. Appendix B.3 reports model results based on two alternative approaches of measuring preferences: MRP and raw CCES means. The results are qualitatively the same as those based on the one presented in the main text. Compared to
Concretely, we use about 3 million individual-level records from a synthetic sample of the ACS from 2006 to 2011, which provides an accurate representation of the district population. We stack both datasets, creating a structure where we have common district identifiers and individual covariates while responses to policy preference questions are missing in the Census portion of the data. As common covariates bridging CCES and Census we use the following demographic characteristics: gender, race (3 categories), education (5 categories), age (continuous) and family income (continuous). The latter is of particular relevance as we are interested in producing district–income group specific preferences. In the next step we fill missing preferences in the Census with matching data from CCES respondents. Since this is essentially a prediction problem, we can use powerful tools developed in the machine learning literature to achieve this task. We use an algorithm proposed by Stekhoven and Bühlmann (2011) to impute missing cells.\(^{14}\) Compared to commonly used multivariate normal or regression imputation techniques, this strategy has the advantage that it is fully nonparametric, allowing for complex interactions between covariates, and deals with both continuous and categorical data. Our completed data-set now contains preferences for 27 roll call items of synthetic ‘Census individuals’, which are a representative sample of each House district.

With these data in hand, we assign individuals to income groups and calculate group-specific preferences for each roll call in each district. Following previous work in the representation literature (Bartels 2008, 2016), we delineate low- and high-income respondents using the 33th and 67th percentile of the distribution of family incomes. Following theories of constituency representation in Congress and methodological recommendations of Bhatti and Erikson (2011), we specify these income thresholds separately by congressional district. This accounts for the substantial differences in both average income and income inequality between US districts. It also ensures that within each district, income groups are of equal size. On average, our chosen cutoffs are close to those used in previous studies. The mean of our district-specific low-income cutoffs is around $39,000, while Bartels uses $40,000 (Bartels 2016: 240); our mean high-income cutoff is around $81,000, where Bartels employs a threshold of $80,000. However, beyond these averages lies considerable variation. In some districts, the 33rd percentile cutoff is as low as $16,500, while the 67th percentile reaches almost $160,000 in others.\(^{15}\)

For each roll call, we then estimate district-level preferences of low- and high-income constituents as the proportion of individuals voting ‘yea’. These preference estimates

\(^{14}\)Honaker and Plutzer (2016) use a similar approach (but rely on multivariate normal imputations) and further discuss its empirical performance in estimating small area attitudes and preferences.

\(^{15}\)Online Appendix Table A.1 shows the distribution of income-group cutoffs. Online Appendix C shows that our results are relatively invariant to using alternative income thresholds (e.g., based on the state-level income distribution).
range from 0 to 1 and will be mapped to changes in legislators' probability of voting 'yea' on a given roll call.

Our data shows considerable variation in the gap of policy preferences of high and low income constituents. Figure I plots histograms of the difference between low-income and high-income preferences in congressional districts for six selected roll calls. For salient bills, such as increasing the minimum wage (the Fair Minimum Wage Act), housing crisis assistance (the Housing and Economic Recovery Act), or the Affordable Care Act, the vast majority of low-income constituents are more supportive than their high-income counterparts in each and every district. On other issues, such as the ratification of the Central America Free Trade Agreement, high income constituents are clearly in favor. In all examples, we find considerable across-district variation in the preference gap between low- and high-income constituents. We leverage this variation over both roll calls and districts to estimate legislators’ differential responsiveness to changes in policy preferences of different income groups, and how it might be moderated by union strength.

Note: Each histogram plots the difference in support for a matched roll-call vote question between people in lower third and people in upper third of their district's income distribution for all House districts.

Figure I

District-level income gap in public support for 6 selected policies

Averaged over all districts and roll calls, there is a statistically significant gap between the preferences of the bottom third and the top. The mean of the (absolute) preference difference is 17 percentage points; the 10th percentile is 3 points while the 90th percentile is 32 percentage points.
To measure district-level union membership we draw on fine-grained administrative data on local unions compiled by Becher, Stegmueller, and Kaeppner (2018). Union locals are the basic unit in the union organizational pyramid. By law, they are formed around a recognized bargaining unit, which usually comprises a precise physical establishment, such as a factory, warehouse or school (though they may also cover multiple establishments). Based on the Labor-Management Reporting and Disclosure Act (LMRDA) of 1959, unions have to file mandatory yearly reports (called LM forms) with the Office of Labor-Management Standards (OLMS). The Civil Service Reform Act of 1978 introduced a similarly comprehensive system of reporting for federal employees (see Budd 2018). A mandatory part of each report is the number of members a union has. Failure to report, or reporting falsified information, is made a criminal offense under the LMRDA, and reports filed by unions are audited by the OLMS. The resulting database contains almost 30,000 local unions (i.e., it exclude state or national level units). It is based on 358,051 digitized individual reports that were cleaned, validated, geocoded, and matched to congressional districts. The total membership of union locals in each congressional district can then be readily obtained as the sum of all reported union members. Figure II shows the distribution of union membership in House districts. It demonstrates the substantial variation in unionization between electoral districts, which would be ignored by a state-level analysis. Note that while individual union locales exhibit significant variation in membership over time, aggregate district-level membership moves little during the period we study, in line with the national trend. Hence our analysis focuses on the between-district variation in unionization.\footnote{On average there are 50 different union locals in each district (29 at 25th percentile and 75 at 75th percentile). Most of these unions are small. Median membership is 115 (81 at 25th percentile and 183 at 75th percentile). As a rule, there are numerous locals belonging to the same national union in the same state. All of this suggests that it is meaningful to map locals to congressional districts based on their physical location. While it does not mean that all members of the same local union work or live in this district (e.g., think of long-range commuting members of airline unions), it indicates a credible organizational presence and mobilization resource. One may worry that under strong spillovers across districts, our estimates of the impact of unions on representation may be downward biased. We shown in Online Appendix Table E.1, that our results change little when excluding New York state—which hosts several very large local unions in NYC close to the border with New Jersey.}

Using LM forms provides important advantages over using measures derived from surveys. First, mandatory administrative filings are likely more reliable than population surveys, which often suffer from over-reporting and unit-nonresponse (Southworth and Stepan-Norris 2009: 311). Second, they allow us to estimate union membership numbers for smaller geographical units, which are usually unavailable in population surveys or
only covered with insufficient sample sizes.18 Another advantage for the study of politics is that the presence of union locales is observable to politicians on the ground even in the absence of survey data.

A potential drawback of using LM forms is that some public unions (those that exclusively represent state, county, or municipal government employees) are exempt from filing. However, any union that covers at least one private sector employee is required to file. In practice, this leads to almost complete coverage, because unions are now increasingly organizing workers across different sectors and occupations (Lichtenstein 2013: 249).19

Basic Empirical Models

Our basic empirical approach is to estimate a regression model that relates roll-call votes in the House of Representatives to roll-call specific preferences of different

18The most prominent data set on union membership, compiled by Hirsch, Macpherson, and Vroman (2001), provides CPS-based estimates for states and metropolitan statistical areas; district identifiers are not available.

19National aggregates based on LM forms are in close agreement with measures from the CPS (Hirsch, Macpherson, and Vroman 2001): the former estimates 13.21 million union members (excluding Washington, D.C.) for our sample period, while the latter yields 15.22 million. This difference is consistent with some degree of over-reporting in the (survey-based) CPS (Southworth and Stepan-Norris 2009: 311). It can also be interpreted as an upper bound for the non-coverage of some public sector unions. A more detailed analysis (Becher, Stegmueller, and Kaepner 2018) finds that state-level aggregates from LM forms and the CPS are strongly correlated ($r = 0.86$).
income groups in each congressional district. The central innovation of this specification relative to the literature are interaction terms between district-level union membership and group preferences of low-income and high-income constituents. This enables us to assess whether unions moderate unequal legislative responsiveness. As a first approach to rule out alternative explanations, we allow for a rich set of state and district characteristics to moderate the link between legislative votes and group preferences. Later, we introduce an instrumental variable for union membership and a post-double selection model that makes less restrictive assumptions than the basic model.

Somewhat more formally, our dependent variable (represented by y_{ijd}) indicates whether a legislator (i) from a congressional district (d) votes yes or not on a particular roll call vote (j). For each roll-call vote and each congressional district, we have measured preferences of low-income Americans (θ^l_{jd}) and high-income Americans (θ^h_{jd}). The strength of unions is measured by the (logged) membership of local unions in a district (U_d). Depending on the particular specification (discussed in the next section), control variables (X_d) include (i) socio-economic district characteristics, (ii) measures of historical state union policies and state fixed effects, (iii) proxies for district-level social capital, (iv) as well as non-linear transformations of these. For ease of interpretation, we have scaled all inputs to have mean zero and unit standard deviation. Our model for the voting behavior of House members is the following linear probability specification:

$$y_{ijd} = \mu^l \theta^l_{jd} + \mu^h \theta^h_{jd} + \eta^l (U_d \times \theta^l_{jd}) + \eta^h (U_d \times \theta^h_{jd}) + \beta^l (X_d \times \theta^l_{jd}) + \beta^h (X_d \times \theta^h_{jd}) + \alpha_d + \epsilon_{ijd}$$

In this model, the coefficients for the group-specific preferences (μ^l and μ^h) capture the change in the probability of legislators casting a supportive vote induced by a standard deviation change in the respective preferences of the poor and the affluent when union strength is at the mean. Key terms of interest are the interactions between union membership and the respective preferences of the poor and the affluent ($U_d \times \theta^l_{jd}$ and $U_d \theta^h_{jd}$). The slope coefficient on the interaction between union membership and low-income preference (η^l) captures the conditional effect of a standard deviation change in logged union membership on the responsiveness of legislators’ votes to the preferences of the low-income constituents. The corresponding slope for the interaction between union membership and high-income preference given by η^h. Our main theoretical expectation is that legislative votes become more response to low-income constituents as unions become stronger ($\eta^l > 0$). Given the redistributive nature of many policy issues, we expect this to come at the expense of somewhat lower responsiveness to higher incomes ($\eta^h < 0$).

The non-interacted effects of district-level union membership and covariates (which vary between districts, but are constant over roll calls) are absorbed in α_d discussed below.

20The non-interacted effects of district-level union membership and covariates (which vary between districts, but are constant over roll calls) are absorbed in α_d discussed below.
The equation above highlights that all our control variables are also interacted with preferences \((X_d \times \theta^l_{jd} \text{ and } X_d \times \theta^h_{jd})\). Note the model also includes district fixed effects \((\alpha_d)\), which allow for systematic district-specific differences in interpretation of roll-call votes between legislators and constituents. They also provide for an additional defense against time-invariant omitted variables, though we note that the main threat to causal inference concerns the interaction terms.\(^{21}\) The fixed effects model leverages within-district variation in income-based policy preferences as well as between-district variation in union strength as a moderator of preferences. Finally, the error term \((\varepsilon_{ijd})\) is assumed to be white noise independent of covariates. We calculate cluster-robust standard errors accounting for heteroscedasticity and arbitrary within-district correlations.

Results

Before presenting evidence on the moderating effect of unions, we want to give a sense of the overall picture of legislators’ responsiveness emerging from our data. Estimating a model of legislative voting as described above but without accounting for local union organization or any other moderators (i.e., setting all interaction terms to zero), we find a clear gap in the responsiveness of legislators to the preferences of low- versus high-income individuals. A standard deviation (SD) increase in the preferences of people in upper third of income distribution is linked to an increase in the probability of legislators to cast a corresponding vote of 13.6 \((\pm 1.2)\) percentage points. In contrast, a SD increase in the preferences in bottom third of the income distribution induces a much smaller change in legislators’ behavior of 1.6 \((\pm 1.4)\) points. With a confidence interval ranging from \(-1.1\) to 4.4, we cannot reject the null hypothesis that legislators do not respond to the preferences of low-income constituents in the average electoral district. The responsiveness gap between the two groups is sizable (at 11.9 \((\pm 2.5)\) percentage points) and significantly different from zero. This is consistent with with previous work on unequal representation in Congress (Bartels 2008, 2016; Bhatti and Erikson 2011; Ellis 2013). Next, we show that the extent of legislators’ non-responsiveness depends crucially on the strength of local unions.

