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The matrix equation y = Ax defines a mapping of a vector x to another
vector y. For real symmetric matrices A ∈ R2×2 and all vectors x ∈ R2

s.t. x2
1 + x2

2 = 1, a visualization of this mapping helps in interpreting
solutions to the standard eigenvalue problem Av = vλ.
Matrices with real eigenvalues may be symmetric or non symmetric. All
symmetric matrices have real-valued eigenvalues and eigenvectors. Some
non-symmetric matrices have real-valued eigenvalues and eigenvectors.
The eigenvectors of symmetric matrices with distinct eigenvalues are or-
thogonal and vice-versa. (vT

i vj = 0 for i 6= j ⇔ A = AT) So the
eigenvectors of any non-symmetric matrix are not-orthonormal. Matri-
ces with real eigenvalues are classified according to the signs of their
eigenvalues. These classifications are illustrated in the following sections,
in which,

A = V ΛV −1

Λ =
[
±0.5 or 0

±1.5

]
, Vs =

[ [
0.8
0.6

]
,

[
0.6
−0.8

] ]
, Vns =

[ [
0.8
0.6

]
,

[
1/
√

2
−1/
√

2

] ]

• the colums of Vs are orthogonal (V −1
s = V T

s ), resulting in A = AT

• the colums of Vns are not orthogonal, resulting in A 6= AT

• the black circle represents x ∈ R2 s.t. x2
1 + x2

2 = 1 , the unit circle
• the blue ellipse represents y = Ax ∀ x : x2

1 + x2
2 = 1

• the black solid line represents one of the elements of x
• the blue solid line represents the corresponding y = Ax

• the black dashed lines represent the eigenvectors, v, of A
• the red lines represent the scaled eigenvectors, vλ, of A
• the surfaces are graphs of the quadratics z = xTAx
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A is symmetric (A = V ΛV −1 V −1 = V T)
positive eigenvalues (positive definite)[

0.86 −0.48
−0.48 1.14

] [
x1
x2

]
=

[
1
3

]
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negative eigenvalues (negative definite)[
−0.86 0.48

0.48 −1.14

] [
x1
x2

]
=

[
1
3

]
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positive and negative eigenvalues (indefinite)[
−0.22 0.96

0.96 −0.78

] [
x1
x2

]
=

[
1
3

]
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non-negative eigenvalues (non-negative definite)[
0.54 −0.72
−0.72 0.96

] [
x1
x2

]
=

[
1
3

]
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non-positive eigenvalues (non-positive definite)[
−0.54 0.72

0.72 −0.96

] [
x1
x2

]
=

[
1
3

]
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A is not symmetric (A = V ΛV −1 V −1 6= V T)
positive eigenvalues[

1.29 −1.05
−0.16 0.71

] [
x1
x2

]
=

[
1
3

]
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negative eigenvalues[
−1.29 1.05

0.16 −0.71

] [
x1
x2

]
=

[
1
3

]
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positive and negative eigenvalues[
−1.07 2.10

0.32 0.07

] [
x1
x2

]
=

[
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3

]
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non-negative eigenvalues[
1.18 −1.57
−0.24 0.32

] [
x1
x2

]
=

[
1
3

]
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non-positive eigenvalues[
−1.18 1.57

0.24 −0.32

] [
x1
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=
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the transpose of a matrix product is the product of the transposes in reverse order
For two real-valued matrices X ∈ Rp×q and Y ∈ Rq×r,

(XY )T = Y TXT

Consider the i, j and j, i elements of the matrix product (XY )

(XY )ij =
q∑

k=1
XikYkj

(XY )ji =
q∑

k=1
XjkYki

=
q∑

k=1
YkiXjk

=
q∑

k=1
Y T
ikX

T
kj

= (Y TXT)ij
And for two complex-valued matrices X ∈ Cp×q and Y ∈ Cq×r,

(XY )∗ = Y ∗X∗

Consider the i, j element of (XY ) and j, i element of the complex con-
jugate of (XY )

(XY )ij =
q∑

k=1
XikYkj

(XY )′ji =
q∑

k=1
X ′jkY

′
ki

=
q∑

k=1
Y ′kiX

′
jk

=
q∑

k=1
Y ∗ikX

∗
kj

= (Y ∗X∗)ij
where •′ denotes the complex conjugate of a scalar and •∗ denotes the
complex conjugate transpose of a matrix.
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the inner product of any matrix with itself is real and symmetric

For any real-valued matrix X ∈ Rp×q, (XTX) = (XTX)T

From the fact that (XT)T = X and the result (XY )T = (Y TXT), it
is seen that (XTX)T = (XTX).
So (XTX) is symmetric.

For any complex-valued matrix X ∈ Cp×q, (X∗X) = (X∗X)T

From the fact that (X∗)∗ = X and the result (XY )∗ = (Y ∗X∗), it is
seen that (X∗X)∗ = (X∗X).
Further, a complex value times its complex conjugate is real.
So (X∗X) is real and symmetric.

pairs eigenvectors of a real symmetric matrices corresponding to distinct eigenvalues
are orthogonal

Consider two eigenvalues λ and µ of a real symmetric matrix A ∈ Cn×n,
(A = AT), and their associated eigenvectors v and u.

