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1 Introduction
Given a sample of m measurements, y(x1), . . . , y(xm), at m sample points, x1, · · · , xm

(xi ∈ Rn, y ∈ R1, n ≥ 1), methods of multi-dimensional interpolation provide estimates
of the value ŷ(xo) at the interpolation point xo. The sample of measurement locations
(x1, · · · , xm) may be randomly distributed or uniformly spaced. In interpolated point ŷ(xo)
may be computed as a weighted average of the measurements y1, · · · , ym (y(x1), . . . , y(xm)).

ŷ(xo) =
m∑

i=1
wi(xo) y(xi) , (1)

in which the weights, wi, depend on the interpolation location xo, and the weights sum to
unity,

m∑
i=1

wi = 1 . (2)

2 General multi-dimensional interpolation
Interpolation methods are distinguished by the means of determining values for the

weights, wi, in the interpolation equation (1)

ŷ(xo) =
m∑

i=1
wi(xo) y(xi) .

In general, the closer xi is to xo, the more yi should influence the interpolated estimate ŷo.
So the weights wi(xo) should be smaller for points xi that are close to xo, and small for xi

values far from xo. For example, the weights wi(xo) can be specified to decrease with the
(Euclidean) distance doi between xo and xi,

doi = |xo − xi| =
√

(xo − xi)T(xo − xi) . (3)

Examples of so-called “inverse distance weighted” (IDW) interpolation weights include:

wi ∝
1

1 + (doi/α)q
, (4)

and
wi ∝

(
dmax − doi

dmax doi

)q

, (5)

where dmax is defined as maxi=1,··· ,n(doi), α > 0, and q > 0.
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Notes:

• The analyst has a choice of hyper-parameters dmax, q > 0, and α > 0.

• These weights do not depend on the characteristics of the data being interpolated.
They depend only on the distribution of the sample points xi with respect to the
interpolation point xo.

• The weights in equation (4) and (5) are not normalized (∑wi 6= 1), so for these cases,
the interpolation equation should include a normalization factor

ŷ(xo) =
m∑

i=1
wi(xo) y(xi) /

m∑
i=1

wi(xo) . (6)
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Figure 1. The effect of the exponent q on IDW weights in equations (4) and (5), α = 0.1dmax
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3 Optimal least-squares interpolation (“simple Kriging”)

In Kriging interpolation, the weights in the interpolation equation (1)

ŷ(xo) =
m∑

i=1
wi(xo) y(xi)

minimize a squared error

e =
(
y(xo)−

m∑
i=1

wi(xo) y(xi)
)2

(7)

such that ∑wi = 1.

The error is not summed over a number of data points, as is done with least-squares
curve-fitting. Least squares curve fitting is appropriately applied to data sets in which:

• one or more measurements are recorded at several values of the independent variables;

• the measurement error is significant;

• a goal is to fit a curve through a cloud of measured data points, but not through any
of the individual points in particular;

• another goal may be to identify the parameters of some physically-motivated model;
and

• the measurements are known in advance to vary according to some known function of
the independent variables and the model parameters.

Least squares interpolation, on the other hand, is appropriately applied to data sets in
which:

• only one measurement is taken at each value of the independent variables;

• the measurement error is almost insignificant;

• a goal is to fit a curve that passes exactly through each of the measured data points;

• the parameter values (the weights) are not needed to provide much, if any, insight into
the system being measured; and

• the fashion in which the measurements vary as a function of the independent variables
is not known in advance, and can be quite irregular, as in mountainous terrain.

Curve-fitting is often applied to parameter estimation and system identification problems.
Interpolation is often applied to meta-modeling problems.

cbnd H.P. Gavin November 7, 2021

http://creativecommons.org/licenses/by-nc-nd/4.0/


Interpolation, Kriging, Gaussian Processes 4

3.1 Three identities

Methods of Kriging interpolation make use of three identities derived below.

The squared error function may be expanded as follows.

e = y2
o − 2yo

∑
i

wiyi +
∑

j

wjyj

∑
i

wiyi (8)

= y2
o − 2yo

∑
i

wiyi +
∑

i

∑
j

wiyi wjyj (9)

(yo = y(xo), wi = wi(xo), yi = y(xi)).

The following two identities are valid only for ∑wi = 1.

