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In this paper, we explore the impact of decentralized decision making on the behavior of multi-

product assembly systems. Specifically, we consider a system where three components (two product-

specific and one common) are used to produce two end products to satisfy stochastic customer

demands. We study the system under both centralized and decentralized decision making. In

the decentralized system we prove that, for any set of wholesale prices, there exists a unique

Pareto-optimal equilibrium in the suppliers’ capacity game. We show that the assembler’s op-

timal wholesale prices lie in one of two regions – one leads to capacity imbalance and one does

not. We use these results to derive insights regarding the inefficiencies that decentralization can

cause in such systems. In particular, several of our findings indicate that outsourcing the manage-

ment of component supplies may inhibit the use of operational hedging approaches for managing

uncertainty.

1 Introduction

Over the years, firms producing multiple finished products have explored a variety of ways to

provide responsive service to customers while keeping inventories as low as possible. One approach

widely adopted in recent years has been the assemble-to-order approach, with Dell Computer being

perhaps the best known example. By using many of its components across multiple product lines,

Dell can offer tremendous product variety while holding inventory of only a limited number of

components. This use of component commonality is just one example of how operational flexibility

can be leveraged to improve supply chain responsiveness while avoiding excessive inventories. This

approach and others based on the same principle have received significant attention in the academic

literature in recent years, and have been successfully implemented in a number of companies. Some
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examples include operational hedging using flexible production capacity (e.g., Seagate Technologies

– see Van Mieghem 1998b) and postponement (e.g., Hewlett-Packard – see Kopczak and Lee 1996).

In addition to their inventory/production strategy (achieving flexibility by stocking only compo-

nents and producing finished goods only once an order is received), most assemble-to-order systems

also involve some level of decentralization. For example, most of the component inventories that

Dell uses in its assembly process are actually held by its suppliers. Similarly, in the automobile in-

dustry, component production capacity required to feed the final assembly plant is typically owned

and controlled by the suppliers. Shortages in the supply of components can have a serious negative

impact on the performance of supply chains. In 2000, basic memory chips and some high-frequency

transistors used in cellular-phone manufacturing were in short supply. Building capacity for some

of these components can take up to 18 months, making it difficult for end-product assemblers to

bring new products to market in a timely fashion. (See Hilsenrath 2000.)

While there has been significant research into the operation of assemble-to-order systems, very

little attention has been paid to the impact of decentralized decision making in such systems. This

paper focuses on that impact, particularly the impact of decentralization on the use of commonality

and hedging strategies in such systems.

We analyze an assemble-to-order (ATO) system consisting of two finished products and three

components, with one component dedicated to each product and one common component shared by

them. Component capacity decisions must be made prior to a single selling season, while finished-

product production decisions are made after observing demands during the season. Demands for

the finished products are stochastic, and unfilled demands are lost. We study this system under

both centralized and decentralized decision making. In the decentralized version, the assembler

first sets wholesale prices it will pay for each unit of component it purchases. After observing those

prices, three independent suppliers simultaneously choose how much capacity to install or reserve

for each of their components. Then the assembler observes demand, selects the finished product

production quantities, and places the corresponding orders with the suppliers. In the centralized

version, all decisions are made by a single decision maker.

For the centralized system we present a characterization of the unique optimal solution. For the

decentralized system, we show that for any choice of wholesale prices by the assembler, there exists

a unique Pareto-optimal equilibrium in the suppliers’ capacity game. We show that without loss of

optimality the assembler can restrict attention to two price regions, one of which leads to capacity

imbalance in the capacity game (i.e., situations where the common component is strictly less than

the sum of the capacities of the two dedicated components, a version of operational hedging), and
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one of which leads to balanced capacities.

To explore the impact of decentralization on the ATO system, we compare behavior in the

centralized and decentralized systems both analytically and numerically, leading to a number of

interesting insights. Similar to many other supply chain settings (e.g., Lariviere and Porteus 2001,

Wang and Gerchak 2003, Bernstein and DeCroix 2006), we find that decentralization leads to un-

derstocking in terms of component capacities. However, we also identify new types of inefficiencies

that are specifically related to the multi-component, multi-product setting studied here. We show

that decentralization can lead to one of the products being dropped, thus reducing the breadth of

product offerings relative to the centralized system. We also find that capacity imbalance occurs

less frequently in the decentralized system, and that its presence in that system depends on the

marginal distributions of end-product demands, whereas it does not in the centralized system. In

addition, we demonstrate that in some situations the wholesale prices in the decentralized system

can alter the assembler’s profit margins so that end-product production priorities are reversed from

those in the centralized system. Finally, by comparing the decentralized system to one where the

common component is replaced by two dedicated components, we find that the flexibility provided

by a common component may actually hurt the assembler’s performance in a decentralized system

(even in the presence of capacity imbalance), whereas it can only improve performance in a cen-

tralized system when common and dedicated components have equal costs. By choosing dedicated

components, the assembler avoids an incentive problem that arises with a common component –

i.e., underinvestment in component capacity due to competition for the common component. Our

results regarding the (in)frequency of capacity imbalance and the (un)attractiveness of component

commonality suggest that decentralizing decision making (e.g., by outsourcing) may reduce the

extent to which the supply chain takes advantage of these approaches for managing uncertainty.

In addition to identifying inefficiencies arising from decentralization, we also explore how various

factors affect system behavior. We find that capacity imbalance is less likely when demand vari-

ability is low, demand correlation is high, or dedicated component capacity costs are high. We also

find that reversed production priorities are more likely to occur when the lower-margin product

has significantly higher mean demand.

There exists a significant body of research analyzing performance measures and inventory poli-

cies for centralized assemble-to-order systems. Some early work in this area includes analysis of

the repair-kit problem by Smith et al. (1980) and Graves (1982). Lu and Song (2005) formulate

a customer-order level cost-minimization model to determine the joint optimal base-stock levels in

the multi-product ATO system and compare it with the single-item cost minimization model. Lu
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et al. (2003) treat the ATO system as a set of queues driven by a common, multiclass batch Poisson

input. They derive the first two moments of the joint queue-length distribution, and investigate

the effect of demand and leadtime variability on the system performance. See the review of ATO

systems by Song and Zipkin (2003) for a complete list of work in this area.

Another related stream of work is the research on decentralized single-product assembly systems.

Wang and Gerchak (2003) study a setting that is similar to the one considered here, but with only

a single finished product. They derive expressions for equilibrium supplier capacities and analyze

the effect of system structure and parameters on performance of the system. Tomlin (2003) studies

a similar system and explores the use of share-the-gain contracts to increase supplier capacities.

Bernstein and DeCroix (2004) study the issue of modular assembly in a multi-tier assembly system,

where some of the assembly work is done by a middle tier of subassemblers. They characterize

equilibrium capacities and prices in that setting and explore the best way for the assembler to

structure the modular assembly system. They also show that modular assembly is only beneficial

to the assembler if subassemblers can perform assembly work less expensively. Zhang et al. (2005)

study a multi-product, multi-component system, but their model and the focus of their analysis

are somewhat different. They assume that the capacity of the shared component (or resource) is

exogenous, and they identify wholesale-price only contracts that coordinate the supply chain while

still providing all firms positive profits.

Other related work includes the study of capacity investment, component commonality and

resource flexibility. Relevant research on component commonality includes Collier (1982), Baker et

al. (1986), Gerchak et al. (1988) and Gerchak and Henig (1989). In settings similar to ours, these

papers explore the benefits of component commonality under centralized decision making. Van

Mieghem (1998a) studies the issue of resource flexibility in a two-product setting with one dedicated

resource for each product and one flexible resource that can be used for either product. Harrison

and Van Mieghem (1999) introduce the notions of operational hedging and capacity imbalance in

the context of a system with multiple resources and stochastic demand. Van Mieghem and Rudi

(2002) consider centralized newsvendor networks that allow for multiple products and multiple

processing and storage points. They show that for certain networks the single-period solution

extends to a dynamic setting. Netessine et al. (2002) explore the implications of flexibility in a

service environment. Van Mieghem (2004) investigates the relationship between the commonality

and flexible capacity problems. Finally, Van Mieghem (2006) studies the role of flexibility in risk-

averse centralized newsvendor networks. For a recent review of work addressing game-theoretic

capacity investment by multiple agents, see Van Mieghem (2003).
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The rest of the paper is organized as follows. Section 2 introduces the basic model and nota-

tion. In Section 3 we analyze the system under centralized decision making, while the behavior of

the decentralized assemble-to-order system is characterized in Section 4. In Section 5 we compare

behavior in the two systems and derive managerial insights regarding the impacts of decentraliza-

tion. Section 6 provides some concluding remarks. Appendix A contains a discussion of system

behavior under a restricted wholesale pricing scheme (markup pricing), while Appendix B contains

all proofs.

2 Model

Consider an ATO system that produces two products using three components. Product 1 consists

of one unit each of components A and B, while product 2 consists of one unit each of components

B and C. (More general component quantity requirements can be reduced to this case by rescaling

the problem parameters.) As a result, components A and C are dedicated to products 1 and 2,

respectively, while component B is common to the two products. This system is an example of a

newsvendor network (see Van Mieghem and Rudi 2002). Figure 1 below illustrates the system.

Figure 1: ATO system

Let Dj denote random demand for product j (j = 1, 2) during a single selling season, and

assume that (D1, D2) has a continuous distribution with joint density f(·, ·). Let fj(·) and Fj(·)

be the marginal density and cumulative distribution function (cdf), respectively, for Dj, and let

F̄j(·) = 1 − Fj(·). Assume for ease of exposition that fj(x) > 0 for all x ≥ 0 and fj(x) = 0

otherwise. (All the results can be extended to distributions with bounded support.) Let ρ denote

the coefficient of correlation between D1 and D2. Also, let P (H) denote the probability of an event

H and E[X ] the expectation of a random variable X , with respect to the joint demand distribution.

Let pj be the exogenous market price for each product net of the assembly costs. We assume,

without loss of generality, that p1 ≤ p2. Installing a unit of production capacity for component i

5



costs ci. Assume that component production costs (once capacity is installed) are zero, and that

both products have a positive profit margin, i.e., p1 > cA + cB and p2 > cB + cC .

Under decentralized decision making, component capacity decisions are made by three indepen-

dent suppliers corresponding to components A, B and C, and those suppliers incur the component

capacity costs. Finished product assembly decisions are made by a single assembler. The demand

distributions and all cost parameters are common knowledge. The sequence of events for this ver-

sion of the model is as follows. First, the assembler acts as the Stackelberg leader by choosing the

wholesale price wi it will pay to each supplier i for each unit of component i produced. Then, the

suppliers simultaneously install or reserve their production capacities Qi. (For technical reasons,

assume that the feasible set for Qi is
[
0, Qi

]
for some large finite Qi.) Next, the assembler observes

consumer demands Dj, decides how many units yj of each product j to assemble subject to the

suppliers’ capacity constraints, and places the corresponding orders with the suppliers. Any un-

satisfied demands are lost. Finally, all costs and revenues are incurred. In the centralized version

of the model, all decisions are made, and all costs and revenues are incurred, by a single central

planner. That model follows the same sequence of events, except that the wholesale price setting

step is omitted.

Let c, w, and Q, denote the (column) vectors of unit capacity costs, wholesale prices, and

capacity levels, respectively, for the three components. Also, let Q−i be the vector Q with the ith

component removed. Finally, let p, D, and y, denote the (column) vectors of prices, demands, and

production quantities, respectively, for the two products.

3 Centralized System

In order to explore the impacts of decentralizing decision making in an assemble-to-order system,

we first examine the behavior of the system under centralized control. Since there is no need

for wholesale prices in this system, the central planner’s problem can be modeled as a two-stage

stochastic program. Working backwards, the second stage occurs after the capacity vector Q has

been chosen and the demand vector D observed. At this point the planner chooses the production

vector y to maximize Π(Q, D) = p1y1 + p2y2 subject to Ay ≤ Q and y ≤ Q, where

A =

⎛
⎝ 1 0

1 1
0 1

⎞
⎠ .

(In what follows, it will be convenient to explicitly express the dependence of the finished-product

production quantities on the component capacities and realized demands by writing the production
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vector as y(Q, D) = (y1(Q, D), y2(Q, D))T .) This problem has a simple solution, which is reported

in Harrison and Van Mieghem (1999). Because the only resource shared by the two products is

component B, and each product uses the same amount of this resource, it is optimal to give the

more profitable product (product 2) priority access to component B when choosing production

quantities.1 As a result, the optimal production quantities are:

y1(Q, D) = min{QA, QB − min{QB, QC , D2}, D1} , (1)

y2(Q, D) = min{QB, QC , D2}. (2)

In the first stage, prior to observing demand, the planner chooses the capacity vector Q to

maximize expected profit V (Q) = E(Π(Q, D))− cTQ, in anticipation of possible demand outcomes

and the subsequent optimal production decision. Harrison and Van Mieghem (1999) derive first-

order optimality conditions for maximizing V (Q) subject to Q ≥ 0, and show that at optimality the

dedicated component capacities will not exceed the capacity of the common component (QA ≤ QB

and QC ≤ QB), and the common component capacity will not exceed the sum of the dedicated

capacities (QB ≤ QA + QC). Following similar arguments, we can obtain a characterization of the

unique optimal solution in our setting, which we denote Q0. The following result establishes some

properties of the centralized optimal solution.

Theorem 1. The optimal capacity investment strategy for the centralized system has the following

properties:

(i) It is always optimal to invest in all three components, that is Q0 > 0.

(ii) Under the optimal capacity vector Q0, Q0
A < Q0

B always holds.

(iii) The optimal capacity satisfies the boundary condition Q0
B = Q0

A+Q0
C , with Q0

A = F̄−1
1 ( cA+cB

p1
)

and Q0
C = F̄−1

2 ( cB+cC
p2

), if and only if

P (D1 ≥ Q0
A, D2 ≥ Q0

C) ≥ cB

p1
. (3)

Otherwise, Q0
B < Q0

A + Q0
C.

The capacity balance condition (3) is related to the optimality condition for a simple newsvendor

problem. Recall that such a condition prescribes a quantity Q such that the probability of stocking

out is equal to the ratio (marginal cost of increasing Q)/(marginal revenue obtained from the sale
1If p1 = p2 we assume, without loss of optimality, that the decision maker gives priority to product 2.
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of one more unit). (See, for example, the expressions for Q0
A and Q0

C in part (iii) of the theorem.)

Now fix QA = Q0
A and QC = Q0

C , and consider choosing QB = Q0
A + Q0

C . Given that capacity

choice, the probability of stocking out of component B is equal to P (D1 ≥ Q0
A, D2 ≥ Q0

C), which

is the left-hand side of (3). Also, the marginal cost of increasing QB is equal to cB, while the

marginal revenue obtained from the last unit of capacity added is equal to p1 (since product 1

receives lower priority). Thus the ratio of the two is equal to the right-hand side of (3). If (3)

holds, then it is economically attractive to add that final unit of component B capacity - i.e., to

balance the capacities - while if it does not hold, it is better to keep component B capacity lower

yielding capacity imbalance (e.g., to take advantage of risk pooling).

