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Abstract

The Levenberg-Marquardt algorithm was developed in the early 1960’s to solve
nonlinear least squares problems. Least squares problems arise in the context of fitting
a parameterized mathematical model to a set of data points by minimizing an objective
expressed as the sum of the squares of the errors between the model function and a
set of data points. If a model is linear in its coefficients, the least squares objective
is quadratic in the coefficients. This objective may be minimized with respect to the
coefficients in one step via the solution to a linear matrix equation. If the fit function
is not linear in its coefficients, the least squares problem requires an iterative solution
algorithm. Such algorithms reduce the sum of the squares of the errors between the
model function and the data points through a sequence of well-chosen updates to values
of the model coefficients. The Levenberg-Marquardt algorithm combines two numerical
minimization algorithms: the gradient descent method and the Gauss-Newton method.
In the gradient descent method, the sum of the squared errors is reduced by updat-
ing the coefficients in the steepest-descent direction. In the Gauss-Newton method,
the sum of the squared errors is reduced by assuming the least squares function is
locally quadratic in the coefficients, and finding the minimum of this quadratic. The
Levenberg-Marquardt method acts more like a gradient-descent method when the coef-
ficients are far from their optimal value, and acts more like the Gauss-Newton method
when the coefficients are close to their optimal value. This document describes these
methods and illustrates the use of software to solve nonlinear least squares curve-fitting
problems.

1 Introduction
In fitting a model function ŷ(t; a) of an independent variable t and a vector of n

coefficients a to a set of m data points (ti, yi), it is customary and convenient to minimize
the sum of the weighted squares of the errors (or weighted residuals) between the data yi

and the curve-fit function ŷ(t; a).

χ2(a) =
m∑

i=1

[
y(ti)− ŷ(ti; a)

σyi

]2

(1)

= (y − ŷ(a))TW (y − ŷ(a)) (2)
= yTW y − 2yTW ŷ + ŷTW ŷ (3)

where σyi
is the measurement error for datum y(ti). Typically the weighting matrix W is

diagonal with Wii = 1/σ2
yi

. More formally, W can be set to the inverse of the measurement
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error covariance matrix, in the unusual case that it is known. More generally, the weights
Wii, can be set to pursue other curve-fitting goals. This scalar-valued goodness-of-fit measure
is called the chi-squared error criterion because the sum of squares of normally-distributed
random variables is distributed as the chi-squared distribution.

If the function ŷ(t; a) is nonlinear in the model coefficients a, the minimization of χ2

with respect to the coefficients must be carried out iteratively. The goal of each iteration is
to find a perturbation h to the coefficients a that reduces χ2.

2 The Gradient Descent Method
The steepest descent method is a general minimization method which updates coeffi-

cient values in the “downhill” direction: the direction opposite to the gradient of the objective
function. The gradient descent method converges well for problems with simple objective
functions [8, 9]. For problems with thousands of coefficients, gradient descent methods are
sometimes the only viable choice.

The gradient of the chi-squared objective function with respect to the coefficients is

∂

∂a
χ2 = 2(y − ŷ(a))TW

∂

∂a
(y − ŷ(a)) (4)

= −2(y − ŷ(a))TW

[
∂ŷ(a)

∂a

]
(5)

= −2(y − ŷ)TW J (6)

where the m× n Jacobian matrix [∂ŷ/∂a] represents the local sensitivity of the function ŷ
to variation in the coefficients a. For notational simplicity the variable J will be used for
[∂ŷ/∂a]. Note that in models that are linear in the coefficients , ŷ = Xa, the Jacobian
[∂ŷ/∂a] is the matrix of model basis vectors X. The coefficient update h that moves the
coefficients in the direction of steepest descent is given by

hgd = αJTW (y − ŷ) , (7)

where the positive scalar α determines the length of the step in the steepest-descent direction.

3 The Gauss-Newton Method
The Gauss-Newton method is a method for minimizing a sum-of-squares objective func-

tion. It presumes that the objective function is approximately quadratic in the coefficients
near the optimal solution [2]. For moderately-sized problems the Gauss-Newton method
typically converges much faster than gradient-descent methods [10].

The function evaluated with perturbed model coefficients may be locally approximated
through a first-order Taylor series expansion.

ŷ(a + h) ≈ ŷ(a) +
[

∂ŷ

∂a

]
h = ŷ + Jh , (8)
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Substituting the approximation ŷ(a + h) ≈ ŷ(a) + Jh into equation (3) for χ2(a + h),

χ2(a + h) ≈ yTW y + ŷTW ŷ − 2yTW ŷ − 2(y − ŷ)TW Jh + hTJTW Jh . (9)

The first-order Taylor approximation (8) results in an approximation for χ2 that is quadratic
in the perturbation h. The Hessian of the chi-squared fit criterion is approximately JTW J .

The coefficient update h that minimizes χ2 is found from ∂χ2/∂h = 0:

∂

∂h
χ2(a + h) ≈ −2(y − ŷ)TW J + 2hTJTW J , (10)

and the resulting normal equations for the Gauss-Newton update are[
JTW J

]
hgn = JTW (y − ŷ) . (11)

Note that the right hand side vectors in normal equations for the gradient descent method
(7) and the Gauss-Newton method (11) are identical.

4 The Levenberg-Marquardt Method

The Levenberg-Marquardt algorithm adaptively varies the coefficient updates between
the gradient descent update and the Gauss-Newton update,[

JTW J + λI
]

hlm = JTW (y − ŷ) , (12)

where small values of the damping coefficient λ result in a Gauss-Newton update and large
values of λ result in a gradient descent update. The damping coefficient λ is initialized
to be large so that first updates are small steps in the steepest-descent direction. If any
iteration happens to result in a worse approximation (χ2(a + hlm) > χ2(a)), then λ is
increased. Otherwise, as the solution improves, λ is decreased, the Levenberg-Marquardt
method approaches the Gauss-Newton method, and the solution typically accelerates to the
local minimum [8, 9, 10].