Av = vλ Au = uµ

Pre-multiply the first by uT and the second by vT

uTAv = uTvλ vTAu = vTuµ

Since A is symmetric, uTAv = vTATu = vTAu so subtracting the
equations above gives

uTAv − vTAu = uTvλ− vTuµ

0 = uTv(λ− µ)
So, if the eigenvalues λ and µ are not equal to each other, then uTv must
be zero, or, in other words, the eigenvectors u and v must be orthogonal.
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the eigenvalues of any real symmetric matrix are real
We can use the above method to show that the eigenvalues of any real
symmetric matrix are real. Consider an eigenvalue problem

Av = vλ

and its complex conjugate (not transpose)

(Av)′ = (vλ)′

Distributing the complex-conjugates ...

A′v′ = v′λ′

Because A is presumed real A′ = A, and

Av′ = v′λ′

Pre-multiplying the original eigenvalue probelm by v′T and the last by
vT we get the two quadratic forms

v′TAv = v′Tvλ

vTAv′ = vTv′λ′

Because A is symmetric A = AT,

(v′TAv)T = (vTATv′) = (vTAv′)

Now, subtracting the two quadratic forms above,

v′TAv − vTAv′ = v′Tvλ− vTv′λ′

resulting in
0 = v′Tv(λ− λ′)

Since v 6= 0, (λ − λ′) must be zero, or, in other words, the eigenvalue
must equal its complex conjugate, or, in other words, the eigenvalue must
be real.
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matrix-vector multiplication via eigenvalue decomposition

As seen above, for real symmetric matrices A ∈ Rn×n, the eigenvalues
are real and the eigenvectors are orthogonal. For normalized orthogonal
eigenvectors arranged column-wise in a matrix

V =


| | |
v1 v2 · · · vn
| | |



the orthonormality implies V TV = I , or, equivalently V T = V −1. For
matrices with orthogonal eigenvectors, i.e., real symmetric matrices, the
eigenvalue problem may be written for all eigenvectors and eigenvalues
as follows,

AV = V Λ

or, in general

A = V ΛV −1

or, specifically for real symmetric matrices A

A = V ΛV T
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http://creativecommons.org/licenses/by-nc-nd/3.0/


10 CEE 629. System Identification – Duke University – Spring 2021 – H.P. Gavin

y = Ax

y = V ΛV Tx

=


| | |
v1 v2 · · · vn
| | |





λ1
λ2

. . .
λn





− vT
1 −

− vT
2 −...

− vT
n −





x1
x2...
xn



=


| | |

λ1v1 λ2v2 · · · λnvn
| | |





− vT
1 −

− vT
2 −...

− vT
n −





x1
x2...
xn




y1
y2...
yn


=

[
λ1v1v

T
1 λ2v2v

T
2 · · · λnvnvT

n

]


x1
x2...
xn



A =
n∑
i=1
λi

[
viv

T
i

]
n×n

So a real symmetric matrix A ∈ Rn×n may be thought of as the wighted
sum of rank-one matrices [vivT

i ] ∈ Rn×n in which the weights are the
eigenvalues λi.
positive definite
A positive definite is a symmetric matrix with postiive eigenvalues.
Positive definite matrices are denoted A > 0.
A > 0⇔ ∀x 6= 0,xTAx > 0.
negative definite
A negative definite is a symmetric matrix with negative eigenvalues.
Negative definite matrices are denoted A < 0.
A < 0⇔ ∀x 6= 0,xTAx < 0.
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correlation of uncorrelated random variables

A standard random variable, Z, has an expected value of 0 and a vari-
ance of 1,

E[Z] = 0 , E[Z2] = 1
A pair of uncorrelated standard random variables, Z1 and Z2, has a
covariance of 0,

E[Z1] = 0 , E[Z2] = 0 , E[Z2
1 ] = 1 , E[Z2

2 ] = 1 E[Z1Z2] = 0

The rows of a matrix of uncorrelated standard random variables z ∈ Rn×N

can be interpreted as n uncorrelated time series of N points. The covari-
ance of z is

Cz = E[zzT] = lim
N→∞

1
N
zzT = In

The rows of a matrix a = Rz, with R ∈ Rn×n can be interpreted as n
correlated time series of N points. The covariance of a is

Ca = E[aaT] = E[RzzTRT] = R E[zzT]R = RRT

Ca = lim
N→∞

1
N
aaT = lim

N→∞

1
N
RzzTRT = lim

N→∞

1
N
NRRT = RRT

The eigenvalue decompostion Ca = V ΛV T may be used to determine
the correlating matrix R.

R = V Λ1/2

(Other matrix factorizations, e.g., Cholesky factorization or LDLT fac-
torization, may also be used to compute R from Ca.)
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