The following corollary of Theorem 1 exhibits the necessary and sufficient condition for Q0
B =

Q0
A + Q0

C for the special cases of independent demands, and perfect negative and positive corre-

lations. As in Van Mieghem (1998a), we model perfect positive demand correlation by P (D1 =

D2) = 1, and perfect negative demand correlation by P (D1 + D2 = K) = 1 for some K > 0.2

Corollary 1. The following are three special cases of the necessary and sufficient condition for

balanced capacities in the optimal centralized solution:

(a) Perfectly negatively correlated demands: cA
p1

+ cB+cC
p2

≥ 1

(b) Independent demands: cA+cB
p1

cB+cC
p2

≥ cB
p1

(c) Perfectly positively correlated demands: cB+cC
p2

≥ cB
p1

From the above conditions we see that if balanced capacities are optimal for perfect negative

correlation, then they are also optimal for independent demands, and if optimal for independent

demands they are optimal for perfect positive correlation. The latter can be seen immediately by

comparing the left-hand sides of the conditions in (b) and (c) and recalling that p1 > cA + cB

for profitability of product 1. The former can be seen by writing the conditions in (a) and (b) as

(cB + cC)/p2 ≥ 1 − cA/p1 and (cB + cC)/p2 ≥ 1 − cA/(cA + cB), respectively, and again using the

profitability condition for product 1. This makes intuitive sense – as demands for the two products

become more highly correlated there is less opportunity to make use of the flexibility represented by

unbalanced capacities. For the special case when demands (D1, D2) come from a bivariate Normal

distribution, this observation can be extended to general correlations. In that case, the condition

in Theorem 1(iii) depends on the demand distribution only through the correlation, and a higher
2Similar results are obtained when D2 = α1D1 + α2, with α1 > 0 for perfect positive correlation and α1 < 0 for

perfect negative correlation.
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correlation makes balanced capacities more likely. (Van Mieghem 2004 makes a similar observation

in a somewhat different setting – where in addition to the common component B, one can also

install capacity of dedicated versions of that component. His observations relate to the impact of

the demand distributions and correlation on the choice to install positive capacity of the common

component, and his condition characterizing that choice is similar to that in (3). Van Mieghem

2006 also shows that in a setting like ours, which he refers to as a “Serial Network,” when demands

follow a bivariate Normal distribution, capacity imbalance is independent of the marginal demand

distributions and is decreasing in demand correlation.)

What is somewhat surprising is the fact that even with perfectly negative demand correlation,

there are cases when it is optimal to have balanced capacities. As the condition in (a) indicates, this

can occur when either or both products have low profit margins. In such cases, stocking levels for

the dedicated component(s) associated with the low-margin product(s) would naturally be low, and

therefore the probability that demands for both products exceed the capacities of the associated

dedicated components would be high. As a result, the benefit of potentially capturing all of that

demand exceeds the cost savings from reducing the capacity of component B.

4 Decentralized System

In this section, we analyze the equilibrium behavior of the decentralized ATO system by considering

the events in reverse order. First, we investigate the assembler’s optimal production decision once

the wholesale prices and component capacities have been set and demand has been realized. Next,

we explore the capacity game, in which suppliers simultaneously select capacity levels Qi given

the wholesale price vector w and anticipating the resulting assembly decision y(Q, D). Finally, we

consider the optimization problem in which the assembler selects the vector of wholesale prices w

that maximizes its profit in anticipation of the suppliers’ equilibrium capacity vector Q and its own

optimal finished-product assembly decision.

4.1 Assembler’s Production Decision

When analyzing the assembler’s optimal production decision y(Q, D), we assume (without loss of

optimality) that the vector of wholesale prices w is such that both finished products earn a positive

margin for the assembler, and (without loss of generality) that product 2 has the (weakly) higher

margin, i.e., 0 < p1 − wA − wB ≤ p2 − wB − wC . This implies that it is optimal for the assembler
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to give priority to product 2 when choosing production quantities.3 (This assumption is purely for

notational convenience. If wholesale prices are such that the margins are reversed, then all results

in this section hold with products 1 and 2 and components A and C reversed.)

The assembler’s optimal production vector y(Q, D) is obtained by maximizing Π0 = (p1−wA −

wB)y1 + (p2 − wB − wC)y2 subject to Ay ≤ Q and 0 ≤ y ≤ D. Since this has the same form as

the second-stage problem for the centralized system (including the priorities of the products), the

optimal assembler production quantities are also given by (1) and (2).

4.2 Suppliers’ Capacity Game

Faced with a wholesale price set by the assembler, and anticipating the assembler’s production

decision in the last stage, each supplier chooses the capacity that maximizes its expected profit

given the capacities chosen by the other suppliers. Given vectors Q and D, the total number of

units sold by each supplier is given by sA(Q, D) = y1(Q, D), sB(Q, D) = y1(Q, D) + y2(Q, D) =

min{QB, min{QA, D1} + min{QC , D2}}, and sC(Q, D) = y2(Q, D). Supplier i’s expected profit

function is then given by EΠi(Qi|Q−i) = wiE[si(Q, D)] − ciQi. The following result establishes

some key properties of the suppliers’ capacity game.

Proposition 1. Given a vector w of wholesale prices satisfying 0 < p1−wA−wB ≤ p2−wB −wC ,

each supplier i’s expected profit function is concave in Qi. As a result, there exists at least one

Nash Equilibrium capacity vector Q∗(w) in the suppliers’ capacity game.

In the remainder of this section we focus on characterizing such equilibria.

We begin by characterizing each supplier’s best-response function. As a first step, define supplier

i’s isolated optimal capacity with respect to demand for product j as Q̂j
i = F̄−1

j (ci/wi). (Note that

Q̂1
A and Q̂2

C correspond to the optimal newsvendor quantities for suppliers A and C, respectively,

when the other suppliers have ample production capacity.) In addition, we define two functions

that play a role in supplier A’s and supplier B’s best-response functions, respectively. First, let

rAB(QB) be the solution to wAP (D1 ≥ QA, D2 ≤ QB −QA)− cA = 0. Such a solution exists if and

only if QB ≥ Q̄B, where Q̄B = F−1
2 (cA/wA). (Note that rAB(Q̄B) = 0.) Next, for given values of

QA and QC , consider the following equation in QB :

F̄1(QB−QC)−P (D1 ≥ QA, D2 ≤ QB−QA)−P (QB−QC ≤ D1 ≤ QA, D1+D2 ≤ QB) =
cB

wB
. (4)

3Without loss of optimality, we assume that the assembler gives priority to product 2 even when profit margins
are equal.

10



If there is a QB < QA + QC that solves (4), then we call that solution rBAC(QA, QC). Note that

the left-hand side of (4) can be interpreted as the probability that supplier B stocks out, so (4) is

a two-dimensional analogue of the optimality condition for the classical newsvendor problem.

Theorem 2. Consider a vector of wholesale prices w = (wA, wB, wC) satisfying 0 < p1−wA−wB ≤

p2 − wB − wC. The supplier’s best-response functions are characterized as follows.

(a) Supplier A. Fix a pair (QB, QC) and assume that QC ≤ QB (under supplier C’s best re-

sponse, this will always hold). Supplier A’s best-response function is given by

rA(QB, QC) =

⎧⎪⎨
⎪⎩

Q̂1
A, if F̄1(QB − QC) < cA

wA

rAB(QB), if P (D1 ≥ QB − QC , D2 ≤ QC) > cA
wA

QB − QC , otherwise.

(5)

In addition, rA(QB, QC) ≤ QB.

(b) Supplier B. Fix a pair (QA, QC). Supplier B’s best-response function is given by

rB(QA, QC) =

{
QA + QC , if P (D1 ≥ QA, D2 ≥ QC) ≥ cB

wB
;

rBAC(QA, QC), if P (D1 ≥ QA, D2 ≥ QC) < cB
wB

.
(6)

In addition, if P (D1 ≥ QA, D2 ≥ QC) < cB
wB

, then

0 <
∂rBAC

∂QA
< 1 and 0 <

∂rBAC

∂QC
< 1.

(c) Supplier C. Fix a pair (QA, QB). Supplier C’s best-response function is given by

rC(QA, QB) = rC(QB) = min(Q̂2
C , QB) ≤ QB . (7)

The expression for rB(QA, QC) in (6) provides some insights into the impact of QA and QC

on whether supplier B chooses capacity imbalance. For very low values of QA and QC , supplier

B does not prefer capacity imbalance, since demands for both products are likely to exceed the

available capacities of the dedicated components. If QA or QC is increased, QB increases by the

same amount (preserving balanced capacities) up to the point where P (D1 ≥ QA, D2 ≥ QC) = cB
wB

.

Further increases in QA or QC are only partially matched by supplier B – i.e., supplier B now

prefers capacity imbalance, since the cost of exactly matching an increase in capacity of either

dedicated component exceeds the benefit of potentially higher sales.

In decentralized single-product assembly systems, the economic complementarities associated

with the product structure (i.e., a component is only valuable if matched with the other components)
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often cause associated supplier capacity games to be supermodular. (See, e.g., Wang and Gerchak

2003, Bernstein and DeCroix 2004, Bernstein and DeCroix 2006.) The best-response functions in

(5)-(7) above indicate that pairwise complementarity between component B and each dedicated

component exists in the current setting. This is not surprising – when considering just the two

components used to make a single product, one would expect the same kind of complementarity

as in single-product settings. However, supplier A’s best-response function rA(QB, QC) is actually

non-increasing in QC . This is due to the presence of multiple products and the shared component

B. If supplier C increases its capacity, more units of component B may be used to produce

product 2 (which has higher priority), leaving fewer units available to make product 1. This may

cause supplier A to select a lower capacity level for component A – i.e., capacities of components

A and C act as economic substitutes, so the suppliers’ capacity game is not supermodular. This

observation is closely related to a result in Zipkin (2003), which shows that linear programs like

the assembler’s production problem are generally not supermodular in the right-hand sides of the

constraints when there are more than two constraints.

The lack of supermodularity poses a technical challenge with respect to identifying, computing,

and comparing equilibria in the capacity game. However, it is possible in this case to exploit other

aspects of the problem structure to establish a version of complementarity that can be used to

achieve similar ends. Specifically, note that the best-response function for supplier C is independent

of QA. (Since product 2 has priority, supplier C never has to worry about “losing” some of

component B to product 1 as the result of choices by supplier A.) As a result, one need only consider

the best response of supplier A to the pair (QB, rC(QB)), i.e., rA(QB, rC(QB)). In addition, note

that rC(QB) = min(Q̂2
C , QB) ≤ QB. The expression in (5) is then valid replacing QC = rC(QB).

This composite best-response function is characterized in Proposition 2 and illustrated in Figure 2.

Proposition 2. Consider a vector of wholesale prices w = (wA, wB, wC) satisfying 0 < p1 −wA −

wB ≤ p2 − wB − wC.

If cA
wA

+ cC
wC

≥ 1 (or equivalently Q̂2
C ≤ Q̄B) we have that

rA(QB, rC(QB)) =

⎧⎪⎨
⎪⎩

Q̂1
A, if QB > Q̂1

A + Q̂2
C

QB − Q̂2
C , if Q̂2

C < QB ≤ Q̂1
A + Q̂2

C

0, if QB ≤ Q̂2
C .
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(a) Q̂ 2
C ≤ Q̄B

Q̂ 1
A

Q̂ 2
C Q̄B Q̂ 1

A + Q̂ 2
C QB

rA(QB, rC(QB))

(b) Q̂ 2
C > Q̄B

Q̂ 1
A

Q̂ 2
CQ̄B Q̂ 1

A + Q̂ 2
C

QB

rA(QB, rC(QB))

Z1 + Q̂ 2
C

Figure 2: Supplier A’s best response

If cA
wA

+ cC
wC

< 1 (or equivalently Q̂2
C > Q̄B) we have that

rA(QB, rC(QB)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q̂1
A, if QB > Q̂1

A + Q̂2
C

QB − Q̂2
C , if Z1 + Q̂2

C ≤ QB ≤ Q̂1
A + Q̂2

C

rAB(QB), if Q̄B ≤ QB < Z1 + Q̂2
C

0, if QB < Q̄B,

where Z1 ≤ Q̂1
A is the unique solution to P (D1 ≥ Z1, D2 ≤ Q̂2

C) = cA
wA

.4

In either case, rA(QB, rC(QB)) is non-decreasing in QB.

The last statement in Proposition 2 is of particular interest. By embedding supplier C’s best

response in supplier A’s best-response function, we obtain a version of component complementarity

that will be useful when identifying and comparing capacity equilibria.

Proposition 1 established the fact that, for any vector w of wholesale prices, there exists at

least one Nash equilibrium in the suppliers’ capacity game. Providing a detailed characterization of

Nash equilibria in this game is complicated for two reasons. First, for any given vector of wholesale

prices there always exist multiple equilibria. Second, for different wholesale prices different types

of equilibria can arise. Despite this complexity, we are able to completely characterize the possible

Nash equilibria in this game. In addition, we show that the game always has a unique Pareto-

optimal Nash equilibrium, and we identify different forms that equilibrium can take depending on

relationships among the suppliers’ capacity costs and the wholesale prices. A formal statement of

these results appears in Theorem 3 below.
4This solution exists as long as cC

wC
≤ 1 − cA

wA
.
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The approach used to identify and compare all equilibria that can arise in each of the cases

is based on a systematic consideration of all possible values of supplier B’s capacity QB . For

each value of QB, we first evaluate supplier C’s best response rC(QB) and then supplier A’s best

response rA(QB, rC(QB)). If the original QB is in turn supplier B’s best response to the other

suppliers’ responses, then (rA(QB, rC(QB)), QB, rC(QB)) is a Nash equilibrium. Otherwise no

Nash equilibrium exists in which supplier B chooses that particular capacity QB. After identifying

all Nash equilibria, we compare the resulting profits for the three suppliers to identify preferences

among the equilibria. This comparison is made possible by the complementarity among the capacity

levels – i.e., the fact that rC(QB) and rA(QB, rC(QB)) are both non-decreasing in QB.

The values of the three fractiles 1− cA
wA

, cB
wB

and cC
wC

, or equivalently, the three capacity quantities

Q̄B, Q̂2
B and Q̂2

C , play a key role in the characterization of the Pareto-optimal equilibrium. In order

to state that characterization, we need two additional definitions related to these fractiles. First,

for cases with Q̄B = min(Q̄B, Q̂2
B, Q̂2

C), we define the function

I(QB) ≡ F1(QB − rC(QB)) +
∫ rAB(QB)

QB−rC (QB)

∫ QB−x1

0
f(x1, x2)dx1dx2,

on the range Q̄B < QB < Q̂2
C +Z1. (Note that when QA = rAB(QB) and QC = rC(QB), (4) can be

written as I(QB) = 1− cA
wA

− cB
wB

.) It is easy to verify that I(Q̄B) = 0, I
(
Q̂2

C + Z1

)
= F1(Z1), and

that I(·) is increasing. Second, we define Z2 as the unique solution to P (D1 ≥ Z2, D2 ≥ Q̂2
C) = cB

wB
.