In Marquardt’s update relationship [10], the damping coefficient λ is scaled by the
diagonal of the Hessian JTW J for each coefficient.[

JTW J + λ diag(JTW J)
]

hlm = JTW (y − ŷ) , (13)

4.1 Numerical Implementation

Many variations of the Levenberg-Marquardt have been published in papers and in
code, e.g., [6, 8, 11, 12, 13]. This document borrows from some of these. In iteration i, the
step h is evaluated by comparing χ2(a) to χ2(a + h). The step is accepted if the metric
ρi [11] is greater than a user-specified threshold, ϵ4 > 0. This metric is a measure of the
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actual improvement in χ2 as compared to the improvement of an LM update assuming the
approximation (8) were exact.

ρi(hlm) = χ2(a)− χ2(a + hlm)
| (y − ŷ)TW (y − ŷ)− (y − ŷ − Jhlm)TW (y − ŷ − Jhlm) | (14)

= χ2(a)− χ2(a + hlm)
| hT

lm (λihlm + JTW (y − ŷ(a))) | if using eq’n (12) for hlm(15)

= χ2(a)− χ2(a + hlm)
| hT

lm (λidiag(JTW J)hlm + JTW (y − ŷ(a))) | if using eq’n (13) for hlm(16)

If in an iteration ρi(h) > ϵ4 then a + h is sufficiently better than a, a is replaced by a + h,
and λ is reduced by a factor. Otherwise λ is increased by a factor, and the algorithm proceeds
to the next iteration.

4.1.1 Initialization and update of the L-M coefficient, λ, and the coefficients a

Here are three options for initializing and updating λ and a.

1. λ0 = λo; λo is user-specified [10].
use eq’n (13) for hlm and eq’n (16) for ρ
if ρi(h) > ϵ4: a← a + h; λi+1 = max[λi/L↓, 10−7];
otherwise: λi+1 = min [λiL↑, 107];

2. λ0 = λo max
[
diag[JTW J ]

]
; λo is user-specified.

use eq’n (12) for hlm and eq’n (15) for ρ

α =
((

JTW (y − ŷ(a))
)T

h
)

/
(

(χ2(a + h)− χ2(a)) /2 + 2
(
JTW (y − ŷ(a))

)T
h

)
;

if ρi(αh) > ϵ4: a← p + αh; λi+1 = max [λi/(1 + α), 10−7];
otherwise: λi+1 = λi + |χ2(a + αh)− χ2(a)|/(2α);

3. λ0 = λo max
[
diag[JTW J ]

]
; λo is user-specified [11].

use eq’n (12) for hlm and eq’n (15) for ρ
if ρi(h) > ϵ4: a← a + h; λi+1 = λi max [1/3, 1− (2ρi − 1)3] ; νi = 2;
otherwise: λi+1 = λiνi; νi+1 = 2νi;

The examples in section 4.4 illustrate the use of method 1 [10] and exhibit good convergence
properties with L↑ ≈ 11 and L↓ ≈ 9.

4.1.2 Computation and rank-1 update of the Jacobian, [∂y/∂p]

For problems with many coefficients, a finite differences Jacobian is computationally
expensive. If the Jacobian is re-computed using finite differences only occasionally, conver-
gence can be achieved with fewer function evaluations. In the first iteration, in every 2n
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iterations, and in iterations where χ2(a + h) > χ2(a), the Jacobian (J ∈ Rm×n) is numeri-
cally approximated using forward differences,

Jij = ∂ŷi

∂aj

= ŷ(ti; a + δaj)− ŷ(ti; a)
||δaj||

, (17)

or central differences (default)

Jij = ∂ŷi

∂aj

= ŷ(ti; a + δaj)− ŷ(ti; a− δaj)
2||δaj||

, (18)

where the j-th element of δaj is the only non-zero element and is set to ∆j(1 + |aj|). In all
other iterations, the Jacobian is updated using the Broyden rank-1 update formula [3, 4],

J = J +
(
(ŷ(a + h)− ŷ(a)− Jh) hT

)
/

(
hTh

)
. (19)

The rank-1 Jacobian update equation (19) requires no additional function evaluations.

4.1.3 Convergence criteria

Convergence is achieved when one of the following three criteria is satisfied,

• Convergence in the gradient: max
∣∣∣JTW (y − ŷ)

∣∣∣ < ϵ1;

• Convergence in coefficients: max |hi/ai| < ϵ2; or

• Convergence in χ2: uses the value of the reduced χ2, χ2
ν = χ2/(m− n) < ϵ3.

Otherwise, iterations terminate when the iteration count exceeds a pre-specified limit.

4.1.4 Regularizing ill-conditioned matrix equations

If the system of linear equations (12) or (13) for h is ill-conditioned, it can be regularized
before solving for h by recursively replacing the left hand side matrix

X =
[
JTW J + λI

]
or X =

[
JTW J + λdiag(JTW J ]

]
with X+D where D is a small diagonal matrix D = 10−6 n−1 trace(X) I until the condition
number of X + D is not excessively high. In such cases the resulting step h can be reduced
by a factor of 10 so that steps associated with poorly-conditioned systems are not large.