2
∑

i

wi
1
2(yo − yi)2 =

∑
i

wi(y2
o − 2yoyi + y2

i ) (10)

= y2
o

∑
i

wi − 2yo

∑
i

wiyi +
∑

i

wiy
2
i (11)

= y2
o − 2yo

∑
i

wiyi +
∑

i

wiy
2
i (12)

∑
i

∑
j

wiwj
1
2(yi − yj)2 = 1

2
∑

i

∑
j

wiwj(y2
i − 2yiyj + y2

j ) (13)

= 1
2
∑

i

∑
j

wiwjy
2
i −

∑
i

∑
j

wiwjyiyj + 1
2
∑

i

∑
j

wiwjy
2
j (14)

= 1
2
∑

j

wj

∑
i

wiy
2
i −

∑
i

∑
j

wiwjyiyj + 1
2
∑

i

wi

∑
j

wjy
2
j (15)

= 1
2
∑

i

wiy
2
i −

∑
i

∑
j

wiwjyiyj + 1
2
∑

j

wjy
2
j (16)

=
∑

i

wiy
2
i −

∑
i

∑
j

wiwjyiyj (17)

So the squared error criterion can be expressed in terms of (yo − yi)2 and (yi − yj)2.

e = y2
o − 2yo

∑
i

wiyi +
∑

i

∑
j

wiwjyiyj

= y2
o − 2yo

∑
i

wiyi +
∑

i

wiy
2
i −

∑
i

wiy
2
i +

∑
i

∑
j

wiwjyiyj

= 2
∑

i

wi
1
2(yo − yi)2 −

∑
i

∑
j

wiwj
1
2(yi − yj)2 . (18)
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3.2 The “semivariogram”

In the sense of statistical averages, the squared differences (yi − yj)2 tend to increase
with the magnitude dij of the separation between xi and xj,

dij = |xi − xj| (19)

=
[∑

k

(xki − xkj)2
]1/2

(20)

=
√

(x1i − x1j)2 + (x2i − x2j)2 + · · ·+ (xni − xnj)2 (21)

The greater the distance between xi and xj, the greater the expected difference between the
measured observations y(xi) and y(xj). Define γij as half of the statistical expectation of
the squared difference between y(xi) and y(xj)

γij = 1
2E

[
(y(xi)− y(xj))2

]
(22)

= 1
2V [y(xi)− y(xj)] (23)

The function γij is termed the semivariogram of its random field. If the random field is
stationary and isotropic then γij depends only on the separation distance dij = |xi−xj|, and
increases with dij. The manner in which γij increases with dij depends on the nature of the
data. A number of semivariogram approximation functions, γ̂(d), have been proposed:

Kriging semivariogram approximation functions
Gaussian γ̂(d) = c1δ(d) + c2{1− exp

[
−1

2(d/c3)2
]
}

exponential γ̂(d) = c1 + c2{1− exp[−d/c3]}
sinc γ̂(d) = c1 + c2{1− sin(d/c3)/(d/c3)}

power-law γ̂(d) = c1 + c2(d/dmax)c3 0 ≤ c3, c3 not even
spherical γ̂(d) = c1 + c2{3

2( d
c3

)− 1
2( d

c3
)3} 0 < d < c3

γ̂(d) = c1 + c2 c3 ≤ h
rational quadratic γ̂(d) = c1 + c2(d/c3)2/(1 + (d/c3)2)

linear γ̂(d) = c1δ(d) + c3h
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Figure 2. Kriging semivariogram approximation functions for c1 = 0.1, c2 = 1.0, and c3 (shown
in the legend).

Notes:

• The matrix of semivariogram values [γ̂(dij)] must be positive definite,∑
i

∑
j wi γ̂(dij) wj > 0 , ∀ |w| 6= 0.

• γ̂(0) = 0, always, by definition. The diagonal of the matrix of semivariogram values
[γ̂(dij)] must be zero.

• The choice of the semivariogram function depends on the nature of the data being
interpolated.

• For any set of realistic data, variability (uncertainty) in the estimate of the semivari-
ogram becomes quite large as d becomes large. It is more important for the semivari-
ogram function to fit the semivariogram data for small values of d than for large values
of d. A “power-law” semivariogram function can work well in this regard. (opinion)

• As will be explored in the next section, the semivariogram is related to the covariance of
the data, Least squares interpolation when formulated in terms of covariance functions
is called Gaussian process modeling. The semivariogram is defined in equation (22) as

γ(d) = 1
2E

[
(y(x)− y(x+ d))2

]
, (24)

wherein d ∈ Rn. The covariance function is defined as

V (d) = E [y(x)y(x+ d)] . (25)
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The semivariogram and the covariance are related as follows

2γ(d) = E
[
(y(x)2

]
− 2E[y(x)y(x+ d)] + E

[
y(x+ d)2

]
(26)

= E[y(x)]− 2V (d) + V[y(x+ d)] (27)
= 2(V (0)− V (d)) (28)

γ(d) = E
[
y2
]
− V (d) , (29)

assuming that the variance of y(x) is independent of x and that the mean of y is zero. In
principle, then, if V (d) is always positive-valued and tends toward zero with increasing
d, then γ(d) should be positive valued and should asymptotically approach E[y2] with
increasing d. The numerical example in this document illustrates problems for which
γ(d) → ∞, can, however, result in good Kriging performance. This observation begs
for deeper investigation.