This solution exists as long as cB
wB

≤ cC
wC

. Note that Z2 is increasing in wB and that Z2 = 0 when
cB
wB

= cC
wC

. When cB
wB

> cC
wC

, we define Z2 = 0.

Theorem 3. For any vector of wholesale prices w = (wA, wB, wC) satisfying 0 < p1 − wA − wB ≤

p2 − wB − wC, there exists a unique Pareto-optimal equilibrium Q∗(w) in the suppliers’ capacity

game. This equilibrium takes one of the following forms, depending on the relationships among

fractiles based on the suppliers’ capacity costs and the wholesale prices.

(i) If max{ cC
wC

, 1− cA
wA

} ≤ cB
wB

, then (0, Q̂2
B, Q̂2

B) is the Pareto-optimal equilibrium.

(ii) If max{ cB
wB

, 1 − cA
wA

} ≤ cC
wC

, then
(
min

(
Z2, Q̂

1
A

)
, min

(
Z2, Q̂

1
A

)
+ Q̂2

C , Q̂2
C

)
is the Pareto-

optimal equilibrium.

(iii) If cC
wC

≤ cB
wB

< 1 − cA
wA

, then the Pareto-optimal equilibrium is (rAB(QB), QB, rC(QB)), for

the unique QB in the range Q̂2
B < QB < Q̂2

C + Z1 satisfying I(QB) = 1 − cA
wA

− cB
wB

. That

equilibrium Q∗ satisfies Q∗
B ≤ Q∗

A + Q∗
C .5

5This inequality is strict, yielding capacity imbalance, unless cC
wC

= cB
wB

and P (D1 ≥ Z1, D2 ≥ Q̂2
C) = P (D2 ≥ Q̂2

C).
The latter equality can only hold when D1 and D2 are highly positively correlated.
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(iv) If cB
wB

< cC
wC

< 1 − cA
wA

, then there are two possibilities:

(a) If Z1 > Z2, then the Pareto-optimal equilibrium is (rAB(QB), QB, rC(QB)), for the

unique QB in the range Q̄B < QB < Q̂2
C + Z1 satisfying I(QB) = 1 − cA

wA
− cB

wB
. That

equilibrium Q∗ satisfies Q∗
B < Q∗

A + Q∗
C .

(b) If Z1 ≤ Z2, then the Pareto-optimal equilibrium is
(
min

(
Z2, Q̂

1
A

)
, min

(
Z2, Q̂

1
A

)
+ Q̂2

C , Q̂2
C

)
.

Figure 3: Equilibrium outcomes for fixed cB/wB and independent demands.

In addition to providing a characterization of the Pareto-optimal equilibrium for any possible

relationship among costs and wholesale prices, the preceding result also illustrates the variety of

behaviors that can arise. To facilitate discussion of these behaviors, we interpret the conditions in

(i) - (iv) of Theorem 3 as defining regions in the wholesale-price space. If the parameters lie in

region (i), then the equilibrium capacities include zero capacity for component A (resulting in zero

assembly of product 1), so the system reduces to a single-product assembly setting. Because this

is never optimal under centralized decision making, we see that decentralizing decision making can

reduce the breadth of product offerings. In the other cases, positive capacity is installed for all three

components. However, regions (iii) and (iv)(a) lead to capacity imbalance6 (i.e., Q∗
B < Q∗

A + Q∗
C)

while regions (ii) and (iv)(b) do not (i.e., Q∗
B = Q∗

A + Q∗
C). Figure 3(a) depicts the wholesale-

price regions identified in Theorem 3 (for fixed cB/wB and independent demands). Note that in

regions (iii) and (iv)(a), the fractile for at least one dedicated component is small relative to that
6With the exception noted in Footnote 6.
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of component B, implying an incentive to build a large amount of that dedicated capacity and a

greater preference for imbalance by supplier B.

4.3 Assembler’s Pricing Decision

Following common practice in the literature (e.g., Gerchak and Wang 2004, Bernstein and DeCroix

2004), we assume that, given any vector of wholesale prices, the suppliers will select the unique

Pareto-optimal equilibrium capacity vector Q∗(w). Anticipating the suppliers’ capacity response,

the assembler selects w to maximize its own expected profit. In this section, we provide a partial

characterization of the assembler’s optimal wholesale prices. We show that, under optimal assembler

pricing, all or part of several regions in Theorem 3 can be ignored, thus significantly reducing the

set of prices the assembler needs to consider. By reducing and combining regions, we define two

new regions and show that an optimal assembler wholesale price vector lies in one of these, with

prices in one region leading to capacity imbalance and in the other leading to balanced capacities.

Proposition 3 below is stated under the assumption that the optimal wholesale prices yield

production priorities matching the centralized case – i.e., p1−wA −wB ≤ p2−wB −wC . In seeking

optimal prices the assembler may need to consider prices such that the priorities are reversed – i.e.,

p1 − wA − wB > p2 − wB − wC . For such prices, the behavior in the component capacity game is

as described in the previous section after switching components A and C and products 1 and 2.

If the optimal wholesale prices result in reversed priorities, then Proposition 3 holds after making

that same switch. Notice that such a change in production priorities represents another type of

inefficiency arising from decentralized decision making – the system would now give production

priority to a product that has a lower profit margin (from the entire supply chain’s perspective).

We explore what kind of settings are likely to result in such an outcome in Section 5.

Proposition 3. A vector w = (wA, wB, wC) of optimal assembler wholesale prices satisfying 0 <

p1 − wA − wB ≤ p2 − wB − wC, lies in one of the following two regions. Either,

cB

wB
≤ cC

wC
; F̄1(Z2) =

cA

wA
, (8)

and any such wholesale-price vector results in equilibrium supplier capacities (Q̂1
A, Q̂1

A + Q̂2
C , Q̂2

C) –

i.e., balanced capacities. Or,

max
{

cC

wC
,

cB

wB

}
< 1 − cA

wA
; Z1 > Z2; I(Q̂2

C) ≤ 1− cA

wA
− cB

wB
, (9)
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and any such prices result in the equilibrium capacity vector Q∗ =
(
rAB(QB), QB, Q̂2

C

)
, where QB

is the unique capacity value satisfying I(QB) = 1 − cA
wA

− cB
wB

. This equilibrium exhibits capacity

imbalance – i.e., Q∗
B < Q∗

A + Q∗
C .7

Interestingly, it is always optimal for the assembler to set prices such that supplier C’s equilib-

rium capacity Q∗
C is equal to that supplier’s isolated optimal capacity Q̂2

C . This type of behavior

occurs for all suppliers in a single-product decentralized assembly system (see Gerchak and Wang

2004). In contrast, in our setting, this occurs for supplier A only under outcomes with balanced

capacities, while it never occurs for supplier B. This difference in behavior is a direct result of the

presence of a common component in the multi-product structure analyzed here.

In summary, solving the assembler’s pricing problem requires a pair of numerical searches – one

over w satisfying (8) and one over w satisfying (9). These two regions are depicted in Figure 3(b)

(for fixed cB/wB and independent demands), with capacity balance occurring on the dashed curve

and capacity imbalance occurring in the shaded region. The assembler can then compare profits

associated with the best solution from each region and choose the better of the two. If some vector

w results in reversed priorities, we simply “flip” the system by relabeling products 1 and 2 and

components A and C before continuing with the analysis of the suppliers’ capacity game.

When demands are perfectly positively or perfectly negatively correlated, the conditions in

Proposition 3 can be simplified. Moreover, we can derive closed-form expressions for the equilibria

arising in the case of capacity imbalance.

Corollary 2. Consider again the case with 0 < p1 −wA −wB ≤ p2−wB −wC . Suppose that when

demands are perfectly negatively correlated, P (D1 + D2 = K) = 1 for some K > 0, while when

demands are perfectly positively correlated, P (D1 = D2) = 1. Then,

(a) For perfectly negatively correlated demands, the optimal assembler wholesale prices lie in one

of the following two regions. Either,

1− cA

wA
+

cB

wB
=

cC

wC

and any such wholesale-price vector results in equilibrium supplier capacities (Q̂1
A, Q̂1

A +

Q̂2
C , Q̂2

C). Or,

max
{

cC

wC
,

cB

wB

}
< 1 − cA

wA

7In the special case where the wholesale prices satisfy (9), and also cC
wC

= cB
wB

and P (D1 ≥ Z1, D2 ≥ Q̂2
C) =

P (D2 ≥ Q̂2
C ), the resulting Pareto optimal capacity equilibrium is balanced, and given by Q∗ = (Z1, Z1 + Q̂2

C , Q̂2
C).

See Footnote 6 and the proof of Theorem 3.

17



and any such prices result in an equilibrium that exhibits capacity imbalance. If cA
wA

+ cB
wB

+
cC
wC

> 1, then Q∗
A = F

−1
1

(
cA
wA

)
+F

−1
1

(
cA
wA

+ cB
wB

)
−F−1

1

(
cC
wC

)
, Q∗

B = K +F
−1
1

(
cA
wA

+ cB
wB

)
−

F−1
1

(
cC
wC

)
, and Q∗

C = Q̂2
C = K −F−1

1

(
cC
wC

)
. On the other hand, if cA

wA
+ cB

wB
+ cC

wC
≤ 1, then

Q∗ = (Q̂1
A, K, Q̂2

C).

(b) For perfectly positively correlated demands, let F be the common distribution of D1 and D2.

The optimal assembler wholesale prices lie in one of the following two regions. Either,

cB

wB
=

cA

wA
≤ cC

wC

and any such wholesale-price vector results in equilibrium supplier capacities Q∗
A = F

−1
(

cA
wA

)
,

Q∗
B = F

−1
(

cA
wA

)
+ F

−1
(

cC
wC

)
, and Q∗

C = F
−1

(
cC
wC

)
. Or,

cC

wC
≤ cB

wB
< 1 − cA

wA
; F

−1
(

cC

wC

)
≤ F

−1
(

cB

wB

)
+ F

−1
(

cA

wA
+

cB

wB

)

and any such prices result in the equilibrium with Q∗
A = F

−1
(

cA
wA

+ cB
wB

)
, Q∗

B = F
−1

(
cB
wB

)
+

F
−1

(
cA
wA

+ cB
wB

)
, and Q∗

C = F
−1

(
cC
wC

)
.

5 Impacts of Decentralization

In this section, we compare various aspects of the ATO systems under centralized and decentralized

decision making. Some of these comparisons are derived from analytical results, while others are

based on observations from a numerical study.

Our basic numerical study examines a large number of specific problems generated by varying

the capacity cost parameters and finished-product demand distributions. In all scenarios studied,

the demands for finished products have Normal distributions truncated at zero to avoid negative

demand realizations. (Specifically, starting with a Normal distribution with cdf Gj(·) with mean

and standard deviation as described below, demand has a distribution with cdf Fj(x) = 0 for x < 0

and Fj(x) = (Gj(x) − Gj(0))/(1− Gj(0)) for x ≥ 0.) Product prices for all cases are p1 = 14 and

p2 = 16. We consider all combinations of the following parameters.

(cA, cB, cC) : (1,2,1); (1,5,1); (1,8,1); (1,11,1); (5,2,5); (5,5,5); (5,8,5)
(µ1, µ2) : (10,30); (15,25); (20,20); (25,15); (30,10)
(σ1, σ2) : (3,3); (9,9)
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In addition, in order to explore the impact of cB on system behavior, for the case of cA = cC = 1,

(µ1, µ2) = (10, 30) and σ1 = σ2 = 9, we also consider 1 ≤ cB ≤ 12. These combinations yield

a total of 78 scenarios. For each scenario we compute the optimal assembler prices and resulting

equilibrium capacities under three different assumptions regarding demand correlations: perfect

negative correlation, independence, and perfect positive correlation. To explore certain specific

questions, in some cases we also consider intermediate correlation values.

5.1 Capacity Levels

When the suppliers independently select their capacity levels, the assembler needs to set the whole-

sale prices so that the suppliers earn a positive margin for each component assembled into an end

product while, at the same time, ensuring that it is profitable to assemble and sell those finished

products to consumers. It is well known that this double marginalization effect usually leads to

lower capacity levels than are optimal under centralized control. (See, for example, Lariviere 1998.)

In addition, Netessine and Zhang (2005) show that complementarity of players’ actions – which

exists for the suppliers in this setting (from Theorem 2 and Proposition 2) – can exacerbate the

effect of double marginalization. Not surprisingly, these types of inefficiencies are also present

in our ATO system. Indeed, in all numerical scenarios, the decentralized system led to lower

component capacity levels than in the centralized system. We can show analytically that this is

always the case when both the centralized and decentralized systems yield balanced capacities. In

the decentralized system, when optimal assembler wholesale prices result in balanced capacities,

the equilibrium component capacity levels are given by Q∗
A = F̄−1

1

(
cA
wA

)
, Q∗

C = F̄−1
2

(
cC
wC

)
, and

Q∗
B = Q∗

A + Q∗
C . In the centralized system, if balanced capacities are optimal, then those capacity

levels are Q0
A = F̄−1

1

(
cA+cB

p1

)
, Q0

C = F̄−1
2

(
cB+cC

p2

)
, and Q0

B = Q0
A + Q0

C . As a result, Q0
A > Q∗

A

if and only if cA
wA

> cA+cB
p1

. The latter inequality is equivalent to p1 − wA > cBwA
cA

= cB

F̄1(Z2)
, where

the last equality follows from (8). From the definition of Z2, we have that F̄1(Z2) ≥ cB
wB

. Then,

the result follows because p1 − wA − wB > 0. Similarly, Q∗
C < Q0

C if and only if p2 − wC > cBwC
cC

,

which holds because cB
wB

≤ cC
wC

from (8) and p2 − wB − wC > 0. Thus, Q∗
B < Q0

B follows as well.

5.2 Production Priorities

While double marginalization and the effects of complementarity have been studied before, our

multi-product setting allows us to identify new sources of inefficiency resulting from decentraliza-

tion. To begin with, we find that the products’ production priorities in the decentralized system

may not match those that are optimal for the supply chain as a whole. From the supply chain’s per-
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spective, the item with the higher market price should receive priority when allocating component

B in the final production stage. Under decentralization, however, priority is determined by each

product’s profit margin from the assembler’s perspective – the difference between the market price

and the wholesale prices paid to the component suppliers. In the numerical study, reversed produc-

tion priorities (i.e., product 1 having higher margin than product 2) arose in some settings where

demand was asymmetric and higher for product 1 (both for independent and correlated demands).

For example, when cA = cC = 1, cB = 5, µ1 = 30, µ2 = 10, σ1 = σ2 = 9, and demands are indepen-

dent, we find that the assembler’s optimal prices yield p1−wA−wB = 6.66 > 0.04 = p2−wB−wC .

To test this pattern further, we ran additional experiments based on this example using more ex-

treme demand asymmetries. Specifically, we fixed mean total demand equal to 40, but allowed

mean demand for product 1 to range from 0.5 to 39.5. (In order to avoid truncation from com-

pletely distorting the demand distributions, we fixed the coefficient of variation for both products’

demands at 0.3, rather than fixing the standard deviations.) Consistent with the observations from

our basic study, we found that production priorities were reversed under optimal assembler prices

for the cases with largest demand of product 1.