4.1.5 Multiple minima and sensitivity to the initial guess

In nonlinear least squares problems the χ2(a) objective function may have multiple
minima and solutions may be sensitive to the initial guess. In such cases the Levenberg-
Marquardt method may converge to an astonishingly poor fit. If this happens, one may
compute a set of solutions from a set of randomly-generated initial guesses, and select the
solution with the smallest reduced χ2 value.
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4.2 Error Analysis

Once the optimal curve-fit coefficients afit are determined, coefficient statistics are
computed for the converged solution. If the measurement error covariance matrix Vy, or
its diagonal, σ2

yi
, is known a priori, (prior to the curve-fit), the weighting matrix should be

set to the inverse of the measurement error covariance, W = V −1
y , in estimating the model

coefficients and in the following error analysis. Note that if the actual measurement errors
vary significantly across the measurement points (i.e., maxi(σyi

)/ mini(σyi
) > 10), any error

analysis that presumes equal measurement errors will be incorrect.

The reduced χ2 error criterion,

χ2
ν = χ2 / (m− n) = (y − ŷ(afit))TW (y − ŷ(afit)) / (m− n) (20)

is an unbiased measure of the quality of the fit. Large values, χ2
ν ≫ 1, indicate a poor fit,

χ2
ν ≈ 1 indicates that the fit error is of the same order as the measurement error (as desired),

and χ2
ν < 1 indicates that the model is over-fitting the data; that is, the model is fitting the

measurement noise.

The coefficient covariance matrix is computed from

Vp =
[
JTW J

]−1
. (21)

The asymptotic standard coefficient errors,

σa =
√

diag
(
[JTW J ]−1

)
, (22)

give a measure of how unexplained variability in the data propagates to variability in the
coefficients, and is essentially an error measure for the coefficients.

The asymptotic standard error of the fit,

σŷ =
√

diag
(
J [JTW J ]−1 JT

)
. (23)

indicates how variability in the coefficients affects the variability in the curve-fit.

The asymptotic standard prediction error,

σŷp =
√

diag
(
Vy + J [JTW J ]−1 JT

)
. (24)

reflects the standard error of the fit as well as the measurement error.

If the measurement error covariance, or individual measurement errors are not known in
advance of the analysis, the error analysis can be carried out assuming the same measurement
error for every measurement point, as estimated from the fit,

σ̂2
y = (y − ŷ(afit))T(y − ŷ(afit)) / (m− n) . (25)

In this case Vy is set to σ̂2
yI and W is set to I/σ̂2

y in equations (21) to (24). Note also, that
if W = I/σ̂2

y, then χ2
ν = 1, by definition.
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5 Matlab code: lm.m

The .m-function lm.m implements the Levenberg-Marquardt method for curve-fitting
problems. The code with examples are available here:

• http://www.duke.edu/∼hpgavin/m-files/lm.m

• http://www.duke.edu/∼hpgavin/m-files/lm examp.m

• http://www.duke.edu/∼hpgavin/m-files/lm func.m

• http://www.duke.edu/∼hpgavin/m-files/lm plots.m

1 function [a,redX2 ,sigma_a ,sigma_y ,corr_a ,R_sq , cvg_hst ] = lm(func ,a,t,y_dat ,weight ,da ,a_lb ,a_ub ,c,opts)
2 % [ a , redX2 , sigma a , sigma y , corr a , R sq , c v g h s t ] = lm( func , a , t , y dat , weight , da , a l b , a ub , c , op t s )
3 %
4 % Levenberg Marquardt curve−f i t t i n g : minimize sum of weighted squared r e s i d u a l s
5 % −−−−−−−−−− INPUT VARIABLES −−−−−−−−−−−
6 % func = func t ion o f n independent v a r i a b l e s , ’ t ’ , and m c o e f f i c i e n t s , ’a ’ ,
7 % return ing the s imula ted model : y ha t = func ( t , a , c )
8 % a = i n i t i a l guess o f c o e f f i c i e n t v a l u e s (n x 1)
9 % t = independent v a r i a b l e s ( used as arg to func ) (m x 1)