Turning to the effect of unions on legislative responsiveness, we start by summarizing our key finding graphically and then discuss more extensive model specifications. Figure III plots marginal effects of low- and high-income constituency preferences on representatives’ roll-call votes at varying levels of union membership with 95% confidence intervals.\(^{22}\) It shows that legislators’ responsiveness to the policy preferences and low-income and

\(^{21}\)Arguably, the district fixed effects have more bite in a specification that codes the votes in a liberal or conservative direction. This is done as a robustness check (Appendix Table H.1).

\(^{22}\)Calculated from a LPM of vote choice on preferences and union membership. It includes district fixed effects with district-clustered standard errors. See also (1) in Table I. Further below we will also show estimates of the representation gap based on more demanding specifications.
high-income constituents depends on district-level union membership: as unionization increases, legislators' responsiveness to low-income constituents increases, while their responsiveness to high-income constituents declines. For example, moving from a district with median levels of union membership to one at the 75th percentile increases the responsiveness of legislators to low-income preferences by 8 percentage points, while it decreases responsiveness to high-income preferences by about 5 points. Given the initial responsiveness gap, this change is substantial enough to substantially level the playing field between affluent and poor.

Figure III
District-level union membership as moderator of unequal representation.

Note: This figure plots changes in marginal effects of low- and high-income constituency preferences on representatives’ roll-call votes conditional on district-level union membership. Shaded areas are 95% confidence intervals based on district-clustered standard errors. The sample distribution of (z-standardized) union membership is indicated above the x-axis.

Are these findings robust to confounding factors? Table I presents parameter estimates from a number of increasingly rich specifications designed to capture potential confounds. In specification (1), we begin with a baseline model (also plotted in Figure III) that includes district fixed effects but no further preferences-confounder interactions (setting β^l and β^h to zero). We find that a SD increase in district union membership increases legislators' responsiveness to the poor by about 11 (\pm1) percentage points, while at the same time decreasing the advantage in responsiveness enjoyed by the affluent by about 6 (\pm1) points.

It would be premature to interpret these estimates as causal effects. Reflecting policy feedback (Ahlquist 2017), the moderating effect we have ascribed to unions mostly reflects
Table I
Effect of union membership on legislators’ responsiveness to preference of rich and poor constituents.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low income preferences</td>
<td>0.106</td>
<td>0.082</td>
<td>0.098</td>
<td>0.089</td>
<td>0.068</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.015)</td>
<td>(0.016)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>High income preferences</td>
<td>−0.063</td>
<td>−0.036</td>
<td>−0.053</td>
<td>−0.056</td>
<td>−0.050</td>
<td>−0.029</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.013)</td>
<td>(0.014)</td>
<td>(0.012)</td>
<td>(0.013)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>District fixed effects</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Group preferences</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>× union policy</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>× state constants</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>× district social capital</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>× district covariates</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Note: Entries are parameter estimates of interaction terms between roll-call specific preferences of low-income constituents and district union membership (η_l) as well as between high-income constituents and district union membership (η_h) from a linear probability model. District-clustered standard errors in parentheses. Estimates are all significant at a 5% test level. N=15,780. $N_d=435$. 37 matched roll call votes, 109th to 112th Congress. Specifications (2) to (5) include additional interactions between income group preferences with state- or district-level confounders. Specification (2) includes two measures of historical state union policymaking, the share of years with right-to-work legislation and collective bargaining agreements. (3) interacts preferences with state fixed effects. (4) includes as a measure of social capital the number of bowling alleys (Rupasingha and Goetz 2008). (5) includes a large set of district-level characteristics (population size, degree of urbanization, shares of female, Black, Hispanic, BA degrees, employed in manufacturing, as well as median household income). (6) includes all of above except state fixed effects.

the fact that state governments have chosen policies that strengthen or weaken the ability of unions to organize. While collective action problems dilute incentives of politicians to make politics using policies, in some circumstances they are overcome. Most relevant for unions are right-to-work and public sector bargaining laws (Anzia and Moe 2016; Feigenbaum, Hertel-Fernandez, and Williamson 2018; Flavin and Hartney 2015; Hacker and Pierson 2010; Hertel-Fernandez 2018). In specification (2), we therefore add two measures of historical state union policy: the share of years with right-to-work legislation and the share of years with mandatory collective bargaining laws for teachers since 1955, taken from Flavin and Hartney (2015). These are interacted with preferences of low-income and high-income constituents. In specification (3) we go one step further and allow for any state-level characteristic (such as institutions or historically-rooted popular anti-union sentiments) to moderate the marginal effect of income group preferences on legislators vote choice by including state-specific constants interacted with group preferences. The results from both extended specifications show that accounting for state-level policies and institutions as potential moderators does not change our core picture of
the role of local union organization: where local unions are stronger the responsiveness
gap between the affluent and the poor is reduced.

A more subtle problem concerns a form of simultaneity bias at the district level. There
may be district-level factors shaping both the propensity to be a union member and to
be politically active. If less affluent individuals with a higher capacity to organize and
solve collective action problems cluster in specific districts, our estimates of the marginal
impact of district union membership on responsiveness will be overly optimistic. Such a
propensity may reflect critical historical junctures in labor organizations (Ahlquist and
Levy 2013) or social capital (Putnam 1993, 2000). As a first cut to address this problem
using control variables, we add proxies tapping into social capital. We use the number
bowling alleys as a proxy, taken from Rupasingha and Goetz (2008). The data are available
at the county level and was spatially reweighted to congressional districts. Again, the
results are substantively unchanged. Using religion as an alternative proxy of social capital
yields the same result (see Appendix E).

In specification (5) we measure a large number of districts’ socio-economic charac-
teristics and allow them to interact with constituency preferences: population size, race
share of African Americans and Hispanics), education (share with BA or higher), the
share of the working population employed in manufacturing, median household income,
and the degree of urbanization (for descriptive statistics, see Table A.3). This set of co-
variates excludes obviously “bad controls” (Samii 2016) such as partisanship or campaign
contributions that are a mechanism through which unions influence representation.23
Again, our results point towards the existence of a clear moderating effect of unions.
Our final specification, column (6) of Table I, includes all previous covariates and, again,
confirms our core finding.24

Assessing Threats to Inference

To strengthen the causal interpretation of our results, we now move beyond adjusting
for available control variables in a linear fashion. As our second approach, we instrument
contemporary unionization by exploiting the history and geography of the post-war labor
movement in the United States. As proposed by Becher and Stegmueller (2019), the
basic idea is to leverage the history of spillovers from unionization in a few capital-
intensive industries, whose location was mainly determined by geographical factors, such

23 Unionization may lead to sorting based on sociodemographic characteristics if people vote with their feet.
Hence, our basic model excludes these factors, and the next section specifies an instrumental variable
model.

24 We perform a number of additional robustness checks in Appendix E and find our results generally
confirmed. Furthermore, Becher, Stegmueller, and Kaeppner (2018) find that union concentration can
affect legislative voting. While we have not source of exogenous variation for their concentration
variable, our results obtain when controlling for it.
as natural endowments, as opposed to local tastes or institutions that also drive political representation.

Economic historians have noted that in the early 1950s coal and metal mines as well as steel plants were fully unionized across the country, irrespective of local political leanings (Holmes 2006: 2). In the relatively pro-labor environment of the time, including a National Labor Relations Board staffed by appointees of successive Democratic administrations, extractive industries were easy targets for unionization due to their capital intensity, high sunk costs, and difficult working conditions. Thus, they were unionized even in the otherwise much more anti-union South. Importantly, the location of mining and even steel production is largely determined by nature, whether due to the availability of coal deposits in the ground or the access to raw materials for steel mills.

Over time, positive spillovers from unionized mining and steel industries induced high levels of union membership across industries. Unions used their resources to organize new establishments, and workers (or members of their social network) switching industries brought with them tastes and skills for unionization. Using detailed local data, Holmes (2006) documents a positive relationship between the unionization of establishments (in health care and wholesale) in the 1990s and their proximity to mining and metal industries in the 1950s. The combination of geographic location of these industries being largely shaped by nature and strong spillovers implies that part of the variation in union membership in congressional districts at the beginning of the twenty-first century is exogenous to district-level omitted variables conditional on the intensity of mining and steel employment in the middle of the twentieth century.

We thus construct our instrument for current levels of union membership from data on district-level employment shares in mining and steel industries in the 1950s. We construct the latter by calculating them from 1950 Census samples spatially interpolated to current congressional districts. Figure IV conveys that historical mining employment is strongly related to contemporary levels of union membership. It plots logged district-level employment in mining and steel industries (as share of working population) in the 1950 Census against logged contemporary district-level union membership in the 109th Congress. A simple linear model with state and congress fixed effects suggests that a one percent increase in the instrument induces a 0.21 (±0.01) percent increase in the district-level share of union members. State fixed effects capture variation in pro-business orientation of a state in the 1950s, which may shape the intensity of mining or the location of steel industries.

25 We use IPUMS 1 percent 1950 Census samples which use 'state economic areas' (SEA) as geographic identifiers (our calculation accounts for sample inclusion probabilities). We create area-weighted crosswalks from SEAs to current congressional districts via spatial polygon intersection (using the GEOS GIS library) and use it to calculate historical stocks of mining/steel employment for each congressional district.
These results considerably strengthen the causal interpretation of our findings. Figure V shows that responsiveness towards the better off. However, where unions are comparatively strong, or moderately strong unions, we recover the well-known picture of legislators’ biased the legislative responsiveness to preferences of high-income and low-income constituents with corresponding 95% confidence intervals (calculated using the delta method). Its magnitude is in line with the richer specifications of our previous linear model (compare specifications (4) and (5) in Table I). These results considerably strengthen the causal interpretation of our findings.

Column (1) of Table II shows IV estimates for the effect of union strength on the link between preferences and legislative voting. It suggests that a SD increase in unionization increases legislators’ responsiveness to the bottom third by about 7 (±1) percentage points and decreases responsiveness to the upper third by about 4.5 (±1) points. Our IV estimate lies within the set of estimates reported in Table I. Its magnitude is in line with the richer specifications of our previous linear model (compare specifications (4) and (5) in Table I). Our results implies that unions enhance substantive political equality in Congress. Based on estimates from the IV model, Figure V illustrates graphically how the gap in the legislative responsiveness to preferences of high-income and low-income constituents varies with district union membership. It plots estimated differences in marginal effects for low- and high-income constituents at varying levels of union strength with corresponding 95% confidence intervals (calculated using the delta method). Figure V shows that the gap in responsiveness declines as district union membership increases. With weak or moderately strong unions, we recover the well-known picture of legislators’ biased responsiveness towards the better off. However, where unions are comparatively strong,

\[\theta_{jd} \times U_d \times \theta_{jd}^{1950} \times M_{d,1950} \times \theta_{jd}^{d} \]

26Formally, the 2SLS model instruments the two preference-union interaction terms in the estimation equation, \(U_d \times \theta_{jd}^{1950} \times M_{d,1950} \times \theta_{jd}^{d} \), using \(M_{d,1950} \times \theta_{jd}^{1950} \) and \(M_{d,1950} \times \theta_{jd}^{d} \), where \(M_{d,1950} \) is the historical stock of mining and steel employment from the 1950 census in contemporary district \(d \).
Table II
Probing the Causal Effect of Union Strength on Legislators’ Responsiveness. Instrumental variable and post-double-selection estimates.