To understand why reversed priorities would be more likely to occur when demand for product

1 is larger, consider the impact of the priority scheme on demands for the components. When

product 2 has priority, the effective demand for product 1 (and thus the demand distribution seen

by supplier A) is not the observed demand for product 1. Instead it is equal to the minimum of

that and the leftover supply of component B after demand for product 2 is satisfied – i.e., the

demand distribution is truncated. This reduces the amount of capacity supplier A is willing to

install. To induce supplier A to install more, the assembler could offer a higher wholesale price,

but doing so would reduce its margin on product 1 even further. As an alternative, the assembler

could adjust prices so that product 1 has the higher margin (and thus production priority). Of

course, this would shift the truncation effect to product 2. However, when demand for product 1 is

substantially larger than for product 2, the impact of this truncation on product 2 demand would

be smaller (in absolute terms) than it would be on product 1. In such situations, the dynamics of

the decentralized setting may make it desirable for the assembler to cause production priorities to

be reversed from what they are under centralized decision making.

5.3 Capacity Imbalance

In this section, we explore another new type of inefficiency that only arises in systems with the

multi-product, common-component structure analyzed here – the impact of decentralization on the
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incidence of capacity imbalance. We begin by making the following observations, based on the

numerical findings.

Observation 1. Capacity imbalance is less common in the decentralized system than in the cen-

tralized system:

(i) If capacity imbalance did not occur for a specific case in the centralized system, then it did

not occur for that case in the decentralized system under optimal assembler pricing.

(ii) Among cases when capacity imbalance occurred in the optimal solution of the centralized sys-

tem, capacities were balanced in the decentralized system under optimal assembler pricing in

81% of the cases with perfectly negative demand correlation, 83% of cases with independent

demands, and 100% of cases with perfectly positive demand correlation.

Our numerical study suggests that this reduced frequency of capacity imbalance in the decen-

tralized setting is driven by a combination of forces. The lower component capacity levels arising in

this setting cause the probability of consuming all units of components A and C to be high, so there

is little risk-pooling benefit to be derived from capacity imbalance. Imbalance is further inhibited

by the shift in incentives that results from decentralization. In a centralized setting, the optimal

degree of capacity imbalance is determined by trading off the cost savings from reducing capacity

against some loss in expected sales. In a decentralized setting, supplier B faces a trade off of this

type and in some cases may wish to create capacity imbalance, whereas the assembler experiences

only the negative aspect of unbalanced capacities – the possible loss of sales of product 1, since

this product has the lower priority. One way that the assembler could achieve some cost savings

to compensate for this possible drop in sales would be to reduce the price paid to supplier A, and

thus that supplier’s capacity. This may prompt supplier B to further reduce its own capacity, thus

exacerbating the understocking and reducing the potential benefits from capacity imbalance. Of

course, this approach by the assembler also involves a trade off – the cost savings from reducing

supplier A’s price versus an additional potential reduction in sales of product 1 – and thus capacity

imbalance will still occur in some decentralized settings.

The numerical study also allows us to obtain insights into what factors tend to favor capacity

imbalance in the decentralized system. We first explore the impact of different attributes of the

demand distributions, and then the impact of the component cost parameters, on the occurence of

capacity imbalance.
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First, by comparing sets with σ1 = σ2 = 3 to those with σ1 = σ2 = 9, we find that capacity

imbalance is less likely when demand variability is low. In fact, we now show that, for demand

distributions with sufficiently low coefficients of variation, capacity imbalance does not occur under

decentralized decision making.

Proposition 4. Suppose that demand for product i is given by Di = δ + Xi, where (X1, X2) has

joint density function f(·, ·) and δ ≥ 0, i = 1, 2. Let w∗ and Q∗ be an optimal wholesale price vector

and the corresponding capacity equilibrium when δ = 0. Then the optimal prices with δ > 0 satisfy

w∗
A(δ) + 2w∗

B(δ) + w∗
C(δ) < w∗

A + 2w∗
B + w∗

C. In addition, there exists a δ such that for all δ > δ,

the optimal assembler wholesale prices result in balanced capacities in the decentralized system.

A comparison of results across different (µ1, µ2) pairs suggests that demand asymmetry can

also have an impact on capacity imbalance. In particular, we find that capacity imbalance is more

likely when mean demand for the higher margin product is larger (and thus mean demand for the

lower margin product is smaller).8 This behavior is somewhat surprising, since when taken to the

limit, demand asymmetry results in a system with just a single product, which automatically has

balanced capacities. One possible explanation for this impact of demand asymmetry is related

to the earlier discussion of why capacity imbalance is less common in decentralized systems. To

compensate for the loss in expected sales resulting from capacity imbalance, the assembler may

choose to reduce the price it pays to supplier A, thus reducing that supplier’s capacity level and

moving the system closer to balanced capacities. When mean demand for product 1 is low, supplier

A’s capacity may already be low, which would limit the assembler’s ability to pursue this approach.

Recall that the incidence of capacity imbalance is independent of the marginal demand distribu-

tions in the centralized system under some specific demand correlation assumptions (independence,

perfect positive, and negative correlation), and under any specific demand correlation for bivariate

Normal demands. Interestingly, using Theorem 3 one can show that for fixed wholesale prices

the same holds in the decentralized system. However, when the assembler is allowed to optimally

choose wholesale prices, the incidence of imbalance generally does depend on the marginal demand

distributions – i.e., that dependence is not due to decentralization, per se, but to the pricing deci-

sion that comes with decentralization. (For example, for independent demands, capacity imbalance

arises under the assembler’s optimal prices when cA = cC = 1, cB = 5, µ1 = 10, µ2 = 30 and
8Typically, this means that µ2 is larger and µ1 smaller. In a few cases, though, capacity imbalance is associated

with high values of µ1 and low values of µ2. However, in all such cases, the optimal wholesale prices result in flipped
production priorities as discussed in Section 5.2 – i.e., µ1 (µ2) is associated with the higher-margin (lower-margin)
product.
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σ1 = σ2 = 9, while it does not for the same cost values when µ1 = 25, µ2 = 15 and σ1 = σ2 = 9. In

the centralized system, capacity imbalance occurrs in both cases. For ρ = −0.5, and cA = cC = 1,

cB = 5, capacity imbalance arises under the assembler’s optimal wholesale prices when µ1 = 10,

µ2 = 30, σ1 = 3, and σ2 = 9, while it does not for µ1 = µ2 = 20 and σ1 = σ2 = 3. Again, in the cen-

tralized system, capacity imbalance occurrs in both cases.) To understand this finding, recall that

for wholesale prices leading to capacity imbalance, the effective demand experienced by supplier A

(assuming product 1 has lower priority) is truncated by the leftover supply of component B after

demand for product 2 is satisfied. This creates an incentive problem – the assembler must offer a

higher wholesale price to induce supplier A to add capacity. This truncation, and the associated

incentive problem, can be avoided if the assembler sets prices to yield balanced capacities. Since

the degree to which supplier A’s demand distribution is affected by the truncation (and thus the

magnitude of the incentive problem) generally depends on both marginal demand distributions, the

same is true of the assembler’s choice (through pricing) of balanced or unbalanced capacities.

The final demand distribution attribute we consider is the degree to which demands for the two

products are correlated. The results of the numerical study indicate that as demand correlation

increases, capacity imbalance occurs less frequently. More specifically, the set of parameters for

which capacity imbalance occurs is nested – i.e., if ρ1 < ρ2 and a set of parameters yields capacity

imbalance for a correlation of ρ2, then those parameters also yield capacity imbalance for ρ1. This

pattern is illustrated in Figure 4 for a specific numerical example (with cA = cC = 1, µ1 = 10,

µ2 = 30, and σ1 = σ2 = 9) and various values of cB.9 Notice that this relationship between

correlation and capacity imbalance in the decentralized system is consistent with the behavior

characterized in Corollary 1 for the centralized system, and the intuition here is the same.

We now investigate the impact of the component cost parameters on capacity imbalance, be-

ginning with the cost cB of component B. First, notice that the conditions in Corollary 1 can be

rewritten to show that, if capacity imbalance occurs in the centralized system, then it occurs for low

values of cB (i.e., cB < p2(1− cA/wA − cC/wC)) if demands are perfectly negatively correlated, for

intermediate values of cB (i.e., c2
B − (p2− cA − cC)cB + cAcC < 0) if demands are independent, and

for high values of cB (i.e., cB > p1cC/(p2 − p1)) if demands are perfectly positively correlated. Our

numerical study reveals the same pattern of behavior in the decentralized system – this is illustrated

in Figure 4. (Figure 4 also shows numerical results for intermediate correlations, illustrating how

the range of cB that leads to capacity imbalance shifts as ρ changes.) In addition, consistent with
9The capacity balance/imbalance regions characterized in Corollary 1(c) and Corollary 2(b) are valid for perfect

positive correlation with D2 = D1 + K for any K .
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Figure 4: Incidence of capacity imbalance: cB vs. correlation

Observation 1, the interval of cB values leading to capacity imbalance in the decentralized system

was always a subset of the corresponding interval for the centralized system.

One might expect that, when component B is expensive, capacity imbalance would always

be desirable, since choosing QB < QA + QC would yield high component B cost savings. Note,

however, that this does not hold for independent or negatively correlated demands. To see the

intuition behind this result, we consider the impact of different values of cB in a little more detail.

A higher cB does give an incentive to choose a lower value for QB (either directly, in the centralized

model, or via a higher value of wB in the decentralized model), which corresponds to a lower fractile

of the distribution of D1 + D2. Due to the complementarity among the components, this in turn

leads to lower values of QA and QC , as those capacities adjust to lower fractiles of the marginal

demand distributions that are appropriate given the new QB (and also possibly adjusted values of

w chosen by the assembler). The sizes of the changes in the capacity values determine whether

these shifts move the system toward balanced capacities (if QA + QC decreases faster than QB) or

unbalanced capacities (if the reverse). When product demands are highly negatively correlated, a

small decrease in QB corresponds to a large decrease in the associated fractile of the distribution of

D1 +D2. However, making the associated adjustments in the fractiles of the marginal distributions

tends to require relatively large decreases in QA and QC . As a result, as cB becomes large, it tends

to move the system toward balanced capacities. When product demands are highly positively

correlated, the decreases in QA and QC required to achieve any particular shifts in the fractiles of

the marginal distributions are clearly the same as for the case of negative correlation (or any other
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correlation). However, a given decrease in the fractile of the D1 + D2 distribution tends to require

a relatively larger decrease in QB compared with the case of negative correlation. Thus as cB

becomes large, the resulting capacity shifts tend to move the system toward unbalanced capacities.

The case of independent demands falls in between, behaving more like the positive correlation case

when cB is low, and more like the negative correlation case when cB is high – apparently the nature

of cB’s effect in this case depends on which tail of the distribution the appropriate fractile falls into.

For the dedicated component costs, comparing the scenarios with cA = cC = 1 to those with

cA = cC = 5, we consistently find that higher values of cA and cC are associated with less frequent

occurrence of capacity imbalance (across all three correlations considered). These higher parameter

values usually lead to lower capacities for suppliers A and C so, similar to the understocking argu-

ment, there is little benefit from capacity imbalance. Figure 5 provides a more detailed illustration

of the impact of cA and cC on capacity balance for a specific example with independent demands

(p1 = 14, p2 = 16, cB = 5, µ1 = 10, µ2 = 30 and σ1 = σ2 = 9). Once again, consistent with

Observation 1, the capacity imbalance region is smaller for the decentralized system.

Figure 5: Impact of cost of dedicated components on capacity imbalance

While the preceding discussion has focused on the presence or absence of capacity imbalance,

we now explore the degree of capacity imbalance when it does occur in either the decentralized or

the centralized systems. To that end, we utilize the capacity imbalance factor

γ =
QA + QC − QB

QB

(introduced in Van Mieghem 2003) as a measure of the degree of capacity imbalance. In particular,

γ = 0 corresponds to the case where the capacities are balanced. Consistent with the earlier
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discussion of the impact of demand correlation on the incidence of capacity imbalance, we find

that the capacity imbalance factor is decreasing in demand correlation. Our numerical study

suggests that the capacity imbalance factor can be higher in the decentralized system than in the

centralized system, even though for many values of the parameter cB the imbalance factor is zero

in the decentralized system and positive in the centralized system. That is, capacity imbalance

is less common in the decentralized system, but when it occurs, the component capacities in the

decentralized system may be relatively more unbalanced than in the integrated system. This is

illustrated in Figure 6 below, which corresponds to independent demands, cA = cC = 1, µ1 = 10,

µ2 = 30 and σ1 = σ2 = 9. (We also graph the optimal wholesale prices that arise in the decentralized

system.) Note, for example, that for cB = 3, the imbalance factor in the decentralized system is

24.3%, while in the centralized system it is 22.0%.10 To understand why the capacity imbalance

factor can be higher in the decentralized system, recall that decentralization results in the costs

and benefits of capacity imbalance being split between the assembler and supplier B. While the

assembler does not receive any of the benefits, supplier B experiences the full benefits (reduced

capacity costs) and only part of the costs (reduced revenues), since that supplier earns only part of

the profit margin on products sold. As a result, supplier B has a greater preference for imbalance

than a centralized decision maker. So while the assembler generally wants to set prices to avoid

capacity imbalance, supplier B’s preference for imbalance may be so strong in some cases that

distorting prices enough to avoid it would not be optimal for the assembler, and in those cases the

degree of imbalance may be greater than in the centralized system.

5.4 Choice of Flexibility

The previous section assumed the presence of a common component and focused on whether or not

the decentralized system made use of it through capacity imbalance. This section asks a slightly

different question: Does the flexibility represented by the very existence of a common component

(vs. two dedicated components) always make the assembler in the decentralized system better off

(or at least not worse off)? Just as we have assumed that the assembler is the leader (price setter)

in the decentralized setting, we examine this question from the assembler’s perspective, since the

examples that motivated this work involve large, powerful assemblers who would be able to dictate

and enforce the type of components they are being supplied.

To explore this question, consider a variation of the decentralized ATO system in which the two
10The capacity imbalance factor in the decentralized system is not continuous since the optimal assembler wholesale

prices jump from (to) the capacity-balance region (8) to (from) the capacity-imbalance region (9), identified in
Proposition 3. (See Figure 3b.)
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Figure 6: Degree of capacity imbalance / optimal decentralized wholesale prices

products use only dedicated components. That is, product 1 (product 2) is obtained by assembling

a unit of component A (component C) and a unit of component B1 (component B2). We denote

by QBi the capacity of component Bi for product i, and let cBi be the unit capacity cost for

production of component i, i = 1, 2. In some cases, components that only need to work in a single

finished product may be less costly than a common component that must work in both, resulting in

cBi < cB, i = 1, 2, while in other cases there may be no cost advantage, so that cBi = cB, i = 1, 2 –

we allow either possibility. In the decentralized system, the two dedicated components are sourced

from the same supplier B at (possibly different) wholesale prices wBi, i = 1, 2.11

The system with dedicated components decomposes into two single-product assembly systems.