10 % y dat = data to be f i t by func ( t , p ) (m x 1)
11 % weight = weigh t s or a s c a l a r weight va lue ( weight >= 0 ) . . . (m x 1)
12 % i n v e r s e o f the standard measurement e r r o r s
13 % Defau l t : ( 1 / ( y dat ’ ∗ y da t ))
14 % da = f r a c t i o n a l increment o f ’a ’ f o r numerical d e r i v a t i v e s
15 % da ( j )>0 c e n t r a l d i f f e r e n c e s c a l c u l a t e d
16 % da ( j )<0 one s ided ’ backwards ’ d i f f e r e n c e s c a l c u l a t e d
17 % da ( j )=0 s e t s corresponding p a r t i a l s to zero ; i . e . ho ld s a ( j ) f i x e d
18 % Defau l t : 0 .001 ;
19 % a l b = lower bounds f o r c o e f f i c i e n t v a l u e s (n x 1)
20 % a ub = upper bounds f o r c o e f f i c i e n t v a l u e s (n x 1)
21 % c = an o p t i o n a l s e t o f model cons tant s passed to y ha t = func ( t , a , c )
22 % opts = v e c t o r o f a l g o r i t h m i c parameters
23 % parameter d e f a u l t s meaning
24 % opts (1) = prnt 3 >1 in termed ia te r e s u l t s ; >2 p l o t s
25 % opts (2) = MaxEvals 10∗ Ncofˆ2 maximum number o f func t i on c a l l s
26 % opts (3) = e p s i l o n 1 1e−3 convergence t o l e r a n c e f o r g r a d i e n t
27 % opts (4) = e p s i l o n 2 1e−3 convergence t o l e r a n c e f o r c o e f f i c i e n t s
28 % opts (5) = e p s i l o n 3 1e−1 convergence t o l e r a n c e f o r red . Chi−sqr
29 % opts (6) = e p s i l o n 4 1e−1 determines acceptance o f a L−M s t e p
30 % opts (7) = lambda 0 1e−2 i n i t i a l va lue o f L−M paramter
31 % opts (8) = lambda UP fac 11 f a c t o r f o r i n c r e a s i n g lambda
32 % opts (9) = lambda DN fac 9 f a c t o r f o r decreas ing lambda
33 % opts (10) = Update Type 1 1 : Levenberg−Marquardt lambda update
34 % 2: Quadratic update
35 % 3: Nielsen ’ s lambda update equa t ions
36 %
37 % −−−−−−−−−− OUTPUT VARIABLES −−−−−−−−−−−
38 % a = l e a s t −squares opt imal es t imate o f the c o e f f i c i e n t v a l u e s
39 % redX2 = reduced Chi squared error c r i t e r i a − shou ld be c l o s e to 1
40 % sigma a = asymptot ic standard error o f the c o e f f i c i e n t s
41 % sigma y = asymptot ic standard error o f the curve−f i t
42 % corr a = c o r r e l a t i o n matrix o f the c o e f f i c i e n t s
43 % R sq = R−squared c o f f i c i e n t o f m u l t i p l e determinat ion
44 % c v g h s t = convergence h i s t o r y . . . see l m p l o t s .m
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The .m-file to solve a least-squares curve-fit problem with lm.m can be as simple as:
1 my_data = load(’my_data_file ’); % load the data
2 t = my_data (: ,1); % i f the independent v a r i a b l e i s in column 1
3 y_dat = my_data (: ,2); % i f the dependent v a r i a b l e i s in column 2
4
5 a_lb = [ -10 ; 0.1 ; 5 ; 0.1 ]; % lower bound of c o e f f i c i e n t v a l u e s
6 a_ub = [ 10 ; 5.0 ; 15 ; 0.5 ]; % upper bound of c o e f f i c i e n t v a l u e s
7 a_init = [ 3 ; 2.0 ; 10 ; 0.2 ]; % i n i t i a l guess f o r c o e f f i c i e n t v a l u e s
8
9 [ a_fit , X2 , sigma_p , sigma_y , corr , R_sq , cvg_hst ] = ...

10 lm ( ’lm_func ’, a_init , t, y_dat , 1, -0.01 , a_lb , a_ub )

where the user-supplied function lm_func.m could be, for example,
1 function y_hat = lm_func (t,a,c)
2 y_hat = a(1) * t .* exp(-t/a(2)) .* cos (2* pi *( a(3)*t - a(4) ));

It is common and desirable to repeat the same experiment two or more times and to estimate
a single set of curve-fit coefficients from all the experiments. In such cases the data file may
arranged as follows:

1 % t−v a r i a b l e y (1 s t experiment ) y (2nd experiemnt ) y (3 rd experiemnt )
2 0.50000 3.5986 3.60192 3.58293
3 0.80000 8.1233 8.01231 8.16234
4 0.90000 12.2342 12.29523 12.01823
5 : : : :
6 etc. etc. etc. etc.

If your data is arranged as above you may prepare the data for lm.m using the following
lines.

1 my_data = load(’my_data_file ’); % load the data
2 t_column = 1; % column of the independent v a r i a b l e
3 y_columns = [ 2 3 4 ]; % columns o f the measured dependent v a r i a b l e s
4
5 y_dat = my_data (:, y_columns ); % the measured data
6 y_dat = y_dat (:); % a s i n g l e column v e c t o r
7
8 t = my_data (:, t_column ); % the independent v a r i a b l e
9 t = t*ones(1, length( y_columns )); % a column of t f o r each column of y

10 t = t(:); % a s i n g l e column v e c t o r

Note that the arguments t and y dat to lm.m may be matrices as long as the dimensions of
t match the dimensions of y dat. The columns of t need not be identical.

Tips for successful use of lm.m:

• The data vector t should be a column vector, or columns of t must correspond to
columns of y dat.

• The data vector y dat should be a column vector.

• Your .m-function lm func.m must return the vector y hat as a column vector.

• The vectors p init, p min, and p max must be column vectors.

• Parameter values should be scaled to values in a compact range, for example, such that
absolute coefficients values are between 1 and 100.
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Results may be plotted with lm plots.m:
1 function lm_plots ( t, y_dat , y_fit , sigma_y , cvg_hst , filename )
2 % l m p l o t s ( t , y dat , y f i t , sigma y , cvg hs t , f i l ename )
3 % Plot s t a t i s t i c s o f the r e s u l t s o f a Levenberg−Marquardt l e a s t squares
4 % a n a l y s i s with lm .m
5
6 % Henri Gavin , Dept . C i v i l & Environ . Engineering , Duke Univ . 2 May 2016
7
8 y_dat = y_dat (:);
9 y_fit = y_fit (:);