<table>
<thead>
<tr>
<th></th>
<th>(1) IVa</th>
<th>(2) pDSb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low income preferences</td>
<td>0.068 (0.012)</td>
<td>0.060 (0.015)</td>
</tr>
<tr>
<td>High income preferences</td>
<td>−0.045 (0.012)</td>
<td>−0.041 (0.014)</td>
</tr>
<tr>
<td>Semi-parametric terms</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>Post-LASSO selection terms</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>15674</td>
<td>7822</td>
</tr>
</tbody>
</table>

Note: Entries are estimates of interactions between low-income preferences and union membership (η_l^i) as well as between high-income preferences and union membership (η_h^i). Clustered robust standard errors in parentheses. Estimates are all significant at a 5% test level.

a Instrumental variable (2SLS) estimates. Union density instrumented with district mining employment share in 1950. Robust first-stage (Kleibergen-Paap) statistic: $F = 644.9$.

b Post-double-selection estimates. See Appendix F for details. N = 7,822 (50% validation sample, first half used for LASSO selection). It includes union policy, social capital and district characteristics and all their pairwise interactions in linear and quadratic form.

more or less above the 75th percentile, legislators are about equally responsive to different income groups on the salient issues included in our analysis. As in any instrumental variable analysis, we have to make an unprovable exclusion restriction. It is violated if legacies of mining and steal in the 1950s have a direct effect on the equality of representation in Congress today beyond union strength (e.g., through the formation of other organizations or transmission of partisanship). We think this is a plausible approximation. Today, for instance, neither mining nor steel are uniformly unionized, and over more than half a century of migration has changed the makeup of many parts of the country.27 Our confidence in the IV result is strengthened by its concordance to using other approaches. This includes regressions adjusting for several possible other channels, such as district-level social capital, churches, and state fixed effects (see Table I and Table E.1).

27Furthermore, note that a (joint) hypothesis test of the union effect in the IV model while allowing for some degree of violation of the instrument exclusion restriction (a local-to-zero correlation between the instrument and the structural error) using the fractionally resampled Anderson-Rubin test (Berkowitz, Caner, and Fang 2012) with 10,000 replicates yields a p value of 0.023. This signifies that our IV estimates can tolerate some degree of violation of the sharp exclusion restriction.
A third approach to address the problem of union endogeneity is to use the post-double-selection estimator recently developed in econometrics (Belloni, Chernozhukov, and Hansen 2014; Chernozhukov, Hansen, and Spindler 2015). It makes different assumptions than the IV approach and thus ensures that our causal interpretation does not solely rely on the validity of a particular set of assumptions. This approach addresses the problem that there are many potential covariates (including non-linear transformations and interactions between them) and it is difficult to know a priori which combination to include in order to minimize omitted variable bias. Intuitively, this approach includes relevant variables from a high-dimensional vector of possible controls (relaxing the linearity restrictions usually imposed in regression models), that are either relevant predictors of legislative voting or relevant predictors of the interaction of union membership and group-preferences (for a more detailed description see Appendix F). Reassuringly, column (2) of Table II shows that the estimates from this approach are very similar to those from the IV model. Relatedly, we also investigated if our findings are dependent on the linear functional form imposed on the union-preference interaction terms.

In a recent replication survey, Hainmueller, Mummolo, Mumolo, and Xu (2019) warn that “a large portion of published findings based on multiplicative interaction models are artifacts of misspecification.” In Appendix G we show evidence that the moderating effect of unions is evident even in a nonparametric KRLS model without any a priori restrictions.
Exploring Mechanisms

In this final empirical section, we explore two closely related mechanisms of union influence: campaign contributions and partisan selection. If contributions are a channel of union influence, we expect to observe that (i) in districts where local unions are stronger, unions and their members contribute more to sitting members of Congress; and (ii) that these contributions are positively linked to legislative responsiveness. Recall that our framework emphasizes the ability of unions to shape electoral selection and incentives through their mobilization potential. Campaign contributions, which contribute to candidates’ war chest, are a proxy for unions’ credible mobilization threat. To capture this logic, we think that contributions are somewhat better suited than turnout. While we agree with the literature that turnout is an important and closely related channel (e.g. Bartels 2008; Franko, Kelly, and Witko 2016; Gilens 2012; Leighley and Oser 2018), realized turnout is related to a host of other factors. Importantly, a high mobilization potential need not translate into high turnout if competitive challengers do not enter the race. This means that turnout may underestimate the relevance of the mobilization channel. If partisan selection is a relevant channel, (i) district-level union strength should have a positive impact on electing Democratic legislators, (ii) who in turn are more likely to vote in line with low-income preferences.

In a first step, we analyze the impact of union membership on the amount of (logged) labor contributions and selection of Democratic legislators. Our measure of contributions is calculated from raw campaign finance contribution data obtained from the Center for Responsive Politics. We sum contributions reported to the Federal Election Commission to candidates from the “labor” sector (excluding single-issue donations). Our count includes both individuals and PACs (but using either alone does not change our results). To guard against omitted variables, we apply the instrumental variable strategy from above. Table III shows the results. In columns (1) – (3), we find that in OLS and IV specifications (with and without district controls) an increase in union membership systematically increases the amount of contributions from labor in that district. Consistent with some degree of endogeneity, the estimate from the IV models is about twice as large as the one from the OLS model. According to model (2) and converted to Dollar amounts, a standard deviation increase in union membership increases contributions from Labor by about $178,500. Turning to partisan selection, columns (4) – (6) support the argument that higher union membership entails a higher probability of a Democratic candidate being elected.

In the second step, we analyze the link between campaign contributions and unequal responsiveness as well as partisanship and unequal responsiveness. Results are shown in two panels in Table IV. Following the specification used in Table I, we estimate linear probability models regressing roll call votes on the interaction between district preferences and contributions (panel A) and an indicator for a Democratic representative (panel B).
Table III
Exploring Mechanisms, first step. The impact of union membership on the amount of labor contributions and selection of Democratic legislators.

<table>
<thead>
<tr>
<th></th>
<th>A: Contributions</th>
<th>B: Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>OLS</td>
<td>IV</td>
</tr>
<tr>
<td>Union membership</td>
<td>0.072 (0.010)</td>
<td>0.116 (0.030)</td>
</tr>
<tr>
<td>District-level controls</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Note: Estimates from district-level regression of (log) labor contributions on (log) union membership (Panel A) and presence of Democratic representative on (log) union membership (Panel B). Robust standard errors in parentheses. Estimates are all significant at a 5% test level. IV columns instrument union membership with district mining employment share in 1950. The Kleibergen-Paap robust first-stage F statistic is 88.9 and 83.2 for specifications without and with district controls, respectively.

We also include district fixed effects, and, in column (2), district controls interacted with preferences. We find that in districts where labor contributions are higher, the marginal effect capturing a legislator’s responsiveness to the preferences of low income constituents is significantly higher. Consistent with previous research (Bartels 2016; Rhodes and Schaffner 2017), the selection of Democratic legislators is also associated with higher responsiveness to the preferences of low income constituents compared to their Republican counterparts.

In sum, the pro-poor impact of unions rests in part on their ability to mobilize campaign contributions and getting Democratic candidates elected. This is consistent with arguments based on mobilization threats and rational politicians. While intuitive, these results are by no means mechanical. National union organizations play an important role in lobbying Congress and their political resources need not be directed where unions’ grassroots are strongest (Dark 1999). The evidence that district-level union membership nonetheless matters for legislative responsiveness is consistent with the argument that local union strength underpins a credible threat of mobilization that shapes political equality through political selection and post-electoral incentives. The importance of electoral selection visible in our results is in line with a larger body of research on elections and representation (Bartels 2016; Lee, Moretti, and Butler 2004; Miller and Stokes 1963). Mobilization efforts by unions remain strongly linked to available human resources on the ground. Recent evidence also shows that the presence of local unions is linked to the perceptions of constituent preferences by congressional staffers (Hertel-Fernandez, Mildenberger, and Stokes 2019).

Analyzing the heterogeneity of the impact of unions also sheds light on the mechanisms. For reasons of space, we relegate the complete discussion to Online Appendix H. We find that our results do not vary much by the type of the union (public or private) or...
Table IV
Exploring Mechanisms, second step. Roll call votes as function of preferences moderated by labor contributions and Democratic legislators.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Labor contributions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>× low income preferences</td>
<td>0.946</td>
<td>0.933</td>
</tr>
<tr>
<td>(0.036) (0.032)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>× high income preferences</td>
<td>−0.735</td>
<td>−0.754</td>
</tr>
<tr>
<td>(0.029) (0.028)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B: Democratic representative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>× low income preferences</td>
<td>0.576</td>
<td>0.561</td>
</tr>
<tr>
<td>(0.012) (0.013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>× high income preferences</td>
<td>−0.411</td>
<td>−0.431</td>
</tr>
<tr>
<td>(0.013) (0.013)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

District-level controls ✓

Note: Entries are OLS coefficients from linear model of legislators’ vote as function of interaction between district preferences and (log) labor contributions (panel A) and Democratic representative (panel B). Column (2) adds district-level controls interacted with preferences. Robust standard errors are in parentheses.

whether the vote concerns a liberal or conservative position. However, the impact of union membership on legislators’ responsiveness to low-income preferences is significantly larger for roll call votes on which the AFL-CIO has taken a prior position, which mainly includes salient economic and redistributive issues. This bolsters our interpretation that the egalitarian effect of unions is driven by their capacity for political action.

Discussion and Conclusion

Dahl (1961) famously asked: who governs in a polity where political rights are equally distributed, but where large inequalities in income and wealth may bias representation? In the wake of rising income inequality in the US, scholars have identified the question of political inequality as one of the central challenges facing democracy in the twenty-first century (APSA 2004). While the scientific debate is far from over, numerous studies have documented striking patterns of unequal responsiveness by income. When policy preferences diverge across income groups, legislators are biased toward the affluent.

Among the covered roll-call votes, the AFL-CIO took no position on stem cell research, Iraq redeployment, foreign intelligence surveillance, the repeal of Don’t Ask Don’t Tell, energy security, and several fiscal appropriations.

29
at the expense of the middle-class and—especially—the poor. Many recent works conclude by asking what factors may improve political representation of the economically disadvantaged.

We contribute to this agenda by analyzing whether labor unions can serve as an effective collective voice institution limiting unequal representation in Congress. Going beyond existing work on this topic, we develop a research design to account for the fact that union strength is endogenous to politics and that existing survey data may not be representative of the district population. Against the view that unions are not relevant causal forces for political equality, we find that they systematically shape unequal representation: increasing district-level union strength decreases representation bias. Thus, while legislators are on average more responsive to the preferences of the rich than to the preferences of the poor, this representation gap varies considerably. It is much smaller in congressional districts where union membership is relatively higher.

Empirically, our analysis has focused on legislative voting. Analytically, the logic of influence working through electoral mobilization and political selection supported by our findings applies to political representation in Congress more generally. There is evidence that contributions from unions are associated with legislators paying more attention to issues prioritized by lower and middle income groups, at the expense of high incomes (Kelly et al. 2019). Going beyond Congress, one scope condition is that unions competing for influence in local elections (e.g., for school boards) may be more likely to represent narrow interests rather than providing a collective voice to the disadvantaged that are not union members (Anzia 2011; Moe 2009).