Results regarding the centralized solution, and the equilibrium capacity levels and optimal assembler

wholesale prices in the decentralized system are already known. The following corollary, which

follows from Propositions 3 and 4 in Gerchak and Wang (2004), summarizes these results.

Corollary 3. (i) In the centralized system, the optimal capacity levels are given by Q0
A = Q0

B1 =

F̄−1
1 ((cA + cB1)/p1) and Q0

C = Q0
B2 = F̄−1

2 ((cB2 + cC)/p2).

(ii) In the decentralized system, for any given vector of wholesale prices w = (wA, wB1, wB2, wC),

the Pareto optimal capacity equilibrium is Q∗
A = Q∗

B1 = min
{
F̄−1

1 (cA/wA) , F̄−1
1 (cB1/wB1)

}
for

product 1, and Q∗
C = Q∗

B2 = min
{
F̄−1

2 (cB2/wB2) , F̄−1
2 (cC/wC)

}
for product 2. Furthermore, it is

optimal for the assembler to set wholesale prices so that cA/wA = cB1/wB1 and cB2/wB2 = cC/wC.
11The findings in this section continue to hold if the assembler is restricted to offering the same wholesale price for

components B1 and B2, or if the assembler purchases components B1 and B2 from different suppliers.
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If the marginal demand distributions have increasing failure rates, the assembler’s profit function

is unimodal in wA and wC .

Consider first the centralized system. If cB1 = cB2 = cB, then a common component is always

(weakly) preferred, but if min(cB1, cB2) < cB, then dedicated components may be preferred. Also,

for values of cB that lead to capacity imbalance in our original system, there is a unique threshold

cost value strictly lower than cB such that the system with a common component (dedicated

components) is preferred if cB1 = cB2 is higher (lower) than that threshold value. (To see this, note

that if cB1 = cB2 = 0, then the system with dedicated components is clearly preferred, while the

system with a common component is preferred when cB1 = cB2 = cB. In addition, the centralized

optimal profit in the system with dedicated components is decreasing in their costs.) This threshold

arises from trading off the cost savings of using dedicated components with the savings associated

with capacity imbalance.

We next investigate how a decentralized system with a common component compares to one

with two dedicated components in terms of profitability for the assembler. Interestingly, as we

show next, if in the system with a common component capacities are balanced, then the assembler

is always better off having two dedicated components for the two products.

Proposition 5. Let cB1, cB2 ≤ cB. If optimal wholesale prices w∗ in the system with a common

component lead to an equilibrium with balanced capacities (i.e., Q∗
B = Q∗

A+Q∗
C), then the assembler

can improve its profit by employing dedicated components B1 and B2 for each of the finished

products (as opposed to a common component B). That is, in the system with dedicated components,

the assembler can induce the same equilibrium capacity levels at lower wholesale prices.

It is worth highlighting that the above result holds even when there is no unit cost advantage

from using dedicated components B1 and B2, i.e., when cB1 = cB2 = cB. (In that case, the

assembler is strictly better off with dedicated components for any ρ < 1, and is indifferent in

the special case of ρ = 1.) In other words, it establishes conditions under which the assembler

would prefer not to have the flexibility of a common component, even when there is no direct cost

advantage to that choice. Note that this contrasts with behavior in a system with a centralized

decision maker, where a common component is always (weakly) preferred when dedicated and

common components have equal costs. One possible explanation for this result is related to an

earlier observation related to production priorities. When a common component is used, recall that

the effective demand experienced by supplier A (assuming product 1 has lower priority) is truncated

by the leftover supply of component B after demand for product 2 is satisfied. This reduces supplier
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A’s incentive to install capacity. When dedicated components are used, this truncation does not

occur, so the effective demand supplier A experiences is stochastically larger. In other words, using

dedicated components helps the assembler address an incentive problem without using prices.

Recall that, in our numerical study, balanced capacities arise (in the common component model)

as the equilibrium outcome in all of the cases where balanced capacities are optimal for the cen-

tralized system, and in a large majority of the cases where capacity imbalance is optimal for the

centralized system. In light of these results, Proposition 5 appears to apply in most scenarios. Our

numerical study indicates that, for the remaining scenarios – i.e., those where capacity imbalance

arises in the decentralized system with a common component – dedicated components may still be

preferred by the assembler in some cases even without lower costs for the dedicated components,

while in other cases a cost discount must be present for dedicated components to be preferred. To

explore this issue further, we expanded the numerical study by considering two additional sets of

experiments. In both, p1 = 14, p2 = 16, cA = cC = 0.1, µ1 = 10, and µ2 = 30 (we chose these

values to maximize the occurrence and degree of capacity imbalance). In the first set, cB = 4, and

we systematically increase σ1 = σ2 from 2 to 15. In the second set, σ1 = σ2 = 6, while cB varies

from 0.5 to 12. We ran these experiments for independent demands, and perfect negative and

positive correlations. For each instance, we calculated the assembler’s profit in the system with a

common component and its profit in the system with two dedicated components for multiple values

of cB1 = cB2 ≤ cB. In all cases, we computed the threshold cost value such that if cB1 = cB2

falls below the threshold, the assembler prefers the system with two dedicated components. In

some cases, the threshold equals cB implying that the assembler prefers the system with dedicated

components even if producing the common component is no more expensive. When the threshold

is lower than cB, the assembler needs a certain amount of cost savings to shift its preference from

the system with a common component to that with two dedicated components. Consistent with

the observations regarding the occurrence of capacity imbalance, in both sets of experiments the

percentage cost savings represented by the threshold values are lower for independent demands than

for perfect negative correlation, and in fact, for perfect positive correlation all thresholds equal cB.

Figure 7 below exhibits these percentage cost savings for both sets of experiments, for the cases of

independent and perfectly negatively correlated demands.

Note from Figure 7 that the threshold equals cB (leading to 0% necessary cost savings) for very

high and very low values of cB in the case of independent demands, and for very high values of cB

in the case of perfect negative correlation. These patterns are similar to the relationship between

cB and the incidence of capacity imbalance under independent and perfectly negatively correlated
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Figure 7: Cost reduction yielding preference for dedicated components

demands. Specifically, in those cases where capacity imbalance is less likely, the system with

dedicated components is more profitable to the assembler even without a component cost advantage.

On the other hand, when capacity imbalance is more likely, the component cost advantage needs

to be larger to outperform the benefits of a system with a common component. A similar pattern

arises as σ1 = σ2 changes – i.e., scenarios with low demand variability, where capacity imbalance

is less likely, require smaller discounts for dedicated components to be preferred.

Finally, for the same two sets of experiments and independent demands, we computed the

thresholds corresponding to the centralized system. These thresholds always resulted in higher

percentage cost savings than those in the decentralized system. This makes sense given that

when the capacity levels are unbalanced, the percentage cost savings represented by the threshold

values are always positive in the centralized system, whereas they are zero in most cases under

decentralized control.

6 Conclusions

In this paper we explored the impact of decentralization on the behavior of a multi-component,

multi-product assemble-to-order system by analyzing and comparing centralized and decentralized

versions of the system. Despite the inherent complexity of the decentralized system, we showed

that it is reasonably well behaved. Specifically, for any wholesale prices set by the assembler there

exists a unique Pareto-optimal equilibrium in the suppliers’ capacity game. Also, the assembler’s
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optimal wholesale prices lie in one of two regions, and these regions result in different behaviors

in the subsequent capacity game – one region leads to capacity imbalance, while the other does

not. By comparing behavior in the decentralized system to that of the centralized system, we

obtained several insights regarding the impact of decentralization on the ATO system. Similar to

other decentralized supply chain settings studied previously, we found that decentralization leads

to understocking in terms of component capacities. In addition to this, however, we identified new

types of inefficiencies that are more directly related to the multi-component, multi-product setting

studied here. First, we showed that decentralization can lead to one of the products being dropped,

thus reducing the breadth of product offerings relative to the centralized system. We also found that

capacity imbalance occurs less frequently in the decentralized system. In the decentralized system

the presence of capacity imbalance depends on the marginal distributions of end-product demands,

while in the centralized system this is not the case. In particular, our results suggested that low

demand variance makes capacity imbalance less likely, while high demand for the higher-margin

product (relative to the other product) makes capacity imbalance more likely. In addition, we

demonstrated that in some situations the wholesale prices in the decentralized system can alter the

assembler’s profit margins so that the priority for allocating the shared component between products

is reversed from what it would be in the centralized system. Finally, by comparing the decentralized

system to one where the common component was replaced by two dedicated components, we found

that the apparent flexibility provided by a common component may actually hurt performance for

the assembler in a decentralized system, even when dedicated and common components have equal

costs, whereas in that case a common component can only improve performance in a centralized

system. Our results regarding the impact of decentralization on the likelihood of capacity imbalance

and the attractiveness of component commonality provide a cautionary note for firms considering

outsourcing management of their component supplies – doing so may reduce the extent to which the

supply chain takes advantage of these operational hedging approaches for managing uncertainty.

The system studied here is a simple one, with only two finished products and three components.

However, the results appear to extend to more complex systems in some special cases. For example,

the analysis can be extended to the case in which each product has multiple dedicated components.

In addition, the basic analysis here would appear to extend to systems with more than two products

that share one common component. Finally, if the assembler must choose a capacity level for

assembly operations, then we would expect that capacity to be equal to the common component

capacity in equilibrium, resulting in overall (weakly) lower capacities. While realistic systems are

usually more complex, the results for this simple model provide valuable insights into the forces at
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work when assemble-to-order systems are combined with decentralized decision making.
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Appendix A—Restricted Pricing Policy

In order to obtain some additional insights into the assembler’s pricing decision and its impact on

capacity imbalance, we explore a restricted version of the model. Specifically, we consider a setting

where the assembler is restricted to choosing wholesale prices that are equal to a constant mark-up

over the suppliers’ costs. Our choice of this particular restriction was motivated by two factors.

First, this type of pricing structure is intuitively appealing and would be easy to implement in

practice. Second, constant mark-up pricing is actually optimal in a single-product decentralized

assembly system, where the assembler selects wholesale prices so that the cost/wholesale-price

fractiles are equal across all suppliers to ensure balanced capacity/quantity decisions (see Gerchak

and Wang 2004).

Consider wholesale prices of the form wi = (1 + m)ci, i = A, B, C, for any 0 ≤ m ≤

min
{

p1
cA+cB

, p2
cB+cC

}
− 1 (where the upper bound preserves profitability of both products for the

assembler). Note that under this restricted pricing policy, Z2 = 0. Following the regions defined in

Theorem 3, we can identify the Pareto optimal equilibrium for each value of m. At low mark-up

levels, i.e., when 0 ≤ m ≤ 1, only one product is produced. For high mark-up levels, i.e., when

1 < m ≤ min
{

p1
cA+cB

, p2
cB+cC

}
− 1, we have that Z1 > 0. Then, all equilibrium capacities are

positive and the wholesale prices can only lie in regions (iii) or (iv)(a) in Theorem 3. (Note that

the interval is empty unless p1 > 2(cA + cB) and p2 > 2(cB + cC).) The following result provides

sufficient conditions based on the system parameters that indicate which outcome – production of

just one product, or capacity imbalance – will result from the assembler’s optimal mark-up level.

Proposition 6 Assume that the marginal distributions F1 and F2 have increasing failure rates. If

either p1 ≤ 2(cA+cB) or p2 ≤ 2(cB+cC), then only one product is produced. If p1 > 2(cA+cB) and

p2 > 2(cB +cC), then there exist constants M1 ≥ 1 and M2 > 1, independent of all cost and revenue

parameters but dependent on the distributions of demand for products 1 and 2, respectively, such that

there is capacity imbalance under the assembler’s optimal choice of mark-up if p1 > (M1+1)(cA+cB)

and p2 > (M2 + 1)(cB + cC).12

Proposition 6 provides a partial characterization of the market price and component cost pa-

rameters that lead to capacity imbalance under decentralized control with mark-up pricing. This

result has some interesting implications. First, notice that, in contrast with single-product assem-

bly systems, the optimal wholesale prices in the multi-product setting are not, in general, of the
12Capacity imbalance arises with the exception noted in Footnote 6 for highly positively correlated demands.
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constant mark-up form. In particular, mark-up pricing cannot, in general, yield equilibrium sup-

plier capacities that are positive for all suppliers and also balanced, which can arise under optimal

pricing. Also, note that the sufficient condition for capacity imbalance depends not only on the

market prices and component costs, but also on the demand distributions. For the special case of

Normal demands, one can show that M1 and M2 are decreasing in the variance of demand for prod-

ucts 1 and 2, respectively. In other words, more variable demand makes capacity imbalance more

likely. Comparing the sufficient conditions in Proposition 6 with equation (3) suggests that the

set of parameters leading to capacity imbalance in the decentralized system under mark-up pricing

lies within the corresponding set of parameters for the centralized system, except for some extreme

cases. This is due to the fact that, for moderate demand coefficients of variation (which lead to high

values of M1 and/or M2), the conditions p1 > (M1+1)(cA+cB) and p2 > (M2+1)(cB +cC) require

one or both products to have very high profit margins. For the case of independent demands, note

that in order for the condition in Corollary 1(b) and the condition p2 > (M2 + 1)(cB + cC) to

be both satisfied requires cB < cA/M2, i.e., the common component must also represent a small

fraction of total component cost. Although the pricing framework addressed in Proposition 6 is

not optimal, we observe similar behaviors in our numerical exploration of optimal pricing in the

Section 5.
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Appendix B—Proofs

Proof of Theorem 1. We first present a characterization of Q0. We follow the analysis on pages

23-25 in Harrison and Van Mieghem (1999) by defining the sets Ωi(Q), i = 0, ..., 4, adapted to our

setting by defining γ = 1, x = A, y = C and z = B, and assigning product 2 the higher priority

(which implies that Ωi(Q) in their setting becomes Ω5−i(Q) in our setting, i = 2, 3). Then, Q0

satisfies ⎛
⎝ 0

0
p2

⎞
⎠ P (Ω0

1) +

⎛
⎝ 0

p1

p2 − p1

⎞
⎠P (Ω0

2) +

⎛
⎝ 0

p1

0

⎞
⎠P (Ω0

3) +

⎛
⎝p1

0
0

⎞
⎠ P (Ω0

4) = c − v + η̃, (B.1)

plus the complementary slackness conditions vT Q0 = 0, η1(Q
0
A + Q0

C − Q0
B) = 0, η2(Q

0
B − Q0

C) =

0, η3(Q
0
B −Q0

A) = 0, for some vectors v = (vA, vB, vC)T ∈ �3
≥0 and η̃

def
= (η3−η1, η1−η2 −η3, η2 −

η1)
T with η1, η2, η3 ≥ 0, and where Ω0

i = Ωi(Q0) (see equation 7 on page 25 in Harrison and Van

Mieghem 1999). The equations in (B.1) are:

P (D1 ≥ Q0
A, D2 ≤ Q0

B − Q0
A) =

cA − vA − η1 + η3

p1
, (B.2)

P (D1 ≥ Q0
B − Q0

C , D2 ≥ Q0
C)+

P (Q0
B − Q0

A ≤ D2 ≤ Q0
C , D1 + D2 ≥ Q0

B) =
cB − vB + η1 − η2 − η3

p1
, (B.3)

F̄2(Q0
C) − p1

p2
P (D1 ≥ Q0

B − Q0
C , D2 ≥ Q0

C) =
cC − vC − η1 + η2

p2
. (B.4)

(i) Clearly, Q = 0 can never be optimal since the central planner can always choose a capacity

vector Q = (ε, ε, 0) or (0, ε, ε), with ε small enough, and earn a positive profit. Similarly, QB = 0 or

QA = QC = 0 are never optimal. Also, if only two capacity levels are positive, clearly it would be

optimal to set them equal. First assume Q0 = (0, Q, Q) with Q > 0. In this case, vB = vC = η3 = 0,

so (B.2)-(B.4) become:

F2(Q) =
cA − vA − η1

p1
, (B.5)

F̄2(Q) =
cB + η1 − η2

p1
, (B.6)

F̄2(Q)
(

1 − p1

p2

)
=

cC − η1 + η2

p2
.