10
11 [max_it ,n] = s ize ( cvg_hst ); n = n -3;
12
13 figure (101); % p l o t convergence h i s t o r y o f parameters , reduced ch i ˆ2 , lambda
14 c l f
15 subplot (211)
16 plot ( cvg_hst (: ,1) , cvg_hst (: ,2:n+1) , ’-o’,’LineWidth ’ ,4);
17 for i=1:n
18 text (1.02* cvg_hst (max_it ,1) , cvg_hst (max_it ,1+i), sprintf (’%d’,i) );
19 end
20 ylabel (’parameter values ’)
21 subplot (212)
22 semilogy( cvg_hst (: ,1) , [ cvg_hst (:,n+2) cvg_hst (:,n+3)] , ’-o’,’LineWidth ’ ,4)
23 text( cvg_hst (1 ,1) , cvg_hst (1,n+2) , ’\chi ˆ2_\nu ’,’FontSize ’ ,16,’color ’,’k’);
24 text( cvg_hst (1 ,1) , cvg_hst (1,n+3) , ’\ lambda ’, ’FontSize ’ ,16, ’color ’,’k’);
25 text( cvg_hst (max_it ,1) , cvg_hst (max_it ,n+2) , ’\chi ˆ2_\nu ’,’FontSize ’ ,16,’color ’,’k’);
26 text( cvg_hst (max_it ,1) , cvg_hst (max_it ,n+3) , ’\ lambda ’, ’FontSize ’ ,16, ’color ’,’k’);
27 ylabel (’\chi ˆ2_\nu and \ lambda ’)
28 xlabel (’number of function evaluations ’)
29 print( sprintf (’%sA.pdf ’, filename ),’-dpdfcrop ’);
30
31 figure (102); % −−−−−−−−−−−− p l o t data , f i t , and conf idence i n t e r v a l o f f i t
32
33 patchColor95 = [ 0.95 , 0.95 , 0.1 ];
34 patchColor99 = [ 0.2 , 0.95 , 0.2 ];
35 tp = [ t ; t(end: -1:1) ; t(1) ]; % x coord ina te s f o r patch
36 yps95 = y_fit + 1.96* sigma_y ; % + 95 CI
37 yms95 = y_fit - 1.96* sigma_y ; % − 95 CI
38 yps99 = y_fit + 2.58* sigma_y ; % + 99 CI
39 yms99 = y_fit - 2.58* sigma_y ; % − 99 CI
40 yp95 = [ yps95 ; yms95 (end: -1:1) ; yps95 (1) ]; % y coord ina te s f o r patch
41 yp99 = [ yps99 ; yms99 (end: -1:1) ; yps99 (1) ]; % y coord ina te s f o r patch
42
43 c l f
44 hold on
45 hc99 = patch(tp , yp99 , ’FaceColor ’, patchColor99 , ’EdgeColor ’, patchColor99 );
46 hc95 = patch(tp , yp95 , ’FaceColor ’, patchColor95 , ’EdgeColor ’, patchColor95 );
47 hd = plot (t,y_dat ,’ob ’);
48 hf = plot (t,y_fit ,’-k’);
49 hold off
50 axis (’tight ’)
51 legend([hd ,hf ,hc95 ,hc99], ’y_{data}’,’y_{fit}’,’95% c.i.’,’99% c.i.’);
52 ylabel (’y(t)’)
53 xlabel (’t’)
54 print( sprintf (’%sB.pdf ’, filename ),’-dpdfcrop ’);
55
56 figure (103); % −−−−−−−−−−−− p l o t histogram of r e s i d u a l s , are they Gaussian?
57 c l f
58 hist ( real ( y_dat - y_fit ))
59 t i t l e (’histogram of residuals ’)
60 axis (’tight ’)
61 xlabel (’y_{data} - y_{fit}’)
62 ylabel (’count ’)
63 print( sprintf (’%sC.pdf ’, filename ),’-dpdfcrop ’);

cbnd - HP Gavin - May 5, 2024

http://www.duke.edu/~hpgavin/m-files/lm_plots.m
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 The Levenberg-Marquardt algorithm for nonlinear least squares

6 Examples

In this section, the use of lm.m is illustrated in three curve-fitting examples in which
experimental measurements are numerically simulated. Noisy experimental measurements
y are simulated by adding random measurement noise to the curve-fit function evaluated
with a set of “true” coefficient values ŷ(t; atrue). The random measurement noise is normally
distributed with a mean of zero and a standard deviation of 0.50.

yi = ŷ(ti; atrue) +N (0, 0.50). (26)

The convergence of the coefficients from an erroneous initial guess ainit to values closer to
atrue is then examined.

Each numerical example below has four coefficients (n = 4) and one-hundred mea-
surements (m = 100). Each numerical example has a different curve-fit function ŷ(t; a), a
different “true” coefficient vector atrue, and a different vector of initial coefficients ainit.

For several values of a2 and a4, the log of the reduced χ2 error criterion is calculated
and is plotted as a surface over the a2−a4 plane. The “bowl-shaped” nature of the objective
function is clearly evident in each example. In some cases, the objective function is not
quadratic in the coefficients or the objective function has multiple minima. The presence of
measurement noise does not affect the smoothness of the objective function.

The gradient descent method endeavors to move coefficient values in a down-hill direc-
tion to minimize χ2(a). This often requires small step sizes but is required when the objec-
tive function is not quadratic. The Gauss-Newton method approximates the bowl shape as
a quadratic and endeavors to move coefficient values to the minimum in a small number of
steps. This method works well when the coefficients are close to their optimal values. The
Levenberg-Marquardt method retains the best features of both the gradient-descent method
and the Gauss-Newton method.

The evolution of the coefficient values, the evolution of χ2
ν , and the evolution of λ from

iteration to iteration is plotted for each example.

The simulated experimental data, the curve fit, and the 99-percent confidence interval
of the fit are plotted, the standard error of the fit, and a histogram of the fit errors are also
plotted.

The initial coefficient values ainit, the true coefficient values atrue, the fit coefficient
values afit, the standard error of the fit coefficients σa, and the correlation matrix of the
fit coefficients are tabulated. The true coefficient values lie within the confidence interval
afit − 2.58σp < atrue < afit + 2.58σp with a confidence level of 99 percent.
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6.1 Example 1

Consider fitting the following function to a set of measured data.