Our findings cast a somewhat less pessimistic light on democratic representation in Congress than the existing representation literature. Despite high income inequality,

30 Following much of the unequal democracies literature, we focus on income distortions in representation. A recent study of the US Senate evaluates both income and partisan biases in legislative responsiveness (Lax, Phillips, and Zelizer 2019). They find that senators tend to be more responsive to rich than poor constituents as well more responsive to their own partisans. From additional “taking sides analyses” of congruence, Lax, Phillips, and Zelizer (2019) conclude that “party trumps the purse” (p. 918). This raises intriguing questions concerning the impact of unions on representation. For instance, does the union effect apply equally to Democratic and Republican low-income citizens alike? Should we re-think the partisan selection mechanism? While addressing the questions is a task for future research, we know that since the 1970s there has been increased partisan sorting by income (McCarty et al. 2006). Given the much smaller scale, we suspect that unbundling income and partisanship will be even more difficult for House districts than for states, though in principle the small area estimation strategy proposed here, as well as the two-stage MRP of Lax, Phillips, and Zelizer (2019), can be employed. Another complication is that partisanship is also shaped by unions. In regressions of legislative votes on the median position of each income group, we find that unions make legislators more responsive to the poor median at the expense of the rich. This may indicate that unions also represent poor Republicans as long as they have similar policy preferences as the poor majority and their partisanship is (partly) based on other considerations (e.g., family, valence, other issues). With respect to the electoral selection of Democrats, unions should have incentives to strategically mobilize members based on their partisanship (in ongoing work we do find some evidence that they do).
polarization, expensive campaigns, and a legislature dominated by affluent politicians (Carnes 2013; Gilens 2012; Hacker and Pierson 2010; McCarty, Poole, and Rosenthal 2006), they suggest that legislative underrepresentation of the poor is not an unavoidable feature of American democracy. This is not to argue that there is a simple recipe to increase political equality in Congress via changing union membership nor that an increase in unionization would be without economic costs. Union membership in the US has varied markedly over time and across sectors. Research suggests that there is no single smoking gun that accounts for the ebb and flow of unionization. Neither prime suspect—economic globalization and deindustrialization—are associated with declining unions everywhere (Schnabel 2013; Wallerstein and Western 2000). However, the regulatory environment matters. For instance, recent changes to state-level laws concerning union fees in the private sector or public sector collective bargaining rights are believed by the involved actors to have predictable effects. Recent research leveraging reforms across state borders supports this view (Goldfield and Bromsen 2013; Feigenbaum, Hertel-Fernandez, and Williamson 2018). Similarly, the appointment of bureaucrats to the National Labor Relations Board is consequential for the implementation and interpretation of labor law. Major candidates in the Democratic primaries for the 2020 presidential election (i.e., the top 5 in the early contests: Biden, Buttigieg, Klobuchar Sanders, Warren) proposed numerous reforms to encourage unionization and collective bargaining. At a minimum, they all support the “Protecting the Right to Organize Act of 2019”. It includes, among others, higher penalties for companies who illegally interfere with worker’s organization efforts. It also revises the definition of “employee” and “supervisor” to prevent employers from exempting employees from labor law protections by definitional fiat. Of course, laws and appointments are made in a political process influenced by socio-economic inequalities; and they are partisan. But in principle they are amenable to change through elections. The demand for union membership among (non-unionized) American workers is relatively high.\(^{31}\) The increase in industrial concentration over the last decades may ultimately facilitate union mobilization even in the absence of regulatory action because it entails relatively lower mobilization cost and higher benefits based on firm profits (Hirsch and Berger 1984).

References

\(^{31}\)48% of non-union respondents in the 2017 Worker Voice survey said they would like to join a union (Kochan et al. 2019)

Online Appendix to Reducing Unequal Representation: The Impact of Labor Unions on Legislative Responsiveness in the US Congress

Michael Becher
Daniel Stegmueller

Contents

A. Data 1

B. Estimation of District Preferences 4
 B.1. Small Area Estimation via Chained Random Forests 4
 B.2. Multilevel Regression and Poststratification 7
 B.3. Model results under various preference estimation strategies 8

C. Alternative Income Thresholds 9

D. Measures of District Organizational Capacity 10

E. Additional Robustness Tests 12

F. Post Double Selection Estimator 15

G. Nonparametric Evidence for Union Preferences Interaction 17

H. Heterogeneity 19
A. Data

In this appendix we present additional details on our dataset including details on the creation of some control variables and descriptive statistics.

Matched roll calls Table A.2 displays Congressional roll calls matched to CCES items. We selected congressional roll calls based on content and, when several choices were available, based on their proximity to CCES fieldwork periods.

Income thresholds Table A.1 presents an overview of the income thresholds we use to classify CCES respondents into income groups. We use two thresholds separating the lowest and highest income terciles. We calculate them from yearly American Community Survey files excluding individuals living in group quarters. For each congress, Table A.1 shows the average of all district-specific thresholds as well as the smallest and largest ones.

Public unions Public unions captured (by name) in our data include the American Federation of State, County & Municipal Employees, National Education Association, American Federation of Teachers, American Federation of Government Employees, National Association of Government Employees, United Public Service Employees Union, National Treasury Employees Union, American Postal Workers Union, National Association of Letter Carriers, Rural Letter Carriers Association, National Postal Mail Handlers Union, National Alliance of Postal and Federal Employees, Patent Office Professional Association, National Labor Relations Board Union, International Association of Fire Fighters, Fraternal Order of Police, National Association of Police Organizations, various local police associations, and various local public school unions.

Descriptive statistics Table A.3 shows descriptive statistics for all variables used in our analysis. Note that these are for the untransformed variables. In our empirical models, we standardize all inputs to have mean zero and unit standard deviation.

Table A.1

<table>
<thead>
<tr>
<th></th>
<th>33rd percentile</th>
<th>67th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean Min Max</td>
<td>Mean Min Max</td>
</tr>
<tr>
<td>Congress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>38123 16800 73675</td>
<td>77964 39612 146870</td>
</tr>
<tr>
<td>110</td>
<td>40127 18000 77000</td>
<td>83047 43600 155113</td>
</tr>
<tr>
<td>111</td>
<td>39021 17500 78262</td>
<td>82440 46000 160050</td>
</tr>
<tr>
<td>112</td>
<td>37381 16500 81000</td>
<td>79868 38500 158654</td>
</tr>
</tbody>
</table>

Table A.2
Matched CCES–House roll calls included in our analysis.

<table>
<thead>
<tr>
<th>CCES Match</th>
<th>Bill</th>
<th>Date</th>
<th>Name</th>
<th>House Vote (Yea-Nay)</th>
<th>Bill Ideology†</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>HR 810</td>
<td>07/19/2006</td>
<td>Stem Cell Research Enhancement Act (Presidential Veto override)</td>
<td>235-193</td>
<td>L</td>
</tr>
<tr>
<td>(1)</td>
<td>HR 3</td>
<td>01/11/2007</td>
<td>Stem Cell Research Enhancement Act of 2007 (House)</td>
<td>253-174</td>
<td>L</td>
</tr>
<tr>
<td>(2)</td>
<td>HR 2956</td>
<td>07/12/2007</td>
<td>Responsible Redeployment from Iraq Act</td>
<td>223-201</td>
<td>L</td>
</tr>
<tr>
<td>(3)</td>
<td>HR 2</td>
<td>01/10/2007</td>
<td>Fair Minimum Wage Act</td>
<td>315-116</td>
<td>L</td>
</tr>
<tr>
<td>(4)</td>
<td>HR 4297</td>
<td>12/08/2005</td>
<td>Tax Relief Extension Reconciliation Act (Passage)</td>
<td>234-197</td>
<td>C</td>
</tr>
<tr>
<td>(4)</td>
<td>HR 4297</td>
<td>05/10/2006</td>
<td>Tax Relief Extension Reconciliation Act (Agreeing to Conference Report)</td>
<td>244-185</td>
<td>C</td>
</tr>
<tr>
<td>(6)</td>
<td>S 1927</td>
<td>08/04/2007</td>
<td>Protect America Act</td>
<td>227-183</td>
<td>C</td>
</tr>
<tr>
<td>(6)</td>
<td>HR 6304</td>
<td>06/20/2008</td>
<td>FISA Amendments Act of 2008</td>
<td>293-129</td>
<td>C</td>
</tr>
<tr>
<td>(7)</td>
<td>HR 3162</td>
<td>08/01/2007</td>
<td>Children's Health and Medicare Protection Act</td>
<td>225-204</td>
<td>L</td>
</tr>
<tr>
<td>(7)</td>
<td>HR 976</td>
<td>10/18/2007</td>
<td>Children's Health Insurance Program Reauthorization Act (Presidential Veto Override)</td>
<td>273-156</td>
<td>L</td>
</tr>
<tr>
<td>(7)</td>
<td>HR 3963</td>
<td>01/23/2008</td>
<td>Children's Health Insurance Program Reauthorization Act (Presidential Veto Override)</td>
<td>260-152</td>
<td>L</td>
</tr>
<tr>
<td>(7)</td>
<td>HR 2</td>
<td>02/04/2009</td>
<td>Children's Health Insurance Program Reauthorization Act</td>
<td>290-135</td>
<td>L</td>
</tr>
<tr>
<td>(8)</td>
<td>HR 3221</td>
<td>07/23/2008</td>
<td>Foreclosure Prevention Act of 2008</td>
<td>272-152</td>
<td>L</td>
</tr>
<tr>
<td>(9)</td>
<td>HR 3688</td>
<td>11/08/2007</td>
<td>United States-Peru Trade Promotion Agreement</td>
<td>285-132</td>
<td>C</td>
</tr>
<tr>
<td>(10)</td>
<td>HR 1424</td>
<td>10/03/2008</td>
<td>Emergency Economic Stabilization Act of 2008</td>
<td>263-171</td>
<td>L</td>
</tr>
<tr>
<td>(11)</td>
<td>HR 3080</td>
<td>10/12/2011</td>
<td>To implement the United States-Korea Trade Agreement</td>
<td>278-151</td>
<td>C</td>
</tr>
<tr>
<td>(12)</td>
<td>HR 3078</td>
<td>10/12/2011</td>
<td>To implement the United States-Colombia Trade Promotion Agreement</td>
<td>262-167</td>
<td>C</td>
</tr>
<tr>
<td>(13)</td>
<td>HR 2346</td>
<td>06/16/2009</td>
<td>Supplemental Appropriations, Fiscal Year 2009 (Agreeing to conference report)</td>
<td>226-202</td>
<td>L</td>
</tr>
<tr>
<td>(14)</td>
<td>HR 2831</td>
<td>07/31/2007</td>
<td>Lilly Ledbetter Fair Pay Act</td>
<td>225-199</td>
<td>L</td>
</tr>
<tr>
<td>(14)</td>
<td>HR 11</td>
<td>01/09/2009</td>
<td>Lilly Ledbetter Fair Pay Act of 2009 (House)</td>
<td>247-171</td>
<td>L</td>
</tr>
<tr>
<td>(14)</td>
<td>S 181</td>
<td>01/27/2009</td>
<td>Lilly Ledbetter Fair Pay Act of 2009</td>
<td>250-177</td>
<td>L</td>
</tr>
<tr>
<td>(15)</td>
<td>HR 1913</td>
<td>04/29/2009</td>
<td>Local Law Enforcement Hate Crimes Prevention Act</td>
<td>249-175</td>
<td>L</td>
</tr>
<tr>
<td>(16)</td>
<td>HR 1</td>
<td>02/13/2009</td>
<td>American Recovery and Reinvestment Act of 2009 (Agreeing to Conference Report)</td>
<td>246-183</td>
<td>L</td>
</tr>
<tr>
<td>(17)</td>
<td>HR 2454</td>
<td>06/26/2009</td>
<td>American Clean Energy and Security Act</td>
<td>219-212</td>
<td>L</td>
</tr>
<tr>
<td>(18)</td>
<td>HR 3590</td>
<td>03/21/2010</td>
<td>Patient Protection and Affordable Care Act</td>
<td>220-212</td>
<td>L</td>
</tr>
<tr>
<td>(19)</td>
<td>HR 3962</td>
<td>11/07/2009</td>
<td>Affordable Health Care for America Act</td>
<td>221-215</td>
<td>L</td>
</tr>
<tr>
<td>(20)</td>
<td>HR 4173</td>
<td>06/30/2010</td>
<td>Wall Street Reform and Consumer Protection Act of 2009</td>
<td>237-192</td>
<td>L</td>
</tr>
<tr>
<td>(21)</td>
<td>HR 2965</td>
<td>12/15/2010</td>
<td>Don’t Ask, Don’t Tell Repeal Act of 2010</td>
<td>250-175</td>
<td>L</td>
</tr>
<tr>
<td>(22)</td>
<td>S 365</td>
<td>08/01/2011</td>
<td>Budget Control Act of 2011</td>
<td>269-161</td>
<td>C</td>
</tr>
<tr>
<td>(23)</td>
<td>H CR 34</td>
<td>04/15/2011</td>
<td>House Budget Plan of 2011</td>
<td>235-193</td>
<td>C</td>
</tr>
<tr>
<td>(24)</td>
<td>H CR 112</td>
<td>03/28/2012</td>
<td>Simpson-Bowles/Copper Amendment to House Budget Plan</td>
<td>38-382</td>
<td>C</td>
</tr>
<tr>
<td>(25)</td>
<td>HR 8</td>
<td>08/01/2012</td>
<td>American Taxpayer Relief Act of 2012 (Levin Amendment)</td>
<td>170-257</td>
<td>L</td>
</tr>
<tr>
<td>(26)</td>
<td>HR 2</td>
<td>01/19/2011</td>
<td>Repealing the Job-Killing Health Care Law Act</td>
<td>245-189</td>
<td>C</td>
</tr>
<tr>
<td>(26)</td>
<td>HR 6079</td>
<td>07/11/2012</td>
<td>Repeal the Patient Protection and Affordable Care Act and [...]</td>
<td>244-185</td>
<td>C</td>
</tr>
</tbody>
</table>