Substituting (B.5) into (B.6) yields p1− cA − cB = −vA −η2 ≤ 0 which contradicts our assumption

that p1 > cA + cB. Next, assume Q0 = (Q, Q, 0) with Q > 0. In this case, vA = vB = η2 = 0 and
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(B.2)-(B.4) become:

0 =
cA − η1 + η3

p1
,

F̄1(Q) =
cB + η1 − η3

p1
, (B.7)

1 − p1

p2
F̄1(Q) =

cC − vC − η1

p2
. (B.8)

Substituting (B.7) into (B.8) yields p2− cB − cC = −vC −η3 ≤ 0 which contradicts our assumption

that p2 > cB + cC . Thus, the centralized system will have Q0 > 0.

(ii) Recall that Q0
A ≤ Q0

B , and suppose that Q0
A = Q0

B. Because Q0
C > 0, we have that η1 = 0,

and v = 0 from (i). Then, from (B.2) we would have that 0 = cA + η3. However, cA = −η3 ≤ 0

contradicts the fact that cA > 0. So for the optimal Q0, Q0
A < Q0

B.

(iii) Assume that Q0
B = Q0

A +Q0
C . Then, vA = vB = vC = η2 = η3 = 0, and (B.2)-(B.4) become

P (D1 ≥ Q0
A, D2 ≤ Q0

C) =
cA − η1

p1
, (B.9)

P (D1 ≥ Q0
A, D2 ≥ Q0

C) =
cB + η1

p1
, (B.10)

F̄2(Q0
C) − p1

p2
P (D1 ≥ Q0

A, D2 ≥ Q0
C) =

cC − η1

p2
. (B.11)

Solving (B.9)-(B.11) yields F̄1(Q0
A) = cA+cB

p1
and F̄2(Q0

C) = cB+cC
p2

. Because η1 ≥ 0, (B.10) implies

the that P (D1 ≥ Q0
A, D2 ≥ Q0

C) ≥ cB
p1

.

Conversely, assume now that P (D1 ≥ Q0
A, D2 ≥ Q0

C) ≥ cB/p1, but Q0
B < Q0

A + Q0
C . Then from

(B.3) and using the fact that vA = vB = vC = η1 = η3 = 0, we obtain the following inequality

P (Ω2) + P (Ω3) =
cB − η2

p1
, (B.12)

where P (Ω2) = P (D1 ≥ Q0
B−Q0

C , D2 ≥ Q0
C) and P (Ω3) = P (Q0

B−Q0
A ≤ D2 ≤ Q0

C , D1+D2 ≥ Q0
B)

(note that Q0
B < Q0

A + Q0
C implies that PD(Ω3) > 0). Since η2 ≥ 0 and Q0

B < Q0
A + Q0

C ,

P (Ω2) + P (Ω3) > P (Ω2) ≥ P (D1 ≥ Q0
A, D2 ≥ Q0

C) ≥ cB

p1
≥ cB − η2

p1
.

This contradicts (B.12). Thus, we must have Q0
B = Q0

A + Q0
C .

Proof of Proposition 1. For given Q−i and D, si(Q, D) = min{Qi, Q
0
i (Q−i, D)}, where

Q0
A(QB, QC , D) = min(D1, QB−min(QB, QC, D2)), Q0

B(QA, QC , D) = min(D1, QA)+min(D2, QC),

and Q0
C(QB, D) = min(D2, QB). Thus, Πi(Qi|Q−i, D) is piecewise linear and concave, since

Πi(Qi|Q−i, D) =

{
(wi − ci)Qi, for 0 ≤ Qi ≤ Q0

i (D, Q−i)
wiQ

0
i (D, Q−i) − ciQi, for Qi > Q0

i (D, Q−i)

= wi min
(
Qi, Q

0
i (D, Q−i)

)
− ciQi. (B.13)
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This implies that E [Πi(Qi|Q−i, D)] is also concave. The existence of a Nash equilibrium then

follows from Theorem 1.2 in Fudenberg and Tirole (1991).

Differentiability of the expected sales functions

The following result can be used to establish the differentiability of supplier i’s expected sales

with respect to that supplier’s capacity choice.

Lemma 1. Let Si(Q) = E [min(Qi, g(Q−i, D))], where Q ∈ �m
≥0, D is an n-dimensional non-

negative random variable with joint probability distribution P , and g : �m−1
≥0 × �n

≥0 → �≥0 is

continuous. Let Q−i be fixed. If P ({D : Qi = g(Q−i, D)}) = 0, then Si(Qi, Q−i) is differentiable

at Qi and
∂Si

∂Qi
= P ({D : Qi ≤ g(Q−i, D)}) .

Proof. The function min(Qi, g(Q−i, D)) is differentiable for all Qi �= g(Q−i, D). If

P ({D : Qi = g(Q−i, D)}) = 0, then min(Qi, g(Q−i, D)) is a.s. differentiable at Qi. Since the

derivative of min(Qi, g(Q−i, D)) with respect to Qi is bounded for Qi �= g(Q−i, D), then the result

follows from Theorem 1.2. in Glasserman (1994).

Proof of Theorem 2. (a) Supplier A’s Best-Response Function. Consider supplier A’s

profit function

EΠA(QA|QB, QC) = wAE [sA(Q, D)]− cAQA

= wAE [min (QA, QB − min(QB, QC , D2), D1)] − cAQA. (B.14)

From (B.14) it is clear that supplier A’s optimal capacity choice satisfies QA ≤ QB, since any higher

level would result in wasted capacity for component A. Now fix a pair (QB, QC), and assume that

QC ≤ QB. We first obtain the derivative of the expected profit function for supplier A. If QC ≤ QB,

then EΠA is differentiable for QA �= QB − QC , and

∂EΠA

∂QA
=

{
wAF̄1(QA)− cA, if QA < QB − QC

wAP (D1 ≥ QA, D2 ≤ QB − QA) − cA, if QA > QB − QC

(B.15)

Indeed, for QA < QB − QC , supplier A’s profit function is given by EΠA = wAE (min(QA, D1)) −

cAQA, so the first half of (B.14) follows immediately. For QA > QB − QC , we have from (B.14)

that
∂EΠA

∂QA
= wA

∂E[sA(Q, D)]
∂QA

− cA.
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Note that E[sA(Q, D)] = E [min(QA, g(QB, QC , D))], where

g(QB, QC , D) = min (QB − min(QB, QC , D2), D1) = min (QB − min(QC , D2), D1) ,

since QC ≤ QB. The condition of Lemma 1 is verified for QA ≤ QB and QA > QB − QC , since

P ({D : QA = g(QB, QC, D)}) = P ({D : QA = D1, D2 ≤ QB − QA})+

P ({D : QA = QB − D2, D1 ≥ QA}) = 0. Then,

∂E[sA(Q, D)]
∂QA

= P (QA ≤ min (QB − min(QC , D2), D1))

= P (QA ≤ QB − min(QC , D2), D1 ≥ QA)

= P (QA ≤ QB − D2, D2 ≤ QC , D1 ≥ QA)

= P (D2 ≤ QB − QA, D1 ≥ QA) ,

where the last two equalities follow since QA > QB − QC .

Note from (B.15) that ∂EΠA/∂QA is strictly decreasing in QA, with a downward jump at

QA = QB − QC . Thus, if we can find a capacity QA that satisfies ∂EΠA/∂QA = 0, then that is

supplier A’s best response. However, such a point may not always exist.

Let rA(QB, QC) be supplier A’s best-response function. Recall that Q̂1
A solves wAF̄1(QA)−cA =

0, so if Q̂1
A < QB − QC (or, equivalently, cA

wA
> F̄1(QB − QC)), then rA(QB, QC) = Q̂1

A. Suppose

instead that Q̂1
A ≥ QB − QC . Then, ∂EΠA/∂QA > 0 for all QA < QB − QC , so rA(QB, QC) ≥

QB −QC . Now If rAB(QB) exists and rAB(QB) > QB −QC (or, equivalently, cA
wA

< P (D1 ≥ QB −

QC , D2 ≤ QC)), then rA(QB, QC) = rAB(QB). Otherwise, ∂EΠA/∂QA < 0 for QA > QB −QC , in

which case rA(QB, QC) = QB − QC .

(b) Supplier B’s Best-Response Function. Consider now supplier B’s profit function,

EΠB(QB|QA, QC) = wBE [sB(Q, D)]− cBQB

= wBE [min(QB, min(D1, QA) + min(D2, QC))]− cBQB. (B.16)

From (B.16) it is clear that supplier B’s optimal capacity choice satisfies QB ≤ QA + QC , since

any higher level would result in wasted capacity for component B. To compute the derivative

of supplier B’s expected sales function, note that E [sB(QB, Q−B, D)] = E [min(QB, g(Q−B, D))],

where g(Q−B, D) = min(D1, QA) + min(D2, QC). The condition of Lemma 1 is verified for QB <

QA + QC . If ∂E[sB(Q,D)]
∂QB

≥ cB
wB

for all QB < QA + QC , then supplier B’s optimal capacity choice

is QB = QA + QC . Otherwise, the optimal capacity choice satisfies QB < QA + QC , and is

characterized by

∂E [sB(Q, D)]
∂QB

= P ({D : QB ≤ min(D1, QA) + min(D2, QC)}) =
cB

wB
. (B.17)
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The set {D : QB ≤ min(D1, QA)+min(D2, QC)} corresponds to region I in Figure 6. Then, (B.17)

can be written as in (4), where the first two terms correspond to the probability that the demand

vector D falls in the union of regions I, II, and III in the figure, while the third and fourth terms

correspond to the probability that D falls in regions II and III, respectively.

Figure 8: Supplier B’s First Order Condition

We can now characterize supplier B’s best-response function. Fix the values of QA and QC .

It is easy to verify that the left-hand side of (4) is decreasing in QB, and that as QB approaches

QA + QC , it approaches P (D1 ≥ QA, D2 ≥ QC). As a result, supplier B’s optimal capacity choice

is QB = QA + QC if and only if P (D1 ≥ QA, D2 ≥ QC) ≥ cB
wB

. For values of QA and QC with

P (D1 ≥ QA, D2 ≥ QC) < cB
wB

, supplier B’s best response is given by the solution to (4).

Note that, leaving QA fixed,

0 <
∂rBAC

∂QC
=

∫ ∞
QC

f(QB − QC , x)dx∫ ∞
QC

f(QB − QC , x)dx +
∫ ∞
QA

f(x, QB − QA)dx +
∫ QA

QB−QC
f(x, QB − x)dx

< 1.

Similarly, when QC is fixed, we have that

0 <
∂rBAC

∂QA
=

∫ ∞
QA

f(x, QB − QA)dx∫ ∞
QC

f(QB − QC , x)dx +
∫ ∞
QA

f(x, QB − QA)dx +
∫ QA

QB−QC
f(x, QB − x)dx

< 1.

(c) Supplier C’s Best-Response Function. Consider supplier C’s profit function,

EΠC(QC |QA, QB) = wCE [sC(Q, D)] − cCQC = wCE [min(QC , QB, D2)] − cCQC . If QB ≥ Q̂2
C ,

clearly supplier C’s optimal capacity is Q̂2
C . If instead QB < Q̂2

C , then EΠC is increasing on QC <

QB and decreasing (linearly with a slope of −cC) on QC > QB , so the optimal capacity is QC = QB.

As a result, supplier C’s best-response function is rC(QA, QB) = rC(QB) = min(Q̂2
C , QB).
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Proof of Proposition 2. First, if cA
wA

+ cC
wC

≥ 1, we have that Q̄B ≥ Q̂2
C . For QB ≤ Q̂2

C ,

rC(QB) = QB, which implies that P (D1 ≥ QB − rC(QB), D2 ≤ rC(QB)) = F2(QB) ≤ cA
wA

since

QB ≤ Q̄B , and cA
wA

< 1 = F̄1(QB − rC(QB)). As a result, for any QB ≤ Q̂2
C , rA(QB, rC(QB)) =

QB − rC(QB) = 0. For Q̂2
C < QB ≤ Q̂1

A + Q̂2
C , rC(QB) = Q̂2

C which implies that P (D1 ≥ QB −

rC(QB), D2 ≤ rC(QB)) < 1 − cC
wC

≤ cA
wA

, and F̄1(QB − rC(QB)) = F̄1(QB − Q̂2
C) ≥ F̄1(Q̂1

A) = cA
wA

.

As a result, rA(QB, rC(QB)) = QB − Q̂2
C . For QB > Q̂1

A + Q̂2
C , F̄1(QB − Q̂2

C) < F̄1(Q̂1
A) = cA/wA,

so rA(QB, rC(QB)) = Q̂1
A.

Next, if cA
wA

+ cC
wC

< 1, we have that Q̄B < Q̂2
C . Similar to above, we have that for QB < Q̄B,

rC(QB) = QB and rA(QB, rC(QB)) = QB − rC(QB) = 0. If Q̄B ≤ QB < Q̂2
C , then rC(QB) = QB

and cA
wA

≤ P (D1 ≥ QB − rC(QB), D2 ≤ rC(QB)) = F2(QB), so that rA(QB, rC(QB)) = rAB(QB).

If Q̂2
C ≤ QB < Q̂2

C + Z1, then rC(QB) = Q̂2
C and cA

wA
< P (D1 ≥ QB − Q̂2

C , D2 ≤ Q̂2
C), since

QB − Q̂2
C < Z1, so that rA(QB, rC(QB)) = rAB(QB). Finally, if Z1 + Q̂2

C ≤ QB ≤ Q̂1
A + Q̂2

C ,

then rC(QB) = Q̂2
C , cA

wA
≥ P (D1 ≥ QB − Q̂2

C , D2 ≤ Q̂2
C) and cA

wA
≤ F̄1(QB − Q̂2

C), and as a result

rA(QB, rC(QB)) = QB − Q̂2
C . Again, as above, rA(QB, rC(QB)) = Q̂1

A for QB > Q̂1
A + Q̂2

C .