3.3 Least-squares optimal interpolation weights

Recall the interpolation equation (1),

ŷ(xo) =
m∑

i=1
wi(xo) y(xi) ,

and the squared error criterion (7),

e =
(
y(xo)−

m∑
i=1

wi(xo) y(xi)
)2

We have previously seen (equation (18)) that the squared error can be expressed as

e = 2
∑

i

wi
1
2(yo − yi)2 −

∑
i

∑
j

wiwj
1
2(yi − yj)2

In Kriging, the expected value of 1
2(y(xi)− y(xj))2 is approximated by an analytic semivar-

iogram function γ̂(dij) that depends only on the separation distance dij = |xi − xj|. Using
the semivariogram approximation, the error function can be written

e = 2
∑

i

wiγ̂oi −
∑

i

∑
j

wiγ̂ijwj . (30)

(γ̂oi = γ̂(doi), γ̂ij = γ̂(dij)). To find the weights, we minimize e such that the equality
constraint ∑wi = 1 is satisfied via a Lagrange multiplier. Adjoining the constraint to the
squared error,

eadj = 2
∑

i

wiγ̂oi −
∑

i

∑
j

wiγ̂ijwj − 2µ
(∑

i

wi − 1
)
, (31)
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where (−2µ) is the Lagrange multiplier. In order to enforce the constraint ∑i wi = 1 while
minimizing e,

∂eadj

∂wi

= 0 : γ̂oi −
∑

j

γ̂ijwj − µ = 0 , (32)

∂eadj

∂µ
= 0 :

∑
i

wi − 1 = 0 , (33)

which leads to the normal equations

γ̂11 γ̂12 · · · γ̂1m 1
γ̂21 γ̂22 · · · γ̂2m 1
... ... . . . ... ...
γ̂m1 γ̂m2 · · · γ̂mm 1
1 1 · · · 1 0





w1
w2
...
wm

µ

 =



γ̂o1
γ̂o2
...
γ̂om

1

 , (34)

or Gw = g. As in least-squares curve fitting, the matrix G depends only on the mea-
sured data through the semivariogram and could be computed without relying upon an
approximation γ̂(dij) for γij. The values γoi = 1

2E[(y(xo)− y(xi))2] depend on the unknown
interpolation point value y(xo), and cannot be evaluated from the data alone. Equation (34)
results from applying the approximation γij ≈ γ̂(dij) to both sides of the equation. (Recall
that γ̂(dij) is a presumed function of the distances between xi and xj, dij = |xi − xj|.)

Solving this set of “m+1” equations for “m+1” unknowns results in the optimal values
of the weights wi and the Lagrange multiplier µ.

Notes:

• The weights wi(xo) depend on the nature of the data being interpolated through the
choice of the semivariogram function.

• One matrix inversion and one matrix multiplication are required for all interpolation
points.

• For many problems the linear semivariogram function γ̂(dij) = dij is a good starting
point and can ultimately work well for many Kriging problems (opinion).

Exercise:
Show that values of the constants c1 and c2 in the function γ̂(dij) = c1 + c2dij do not affect
the values of the optimal weights wi.
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3.4 Error analysis

The squared error criterion (equation (30)) enables a systematic error analysis.

e = 2
∑

i

wiγ̂oi −
∑

i

∑
j

wiγ̂ijwj

= 2wTg−wTGw− µ (35)
= 2wTg−wTg− µ (36)
= wTg− µ (37)
= gTG−1g− µ > 0 (38)

So the standard error of the Kriging interpolation at xo may be readily computed as

σŷ(xo) =
√√√√ m∑

i=1
wi(xo) γ̂(|xo − xi|) (39)

Note that while the optimal weights are not sensitive to scaling of the semivariogram function,
the standard error does depend on such scaling.
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4 Gaussian processes

A Gaussian Process is the convolution of Gaussian white noise through a Gaussian
kernel function. Gaussian Process data can be interpoled by the expectation of the Gaussian
Process conditional upon the set of observed data.

Given a sample of m measurements, y(x1), . . . , y(xm), at m sample points, x1, · · · , xm

(xi ∈ Rn, y ∈ R1, n ≥ 1), a Gaussian Process model provides the expected value and
the variance of the random variable Y (xo) at the interpolation point xo. Assuming the
distributions of observed data values Y (xi), ..., Y (xm) and the distribution of the random
value Y (xo) at the interpolation point xo are joint Gaussian, with a presumed or fitted
function m̂(xi) to approximate the mean trend of the data µ(x), and a presumed function
κ̂(xi, xj) to approximate the covariance of the data κ(xi, xj) = E[(xi − µ(xi))(xj − µ(xj))]
this joint Gaussian distribution may be expressed as

Y (x1)
...