Note: The matching of roll calls to CCES items can be many-to-one.
† Coding of a bill’s ideological character as (L)iberal or (C)onservative based on predominant support of bill by Democratic or Republican representatives, respectively.
Table A.3
Descriptive statistics of analysis sample

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roll-call vote: yea</td>
<td>0.568</td>
<td>0.495</td>
<td>0.000</td>
<td>1.000</td>
<td>15780</td>
</tr>
<tr>
<td>Low income</td>
<td>0.593</td>
<td>0.220</td>
<td>0.047</td>
<td>0.979</td>
<td>15934</td>
</tr>
<tr>
<td>High income</td>
<td>0.555</td>
<td>0.198</td>
<td>0.037</td>
<td>0.967</td>
<td>15934</td>
</tr>
<tr>
<td>Low-High Gap</td>
<td>0.172</td>
<td>0.121</td>
<td>0.000</td>
<td>0.588</td>
<td>15934</td>
</tr>
<tr>
<td>Population</td>
<td>7.022</td>
<td>0.723</td>
<td>4.697</td>
<td>9.980</td>
<td>15934</td>
</tr>
<tr>
<td>Share African American</td>
<td>0.124</td>
<td>0.146</td>
<td>0.004</td>
<td>0.680</td>
<td>15934</td>
</tr>
<tr>
<td>Share Hispanic</td>
<td>0.156</td>
<td>0.174</td>
<td>0.005</td>
<td>0.812</td>
<td>15934</td>
</tr>
<tr>
<td>Share BA or higher</td>
<td>0.275</td>
<td>0.097</td>
<td>0.073</td>
<td>0.645</td>
<td>15934</td>
</tr>
<tr>
<td>Median income [$10,000]</td>
<td>5.177</td>
<td>1.356</td>
<td>2.282</td>
<td>10.439</td>
<td>15934</td>
</tr>
<tr>
<td>Share female</td>
<td>0.508</td>
<td>0.010</td>
<td>0.462</td>
<td>0.543</td>
<td>15934</td>
</tr>
<tr>
<td>Manufacturing share</td>
<td>0.110</td>
<td>0.047</td>
<td>0.025</td>
<td>0.281</td>
<td>15934</td>
</tr>
<tr>
<td>Urbanization</td>
<td>0.790</td>
<td>0.199</td>
<td>0.213</td>
<td>1.000</td>
<td>15934</td>
</tr>
<tr>
<td>Social capital [bowling estab./10]</td>
<td>0.900</td>
<td>1.259</td>
<td>0.024</td>
<td>5.800</td>
<td>15934</td>
</tr>
<tr>
<td>Certification elections [log]</td>
<td>3.347</td>
<td>0.861</td>
<td>0.000</td>
<td>5.100</td>
<td>15934</td>
</tr>
<tr>
<td>Congregations [per 1000 persons]</td>
<td>0.765</td>
<td>1.147</td>
<td>0.062</td>
<td>6.453</td>
<td>15934</td>
</tr>
</tbody>
</table>

Note: Calculated from American Community Survey, 2006-2013. Note that when entered in models, variables are scaled to mean zero and unit SD. Preference gap is absolute difference in preferences between low and high income constituents in sample. Urbanization is calculated as the share of the district population living in an urban area based on the Census' definition of urban Census blocks (matched to congressional districts using the MABLE database). Congregations per 1000 inhabitants calculated from RCMS 2000 (spatially interpolated).
B. Estimation of District Preferences

In this section we describe how we estimate district-level preferences using three different strategies: (i) small area estimation using a matching approach based on random forests (which we use in the main text of our paper), (ii) estimation using multilevel regression and post-stratification (MRP), and (iii) unadjusted cell means. Each approach invokes different statistical and substantive assumptions. In the spirit of consilience, our aim here is to show that our substantive results do not depend on any particular choice.

B.1. Small Area Estimation via Chained Random Forests

The core idea of our small area estimation strategy is based on the fact that we have access to two samples: one that is likely not representative of the population of all Congressional districts (the CCES), while the second one is representative of district populations by virtue of its sampling design (the Census or American Community Survey). By matching or imputing preferences from the former to the latter based on a common vector of observable individual characteristics, we can use the district-representative sample to estimate the preferences of individuals in a given district.\footnote{See Honaker and Plutzer (2016) for a more explicit exposition of this idea, evidence for its empirical reliability, and a comparison to MRP estimates.}

Combining CCES and Census data using Random Forests Figure B.1 illustrates this approach in more detail. We have data from m individuals in the CCES and n individuals in the Census (with $n \gg m$). Both sets of individuals share K common characteristics Z_k, such as age, race, or education. The first task at hand is then to match P roll call preferences Y_p that are only observed in the CCES to the census sample. This is a purely predictive task and it is thus well suited for machine learning approaches. We use random forests (Breiman 2001) to lean about $Y_p = f(Z_1, \ldots, Z_K)$ for $p = 1, \ldots, P$ using the algorithm proposed by Stekhoven and Bühlmann (2011). This approach has two key advantages. First, as is typical for approaches based on regression trees, it deals with both categorical and continuous data, allows for arbitrary functional forms, and can include higher order interactions between covariates (such as age×race×education). Second, we can assess the quality of the predictions based on our model before we deploy it to predict preferences in the Census. With the trained model in hand we can use $\hat{f}(Z_1, \ldots, Z_K)$ in combination with observed Z in the Census sample to fill in preferences (i.e., completing the square in the lower right of Figure B.1). Using the completed Census data, we can estimate constituent district preferences as simple averages by district and income group since the Census sample is representative for each Congressional district’s population.

Data details Due to data confidentiality constraints the Census Bureau does not provide district identifiers in its micro-data records. Instead, it identifies 630 Public Use Microdata areas. We
We use a sample of m individuals from the CCES that is not necessarily representative on the district-level, while a sample of n individuals from the Census is representative of district populations by design (Torrieri et al. 2014: Ch.4). We have access to bridging covariates Z_k that are common to both samples, while roll call preferences Y_p are only observed in the CCES. We train a flexible non-parametric model relating Y_p to Z and use it to predict preferences Y_p^* for Census individuals with characteristics Z. With preference values filled in, a district’s income-group specific roll call preference can be estimated as the average of all units in that district.

create a synthetic Census sample for Congressional districts by sampling individuals from the full Census PUMA regions proportional to their relative share in a given districts. This information is based on a crosswalk from PUMA regions to Congressional districts created by recreating one from the other based on Census tract level population data in the MABLE Geocorr2K database. The ‘donor pool’ for this synthetic sample are the 1% extracts for the American Community Survey 2006-2011. We limit the sample to non-group quarter households and to individuals aged 17 and older providing us with data on 14 million (13,711,248) Americans. From this we create the synthetic district file which is comprised of 3,040,265 cases. This provides us with a Census sample including Congressional district identifiers. The sample for each district is representative of the district population (save for errors induced by the crosswalk). We thus use the distribution of important population characteristics (age, gender, education, race, income) to match data on policy preferences from the CCES.

We harmonize all covariates to be comparable between CCES and Census. For family income this entails an adjustment to the measure provided in the CCES. It asks respondents to place their family’s total household income into 14 income bins.\footnote{The exact question wording is: “Thinking back over the last year, what was your family’s annual income?” The obvious issue here is that it is not clear which income concept this refers to (or, rather, which on the respondent employs). In line with the wording used in many other US surveys, we interpret it as referring to market income.} We transform this discretized measure of income into a continuous one using a nonparametric midpoint Pareto estimator. It
replaces each bin with its midpoint (e.g., the third category $20,000 to $29,999 gets assigned $25,000), while the value for the final, open-ended, bin is imputed from a Pareto distribution (e.g., Kopczuk, Saez, and Song 2010). Using midpoints has been recognized for some time as an appropriate way to create scores for income categories (without making explicit distributional modeling assumptions). They have been used extensively, for example, in the American politics literature analyzing General Social Survey (GSS) data (Hout 2004).

Algorithm details For easier exposition define a matrix D that contains both individual characteristics and roll call preferences. Let N be the number of rows of D. For any given variable v of D, D_v, with missing entries at locations $i_{mis}^{(v)} \subseteq \{1, \ldots, N\}$ we can separate out four parts:

- Observed values of D_v: denoted as $y_{obs}^{(v)}$
- Missing values of D_v: $y_{mis}^{(v)}$
- Variables other than D_v with available observations $i_{obs}^{(v)} = \{1, \ldots, N\} \setminus i_{mis}^{(v)}$: $x_{obs}^{(v)}$
- Variables other than D_v with observations $i_{mis}^{(v)}$: $x_{mis}^{(v)}$

We now cycle through variables iteratively fitting random forest and filling in unobserved values until a stopping criterion c (indicating no further change in filled-in values) is met. Algorithmically, we proceed as follows:

Algorithm 1 Chained Random Forests

1: Start with initial guesses of missing values in D
2: w ← vector of column indices sorted by increasing fraction of NA
3: while not c do
4: \quad D_{imp}^{old} ← previously imputed D
5: \quad for v in w do
6: \quad \quad Fit Random Forest: $y_{obs}^{(v)} \sim x_{obs}^{(v)}$
7: \quad \quad Predict $y_{mis}^{(v)}$ using $x_{mis}^{(v)}$
8: \quad \quad D_{imp}^{new} ← updated imputed matrix using predicted $y_{mis}^{(v)}$
9: \quad Updated stopping criterion c
10: Return completed D_{imp}

To assess the quality of this scheme, we inspect the prediction error of the random forests using the out-of-bag (OOB) estimate (which can be obtaining during the bootstrap for each tree). We find it to be rather small in our application: most normalized root mean squared errors are around 0.11. This result is in line with simulations by Stekhoven and Bühlmann (2011) who compare it to other prediction schemes based on K nearest neighbors, EM-type

3Note that this setup deals transparently with missing values in individual characteristics (such as missing education).
LASSO algorithms, or multivariate normal schemes and find it to perform comparatively well with both continuous and categorical variables.\footnote{See Tang and Ishwaran (2017) for further empirical validation of this strategy. See also Honaker and Plutzer (2016), who compare a similar matching strategy (but based on a multivariate normal model) with MRP estimated preferences using the CCES.}

\subsection*{B.2. Multilevel Regression and Poststratification}

The approach described in the last section is closely related to MRP (Gelman and Little 1997; Park, Gelman, and Bafumi 2006; Lax and Phillips 2013), which has become quite popular in political science. Both strategies involve fitting a model that is predictive of preferences given observed characteristics followed by a weighting step that re-balances observed characteristics to their distribution in the Census. What differentiates MRP from the previous approach is that it imposes more structure in the modeling step both in terms of functional form and distributional assumptions. By utilizing the advantages of hierarchical models with normally distributed random coefficients it produces preference estimates that are shrunken towards group means (Gelman et al. 2013: 116f.).\footnote{This might be especially appropriate when some groups are small. The median number of respondents per district in the CCES is 506 and no district has fewer than 192 sampled respondents. But since we slice preferences further by income sub-groups, one may be worried that the sample size in some districts is small. MRP deals with this potential issue at the cost of making distributional assumptions.}

\footnote{We also estimated a version of the model including a macro-level predictor, which has been found to improve the quality of the model. We use the demographically purged state predictor of Lax and Phillips (2013: 15), that is, the average liberal–conservative variation in state-level public opinion that is not due to variation demographic predictors. In our case this produces rather similar MRP estimates.} No such structural assumptions are made when using Random Forests. It will thus be instructive to compare how much our results depend on such modeling choices.