ŷ(t; a) = a1

(
t

T

)
+ a2

(
t

T

)2
+ a3

(
t

T

)3
+ a4

(
t

T

)4
(27)

over the range 0 ≤ t ≤ T . This function is linear in the coefficients and may be fit easily
using methods of linear least squares. The .m-function to be used with lm.m is simply:

1 function y_hat = lm_func (t,a,c)
2 T = max(t);
3 y_hat = a (1)*( t/T) + a (2)*( t/T).ˆ2 + a (3)*( t/T).ˆ3 + a (4)*( t/T ).ˆ4;

The “true” coefficient values atrue, the initial coefficient values ainit, resulting curve-fit coef-
ficient values afit and standard errors of the fit coefficients σa are shown in Table 1. The
R2 fit criterion is 99.9 percent and χ2

ν = 0.969. The standard error for a1 is 8 percent and
the standard error of a3 is 47 percent of the estimated value. Note that a very high value
of the R2 coefficient of determination does not necessarily mean that coefficient values have
been found with great accuracy. The high value of R2 merely indicates that the fit is highly
correlated with the data. In this example the high R2 value is a result of relatively low
measurement noise (compared to the data values) and a fit that passes through the data
points. The coefficient correlation matrix is given in Table 2. These coefficients are highly
correlated with one another, meaning that a change in one coefficient will almost certainly
result in changes in the other coefficients. The high values of coefficient standard errors,
coefficient correlations, and χ2

ν indicate that ŷ(t; a) is over-parameterized.

The bowl-shaped nature of the χ2 objective function is shown in Figure 2(a). This
shape is nearly quadratic and has a single minimum. The correlation of coefficients a2 and
a4, for example, is easily seen from this figure.

The convergence of the coefficients and the evolution of χ2
ν and λ are shown in Fig-

ure 1(b). The coefficients converge monotonically to their final values.

The data points, the curve fit, and the curve fit confidence band are plotted in Fig-
ure 1(c). Note that the standard error of the fit approaches zero at t = 0 and is largest at
t = 100. This is because ŷ(0; a) = 0, regardless of the values in a.

A histogram of the difference between the data values and the curve-fit is shown in
Figure 1(d). Ideally these curve-fit errors should be normally distributed, and they appear
to be so in this example.
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12 The Levenberg-Marquardt algorithm for nonlinear least squares

Table 1. Parameter values and standard errors.
ainit atrue afit σa σa/afit (%)
11.8 20.0 19.668 1.693 8.61
-7.8 -24.0 -24.089 9.138 39.57
56.0 30.0 28.286 15.371 52.49

-20.0 -40.0 -39.762 8.094 20.36

Table 2. Parameter correlation matrix.
a1 a2 a3 a4

a1 1.00 -0.97 0.92 -0.87
a2 -0.97 1.00 -0.99 0.95
a3 0.92 -0.99 1.00 -0.99
a4 -0.87 0.95 -0.99 1.00
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Figure 1. (a) The sum of the squared errors as a function of a2 and a4. (b) Top: the convergence
of the coefficients with each iteration, (b) Bottom: values of χ2

ν and λ each iteration. (c) Top: data
y, curve-fit ŷ(t; afit), curve-fit confidence intervals; (d) Histogram of the errors between the data
and the fit.
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6.2 Example 2

Consider fitting the following function to a set of measured data.

ŷ(t; a) = a1 exp
(
− t

a2

)
+ a3t exp

(
− t

a4

)
(28)

The .m-function to be used with lm.m is simply:
1 function y_hat = lm_func (t,a,c)
2 y_hat = a(1)*exp(-t/a(2)) + a(3)*t.*exp(-t/a (4));

The “true” coefficient values atrue, the initial coefficient values ainit, resulting curve-fit coef-
ficient values afit and standard errors of the fit coefficients σa are shown in Table 3. The
R2 fit criterion is 89 percent and the reduced χ2

ν = 1.15. The standard coefficient errors are
one to five percent of the coefficient values. The coefficient correlation matrix is given in
Table 4. Parameters a3 and a4 are the most correlated at -96 percent. Parameters a1 and
a3 are the least correlated at +27 percent.

The bowl-shaped nature of the χ2 objective function is shown in Figure 2(a). This
shape is nearly quadratic and has a single minimum.

The convergence of the coefficients and the evolution of χ2
ν and λ are shown in Fig-

ure 2(b).

The data points, the curve fit, and the curve fit confidence band are plotted in Fig-
ure 2(c). Note that the standard error of the fit is smaller near the center of the fit domain
and is larger at the edges of the domain.

A histogram of the difference between the data values and the curve-fit is shown in
Figure 2(d). Ideally these curve-fit errors should be normally distributed.
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14 The Levenberg-Marquardt algorithm for nonlinear least squares

Table 3. Parameter values and standard errors.
ainit atrue afit σa σa/afit (%)
9.1 20.0 19.951 0.381 1.96

11.8 10.0 10.078 0.392 3.89
8.7 1.0 1.003 0.015 1.48

98.6 50.0 49.866 0.533 1.07

Table 4. Parameter correlation matrix.
a1 a2 a3 a4

a1 1.00 -0.75 0.40 -0.36
a2 -0.74 1.00 -0.78 0.71
a3 0.40 -0.78 1.00 -0.97
a4 -0.36 0.71 -0.97 1.00
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Figure 2. (a) The sum of the squared errors as a function of a2 and a4. (b) Top: the convergence
of the coefficients with each iteration, (b) Bottom: values of χ2

ν and λ each iteration. (c) Top: data
y, curve-fit ŷ(t; afit), curve-fit confidence intervals; (d) Histogram of the errors between the data
and the fit.
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6.3 Example 3

Consider fitting the following function to a set of measured data.