Y (xm)
Y (xo)

 ∼ N



m̂(x1)

...
m̂(xm)


m̂(xo)

,


κ̂(x1, x1) · · · κ̂(x1, xm)

... . . . ...
κ̂(xm, x1) · · · κ̂(xm, xm)



κ̂(x1, xo)

...
κ̂(xm, xo)

[
κ̂(xo, x1) · · · κ̂(xo, xm)

]
κ̂(xo, xo)

(40)

 Y (x)

Y (xo)

 ∼ N


[m̂]

m̂o

,


[
K̂
] [

K̂o

]
[
K̂o

]T
K̂oo



 (41)

From Bayes’ Theorem, the probability of yo conditional upon on the data y is

p(yo|y) = p(y|yo) p(yo)
p(y) (42)

in which, for joint Gaussian distributions,

Y (xo) ∼ N
(
m̂o, K̂oo

)
(43)

p(yo|y) = p(y, yo)
p(y) (44)

= N
(
m̂o + K̂T

o K̂−1(y − m̂) , K̂oo − K̂T
o K̂−1 K̂o

)
(45)

So the expected value of the uncertain point Yo, conditional upon the data y is,

E[Yo|y] = m̂o + K̂T
o K̂

−1 (y − m̂) (46)

Gaussian Process weighting vectors corresponding to equation (1) are w = K̂T
o K̂

−1. The
variance of Yo conditional upon the data y is

V[Yo|y] = K̂oo − K̂T
o K̂−1 K̂o (47)
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Relationships for the conditional distribution of a joint Gaussian distribution are derived in
section 3.3 of reference 5, and in Appendices A.2 and A.3 of reference 6, below.

The covariance function κ̂(xi, xj) has the properties of a kernel, meaning that the
presumed covariance matrix must be positive definite. A kernel function consistent with
the multi-variate Gaussian distribution is the squared exponential of the Euclidean distance
between xi and xj, d = ||xi − xj||.

κ̂(xi, xj) = κ̂(||xi − xj||) = κ̂(d) = σ2 exp
−1

2

(
d

s

)2
+ β2 δ(d) (48)

The hyper-parameter σ2 is the variance of the data [y1, ...ym], the hyper-parameter s is the
length scale of the variability in the data, the hyper-parameter β accounts for imprecise
measurements for which the expectation E((Y (xi) − Y (xi))2) is non-zero, and δ(·) is the
Dirac delta function.

Gaussian Process covariance approximation functions
Gaussian κ̂(d) = c1δ(d) + c2 exp

[
−1

2(d/c3)2
]

c1, c2, c3 > 0
exponential κ̂(d) = c1δ(d) + c2 exp[−d/c3] c1, c2, c3 > 0

sinc κ̂(d) = c1δ(d) + c2 sin(d/c3)/(d/c3) c1, c2, c3 > 0
power-law κ̂(d) = c1δ(d) + c2(1 + d/dmax)−2/c3 c1, c2 > 0,c3 < 0
spherical κ̂(d) = c1δ(d) + c2{1− 3

2( d
c3

) + 1
2( d

c3
)3} , if d < c3, 0 if d > c3 c1, c2, c3 > 0

rational quadratic κ̂(d) = c1δ(d) + max[0 , c2{1− (d/c3)2/(1 + (d/c3)2)} c1, c2, c3 > 0
linear κ̂(d) = max[0 , c1δ(d) + c2(1− c3h)] + δ(d) c1, c2 > 0
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Figure 3. Gaussian Process covariance approximation functions for c1 = 0.1, c2 = 0.9, and c3
(shown in the legend).
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A Gaussian process based upon a Gaussian covariance function is a Gaussian mixture.
Defining α ≡ K̂−1y

E[Yo|y] = m̂o +
m∑

i=1
αiK̂oi (49)

= m̂o +
m∑

i=1
αi σ

2 exp
[
− 1

2s2 ||xo − xi||2
]

(50)
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5 Numerical examples
In this section the relative accuracy of the Gaussian Process, Kriging, and inverse

distance weighted interpolations are assessed by their performance in reconstructing the
following function in R2:

y(x1, x2;L) = sin(πx1/L) cos(πx2/L)− 0.2x1x2 +N , (51)

from samples of this function with and without observation errors. The single subscripts in
equation (51) indicate the variable in R2. In the following, a double subscript indicates which
observation of which variable is involved, i.,e., xkj is the kth observation of variable xj, as in
equation (21). The parameter L indicates the length scale of variability in the surface y(x).
The domain considered here is −2 ≤ x1, x2 ≤ 2, as shown in Figure 4. The random variable
N represents measurement errors modeled as uncorrelated Gaussian noise, N ∼ N (0, σ2

N).