\textbf{MRP implementation} For each roll call item in the CCES we estimate a separate model expressing the probability of supporting a proposal as a function of demographic characteristics. The demographic attributes included in our model broadly follow Lax and Phillips (2009, 2013) and are race, gender, education, age, and income.\footnote{We also estimated a version of the model including a macro-level predictor, which has been found to improve the quality of the model. We use the demographically purged state predictor of Lax and Phillips (2013: 15), that is, the average liberal–conservative variation in state-level public opinion that is not due to variation demographic predictors. In our case this produces rather similar MRP estimates.} Race is captured in three categories (white, black, other), education in five (high school or less, some college, 2-year college degree, 4-year college degree, graduate degree). Age is comprised of 6 categories (18-29, 30-39, 40-49, 50-59, 60-69, 70+) while income is comprised of 13 categories (with thresholds 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 100, 120, 150 [in $1,000]). Our model also includes district-specific intercepts. For each roll-call, we estimate the following hierarchical model using penalized maximum likelihood (Chung et al. 2013):

\begin{equation}
Pr(Y_i = 1) = \logit^{-1}\left(\beta_0^0 + \alpha_{\text{race}_{j[i]}} + \alpha_{\text{gender}_{k[i]}} + \alpha_{\text{age}_{l[i]}} + \alpha_{\text{educ}_{m[i]}} + \alpha_{\text{income}_{n[i]}} + \alpha_{\text{district}_{d[i]}}\right)
\end{equation}

We employ the notation of Gelman and Hill (2007) and denote by \(j[i]\) the category \(j\) to which individual \(i\) belongs. Here, \(\beta_0\) is an intercept and the \(\alpha\)s are hierarchically modeled effects for
the various demographic groups. Each is drawn from a common normal distribution with mean zero and estimated variance σ^2:

\begin{align*}
\alpha_j^{\text{race}} &\sim N\left(0, \sigma^2_{\text{race}}\right), \quad j = 1, \ldots, 3 \\
\alpha_k^{\text{gender}} &\sim N\left(0, \sigma^2_{\text{gender}}\right), \quad k = 1, \ldots, 2 \\
\alpha_l^{\text{age}} &\sim N\left(0, \sigma^2_{\text{age}}\right), \quad l = 1, \ldots, 6 \\
\alpha_m^{\text{educ}} &\sim N\left(0, \sigma^2_{\text{educ}}\right), \quad m = 1, \ldots, 5 \\
\alpha_n^{\text{income}} &\sim N\left(0, \sigma^2_{\text{income}}\right), \quad n = 1, \ldots, 13
\end{align*}

(B.2)

This setup induces shrinkage estimates for the same demographic categories in different districts. Note that using fixed effects for characteristics with few categories (Specifically, gender) does not impact our results. The district intercepts are drawn from a normal distribution with state-specific means $\alpha_{d[\text{state}]}$ and freely estimated variance:

$$
\alpha_d \sim N\left(\alpha_{d[\text{state}]}, \sigma^2_{\text{state}}\right).
$$

(B.7)

Our final preferences estimates for each income group on each roll call are obtained by using cell-specific predictions from the above hierarchical model, weighted by the population frequencies (obtained from our Census file) for each cell in each congressional district.

B.3. Model results under various preference estimation strategies

The estimates of district-level preferences obtained via our SAE approach and MRP are in broad agreement: The median difference in district preferences between SAE and MRP is 2.5 percentage points for low income and -0.1 percentage points for high income constituents. A large part of this difference is due to the heavier tails of the distribution of district preferences for each roll call estimated by our approach—perhaps not surprising given the shrinkage characteristics of MRP. To what extent do these differences in the distribution of preferences affect our estimated union effects?

Panel (A) of Table B.1 shows estimates for our six main specifications using MRP-based preferences. The results are unequivocal: using MRP estimated preferences leads to more pronounced estimates in all specifications. Using specification (6), which includes state policies, measures of district social capital and district covariates interacted with preferences, as well as district fixed effects, we find that a unit increase in union membership increased responsiveness of legislators towards the preferences of low income constituents by about 8 (± 2) percentage points (compared to only 5 points using our measurement strategy). Responsiveness estimated for high income preferences are similarly larger. Note that while larger, all estimates also carry increased confidence intervals.

As a further point of comparison, panel (B) shows preferences estimated via raw cell means in the CCES. Due to the issues discussed above, the raw data cannot be taken as gold
standard, but it is nonetheless informative to see how much the results vary. Our core results even obtain when we simply use raw cell means without any statistical modeling to counter non-representative distributions of individual characteristics and small cell sizes. We find that in our strictest specification, a unit increase in union membership still increases responsiveness towards low income constituents by about 3 \(\pm 1 \) percentage points.

In sum, all three approaches lead to the same qualitative conclusions about the moderating effect of unions on unequal representation in Congress. The two alternative approaches to deal with the problem that CCS surveys are not representative of congressional districts by design suggest that a larger effect of unions than the naive approach using the unadjusted survey data. Quantitatively, our preferred estimates are based on small area estimation via random forests as they are less reliant on normality assumptions and are systematically more conservative than those based on MRP.

C. Alternative Income Thresholds

This section discusses the impact of different income thresholds on our results. In Table I in the main text, preferences of income groups are based on a district-specific income thresholds splitting the population into three groups (at the 33rd and 66th percentile). Thus, voters are classified as ‘low income’ relative to other voters in their congressional district. For example, during the 111th Congress a voter with an income of $40,000 would be part of the low income group in most of Massachusetts’ districts (where low income thresholds vary from about $40,000...
to $50,000), but not in the 8th (where the threshold is about $30,000). If income threshold were state-specific instead, he or she would be considered low income everywhere in the state (as the state-specific low income threshold is now \approx47,000).

Table C.1

Model results using different definitions of income groups.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: State-specific income thresholds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low income preferences</td>
<td>0.105</td>
<td>0.082</td>
<td>0.097</td>
<td>0.107</td>
<td>0.067</td>
<td>0.044</td>
</tr>
<tr>
<td>(0.013)</td>
<td>(0.015)</td>
<td>(0.016)</td>
<td>(0.013)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td></td>
</tr>
<tr>
<td>High income preferences</td>
<td>−0.062</td>
<td>−0.036</td>
<td>−0.052</td>
<td>−0.065</td>
<td>−0.049</td>
<td>−0.027</td>
</tr>
<tr>
<td>(0.012)</td>
<td>(0.013)</td>
<td>(0.014)</td>
<td>(0.013)</td>
<td>(0.013)</td>
<td>(0.013)</td>
<td></td>
</tr>
<tr>
<td>B: Shifted income thresholds: p20 - p80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low income preferences</td>
<td>0.098</td>
<td>0.077</td>
<td>0.09</td>
<td>0.100</td>
<td>0.063</td>
<td>0.042</td>
</tr>
<tr>
<td>(0.012)</td>
<td>(0.013)</td>
<td>(0.014)</td>
<td>(0.012)</td>
<td>(0.013)</td>
<td>(0.012)</td>
<td></td>
</tr>
<tr>
<td>High income preferences</td>
<td>−0.054</td>
<td>−0.031</td>
<td>−0.046</td>
<td>−0.057</td>
<td>−0.044</td>
<td>−0.025</td>
</tr>
<tr>
<td>(0.011)</td>
<td>(0.012)</td>
<td>(0.012)</td>
<td>(0.011)</td>
<td>(0.012)</td>
<td>(0.012)</td>
<td></td>
</tr>
</tbody>
</table>

Note: Specifications (1) to (6) are as in Table I in the main text but with income groups defined via different income thresholds. Entries are estimates for η^l and η^h with cluster-robust standard errors in parentheses.

Not all states display as much variation in income-group thresholds. Thus, using state-instead of district-specific thresholds does not alter our core results in an appreciable way. As Panel (A) shows, the resulting marginal effects estimates for all six model specifications are remarkably similar when using preferences of income groups defined by state-specific thresholds. In panel (B) we no longer divide the population into three equally sized income groups. Instead, we restrict the low-income group to only those below the 20th percentile of the (district-specific) income distribution. Similarly, we classified as high income only those above the 80th percentile. Our resulting estimates for the union-responsiveness marginal effects are slightly smaller, but still of a substantively relevant magnitude and statistically different from zero.

D. Measures of District Organizational Capacity

In the empirical analysis reported in this Appendix, we use the number of religious congregations as another proxy for associational life, complementing the social capital measure used in the main text. In a previous version of the paper, we also use certification elections as a proxy for unions’ mobilization capacity. Here we provide some background and explain in more detail how we calculate both variables.
Congregations As one proxy for district level social capital we use the number of congregations per inhabitant. The number of congregations in a given district is not readily available for the years covered in our study. Therefore, we spatially aggregate county-level measures from the 2010 Religious Congregations and Membership Study to the congressional district level using areal interpolation techniques that take into account the population distribution between counties and districts. We use a geographic country-to-district equivalence file calculated from Census shapefiles. This is combined with population weights for each country-district intersection derived using the Master Area Block Level Equivalency database v1.3.3 (available from the Missouri Census Data Center), which calculates them based on about 5.3 million Census blocks. With these weights in hand we can interpolate county-level to district-level congregation counts using weighted means (for states with at-large districts, this reduces to a simple summation, as counties are perfectly nested within districts).

NLRB certification elections In a previous version of the paper, we also used union certification elections as a proxy for workers’ capability to organize for collective action. As has been pointed out by readers and discussants, one concern with this variable is that it may be driven to a significant extent by the existing stock of local unions, as unionization requires people and resources. While it may be useful to distinguish realized union membership from unionization effort and our results are robust to accounting for NLRB elections, in line with the suggestions we dropped this robustness test. For completeness and consistency, we document the construction of the measure.

The formation of unions is regulated by the National Labor Relations Act (NLRB) enacted in 1935 (see Budd 2018: ch. 6). A successful union organization process usually requires an absolute majority of employees voting for the proposed union in a certification election held under the guidelines of the NLRB. Getting the NLRB to conduct an election requires that there is sufficient interest among employees in an appropriate bargaining unit to be represented by a union. For proof of sufficient interest, the NLRB requires that at least 30% of employees sign an authorization card stating they authorize a particular union to represent them for the purpose of collective bargaining. Building support and collecting the required signatures takes organizational effort. For workers, unionization has features of a public good. Everybody may gain through better conditions from collective bargaining, but contributing to the organizational drive is costly for each individual. Beyond mere opportunity costs, there also is a non-zero risk of being (illegally) fired by the employer for those especially active. If more than 50% of employees sign authorization cards, then the union can request voluntary recognition without a certification election. However, the employer has the right to deny this, in which case a certification election is held. In his labor relations textbook, Budd (2018: 199) notes that voluntary card check recognition is “the exception rather than the norm because employers typically refuse to recognize unions voluntarily.”

We use the NLRB’s database on election reports to extract all attempts to certify (or de-certify) a local union. They are available from www.nlrb.gov. Each database entry is a vote concerning a bargaining unit; the average unit size is 25 employees. There are about 2200
elections each year. Each individual case file usually provides address information on the employer and the site where the election was held. Using this information, we geocode each individual case report and locate it in a congressional district.

E. Additional Robustness Tests

In this section we describe several additional robustness tests.

Redistricting First, we address the fact that several cases of court-ordered redistricting in Georgia and Texas lead to inter-Census changes in district boundaries. We exclude both states in specification (1) of Table E.1 and find our results unchanged.