Finally, note that

0 <
∂rAB(QB)

∂QB
=

∫ ∞
QA

f(x, QB − QA)dx∫ ∞
QA

f(x, QB − QA)dx +
∫ QB−QA

0 f(QA, x)dx
< 1, (B.18)

which implies that rAB(QB) > 0 for all QB > Q̄B . Also, rAB

(
Q̂2

C + Z1

)
= Z1. Then, rA(QB, rC(QB))

is non-decreasing in QB.

Proof of Theorem 3. We begin by considering the range 0 ≤ QB ≤ min(Q̄B, Q̂2
B, Q̂2

C).

In this case rC(QB) = QB and rA(QB, rC(QB)) = 0 (see (7) and Proposition 2). In addition,

since QB ≤ Q̂2
B, (6) implies that rB(0, QB) = 0 + QB = QB , so that any vector (0, QB, QB)

with QB in the specified range is a Nash equilibrium. Next we compare these equilibria based on

supplier profits. Clearly supplier A is indifferent since it earns zero profit in each case. Supplier

C’s profit is increasing in QB in this range since QB ≤ Q̂2
C , so increasing QB is analogous to

loosening an upper bound constraint in a newsvendor problem for supplier C. As a result, supplier

C prefers QB = min(Q̂2
C , Q̂2

B, Q̄B). Finally, supplier B’s profit under any such equilibrium is

EΠB = wBE[min(QB, D2)] − cBQB , which is concave and reaches its maximum at QB = Q̂2
B.

Thus supplier B also prefers QB = min(Q̂2
C , Q̂2

B, Q̄B), so (0, QB, QB) with QB = min(Q̂2
C , Q̂2

B, Q̄B)

is Pareto best among these equilibria.

For values of QB > Q̂1
A + Q̂2

C , we have that rC(QB) = Q̂2
C and rA(QB, rC(QB)) = Q̂1

A (see

Proposition 2), so that there cannot be an equilibrium in that range since rB(QA, QC) ≤ QA +QC .
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Thus, we only need to analyze the range min(Q̄B, Q̂2
B, Q̂2

C) < QB ≤ Q̂1
A + Q̂2

C , and we do so by

considering four different cases with respect to the fractiles 1 − cA
wA

, cB
wB

and cC
wC

.

(i) First suppose cC
wC

< 1− cA
wA

≤ cB
wB

, which is equivalent to Q̂2
B ≤ Q̄B < Q̂2

C . For Q̂2
B < QB < Q̄B,

rC(QB) = QB and rA(QB, rC(QB)) = 0, but rB(0, QB) = QB if and only if F̄2(QB) ≥ cB
wB

if and

only if QB ≤ Q̂2
B. Therefore, there is no equilibrium with Q̂2

B < QB ≤ Q̄B. For Q̄B ≤ QB ≤ Q̂2
C ,

rC(QB) = QB and rA(QB, rC(QB)) = rAB(QB) > 0. Then, in order for such a QB to be part

of an equilibrium, we must have QB = rB(rAB(QB), QB) = rBAC(rAB(QB), QB), where the last

equality follows since QB > Q̂2
B implies P (D1 ≥ rAB(QB), D2 ≥ QB) ≤ F̄2(QB) < F̄2(Q̂2

B) = cB
wB

.

Then, from (4), we would need 1 − P (D1 ≥ rAB(QB), D2 ≤ QB − rAB(QB)) − cB
wB

> 0. The

latter cannot hold since 1 − cA
wA

≤ cB
wB

, and by the definition of rAB(QB), P (D1 ≥ rAB(QB), D2 ≤

QB−rAB(QB)) = cA
wA

. Thus, there is no equilibrium in this range either. For Q̂2
C < QB < Q̂2

C +Z1,

rC(QB) = Q̂2
C , but otherwise the preceding argument applies here as well, so there is no equilibrium

in this range. For Q̂2
C + Z1 ≤ QB ≤ Q̂1

A + Q̂2
C , rC(QB) = Q̂2

C and rA(QB, rC(QB)) = QB − Q̂2
C ,

so any equilibrium must be of the form (QB − Q̂2
C , QB, Q̂2

C) and from Proposition 3 we must have

P (D1 ≥ QB − Q̂2
C , D2 ≥ Q̂2

C) ≥ cB
wB

. But P (D1 ≥ QB − Q̂2
C , D2 ≥ Q̂2

C) < F̄2(Q̂2
C) < F̄2(Q̂2

B) = cB
wB

,

where the last inequality follows since Q̂2
B < Q̂2

C .

Suppose instead 1− cA
wA

≤ cC
wC

≤ cB
wB

, which is equivalent to Q̂2
B ≤ Q̂2

C ≤ Q̄B . For Q̂2
B < QB ≤ Q̂2

C ,

rC(QB) = QB and rA(QB, rC(QB)) = 0. At the same time, rB(0, QB) = QB if and only if

F̄2(QB) ≥ cB
wB

, but this cannot hold since QB > Q̂2
B, so there is no equilibrium in this range.

For Q̂2
C < QB ≤ Q̂1

A + Q̂2
C , rC(QB) = Q̂2

C and rA(QB, rC(QB)) = QB − Q̂2
C , but again P (D1 ≥

QB − Q̂2
C , D2 ≥ Q̂2

C) < cB
wB

, which implies that there is no equilibrium in this range.

Thus, for max
{

cC
wC

, 1− cA
wA

}
≤ cB

wB
, (0, Q̂2

B, Q̂2
B) is the Pareto-optimal equilibrium.

(ii) Suppose now that 1 − cA
wA

≤ cB
wB

< cC
wC

, which is equivalent to Q̂2
C < Q̂2

B ≤ Q̄B. For

Q̂2
C < QB ≤ Q̂2

C + min
(
Z2, Q̂

1
A

)
, (B.19)

rC(QB) = Q̂2
C and rA(QB, rC(QB)) = QB − Q̂2

C . At the same time, rB(QB − Q̂2
C , Q̂2

C) = QB if and

only if cB
wB

≤ P (D1 ≥ QB−Q̂2
C , D2 ≥ Q̂2

C) which is equivalent to QB ≤ Q̂2
C +Z2. As a result, for all

QB in the range (B.19) the vectors (QB−Q̂2
C , QB, Q̂2

C) are equilibria. If Z2 < Q̂1
A, then we also need

to consider the range Q̂2
C+Z2 < QB ≤ Q̂1

A+Q̂2
C . However, there is no equilibrium in this range since

rC(QB) = Q̂2
C and rA(QB, Q̂2

C) = QB − Q̂2
C but rB(QB − Q̂2

C , Q̂2
C) = rBAC(QB − Q̂2

C , Q̂2
C) < QB

by Proposition 2 and the definition of rBAC . Then, we need to compare equilibria of the form
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(QB − Q̂2
C , QB, Q̂2

C) for QB in the range

Q̂2
C ≤ QB ≤ Q̂2

C + min
(
Z2, Q̂

1
A

)
. (B.20)

Supplier C is clearly indifferent. For supplier A, note that its profit for any equilibrium of this form

is EΠA = wAE[min(Q, D1)]− cAQ for Q = QB − Q̂2
C and QB in the range (B.20). Thus, 0 ≤ Q ≤

min
(
Z2, Q̂

1
A

)
, and since πA is concave and reaches its maximum at Q̂1

A, QB = Q̂2
C +min

(
Z2, Q̂

1
A

)
is preferred by supplier A. Similarly, supplier B’s profit in this range is EΠB = wBE[min(D1, QB−

Q̂2
C) + min(D2, Q̂

2
C)]− cBQB, which is concave and reaches its maximum at QB = Q̂2

C + Q̂1
B. Note

that Q̂1
B = F̄−1

1

(
cB
wB

)
≥ Z2, since P (D1 ≥ Q̂1

B, D2 ≥ Q̂2
C) ≤ F̄1(Q̂1

B) = cB
wB

. Then, supplier B

prefers the same equilibrium.

If cB
wB

< 1 − cA
wA

≤ cC
wC

, which is equivalent to Q̂2
C ≤ Q̄B < Q̂2

B, the analysis is exactly the same as

above.

Thus, for max
{

cB
wB

, 1− cA
wA

}
≤ cC

wC
,
(
min

(
Z2, Q̂

1
A

)
, min

(
Z2, Q̂

1
A

)
+ Q̂2

C , Q̂2
C

)
is the unique Pareto

optimal equilibrium.

(iii) Suppose that cC
wC

≤ cB
wB

< 1− cA
wA

, which is equivalent to Q̄B < Q̂2
B ≤ Q̂2

C . Note that for QB in

the range Q̄B < QB < Q̂2
C we have rA(QB, rC(QB))+rC(QB) = rAB(QB)+QB > QB. Similarly, for

QB in the range Q̂2
C ≤ QB < Q̂2

C +Z1 we have rA(QB, rC(QB))+ rC(QB) = rAB(QB)+ Q̂2
C > QB,

since rAB(QB) + Q̂2
C = QB when QB = Q̂2

C + Z1 and ∂rAB/∂QB < 1 for Q̄B < QB < Q̂2
C + Z1.

As a result, for QB in the range Q̄B < QB < Q̂2
C + Z1, there cannot be an equilibrium with

QB = QA + QC . So, any equilibrium in this range must have QB = rB(rA(QB), rC(QB)) =

rBAC(rA(QB), rC(QB)), or equivalently,

I(QB) = 1 − cA

wA
− cB

wB
. (B.21)

It is easy to verify that I(·) is strictly increasing for QB in this range. In addition,

I
(
Q̂2

B

)
≤

∫ rAB(Q̂2
B)

0

∫ Q̂2
B

0

f(x1, x2)dx1dx2 = 1 − cB

wB
−

∫ ∞

rAB(Q̂2
B)

∫ Q̂2
B

0

f(x1, x2)dx1dx2 <

1 − cB

wB
−

∫ ∞

rAB(Q̂2
B)

∫ Q̂2
B−rAB(Q̂2

B)

0
f(x1, x2)dx1dx2 = 1 − cA

wA
− cB

wB
,

and I
(
Q̂2

C + Z1

)
= F1(Z1) ≥ 1− cA

wA
− cB

wB
, since cA

wA
= P (D1 ≥ Z1, D2 ≤ Q̂2

C) = F̄1(Z1)−P (D1 ≥

Z1, D2 ≥ Q̂2
C) ≥ F̄1(Z1) − F̄2(Q̂2

C) ≥ F̄1(Z1) − F̄2(Q̂2
B) = F̄1(Z1) − cB

wB
, where the last inequality

follows from Q̂2
C ≥ Q̂2

B . So there is no solution to (B.21), and thus no equilibrium with Q̄B < QB ≤
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Q̂2
B. However, there exists a unique solution Q∗

B to (B.21) in the range Q̂2
B < QB ≤ Q̂2

C + Z1, and

this corresponds to the unique equilibrium

(rAB(Q∗
B), rBAC(rAB(Q∗

B), rC(Q∗
B)), rC(Q∗

B))

in that range. For Q̂2
C + Z1 < QB ≤ Q̂1

A + Q̂2
C the analysis is as in (i), and there is no equi-

librium in that range. Then, we need to compare (0, Q̄B, Q̄B) with (rAB(Q∗
B), rBAC(rAB(Q∗

B),

rC(Q∗
B)), rC(Q∗

B)). Supplier A is better off under the latter equilibrium, since it earns a positive

profit. Since QB ≥ QC in both cases, supplier C’s expected profit is EΠC = wCE[min(QC , D2)] −

cCQC , and is concave and maximized at Q̂2
C . Since Q̄B < Q̂2

B ≤ min(Q∗
B, Q̂2

C) = rC(Q∗
B) ≤

Q̂2
C , supplier C also prefers the latter equilibrium. For supplier B, its profit is increasing in

QA and QC . Then, since rC(Q∗
B) ≥ Q̄B, EΠB(0, Q̄B, Q̄B) ≤ EΠB(rAB(Q∗

B), Q̄B, rC(Q∗
B)) ≤

EΠB(rAB(Q∗
B), rBAC(rAB(Q∗

B), rC(Q∗
B)), rC(Q∗

B)), where the last inequality follows since

rBAC(rAB(Q∗
B), rC(Q∗

B)) is supplier B’s best response to the other suppliers capacities. Thus,

(rAB(Q∗
B), rBAC(rAB(Q∗

B), rC(Q∗
B)), rC(Q∗

B)) is the unique Pareto-optimal equilibrium in this re-

gion. If cB
wB

= cC
wC

and P (D1 ≥ Z1, D2 ≤ Q̂2
C) = P (D2 ≤ Q̂2

C), then I
(
Q̂2

C + Z1

)
= 1 − cA

wA
− cB

wB

and the Pareto optimal equilibrium is (Z1, Q̂
2
C + Z1, Q̂

2
C). Otherwise, the Pareto optimal capacity

equilibrium is unbalanced.

(iv) Finally, suppose that cB
wB

≤ cC
wC

< 1 − cA
wA

, which is equivalent to Q̄B < Q̂2
C ≤ Q̂2

B . We prove

parts (a) and (b) together by considering a sequence of ranges of QB between Q̄B and Q̂1
A + Q̂2

C .

Consider first the range

Q̄B < QB < Z1 + Q̂2
C . (B.22)

As in (iii), there is a unique Nash equilibrium of the form (rAB(Q∗
B), rBAC(rAB(Q∗

B), rC(Q∗
B)),

rC(Q∗
B)), if there is a Q∗

B in the range (B.22) satisfying I(QB) = 1− cA
wA

− cB
wB

. Otherwise, there is

no equilibrium in this range. Since I(Q̄B) = 0, a solution to I(QB) = 1 − cA
wA

− cB
wB

in this range

exists if and only if I(Q̂2
C + Z1) = F1(Z1) > 1 − cA

wA
− cB

wB
.

For the range

Z1 + Q̂2
C ≤ QB ≤ Q̂1

A + Q̂2
C , (B.23)

rA(QB, rC(QB)) = QB − Q̂2
C and rC(QB) = Q̂2

C . So any equilibrium must be of the form (QB −

Q̂2
C , QB, Q̂2

C). From (6), a capacity QB in (B.23) leads to such an equilibrium if and only if

P (D1 ≥ QB−Q̂2
C , D2 ≥ Q̂2

C) ≥ cB
wB

= P (D1 ≥ Z2, D2 ≥ Q̂2
C), or, equivalently, QB ≤ Z2+Q̂2

C . Also,
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note that F̄1(Z1) = P (D1 ≥ Z1, D2 ≤ Q̂2
C)+P (D1 ≥ Z1, D2 ≥ Q̂2

C) = cA
wA

+P (D1 ≥ Z1, D2 ≥ Q̂2
C).