-2

-2

-1

-1

0y

1

exact surface with measured observation points

2

0
x
1

1

2

1
0

x
2

-12
-2

-2

-2

-1.5

-1

y

-0.5

-1

0

0.5

1

1.5

exact surface with measured observation points

0
x
1

1 2
1

0
x
2

-12
-2

Figure 4. The example surfaces for IDW, Kriging, and Gaussian Process interpolation. (a) length
scale L = 1, (b) length scale L = 2. The 105 regularly-spaced measured observation points
shown in blue are barely enough to characterize the surface with short length scale (L = 1),
but are more than adequate to characterize the surface with longer length scale (L = 2).

The accuracy of each interpolation method is quantified here in two ways: (a) by the
root mean square (R.M.S.) of the difference between the interpolated surface, ŷ(xp), and the
noise-free surface, given by equation (51),

Erms =

√√√√ 1
P

P∑
p=1

[y(xp)− ŷ(xp)]2 , (52)

where xp are the interpolation points and P is the total number of points being interpolated;
and (b) by the correlation between the interpolated surface ŷ(xp) and the noise-free surface,
given by equation (51),

5.1 Computing semivariogram and covariance data from random samples

When samples of x are regularly spaced on a grid many pairs of sample points xi, xj

have the same separation distance. In such cases, the squared semi-variations 1
2(yi − yj)2
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and the covariance (yi)(yj) of all pairs having similar separation distances may be averaged
to estimate the semi-variation and the covariance corresponding to the particular separation
distance. When samples of x are randomly distributed the semivariogram data may be
estimated as follows:

1. Compute dij = ||xi − xj||, vij = 1
2(y(xi) − y(xj))2 , and cij = y(xi) y(xj) for all pairs

of data.

2. Sort dij and the corresponding vij and cij into increasing numerical order of dij.

3. Group the remaining values of d into non-overlapping segments. For each segment,
compute the average of the corresponding values of v and c, and determine the mid-
point of the segment of d.

4. The averaged values of v and c and the corresponding segment-midpoints of d represent
the semivariogram and the covariance of the data set.

Example semivariogram and covariance data calculated with this method, and fit with a
number of approximate semivariogram and covariance approximation functions, are shown
in Figure 5. The length scale of the oscillatory nature of the data is revealed by the relative
maximum in the semivariogram data at d ≈ L. The semivariogram information in Figures 5
is relatively precise up to about half of the characteristic length scale of the problem. As
the correlation distance dij increases beyond the characteristic length scale of the surface,
variability in the semivariogram and covariance data clearly increases.

Accurate estimation of the semivariogram and covariance information requires a num-
ber of observations (measurements), m, that is sufficient to average enough terms of 1

2(y(xi)−
y(xj))2 and yiyj in order to achieve an acceptably small level of variability in the semivari-
ogram data (less than ten percent, or so), without sacrificing resolution in ||xi−xj||. Because
this number of measurements is often much greater than required for accurate Kriging in-
terpolation, one may question the importance of selecting a semivariogram function that is
highly representative of the data. These statements are supported by the following results.
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Figure 5. Semivariogram and covariance data computed from 105 randomly-distributed samples
in the domain (−2 < x1, x2 < 2) , and semivariogram functions and covariance functions
representative of the data. (a) and (b): length scale L = 1, (c) and (d): length scale L = 2.
Note here that the sinc functions capture the oscillatory trend in the data, and therefore might
be expected to provide a more accurate interpolation.

5.2 Results

The surfaces of equation (51), plotted in Figure 4, were interpolated with IDW inter-
polation with α = 0.1 and q = 3. The Kriging and Gaussian Process interpolations use sinc
and Gaussian semivariogram and covariance functions, as shown in Figure 5. Sample points
were either regularly distributed in a triangular mesh pattern or were uniformly distributed
over the domain. The interpolation’s root mean square error Erms and its correlation with
the noise-free function were calculated for length scales of L = 1 and L = 2, and using
m = 18, m = 53, and m = 105 measurement points.

The set of m = 105 regularly spaced interpolation points are shown as blue points in
Figure 4. Examples of the interpolated surfaces are shown in Figures 6 and 7 for L = 1 and
L = 2, respectively.

A visual comparison of Figures 4, 6, and 7 illustrates, as an example, the relative
characteristics of IDW, Kriging, and Gaussian Process interpolation. To further evaluate
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the relative characteristics of IDW, Kriging, and Gaussian Process interpolation, the R.M.S.
error, equation (52) and the correlation between the interpolated surfaces and the noise-free
surface are tabulated for other cases. In the following tables, the symbol “ms” indicates that
in the corresponding case the matrix G or K are nearly singular. In these examples the sinc
approximation functions resulted in singular matrices for both Kriging and Gaussian Process
interpolation. The Gaussian approximation function resulted in well conditioned matrices,
except for some of the cases with significant modeled observation noise.