Alternative measures of social capital Next we consider two alternative measures of social capital. First, the number of bowling alleys in an area (Putnam 2000). As the social capital index used in the main text, this variables comes from Rupasingha and Goetz (2008) and was spatially reweighted to districts. Second, the number of congregations per inhabitant. The construction of this measure is explained above (Appendix D). These two measures are less likely than the social capital index to be the result of unionization. We find that these changes in measurement do not qualitatively alter our findings. Unsurprisingly, the estimated union effects are somewhat larger than in the specification adjusting for the social capital index.

1:1 mapping of CCES preferences to roll calls We begin by limiting our sample by creating a unique mapping between preferences and roll call votes. Some of our CCEs preferences estimates are linked to more than one Congressional roll call. To investigate if this affects our results, specification (3) uses a 1:1 map dropping additionally available roll calls after the first match. This reduces the sample size to 11,104 respondents. We find that our results are not influenced by this change.

Extreme preferences excluded In specification (4) we investigate if extreme district preferences on some roll calls drive our results. To do so, we trim the distribution of preferences at the bottom and the top. For each roll call we exclude districts with preference estimates below the 5th and above the 95th percentile. Using only trimmed preferences has no appreciable impact on our estimates.

New York excluded Another test estimates our model with the state of New York excluded from the sample. While Becher, Stegmueller, and Kaeppner (2018) found that LM form estimates of union strength correlate highly with aggregated state-level estimates derived from the Current Population survey, they note that this correlation is lower for New York. In specification (5) we thus show that our results are not affected by its exclusion.

Union Concentration Our data on local unions are from Becher, Stegmueller, and Kaeppner (2018), who also find that the local concentration of unions is an important dimension. While Becher, Stegmueller, and Kaeppner (2018) show that both dimensions (membership
Table E.1
Additional robustness tests. LPM coefficients with robust standard errors in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>Low income preferences</th>
<th>High income preferences</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Redistricting</td>
<td>0.067 (0.014)</td>
<td>−0.051 (0.013)</td>
<td>12,784</td>
</tr>
<tr>
<td>(2) Social capital: churches</td>
<td>0.072 (0.015)</td>
<td>−0.051 (0.014)</td>
<td>14,282</td>
</tr>
<tr>
<td>(3) Injectable preference roll call map</td>
<td>0.063 (0.013)</td>
<td>−0.041 (0.013)</td>
<td>11,104</td>
</tr>
<tr>
<td>(4) Extreme preferences excl.</td>
<td>0.074 (0.016)</td>
<td>−0.048 (0.015)</td>
<td>13,308</td>
</tr>
<tr>
<td>(5) New York excluded</td>
<td>0.070 (0.015)</td>
<td>−0.048 (0.014)</td>
<td>14,730</td>
</tr>
<tr>
<td>(6) Local Union Concentration</td>
<td>0.065 (0.014)</td>
<td>−0.047 (0.014)</td>
<td>15,780</td>
</tr>
<tr>
<td>(7) Trimmed LPM estimator</td>
<td>0.074 (0.015)</td>
<td>−0.055 (0.014)</td>
<td>15,426</td>
</tr>
<tr>
<td>(8) Errors-in-variables</td>
<td>0.062 (0.004)</td>
<td>−0.054 (0.004)</td>
<td>15,345</td>
</tr>
<tr>
<td>(9a) No fixed effects</td>
<td>0.068 (0.014)</td>
<td>−0.041 (0.013)</td>
<td>14,282</td>
</tr>
<tr>
<td>(9b) Two-way fixed effects (roll calls)</td>
<td>0.060 (0.014)</td>
<td>−0.040 (0.013)</td>
<td>14,282</td>
</tr>
<tr>
<td>(10a) CCES 2006-based roll calls excl.</td>
<td>0.065 (0.014)</td>
<td>−0.043 (0.015)</td>
<td>11,180</td>
</tr>
<tr>
<td>(10b) Influential roll calls excluded</td>
<td>0.073 (0.015)</td>
<td>−0.057 (0.014)</td>
<td>12,367</td>
</tr>
</tbody>
</table>

Note: Based on specification (5) of Table I. Entries are estimates for \(\eta^l \) and \(\eta^h \) with cluster-robust standard errors in parentheses, except for (8) which is estimated in the Bayesian framework (entries are posterior means and standard deviations). See text for all specification details.

and concentration) vary independently, it is prudent to check if our results on the impact of union membership on representation still obtain when accounting for the structure of union organization. In specification (6) we show this to be the case.

Trimmed LPM estimator A seventh, more technical, specification implements the trimmed estimator suggested by Horrace and Oaxaca (2006). It accounts for the fact that we estimate a linear probability model to a binary dependent variable, which entails the possibility that the model-implied linear predictor lies outside the unit interval. Our results in Table E.1 indicate that this change does not materially affect our core results (if anything, they become slightly larger).

Errors-in-variables Our penultimate test accounts for the errors-in-variables problem caused by the fact that our district preference measures are based on estimates. While, in general, standard errors for our district-level estimates are quite small relative to the quantity being measured and one expects a downward bias in parameter estimates in a linear model with errors-in-variables, we estimate this specification to get a sense of the quantitative magnitude of the change in parameter estimates.\(^7\) We find that adjusting for measurement error produces very

\(^7\)We implement this model in a Bayesian framework, where we incorporate the measurement error model directly into the posterior distribution. To specify the variance of the measurement error for low and high income group preferences, we average the standard errors of the district-group means from the raw CCES data (pre-Census matching). Measurement error variance is slightly larger for low income preferences (0.029) than for high
little quantitative change; both estimates are within the confidence bounds of our non-corrected estimates.

Different fixed effects specifications In our main models we include district fixed effects in order to capture the possibility that there are (district-specific) systematic differences between legislators and survey respondents on the same issues (Hill and Huber 2019). However our main analysis does not depend on the presence of fixed effects (partly due to the fact that there is ideological variation in the content of the bills studied, partly due to our use of demanding interactive controls). In an empty model of roll call votes and preferences the correlation of the fixed effects with the linear predictor is 0.05, which drops to 0.01 in a specification with all controls. This is confirmed in specification (9a) which excludes district fixed effects and produces results very similar to those reported in the main text.

Alternatively, one can turn to a more demanding specification where fixed effects capture a larger fraction of district×roll call-specific unobservables. We do so in specification (9b) where we estimate a two-way fixed effects model, which adds roll-call fixed effects. The correlation between roll-call fixed effects and the linear predictor is \(-0.37\) (after including a full set of preference-control interactions), which suggests a higher relevance of this second set of fixed effects. However, our estimates in Table E.1 show that this more demanding set-up does not substantively alter our conclusions (this specification brings our estimate close to the post-double LASSO selection estimate which uses more flexible functional forms of covariates to reduce omitted variable bias).

Influential roll calls Our main model includes preference estimates using CCES waves 2006 to 2012 in order to cover a broad range of policy issues. Even though the quality of the CCES is generally high and the assumptions needed to construct model-based estimates are comparable to those needed to properly model non-response in classical phone (RDD) surveys, one of our reviewers pointed us to “teething” problems with the first wave (cf. the discussion in Hill et al. 2007; Vavreck and Rivers 2008). We inspected if roll calls matched to survey responses including the CCES 2006 wave show systematically different responsiveness estimates by extending our main model with \(\eta_l \times \xi_l CCES_{06}\) and \(\eta_h \times \xi_h CCES_{06}\) terms (\(CCES_{06}\) is an indicator variable marking roll calls matched to preference estimates involving the 2006 wave). A joint \(F\)-test of \(\xi_l, \xi_h\) yields a value of \(F = 2.64\) with a corresponding \(p\)-value of 0.073 providing limited evidence for a systematic deviation. More straightforwardly, we re-estimated our main model excluding any roll call for which citizen preference estimates involve the 2006 wave of the income preferences (0.025). We use the setup proposed in Richardson and Gilks (1993), implemented in Stan (v.2.17.0) and estimated (due to the size of our data set) using mean field variational inference. We use normal priors with mean zero and standard deviation (SD) of 100 for all regression coefficients, and inverse Gamma priors with shape and scale 0.01 for residuals. In the measurement error equation, we use normal priors with mean zero and SD of 10 for the mean of the measurement error and a student-t prior with 3 degrees of freedom and mean 1, SD 10 for the standard deviation of the measurement. The reported entries are posterior means and standard deviations.
CCES. The resulting estimates, in specification (10a) of Table E.1, show that our substantive conclusions do not differ from the ones reported in Table I.

More generally, we examine if specific roll calls are overly influential for our responsiveness estimates. Beyond the impact of specific CCES waves, this might be the result of differential measurement bias on some items, for example, when citizens are uninformed on certain issues or assign them low priority and/or their representatives face strategic voting incentives (Hill and Huber 2019: 614). Instead of creating a classification of ‘importance’ or ‘difficulty’ of roll call votes for citizens (which is possibly heterogenous over districts), we estimate influence statistics for each roll call. This allows us to identify influential roll calls and exclude them from our analysis as a robustness check. We calculate roll call-specific leverage statistics for low and high income preferences. We use DFBETA as a measure of the standardized absolute difference between the estimate with a roll call included and the estimate without it (Belsley, Kuh, and Welsch 1980). We do not find that any roll call is particularly influential for our estimates of responsiveness to low and high income groups. The median influential roll call shifts our estimate of low income responsiveness by +0.012 standard errors and our estimate of high income responsiveness by −0.027 standard errors. Nevertheless, we selected all roll calls whose influence statistic exceeded 0.25 (i.e., shifting our estimate by more than a quarter of a standard error) and excluded them from the analysis. The resulting estimates in specification (10b) show a slightly increased level of responsiveness towards the preferences of low income citizens (which, however, still lies within the confidence bound of our preferred specification in the main text).

F. Post Double Selection Estimator

The post-double-selection model provides a relaxation of the linearity and exogeneity assumptions made in the baseline specification. To do so we use the double-post-selection estimator proposed by Belloni et al. (Belloni, Chernozhukov, and Hansen 2013; Belloni et al. 2017). Specifically, this model setup aims to reduce the possible impact of omitted variable bias by accounting for a large number of confounders in the most flexible way possible. This can be achieved by moving beyond restricting confounders to be linear and additive, and instead considering a flexible, unrestricted (non-parametric) function. This leads to the formulation of the following partially linear model (Robinson 1988) equation (for ease of exposition we omit district fixed effects in the notation and ignore i subscripts):

\[
y_{jd} = \mu^l\theta^l_{jd} + \mu^h\theta^h_{jd} + \eta^lU_d\theta^l_{jd} + \eta^hU_d\theta^h_{jd} + g(Z_d) + \epsilon_{jd}
\]

with \(E(\epsilon_{jd}|Z_s, U_d, \theta_{jd}) = 0\). Here, \(y\) is the vote of a representative in a given district, \(U_d\) is the level of union density. The function \(g(Z_d)\) captures the possibly high-dimensional and nonlinear influence of confounders (interacted with income group preferences). The utility of this specification as a robustness tests stems from the fact that it imposes no a priori restriction
on the functional form of confounding variables. A second key ingredient in a model capturing biases due to omitted variables is the relationship between the treatment (union density) and confounders. Therefore, we consider the following auxiliary treatment equation

\[U_d = m(Z_d) + v_i, \quad E(v_i|Z_d = 0), \]

which relates treatment to covariates \(Z_d \). The function \(m(Z_d) \) summarizes the confounding effect that potentially create omitted variable bias if \(m \neq 0 \), which is to be expected in an observational study such as ours.