Then, F1(Z1) > 1 − cA
wA

− cB
wB

if and only if P (D1 ≥ Z1, D2 ≥ Q̂2
C) < cB

wB
= P (D1 ≥ Z2, D2 ≥ Q̂2

C)

if and only if Z1 > Z2. In summary, if Z1 > Z2, then, following a similar argument as in (iii),

the equilibrium (rAB(Q∗
B), rBAC(rAB(Q∗

B), rC(Q∗
B)), rC(Q∗

B)) identified above is the unique Pareto

optimal equilibrium in the wholesale price region (iv)(a). On the other hand, if Z1 ≤ Z2, then

following a similar argument as in (ii),
(
min

(
Z2, Q̂

1
A

)
, min

(
Z2, Q̂

1
A

)
+ Q̂2

C , Q̂2
C

)
is the unique

Pareto optimal equilibrium in the wholesale price region (iv)(b).

Proof of Proposition 3. Consider the four wholesale-price regions identified in Theorem 3 (i)

- (iv). It is first easy to verify that Q∗(w) is continuous across the four regions. Now for any vector

w in region (i), the assembler could decrease wC until cC
wC

= cB
wB

and Q̂2
B = Q̂2

C . This would increase

the assembler’s margin without affecting the suppliers’ equilibrium capacity choices, so it would

increase the assembler’s profit. A vector w in region (i) satisfying cC
wC

= cB
wB

also lies in region (ii)

(i.e., on the boundary of regions (i) and (ii)). Thus, the optimal prices will never fall in the interior

of region (i). For any vector w in region (ii) such that Z2 �= Q̂1
A, the assembler could decrease

either wB or wA (while remaining in the same region) until Z2 = Q̂1
A, i.e., until F̄1(Z2) = cA

wA
. Since

this increases the assembler’s margin without affecting the suppliers’ equilibrium capacity choices,

this again (weakly) increases the assembler’s profit, and thus reduces region (ii) to one in which w

satisfies 1 − cC
wC

≤ cA
wA

= F̄1(Z2). A similar argument applies to region (iv)(b). If Z2 > Q̂1
A, then

the assembler can decrease wB until equality holds, while remaining in region (iv)(b). On the other

hand, if Z2 < Q̂1
A, then as in region (ii) a decrease in wA increases the assembler’s margin without

affecting the suppliers’ capacity equilibrium, as long as the change in wA keeps the wholesale price

vector within the region defined in (iv)(b), i.e., as long as cC
wC

≤ 1− cA
wA

. If F̄1(Z2) ≤ 1− cC
wC

, then wA

can be decreased all the way until cA
wA

= F̄1(Z2) ≤ 1 − cC
wC

while still staying within that region. If

instead 1− cC
wC

< F̄1(Z2), then the assembler can profitably decrease wA until cA
wA

= 1− cC
wC

< F̄1(Z2)

while staying within region (iv)(b). Further decreases in wA move the price vector into region (ii),

so the argument for that region applies and the assembler’s profit (weakly) increases by reducing

wA until cA
wA

= F̄1(Z2). Combining these observations, among wholesale prices in regions (i), (ii)

or (iv)(b), the assembler needs only consider vectors w satisfying (8) and any such vector results

in equilibrium supplier capacities (Q̂1
A, Q̂1

A + Q̂2
C , Q̂2

C).

For wholesale prices in region (iv)(a), if Q∗
C = Q∗

B < Q̂2
C then the assembler could increase

its profit by reducing wC until Q̂2
C = Q∗

B, thus increasing its margin without affecting the suppli-

ers’ equilibrium capacity levels. Note that after such a change, Q̂2
C = Q∗

B > Q̄B, which implies
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cC
wC

< 1 − cA
wA

. Also, F1(Z1) = I
(
Q̂2

C + Z1

)
> I(Q̂2

C) = I(Q∗
B) = 1 − cA

wA
− cB

wB
, which implies

Z1 > Z2. So the new wholesale price vector remains in region (iv)(a). Thus, this region can be

reduced by adding the condition I(Q̂2
C) ≤ 1 − cA

wA
− cB

wB
. The resulting capacity equilibrium takes

the form
(
rAB(QB), QB, Q̂2

C

)
, for the unique QB satisfying I(QB) = 1 − cA

wA
− cB

wB
. A similar

argument applies to wholesale prices in region (iii). As a result, that region can also be reduced

by adding the condition I(Q̂2
C) ≤ 1 − cA

wA
− cB

wB
, and the resulting equilibrium also takes the form(

rAB(QB), QB, Q̂2
C

)
. In addition, the conditions cC

wC
≤ cB

wB
< 1 − cA

wA
in region (iii) imply the in-

equality F1(Z1) > 1− cA
wA

− cB
wB

or, equivalently, Z1 > Z2; see the proof of Theorem 2(iii). Combining

regions (iii) and (iv)(a), we then have that the assembler needs only consider wholesale price vectors

w that satisfy the three conditions in (9). Any such prices result in the equilibrium capacity vector

Q∗ =
(
rAB(QB), QB, Q̂2

C

)
, where QB is the unique capacity value satisfying I(QB) = 1− cA

wA
− cB

wB
.

Proof of Corollary 2. The result follows from Proposition 3, by noting that under perfect

positive correlation, Z1 = F̄−1
(

cA
wA

+ cC
wC

)
if cA

wA
+ cC

wC
≤ 1, and Z2 = Q̂B if cC

wC
≥ cB

wB
and Z2 = 0

otherwise. Under perfect negative correlation F1(x) = F̄2(K − x), and

Z1 = Q̂1
A if

cA

wA
+

cC

wC
< 1, and Z2 = F−1

1

(
cC

wC
− cB

wB

)
if

cB

wB
≤ cC

wC
.

Proof of Proposition 4. Note that the joint density of Di = δ + Xi, i = 1, 2, is given

by f(x1 − δ, x2 − δ). For any fixed wholesale price with associated equilibrium (Q∗
A, Q∗

B, Q∗
C)

(for δ = 0), it is immediate to verify that the Pareto optimal capacity equilibrium for δ > 0

is (Q∗
A + δ, Q∗

B + 2δ, Q∗
C + δ). The assembler’s profit for this capacity equilibrium is given by

EΠδ
0(w) = EΠ0(w) + δ(p1 − wA − wB + p2 − wB − wC). Now let w∗ and w∗(δ) be optimal

assembler’s wholesale prices for δ = 0 and δ > 0, respectively. Note that w∗ is not optimal for

δ > 0, since, for example, ∂EΠδ
0(w

∗)
∂wA

= ∂EΠ0(w
∗)

∂wA
−δ = −δ < 0. Then, EΠ0(w∗)−δ(w∗

A+2w∗
B+w∗

C) <

EΠ0(w∗(δ))−δ(w∗
A(δ)+2w∗

B(δ)+w∗
C(δ)) < EΠ0(w∗)−δ(w∗

A(δ)+2w∗
B(δ)+w∗

C(δ)), where the first

inequality follows from the optimality of w∗(δ) for EΠδ
0 and the second one from the optimality of

w∗ for EΠ0. Thus, cA + 2cB + cC ≤ w∗
A(δ) + 2w∗

B(δ) + w∗
C(δ) < w∗

A + 2w∗
B + w∗

C .

To prove the last part, suppose first that p1 − w∗
A(δ) − w∗

B(δ) ≤ p2 − w∗
B(δ) − w∗

C(δ). Note

that an optimal assembler wholesale price vector w∗(δ) will satisfy one of the conditions (8) or (9)

stated in Proposition 3. Suppose that w∗(δ) satisfies (9). Then, w∗
C(δ) > cC (otherwise, the first

two inequalities in (9) would not hold). That means that the assembler can slightly reduce w∗
C(δ),

leaving the other two wholesale prices unchanged and maintaining the higher priority for product
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2, and still fall within the region described by condition (9) (note that Q̂2
C is increasing in wC and

I(Q) is increasing in Q). In the remainder of the proof, we replace w∗
i (δ) by wi to simplify notation.

Consider now the effect of the slight reduction in wC , satisfying (9), on the assembler’s expected

profit EΠδ
0. To that end, for small ε > 0, note that

EΠδ
0(wA, wB, wC − ε) − EΠδ

0(w)
ε

= (p1 − wA − wB)
Ey1(wA, wB, wC − ε) − Ey1(w)

ε

+
(p2 − wB − wC + ε)Ey2(wA, wB, wC − ε) − (p2 − wB − wC)Ey2(w)

ε
+ δ.

As wC decreases to wC − ε, the equilibrium value for component C decreases by F̄−1
2

(
cC
wC

)
−

F̄−1
2

(
cC

wC−ε

)
, and one can show that the equilibrium values for components A and B also decrease,

but by a smaller amount than component C. Then, from (1), we have Ey1(wA, wB, wC − ε) −

Ey1(w) ≥ F̄−1
2

(
cC

wC−ε

)
− F̄−1

2

(
cC
wC

)
. Thus, using the Mean Value Theorem, we have that

EΠδ
0(wA, wB, wC − ε) − EΠδ

0(w)
ε

≥ − p1 − wA − wB

f2

(
F̄−1

2

(
cC
w̃C

)) cC

w̃2
C

+ E min
{

F̄−1
2

(
cC

w̃C

)
, X2

}

− p2 − wB − w̃C

f2

(
F̄−1

2

(
cC
w̃C

)) c2
C

w̃3
C

+ δ ≥ − p1 − cA − cB

cCf2

(
F̄−1

2

(
cC
w̃C

)) − p2 − cB − cC

cCf2

(
F̄−1

2

(
cC
w̃C

)) + δ, (B.24)

where cC < wC − ε < w̃C < wC , and since wA ≥ cA and wB ≥ cB. Because w̃C < p2, 0 <

F̄−1
2

(
cC
w̃C

)
< F̄−1

2

(
cC
p2

)
and, as f2 > 0 and continuous, f2

(
F̄−1

2

(
cC
w̃C

))
is bounded below by a

constant independent of δ. We then have that EΠδ
0(wA, wB, wC − ε) − EΠδ

0(w) ≥ ε(−κ + δ), for

a constant κ independent of δ. Therefore, if δ is sufficiently large (say, δ > κ), we have that the

assembler benefits from a small reduction in w∗
C(δ) and so w∗(δ) cannot be optimal. Finally, a

similarly large δ can be constructed if product 1 has the higher priority, and δ̄ can be defined large

enough to ensure the result for either product’s production priority.

Proof of Proposition 5. Let w∗
A, w∗

B and w∗
C be optimal wholesale prices in the system with

a common component B. From Proposition 3, we have that

F̄1(Z∗
2 ) =

cA

w∗
A

, (B.25)

where cB
w∗

B
= P

(
D1 ≥ Z∗

2 , D2 ≥ F̄−1
2 (cC/w∗

C)
)

≤ F̄1(Z∗
2). Now for the system with two ded-

icated components B1 and B2, consider the vector of wholesale prices (wA, wB1, wB2, wC) =

(w∗
A, cB1w

∗
A/cA, cB2w

∗
C/cC , w∗

C). This choice of wholesale prices leads to the same equilibrium

capacity levels for components A and C, and to equilibrium capacity levels for components B1 and
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B2 whose sum is equal to the equilibrium capacity level for component B in the system with a

common component. However, from (B.25), we have that wB1 = cB1w∗
A

cA
≤ cBw∗

A
cA

= cB

F̄1(Z∗
2 )

≤ w∗
B.

In addition, from (8), wB2 = cB2w∗
C

cC
≤ cBw∗

C
cC

≤ w∗
B. Thus, wBi ≤ w∗

B for i = 1, 2. That is, the

assembler can induce the same capacity equilibrium in the system with dedicated components with

lower wholesale prices for components B1 and B2. Thus, the assembler’s profit is higher in the

system with dedicated components.

Proof of Proposition 6. Note from Theorem 2 that expected sales of both products are

positive only if m > 1. Then, capacity imbalance can result from the assembler’s optimal pricing

only if p1 > 2(cA +cB) and p2 > 2(cB +cC). Assume now that these two inequalities hold. Because

p2 ≥ p1, we have that product 2 has the higher priority for any feasible mark-up m if

p2

cB + cC
≥ p1

cA + cB
. (B.26)

If the reverse inequality holds (which can only happen if cA ≤ cC), then product 2 has the higher

priority for 0 ≤ m ≤ p2−p1
cC−cA

−1 and product 1 has the higher priority for p2−p1
cC−cA

−1 < m ≤ p2
cB+cC

−1.

Note that expected sales of the product i with the higher priority are E min
{

F
−1
i

(
1

1+m

)
, Di

}
,

regardless of whether the other product is produced or not. We next consider two possible cases –

one where (B.26) holds and one where it does not.

First, if (B.26) holds, then product 2 has the higher priority for all m and the assembler’s

expected profit is given by EΠ0(m) = (p1 − (1 + m)(cA + cB))Ey1 + (p2 − (1 + m)(cB + cC))Ey2,

where Ey1 = 0 for m ≤ 1. The assembler’s optimal mark-up results in capacity imbalance (i.e.,

the assembler selects m > 1) if the derivative of (p2 − (1 + m)(cB + cC))Ey2 with respect to m,

evaluated at m = 1, is strictly positive. (Note that (p2 − (1 + m)(cB + cC))Ey2 is unimodal in m.)

This condition reduces to

−(cB + cC)E min
{

F
−1
2 (1/2) , D2

}
+

1
8
(p2 − 2(cB + cC))

1

f2

(
F

−1
2 (1/2)

) > 0.

The result then follows by defining M1 = 1 and M2 = 8f2

(
F

−1
2 (1/2)

)
E min

{
F

−1
2 (1/2) , D2

}
+1.

(Because f2(·) is continuous and f2(x) > 0 for all x ≥ 0, we have that F2(x) is continuous and

strictly increasing. Then, 1 = F 2(0) > 1/2 implies that 0 < F
−1
2 (1/2), so that M2 > 1.)

Next, if (B.26) does not hold, then product 2 has the higher priority only for m below p2−p1
cC−cA

−1.

Note that EΠ0(m) is continuous in m, since it is continuous within each interval where only

one of the products has the higher priority, and for m = p2−p1
cC−cA

− 1 both products have equal

margins and the assembler’s profit is the same regardless of which product is assigned the higher
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priority. We now further consider two cases. If p2−p1
cC−cA

− 1 > 1, then the analysis is the same

as the one for the case where (B.26) holds. Finally, consider the case where p2−p1
cC−cA

− 1 ≤ 1.

Defining Mi = 8fi

(
F

−1
i (1/2)

)
E min

{
F

−1
i (1/2) , Di

}
+ 1, we have that Mi > 1 implies that

E min
{
F

−1
i

(
1

1+m

)
, Di

}
has a striclty positive derivative at m = 1, for i = 1, 2. Then, for

0 ≤ m ≤ p2−p1
cC−cA

− 1, only product 2 is produced and the assembler’s profit is increasing in this

interval (since M2 > 1). For p2−p1
cC−cA

− 1 < m ≤ 1, only product 1 is produced and the assembler’s

profit is still increasing in this interval (since M1 > 1). Then, the assembler’s profit is increasing

for 0 ≤ m ≤ 1 since EΠ0(m) is continuous. Thus, M1 > 1 implies that the assembler’s optimal

mark-up is strictly higher than 1, concluding the result.
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