Table 1. gridded observations no noise, no nugget, Sinc semivariogram and covariance approx-
imation function

RMS Error Correlation Coefficients
IDW1 IDW2 Kriging G.P. IDW1 IDW2 Kriging G.P.

m = 18
L = 1 0.484 0.515 0.764 0.764 0.558 0.541 0.310 0.310
L = 2 0.345 0.263 0.311 0.311 0.867 0.880 0.830 0.830
m = 53
L = 1 0.484 0.515 0.764 0.764 0.558 0.541 0.310 0.310
L = 2 0.508 0.520 ms ms 0.349 0.273 ms ms
m = 105
L = 1 0.504 0.504 ms ms 0.264 0.240 ms ms
L = 2 0.169 0.066 ms ms 0.989 0.991 ms ms

Table 2. gridded observations no noise, no nugget, Gaussian semivariogram and covariance
approximation function Figures 6 and 7

RMS Error Correlation Coefficients
IDW1 IDW2 Kriging G.P. IDW1 IDW2 Kriging G.P.

m = 18
L = 1 0.484 0.515 0.459 0.459 0.558 0.541 0.554 0.554
L = 2 0.526 0.554 0.533 0.533 0.390 0.361 0.320 0.320
m = 53
L = 1 0.504 0.504 0.501 0.501 0.264 0.240 0.224 0.224
L = 2 0.262 0.236 0.128 0.128 0.877 0.878 0.969 0.969
m = 105
L = 1 0.332 0.249 0.127 0.127 0.861 0.864 0.972 0.972
L = 2 0.169 0.066 0.001 0.001 0.989 0.991 1.000 1.000

For interpolating sparse noise-free measurements with Kriging and Gaussian Process
interpolation the use of uniformly randomly distributed samples appears to provide an in-
terpolation that is closer to the baseline function, as compared to interpolation with samples
drawn from a triangular grid. In contrast, the accuracy of IDW interpolation does not appear
to be sensitive to the randomness of the distribution of the measurement points.

For interpolating noise-free measurements with Kriging and Gaussian Process interpo-
lation three to five regularly spaced measurement points distributed along the characteristic
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Figure 6. Interpolated surfaces for L = 1 computed from m = 105 noise-free observations
measured at triangular grid points within the domain (Table 2)
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Figure 7. Interpolated surfaces for L = 2 computed from m = 105 noise-free observations
measured at triangular grid points within the domain (Table 2)
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Table 3. uniformly distributed random observations, no noise, no nugget, Sinc semivariogram
and covariance approximation function

RMS Error Correlation Coefficients
IDW1 IDW2 Kriging G.P. IDW1 IDW2 Kriging G.P.

m = 18
L = 1 0.434 0.452 ms ms 0.482 0.456 ms ms
L = 2 0.218 0.219 0.507 0.489 0.892 0.878 0.703 0.713
m = 53
L = 1 0.387 0.339 ms ms 0.637 0.680 ms ms
L = 2 0.325 0.278 ms ms 0.770 0.813 ms ms
m = 105
L = 1 0.300 0.179 ms ms 0.853 0.903 ms ms
L = 2 0.205 0.118 ms ms 0.955 0.969 ms ms

Table 4. uniformly distributed random observations, no noise, no nugget, Gaussian semivari-
ogram and covariance approximation function, Figures 8 and 9

RMS Error Correlation Coefficients
IDW1 IDW2 Kriging G.P. IDW1 IDW2 Kriging G.P.

m = 18
L = 1 0.434 0.452 0.366 0.367 0.482 0.456 0.645 0.649
L = 2 0.218 0.219 0.173 0.167 0.892 0.878 0.945 0.949
m = 53
L = 1 0.387 0.339 0.254 0.253 0.637 0.680 0.824 0.830
L = 2 0.325 0.278 0.136 0.125 0.770 0.813 0.973 0.978
m = 105
L = 1 0.300 0.179 0.104 0.102 0.853 0.903 0.979 0.980
L = 2 0.205 0.118 0.012 0.012 0.955 0.969 1.000 1.000

Table 5. uniformly distributed random observations, noise: σN = 0.5, no nugget, Sinc semi-
variogram and covariance approximation function

RMS Error Correlation Coefficients
IDW1 IDW2 Kriging G.P. IDW1 IDW2 Kriging G.P.