ŷ(t; a) = a1 exp
(
− t

a2

)
+ a3 sin

(
t

a4

)
(29)

This function is linear a1 and a3 but not in a2 and a4. The .m-function to be used with lm.m
is simply:

1 function y_hat = lm_func (t,a,c)
2 y_hat = a(1)*exp(-t/a(2)) + a(3)* sin (t/a (4));

The “true” coefficient values atrue, the initial coefficient values ainit, resulting curve-fit coef-
ficient values afit and standard errors of the fit coefficients σa are shown in Table 5. The R2

fit criterion is 93 percent and χ2
ν = 0.948. In this example, the standard coefficient errors are

all less than ten percent. The coefficient correlation matrix is given in Table 6. Parameters
a4 is not correlated with the other coefficients. Parameters a1 and a2 are most correlated at
73 percent.

The bowl-shaped nature of the χ2
ν objective function is shown in Figure 3(a). This

shape is clearly not quadratic and has multiple minima. In this example, the initial guess
for coefficient a4, the period of the oscillatory component, has to be within ten percent of
the true value, otherwise the algorithm in lm.m will converge to a very small value of the
amplitude of oscillation a3 and an erroneous value for a4. When such an occurrence arises,
the standard errors σa of the fit coefficients a3 and a4 are quite large and the histogram of
curve-fit errors (Figure 3(d)) is not normally distributed.

The convergence of the coefficients and the evolution of χ2
ν and λ are shown in Fig-

ure 3(b). The coefficients converge monotonically to their final values.

The data points, the curve fit, and the curve fit confidence band are plotted in Fig-
ure 3(c).

A histogram of the difference between the data values and the curve-fit is shown in
Figure 1(d). Ideally these curve-fit errors should be normally distributed, and they appear
to be so in this example.
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16 The Levenberg-Marquardt algorithm for nonlinear least squares

Table 5. Parameter values and standard errors.
ainit atrue afit σa σa/afit (%)
10.8 6.0 6.161 0.245 3.97
39.3 20.0 18.854 1.008 5.34
0.7 1.0 0.778 0.071 9.20
6.1 5.0 4.970 0.040 0.81

Table 6. Parameter correlation matrix.
a1 a2 a3 a4

a1 1.00 -0.73 -0.25 0.10
a2 -0.73 1.00 0.14 -0.16
a3 -0.25 0.14 1.00 0.03
a4 0.10 -0.16 0.03 1.00
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Figure 3. (a) The sum of the squared errors as a function of a2 and a4. (b) Top: the convergence
of the coefficients with each iteration, (b) Bottom: values of χ2

ν and λ each iteration. (c) Top: data
y, curve-fit ŷ(t; afit), curve-fit confidence intervals; (d) Histogram of the errors between the data
and the fit.
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6.4 Multiple Minima

In nonlinear least squares problems in which the χ2 objective function has multiple
minima, (e.g., example 3), the numerical solution to the least squares minimization depends
on the initial guess used for the model coefficients. Figures 4, 6 and 8 show distributions of
multiple initial guesses and the associated fits for the four coefficients in examples 1, 2 and 3.
Note that the fiften best initial guesses (initial coefficient values that resulted in the lowest
χ2 values) are not clumped around the true coefficient values, but are distributed across
the full range of potential initial guesses (from 0.1 to 2.0 times the true coefficient value in
this example). The Levenberg-Marquardt method (as described herein) does not necessarily
converge to the closest local minimum. A good initial guess need not be very close to the
true coefficient values. So, in solving nonlinear least squares problems with multiple minima
it is suitale to compute several solutions using a random sample of multiple initial guesses
and to select the solution that has the lowest χ2 value.

Example 1 is a linear least squares problem. Figure 4 shows that 500 initnial coefficient
values uniformly distributed between 0.1 and 2 times the true value result in fit coefficients
very close to the true value. The χ2

ν value is 0.9698 (to within four significant figures) for
all initial guesses. Note that for coefficients a1, a2 and a3, the best initial guess (magenta)
is further from the optimal initial guess than the worst initial guess. For a4, the best initial
guess if very close to the true value.

Example 2 is an “easy” nonlinear least squares problem. Figure 6 shows that almost all
of the 500 initnial coefficient values uniformly distributed between 0.1 and 2 times the true
value result in fit coefficients very close to the true value. About ten converge to values that
are very far from the true value. The χ2

ν value is 1.15 (to within three significant figures) for
all initial guesses but the worst ten. The worst χ2

ν value is around 2000. For coefficients a2
and a4, the best initial guess (magenta) is close to the true value.

Example 3 is a “hard” nonlinear least squares problem. Figure 8 shows that many of
the 500 initnial coefficient values uniformly distributed between 0.1 and 2 times the true
value result in fit coefficients very close to the true value. And many others do not. The best
χ2

ν value is about 0.95. The worst is around 12. Good initial guesses are not necessarily very
close to the true coefficient values, and poor initial guesses can be close to the true values.
In such cases, initiating fits from multiple random initial guesses is helpful

The initial guesses used to generate Figures 1, 2 and 3 are the fifteenth best initial
guess (one of the green points) from the samples shown in Figures 4, 6 and 8. In these
examples, a sample of 500 initial guesses is much more than large enough to obtain a very
good fit.
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Figure 4. Example 1. A sample of 500 uniformly distributed random initial guesses and converged
(fit) solutions. black: initial guesses and converged (fit) solutions; blue: true coefficient values; red:
the worst initial guess and the associated converged (fit) coefficient values. green: the fifteen best
initial guesses and the associated converged (fit) coefficient values. magenta: the best initial guess
and the associated converged (fit) coefficient values. The fit is excellent and the residuals are roughly
normally distributed.
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Figure 5. left: data y, curve-fit ŷ(t; afit), curve-fit confidence intervals for the fit with the worst χ2
ν

