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1 An idealized linear base isolation system shaken by random loading

Consider a damped single-degree-of-freedom (SDOF) oscillator (with mass ms, stiffness ks
and damping cs resting on a isolation pad with mass mi, stiffness ki and damping ci. The
system is shaken by support motions z(t)) The coupled equations of motion are

mi(r̈i(t) + z̈(t)) + ciṙi(t) + kiri(t)− ks(rs(t)− ri(t))− cs(ṙs(t)− ṙi(t)) = 0 (1)
ms(r̈s(t) + z̈(t)) + ks(rs(t)− ri(t)) + cs(ṙs(t)− ṙi(t)) = 0 (2)

The responses of interest in a base isolation problem are the displacement of the isolation
system ri(t), the deformation of the structure rs(t)− ri(t), and the total acceleration of the
structure r̈s(t) + z̈(t). The input base acceleration, z̈(t) may be related to the responses of
interest through the state-space model
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ṙi
ṙs
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or, more symbolically, ẋbi = Abixbi +Bbiz̈, and ybi = Cbixbi.
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Figure 1. Displacement coordinates for a Base Isolation system
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2 Ground motion model
The motion of the base is random, but not purely white noise. The base acceleration may be
modeled as the output of another linear time-invariant system, forced by unit white noise,
u(t). The linear time-invariant system describing the relationship between the white noise
process u(t) and the assumed random input accelerations z̈(t) is

d

dt

[
rg
ṙg
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z̈ = (4πζgfg) ṙg (6)

or, more symbolically, ẋg = Agxg+Bgu, and z̈ = Cgxg. This model for the input accelerations
is quantified in terms of the numerical values of three paramters: fg is called the “ground
frequency”, ζg is called the “ground damping ratio”, and σz̈ is called the “root-mean-square
ground acceleration amplitude.” By changing these ground motion parameter values, ground
motions corresponding to different geophysical settings may be simulated. Values for these
parameters are given in the following table. The rise and decay parameters describe the
increase and decrease of the ground motion over the course of the transient. The “envelope
function” used to model this rise and decay is:

s(t) = (t/(aτ))a exp(a− t/τ) . (7)
Table 1. Ground motion parameters for ATC-63 ground motion classes

root-mean-square ground ground rise decay
ATC-63 ground acceleration frequency damping exponent time

σz̈ fg ζg a τ

Far-Field 0.6 1.5 0.9 4.0 2.0
Near-Fault, No Pulse 0.8 1.3 1.1 3.0 2.0

Near-Fault, Pulse 1.6 0.5 1.8 1.0 2.0
m/s2 Hz . . s
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Figure 2. Power Spectral Densities and Envelope Functions for various earthquake ground
motions
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3 Cascaded ground motion and structural systems and r.m.s. performance

The cascade system of the ground motion model feeding into the base isolation model is

d

dt
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(9)

or, more symbolically, ẋc = Acxc + Bcu, and y = Ccxc. The mean-square responses of the
cascade system are

σ2
y = diag

(
CcQcC

T
c

)
(10)

where Qc is the controllability gramian which satisfies the right Liapunov equation

AcQc +QcA
T
c +BcB

T
c = 0 (11)

4 Design optimization

Using this method to analyze the root-mean-square responses of the structural acceleration,
the structural deformation and the isolation deformation for each of the three class of ground
motion models, an optimization problem can be posed to determine values for:

• the isolation system period Ti = 2π
√

(mi +ms)/ki,

• the structural period Ts = 2π
√
ms/ks,

• the isolation system damping ζi = ci/
√

2(mi +ms)ki , and

• the structural damping ζs = cs/
√

2msks

that minimizes the root-mean-square of the structura acccleration σr̈s+z̈ such that:

• the root-mean-square isolator deformation σri and

• the structural deformation σrs−ri

are within prescribed bounds, and such that the design variables (Ti, Ts, ζi, and ζs) are
bounded. Bounds used in this example are given in in the second and third columns of
Table 2 Results of optimizations for the three types of ground motion are shown in columns
4, 5, and 6 of Table 2.

Figure 4 shows the amplitude spectra of the structural acceleration (σr̈s+z̈) and the defor-
mations (σri and σrs−ri).
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Table 2. bounds on design variables and root-mean-square deformation responses and optimized
parameter values and performance metrics for Far Field, Near Field No Pulse, and Near Field
Pulse ground motions

min bound max bound FF NFNP NFP
Ti 1.0 3.0 3.0 3.0 3.0 s
Ts 0.5 1.0 1.14 0.5 0.5 s
ζi 0.02 0.20 0.20 0.20 0.20 -
ζs 0.02 0.10 0.10 0.10 0.10 -

σr̈s+z̈ 152 281 662 mm/s2

σri 0 200 30 58 140 mm
σrs−ri 0 5 5.0 1.8 4.2 mm

Figure 3. One of 45 seismic isolation bearings in the isolation galley of the Christchurch
Women’s Hospital, NZ, March 2013
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Figure 4. Frequency spectra of the response of base isolated structures to earthquake ground
motions “optimized” for three types of ground motion (NF, NFNP, NFP).
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