The next step is to create approximations to both \(g(\cdot) \) and \(m(\cdot) \) by including a large number \(p \) of control terms \(w_d = P(Z_d) \in \mathbb{R}^p \). These control terms can be spline transforms of covariates, higher order interaction terms, etc. Even with an initially limited set of variables, the number of control terms can grow large, say \(p > 200 \). To limit the number of estimated coefficients, we assume that \(g \) and \(m \) are approximately sparse (Belloni, Chernozhukov, and Hansen 2013) and can be modeled using \(s \) non-zero coefficients (with \(s \ll p \)) selected using regularization techniques, such as the LASSO (see Tibshirani 1996; see Ratkovic and Tingley 2017 for a recent exposition in a political science context):

\[y_{jd} = \mu^I \theta^I_{jd} + \mu^h \theta^h_{jd} + \eta^I U_a \theta^I_{jd} + \eta^h U_a \theta^h_{jd} + w_d' \beta_{g0} + r_{gd} + \zeta_{jd} \]

\[U_d = w_d' \beta_{m0} + r_{mi} + v_d \]

Here, \(r_{gi} \) and \(r_{mi} \) are approximation errors.

However, before proceeding we need to consider the problem that variable selection techniques, such as the LASSO, are intended for prediction, not inference. In fact, a “naive” application of variable selection, where one keeps only the significant \(w \) variables in equation (F.3) fails. It relies on perfect model selection and can lead to biased inferences and misleading confidence intervals (see Leeb and Pötscher 2008). Thus, one can re-express the problem as one of prediction by substituting the auxiliary treatment equation (F.4) for \(D_d \) in (F.3) yielding a reduced form equation with a composite approximation error (cf. Belloni, Chernozhukov, and Hansen 2013). Now both equations in the system represent predictive relationships and are thus amenable to high-dimensional selection techniques.

Note that using this dual equation setup is also necessary to guard against variable selection errors. To see this, consider the consequence of applying variable selection techniques to the outcome equation only. In trying to predict \(y \) with \(w \), an algorithm (such as LASSO) will favor variables with large coefficients in \(\hat{\beta}_0 \) but will ignore those of intermediate impact. However, omitted variables that are strongly related to the treatment, i.e., with large coefficients in \(\beta_{m0} \), can lead to large omitted variable bias in the estimate of \(\eta \) even when the size of their coefficient in \(\hat{\beta}_0 \) is moderate. The Post-double selection estimator suggested by Belloni, Chernozhukov, and Hansen (2013) addresses this problem, by basing selection on both reduced form equations. Let \(\hat{I}_1 \) be the control set selected by LASSO of \(y_{jd} \) on \(w_d \) in the first predictive equation, and let \(\hat{I}_2 \) be the control set selected by LASSO of \(U_d \) on \(w_d \) in the second equation. Then, parameter
estimates for the effects of union density and the regularized control set are obtained by OLS estimation of equation (F.1) with the set \(\hat{I} = \hat{I}_1 \cup \hat{I}_2 \) included as controls (replacing \(g(\cdot) \)). In our implementation we employ the root-LASSO (Belloni, Chernozhukov, and Wang 2011) in each selection step.

This estimator has low bias and yields accurate confidence intervals even under moderate selection mistakes (Belloni and Chernozhukov 2009; Belloni, Chernozhukov, and Hansen 2014).\(^8\) Responsible for this robustness is the indirect LASSO step selecting the \(U_d \)-control set. It finds controls whose omission leads to “large” omitted variable bias and includes them in the model. Any variables that are not included (“omitted”) are therefore at most mildly associated to \(U_d \) and \(y_{jd} \), which decidedly limits the scope of omitted variable bias (Chernozhukov, Hansen, and Spindler 2015).

G. Nonparametric Evidence for Union Preferences Interaction

As discussed in the main text, we want to estimate a specification that makes as little \textit{a priori} assumptions about functional form relationships between variables (including their interactions). Thus, we non-parametrically model \(y_{ijd} = f(z) \) with \(z = [\theta^l_{jd}, \theta^h_{jd}, U_d, X_d] \) by approximating it via Kernel Regularized Least Squares (Hainmueller and Hazlett 2014), \(y = Kc \). Here, \(K \) is an \(N \times N \) Gaussian Kernel matrix

\[
K = \exp \left(\frac{-\|Z_d - z_j\|^2}{\sigma^2} \right)
\]

(G.1)

with an associated vector of weights \(c \). Intuitively, one can think of KRLS as a local regression method, which predicts the outcome at each covariate point by calculating an optimally weighted sum of locally fitted functions. The KRLS algorithm uses Gaussian kernels centered around an observation. The weights \(c \) are chosen to produce the best fit to the data. Since a possibly large number of \(c \) values provide (approximately) optimal weights it makes sense to prefer values of \(c \) that produce “smoother” function surfaces. This is achieved via regularization by adding a squared L2 penalty to the least squares criterion:

\[
c^* = \arg\min_{c \in \mathbb{R}^p} \left[(y - Kc)'(y - Kc) + \lambda c'Kc \right],
\]

(G.2)

which yields an estimator for \(c \) as \(c^* = (K + \lambda I)^{-1}y \) (see Hainmueller and Hazlett 2014, appendix). This leaves two parameters to be set, \(\sigma^2 \) and \(\lambda \). Following Hainmueller and Hazlett (2014), we set \(\sigma^2 = D \) the number of columns in \(z \) and let \(\lambda \) be chosen by minimizing leave-one-out loss.

\(^8\)For a very general discussion see Belloni et al. (2017).
The benefit of this approach is twofold. First, it allows for an approximation of highly nonlinear and non-additive functional forms (without having to construct non-linear terms as we do in the post-double selection LASSO). Second, it allows us to check if the marginal effects of group preferences changes with levels of union density without explicitly specifying this interaction term (and instead learning it from the data). To do the latter one can calculate pointwise partial derivatives of y with respect to a chosen covariate $z^{(d)}$ (Hainmueller and Hazlett 2014: 156). For any given observation j we calculate

$$\frac{∂\widehat{y}}{∂z^u_j} = \frac{-2}{σ^2} \sum_i c_i \exp\left(\frac{-∥Z_d - z_j∥^2}{σ^2}\right)\left(Z_{j}^u - z_{j}^u\right).$$ (G.3)

These yields as many partial derivatives as there are cases. We apply a thin plate smoother (with parameters chosen via cross-validation) to plot these against district-level union membership in Figure G.1. Perhaps unsurprisingly, we find that the assumption of an exactly linear interaction specification is too restrictive, especially in the case of the preferences of high income constituents.

![Graph of partial effects for low and high income constituents](image)

Figure G.1

Nonparametric estimate of interaction between union membership and preferences

Note: This figure plots partial effects (summarized using thin-plate spline smoothing) of preferences of low and high income constituents on legislative votes at levels of district union membership. Estimates obtained via KRLS.

However, the most noteworthy result clearly is the fact that, using a non-parametric model not including an *a priori* interaction between union membership and preferences, we find clear evidence that union membership moderates the relationship between preferences and legislative voting. For low income constituents, increasing district-level union membership steadily increases the marginal effect of their preferences on legislators’ vote choice. Moving from
low levels of union membership (at the 25th percentile) to median levels of union membership increase low-income preference responsiveness by about 5 percentage points. An equally sized increase from the median to the 75th percentile increases responsiveness by almost 8 percentage points. We also find similar (albeit weaker) evidence for an interaction between high income group preferences and union membership.

H. Heterogeneity

Union type Is our finding driven by a particular type of union? A recent strand of research stresses the special characteristics of public unions and their political influence (e.g., Anzia and Moe 2016; Flavin and Hartney 2015). Hence, one may ask whether our findings mainly reflect the influence of private-sector unions since public sector unions are too narrow in their interests to mitigate unequal responsiveness. Panel (A) of Table H.1 provides some evidence on this question. The administrative forms used to measure union membership do not distinguish between private and public unions, and local unions may contain workers from both the private and the public sector. To calculate an approximate measure of district public union membership, we identify unions with public sector members (based on their name) and create separate union membership counts for “public” and the remaining “non-public” unions (see appendix A for details).

Our findings suggest that the coefficient for the impact of a districts’ public union membership on the responsiveness of legislators to the preferences of the poor is sizable (at about 7 percentage points) and clearly statistically different from zero. At the same time, the coefficient for the remaining “non-public” unions is slightly reduced. The difference between the two estimates is not statistically distinguishable from zero. This finding does not support the hypothesis of a null-effect of public sector unions. It also suggests that the changing private-public union composition will not necessarily lead to less collective voice in Congress.

Bill ideology Panel (B) explores whether the effect of unions varies with the ideological direction of the bill that is voted on. Based on the partisan vote margin of the roll call vote, we define an indicator variable for conservative roll calls and estimate separate coefficients for each bill type. We find that union effects are relevant (and significant) for both bill types, they are larger for conservative votes. A standard deviation increase in union membership increases responsiveness to the preferences of low-income constituents by about 9 (±2) percentage points for conservative bills compared to about 5 (±1) points for liberal bills. The difference is larger for the preferences of high income constituents. In both cases the difference in marginal effects between liberal and conservative bills is statistically significant. Our findings suggest that union influence is more relevant for bills that have (potentially) adverse consequences for low income constituents. We trace this issue further in the next specification.

Union voting recommendations In panel (C) we consider bills with economic content and that have (or have not) been endorsed explicitly by the largest union confederation, the AFL-CIO. Our
Table H.1

Effect heterogeneity. Marginal effects of unionization on legislative responsiveness to low and high income groups.

<table>
<thead>
<tr>
<th></th>
<th>Low income</th>
<th>High income</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Private vs. Public unions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public unions</td>
<td>0.074 (0.016)</td>
<td>−0.058 (0.015)</td>
</tr>
<tr>
<td>Non-public unions</td>
<td>0.054 (0.016)</td>
<td>−0.027 (0.016)</td>
</tr>
<tr>
<td>(B) Bill ideology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservative bill</td>
<td>0.086 (0.017)</td>
<td>−0.086 (0.018)</td>
</tr>
<tr>
<td>Liberal bill</td>
<td>0.052 (0.014)</td>
<td>−0.028 (0.013)</td>
</tr>
<tr>
<td>(C) AFL-CIO endorsement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No position</td>
<td>0.054 (0.014)</td>
<td>−0.054 (0.013)</td>
</tr>
<tr>
<td>Endorsement</td>
<td>0.077 (0.015)</td>
<td>−0.040 (0.014)</td>
</tr>
</tbody>
</table>

Note: Estimates for η^l and η^h with cluster-robust standard errors in parentheses. N=15,780. Panel (A) shows separate effects for district counts of union members for unions classified as public or non-public (see text). Statistical tests for the difference in union type yield $p = 0.172$ for low income preferences and $p = 0.027$ for high income ones. Panel (B) estimates separate effects for bills classified as conservative or liberal based on their predominant party vote. Tests for significance of difference: $p = 0.009$ for low and $p = 0.000$ for high income preferences. Panel (C) classifies bills with economic content where the AFL-CIO has taken a public stand for or against it (depending on bill content). Tests for significance of difference: $p = 0.003$ for low income, $p = 0.049$ for high income preferences.

The definition of endorsement is based on voting recommendations made publicly by the AFL-CIO. AFL-CIO recommendations signal the salience of the issue to unions, and they were made for more than half of the votes in the analysis. The mainly cover redistributive and economic issues. From the roll-call votes in our sample, the AFL-CIO took no position on stem cell research, Iraq redeployment, foreign intelligence surveillance, the repeal of Don’t Ask Don’t Tell, energy security, and several fiscal appropriations. Intuitively, we find that that the union effect is larger for issues where the AFL-CIO has made a clear endorsement. Panel (C) shows that the impact of union membership on legislators’ responsiveness for bills especially relevant to low-income citizens is about 2 percentage points larger for votes on which the AFL-CIO had taken a prior position. This difference is statistically different from zero ($p = 0.003$). The fact that districts with higher union membership see better representation of the less affluent more so when issues are salient to unions bolsters the interpretation that our main result is actually driven by unions’ capacity for political action. This finding is also consistent with micro-level studies of the effects of union position-taking (Ahlquist, Clayton, and Levi 2014; Kim and Margalit 2017). There remains a smaller but significant union effect for the other issues as well. This

10The high-income preferences estimate is smaller for endorsed bills but still significantly different from zero.
makes sense because union endorsements are not exhaustive, they may reflect some strategic considerations and policy issues are somewhat bundled.

References