value - using fit coefficients shown in red ln Figure 4. right: Histogram of the errors between the
data and the fit.
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Figure 6. Example 2. A sample of 500 uniformly distributed initial guesses and converged (fit)
solutions. black: initial guesses and converged (fit) solutions; blue: true coefficient values; red: the
worst initial guess and the associated converged (fit) coefficient values. green: the fifteen best initial
guesses and the associated converged (fit) coefficient values. magenta: the best initial guess and
the associated converged (fit) coefficient values.
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value - using fit coefficients shown in red in Figure 6. right: Histogram of the errors between the
data and the fit. The fit is astonishingly poor and the residuals are clearly not normally distributed.
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Figure 8. Example 3. A sample of 500 random uniformly distributed initial guesses and converged
(fit) solutions. black: initial guesses and converged (fit) solutions; blue: true coefficient values; red:
the worst initial guess and the associated converged (fit) coefficient values. green: the fifteen best
initial guesses and the associated converged (fit) coefficient values. magenta: the best initial guess
and the associated converged (fit) coefficient values.
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Figure 9. left: data y, curve-fit ŷ(t; afit), curve-fit confidence intervals for the fit with the worst χ2
ν

value - using fit coefficients shown in red in Figure 8. right: Histogram of the errors between the
data and the fit. The fit is astonishingly poor and the residuals are clearly not normally distributed.
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6.5 Fitting in Multiple Dimensions

The code lm.m can carry out fitting in multiple dimensions. For example, the function

ẑ(x, y) = (a1x
a2 + (1− a1)ya2)1/a2

may be fit to data points zi(xi, yi), (i = 1, · · · , m), using lm.m with a .m-file such as
1 my_data = load(’my_data_file ’); % load the data
2 x_dat = my_data (: ,1); % i f the independent v a r i a b l e x i s in column 1
3 y_dat = my_data (: ,2); % i f the independent v a r i a b l e y i s in column 2
4 z_dat = my_data (: ,3); % i f the dependent v a r i a b l e z i s in column 3
5
6 a_lb = [ 0.1 ; 0.1 ]; % lower bound of c o e f f i c i e n t v a l u e s
7 a_ub = [ 0.9 ; 2.0 ]; % upper bound of c o e f f i c i e n t v a l u e s
8 a_init = [ 0.5 ; 1.0 ]; % i n i t i a l guess f o r c o e f f i c i e n t v a l u e s
9

10 t = [ x_dat y_dat ]; % x and y are column v e c t o r s o f independent v a r i a b l e s
11
12 [a_fit ,Chi_sq ,sigma_p ,sigma_y ,corr ,R2 , cvg_hst ] = ...
13 lm(’lm_func2d ’,a_init ,t,z_dat ,weight ,0.01 , a_lb ,a_ub );

and with the .m-function lm_func2d.m
1 function z_hat = lm_func2d (t,p)
2 % example func t i on used f o r non l inear l e a s t squares curve−f i t t i n g
3 % to demonstrate the Levenberg−Marquardt funct ion , lm .m,
4 % in two f i t t i n g dimensions
5
6 x_dat = t(: ,1);
7 y_dat = t(: ,2);
8 z_hat = ( a(1)* x_dat .ˆa(2) + (1-a (1))* y_dat .ˆa(2) ).ˆ(1/ a (2));
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7 Remarks

This manuscript and the code lm.m were written in an attempt to understand and
explain methods of nonlinear least squares for curve-fitting applications.

Least squares methods of curve-fitting are useful in computing the values and the stan-
dard errors of coefficient estimates. Nonlinear least squares problems iterate from an initial
coefficient values, provided by a user based on their experience or possibly calculated from
non-statistical minimization algorithms, such as random search methods, the Nelder-Mead
simplex method, or coarsely gridding the coefficient space and finding the best combination
of coefficient values.

Least squares problems can be nonlinear and convex (examples 1), linear and con-
vex (example 2) or non-convex (example 3) in which the χ2 objective function has multiple
local minima and in which fitting algorithms can converge to different local minima depend-
ing upon the initial coefficient values, the measurement noise, and algorithmic parameters
(hyper-parameters). It is always perfectly appropriate and good to set the initial guess to
the best available coefficient estimates. In the absence of physical insight into a curve-fitting
problem, a reasonable initial guess may be found by coarsely gridding the coefficient space
and finding the best combination of coefficient values. There is no sense in forcing any iter-
ative curve-fitting algorithm to work too hard by initializing it with a random or otherwise
intentionally poor initial guess. In most applications of Levenberg Marquardt, coefficients
identified from neighboring initial guesses (±5%) should converge to similar coefficient esti-
mates (±0.1%). Further, the fit statistics of these converged coefficients should be the same
within two or three significant figures.

The implementation of Levenberg-Marquardt described here offers the user options to
customize the method to their application. The starting value of the damping coefficient,
λo, can optionally be specified in opts(7) of lm.m. The updating method for λ and h
can optionally be specified in opts(8), opts(9) and opts(10), as described in section
4.1.1 above. In the default update option (1), λ is scaled by the diagonal of the Hessian
of χ2, effectively providing a different value of λ for each coefficient. This is helpful for
problems involving broadly-ranging coefficient values. In update options (2) and (3), λ and
h are scaled by scalar maximum of the diagonal of the Hessian of χ2. The three examples
in this manuscript are run with the default case. In example 1 λ increases in the first
two steps (Figure 1), but then decreases. In example 2, a linear least squares problem,
λ decreases exponentially from its initial value of 0.01 (Figure 2). And in example 3, a
non-convex problem, λ jumps around, and increases exponentially from 10−6 to 10−1 from
function evaluation #22 to #28. The “best” initialization and updating method is problem-
dependent. Only if convergence rates or converged results are somehow inadequate would it
be worth trying different values of λo or different updating methods.
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