m = 18
L = 1 0.450 0.443 ms ms 0.489 0.482 ms ms
L = 2 0.342 0.414 1.017 1.040 0.767 0.754 0.415 0.426
m = 53
L = 1 0.386 0.335 ms ms 0.507 0.558 ms ms
L = 2 0.371 0.332 ms ms 0.690 0.693 ms ms
m = 105
L = 1 0.300 0.233 ms ms 0.730 0.762 ms ms
L = 2 0.231 0.199 ms ms 0.867 0.829 ms ms

cbnd H.P. Gavin November 7, 2021

http://creativecommons.org/licenses/by-nc-nd/4.0/


Interpolation, Kriging, Gaussian Processes 19

-2

-2

-1.5

-1

-1

-0.5

y

0

0
x

1

0.5

1

1 2
1

0
x

2
-1

IDW interpolation 1

1.5

2
-2

-2

-2

-1.5

-1

-1

-0.5

y

0

0
x

1

0.5

1

1.5

2
11

IDW interpolation 2

0
x

2
-12

-2

-2

-2

-1.5

-1

-1

-0.5

y

0

0
x

1
1 2

0.5

1

Kriging interpolation

1.5

1
0

x
2

-12
-2

-2

-2

-1.5

-1

-1

-0.5
y

0

0
x

1
1 1

2

0.5

1

1.5

Gaussian Process interpolation

0
x

2
-12

-2

Figure 8. Interpolated surfaces for L = 1 computed from m = 105 noise-free observations
measured at random points uniformly distributed over the domain (Table 4)

-1.5

-2

-1

-0.5

-1

0y

0.5

2

1

IDW interpolation 1

1.5

0
x

1
1 1

0
x

2
-12

-2

-1.5

-2

-1

-0.5

-1

0y

0
x

1
1 2

0.5

1

IDW interpolation 2

1.5

1
0

x
2

-12
-2

-1.5

-2

-1

-0.5

-1

0y

0.5

1

Kriging interpolation

1.5

0
x

1
1 2

1
0

x
2

-12
-2

-1.5

-2

-1

-0.5

-1

0y

0.5

1

Gaussian Process interpolation

1.5

0
x

1
1 2

1
0

x
2

-12
-2

Figure 9. Interpolated surfaces for L = 2 computed from m = 105 noise-free observations
measured at random points uniformly distributed over the domain (Table 4)
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Table 6. uniformly distributed random observations, noise: σN = 0.5, no nugget, Gaussian
semivariogram and covariance approximation function

RMS Error Correlation Coefficients
IDW1 IDW2 Kriging G.P. IDW1 IDW2 Kriging G.P.

m = 18
L = 1 0.450 0.443 0.405 0.405 0.489 0.482 0.589 0.591
L = 2 0.342 0.414 0.398 0.394 0.767 0.754 0.802 0.805
m = 53
L = 1 0.386 0.335 0.303 0.307 0.507 0.558 0.641 0.645
L = 2 0.371 0.332 0.781 0.795 0.690 0.693 0.331 0.349
m = 105
L = 1 0.300 0.233 0.878 0.876 0.730 0.762 0.300 0.304
L = 2 0.231 0.199 ms ms 0.867 0.829 ms ms

Table 7. uniformly distributed random observations, noise: σN = 0.5, nugget: c1 = 0.10, Sinc
semivariogram and covariance approximation function

RMS Error Correlation Coefficients
IDW1 IDW2 Kriging G.P. IDW1 IDW2 Kriging G.P.

m = 18
L = 1 0.450 0.443 ms 0.512 0.489 0.482 ms 0.296
L = 2 0.342 0.414 ms 0.494 0.767 0.754 ms 0.445
m = 53
L = 1 0.386 0.335 ms 0.496 0.507 0.558 ms 0.249
L = 2 0.371 0.332 ms 0.472 0.690 0.693 ms 0.468
m = 105
L = 1 0.300 0.233 ms 0.477 0.730 0.762 ms 0.355
L = 2 0.231 0.199 ms 0.340 0.867 0.829 ms 0.755

Table 8. uniformly distributed random observations, noise: σN = 0.5, nugget: c1 = 0.10,
Gaussian semivariogram and covariance approximation function, Figures 10 and 11

RMS Error Correlation Coefficients
IDW1 IDW2 Kriging G.P. IDW1 IDW2 Kriging G.P.

m = 18
L = 1 0.450 0.443 0.405 0.425 0.489 0.482 0.589 0.583
L = 2 0.342 0.414 0.398 0.320 0.767 0.754 0.802 0.783
m = 53
L = 1 0.386 0.335 0.303 0.313 0.507 0.558 0.641 0.626
L = 2 0.371 0.332 0.781 0.265 0.690 0.693 0.331 0.825
m = 105
L = 1 0.300 0.233 0.878 0.252 0.730 0.762 0.300 0.803
L = 2 0.231 0.199 ms 0.224 0.867 0.829 ms 0.877
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Figure 10. Interpolated surfaces for L = 1 computed from m = 105 noisy observations mea-
sured at random points uniformly distributed over the domain (Table 8)
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Figure 11. Interpolated surfaces for L = 2 computed from m = 105 noisy observations mea-
sured at random points uniformly distributed over the domain (Table 8)
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length scale of the features of the surface is sufficient for Kriging interpolation to be accu-
rate to within one percent. The accuracy of IDW interpolation with randomly or regularly
spaced measurements is roughly a tenth of the accuracy of Kriging with regularly spaced
measurements.

The distribution of interpolation errors is easily estimated in Kriging and Gaussian Pro-
cess interpolation and enables an identification of regions of high accuracy and regions of low
accuracy. Regions of high accuracy naturally coincide with regions of denser measurement
points.

6 Anisotropic semivariogram and kernel functions
The three interpolation methods described here may be generalized to interpolate data

with anisotropic variability by simply replacing the Euclidian distance (squared, and scaled
by c3)

d2
ij/c

2
3 = (xi − xj)T(xi − xj) / c2

3

with a squared distance variable that is weighted by the inverse of the covariance matrix
V ∈ Rn×n (V = V T, V > 0) of the anisotropic variability,

d2
ij/c

2
3 = (xi − xj)TV −1(xi − xj).

For convienence, we define the difference vector between two sets of features

pk(i,j) = xi − xj

with xi, xj, and pk ∈ Rn, i, j ∈ {1, · · · ,m}. Defining the matrix V as the covariance matrix
of a Gaussian kernel function with a mean function of zero,

κ̂(xi, xj;V −1) = c2 exp
[
−1

2(xi − xj)TV −1(xi − xj)
]

= c2 exp
[
−1

2 pT
k V −1 pk

]
The corresponding value of the kernel κ(xi, xj) is the covariance E[Y (xi)Y (xj)] (for a mean
function m(x) of zero). The coefficient c2 is simply the variance E[Y (xi)Y (xi)]. A maximum
likelihood estimate for the inverse covariance matrix V −1 may be found without iteration
using log-transformed variables. The error in the log-transformed distribution is

ek = ln κ̂(xi, xj;V −1)− ln κ(xi, xj) = ln c2 −
1
2
(
pT

kV
−1pk

)
− ln κ(xi, xj) . (53)

The error ek is linear in the coefficients of V −1,

pT
kV

−1pk = p̄T
k v̄ (54)

where, for symmetric covariance matrices, v̄ and p̄k are vectors of length n× (n+ 1)/2.

v̄ =



[V −1
11 V −1

12 · · · V −1
1n ]T

[V −1
22 V −1

23 · · · V −1
2n ]T

[V −1
33 V −1

34 · · · V −1
3n ]T

...
V −1

nn


(n(n+1)/2)×1
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and

p̄k =



pk1 [pk1 2pk2 · · · 2pkn]T
pk2 [pk2 2pk3 · · · 2pkn]T
pk3 [pk3 2pk4 · · · 2pkn]T
... . . .
pkn [ pkn]


(n(n+1)/2)×1

Defining P̄ ∈ R(n(n+1)/2)×m2 as the concatination of all m2 vectors p̄k

P̄ =
[
p̄1 p̄2 p̄3 · · · p̄m2

]
,

the set of m2 errors ē = [e1, e2, · · · , em2 ]T becomes

ē = ln c2 −
1
2 P̄

Tv̄ − ln κ

from which, under the assumption of normally distributed errors, the maximum likelihood
estimate of v̄ is the orthogonal projection of 2(ln c2− ln κ) onto the basis comprised by rows
of P̄ , and solves

[P̄ P̄T] v̄ = P 2(ln c2 − ln κ)
In practice, values of κ are computed from estimates of E[YiYj] by sampling within each
MECE hyperbox in the n-dimensional parameter space. When a sample of a Gaussian
Process in which the domain of the independent variables is not much larger than the largest
eigenvalue of V −1, values of κ(xi, xj) may be negative, and can not be log-transfored. In
such cases, which are not uncommon, a subset of the m2 columns of P̄ are chosen as the
cluster of p(xi, xj) values centered at the origin and for which κ(xi, xj) > ε > 0. This is a
simple application of distribution-based clustering.

7 Examples

8 Summary
Sparsely-sampled measurements of several independent variables may be interpolated

by calculating a weighted average of the measurements. In inverse distance weighted (IDW)
interpolation the weights decrease monotonically with the distance between the interpolation
point and the measurement point. In least-squares-optimal interpolation (Kriging), the
weights minimize a squared error criterion which can be expressed as a function of the
squared difference between measured values, the so-called semivariogram. By approximating
the semivariogram as an analytic function of the distance separating measurement points,
the Kriging weights can be evaluated in closed-form. The interpolation accuracy is readily
computed and provides a means of assessing the distribution of interpolated values.

In this study IDW, Kriging, and Gaussian process interpolation methods are applied
to two surfaces with differing characteristic length scales.

Even when observation noise is significant (SNR ≈ 2) Gaussian process interpolation
using a nugget in the covariance approximation function and using at least five sample
points per the characteristic length scale can recover the noise-free relationship with roughly
85 percent correlation.
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