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Nonstationary Consistency of Subspace Methods
Albert Benveniste, Fellow, IEEE, and Laurent Mevel

Abstract—In this paper, we study “nonstationary consistency”
of subspace methods for eigenstructure identification, i.e., the
ability of subspace algorithms to converge to the true eigenstruc-
ture despite nonstationarities in the excitation and measurement
noises. Note that such nonstationarities may result in having
time-varying zeros for the underlying system, so the problem is
nontrivial. In particular, likelihood- and prediction-error related
methods do not ensure consistency under such situation, because
estimation of poles and estimation of zeros are tightly coupled. We
show in turn that subspace methods ensure such consistency. Our
study carefully separates statistical from nonstatistical arguments,
therefore, enlightening the role of statistical assumptions in this
story.

Index Terms—Consistency, nonstationary excitation, subspace
methods.

I. INTRODUCTION

I N THIS PAPER, we study “nonstationary consistency” of
subspace methods for eigenstructure identification, i.e., the

ability of subspace algorithms to converge to the true eigenstruc-
ture despite nonstationarities in the excitation and measurement
noises. Note that such nonstationarities may result in having
time-varying zeros for the underlying system, so the problem
is nontrivial. In particular, likelihood- and prediction-error-re-
lated methods do not ensure consistency under such situation,
because estimation of poles and estimation of zeros are tightly
coupled.

In 1985, Benveniste and Fuchs [6] proved that the instru-
mental variable method and what was called the balanced re-
alization method for linear system eigenstructure identification
are consistent for the class of nonstationary systems we discuss
here. Since this paper, the family of subspace algorithms has
been invented [16], [22], [25]–[27] and has expanded rapidly.
Therefore, we felt it was timely revisiting the results of [6] and
generalizing them to subspace methods. To this end, [6] had
first to be restructured to show an important intermediate re-
sult, which had not been noticed explicitly in the original paper
but was clearly there. Still, the generalization we present here is
far less trivial than expected and required introducing new tech-
niques for the proof.

There are a number of convergence studies on subspace
methods in a stationary context in the literature; see [2]–[4],
[10], [11], and [13], to mention just a few of them. These papers
provide deep and technically difficult results including conver-
gence rates. They typically address the problem of identifying
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the system matrices or the transfer matrix, i.e., both the pole
and zero parts of the system. In contrast, the nonstationary
consistency property that we study here holds for the estimation
of the eigenstructure (the pole part) only and does not apply
to the zero part, at least as far as the transfer from unobserved
inputs to output measurements is concerned. It is definitely
different from the problem considered in [24].

The paper is organized as follows. The problem of nonsta-
tionary consistency is stated in Section II, where a generic form
of subspace algorithm is also stated. Section III collects the key
steps of our analysis; Section III-A collects the nonprobabilistic
arguments of the consistency proof; probabilistic arguments of
the proof are collected in Section III-B; and our assumptions
are discussed in Section III-C. Finally, in Section IV, by using
the so developed toolbox of theorems and lemmas, we prove
nonstationary consistency of some representative subspace al-
gorithms.

II. PROBLEM SETTING—A GENERIC SUBSPACE ALGORITHM

A. Problem Setting

Consider the following linear system:

(1)

where is the -valued state, is the -valued
observed input, and are unobserved input disturbances, and

is the -valued observed output.
The key point of this work is that the unobserved input dis-

turbances can be nonstationary. For instance, they can be white
noises having unknown time-varying covariance matrices. For
this case, we should rather reformulate system (1) in the fol-
lowing form, which enlightens that itself is nonstationary in
a nontrivial way:

(2)

where

is the time-varying covariance matrix of the excitation noise in
(1), and is a stationary standard white noise. Note that the
zero part of the transfer is time-varying in this case,
so that consistency makes sense only with respect to (w.r.t.) the
pole part.

The problem we consider is the identification of the pair
up to a change of basis in the state space of system (2).

Equivalently, we identify the pairs , where ranges
over the set of eigenvalues of [the poles of system (2)] and
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are a corresponding set of eigenvectors. Said in words, we
consider the problem of eigenstructure identification.1

Our objective is to show that subspace methods provide con-
sistent estimators of the eigenstructure, also for nonstationary
cases as aforementioned. Of course, none of the matrices

, and are known. Matrices ,
and are regarded as nuisance and are not for identification
in this paper.

Now, we introduce the generic subspace algorithm we will
analyze throughout this paper. This generic algorithm will be
subsequently specialized to cover the various algorithms used
in practice.

B. Generic Subspace Algorithm

Consider an observable pair of matrices, where is
and is . Throughout this paper, denotes an integer

large enough such that

where ...
(3)

Our generic algorithm assumes a finite family of
-matrices, where and . It returns

a pair . We describe it next. Consider the matrix
defined by

...
(4)

and decomposed by singular value decomposition (SVD) as

(5)

Partition the matrix defined in (5) into its successive
-block rows and set

... and ...

Using these notations, set

(6)

1This problem and the situation described in (2) naturally occur, for example,
in the modal analysis of mechanical structures subject to vibration under both
controlled and/or natural and turbulent excitation [1].

least squares solutions of (7)

Formulas (4)–(7) constitute our generic subspace algorithm.
The remainder of the paper consists in analyzing this algorithm
and specializations thereof. The sentence

“ provides consistent estimators for ”

that we use throughout this paper means that, when provided
with the sequence , this generic algorithm yields consis-
tent estimators for the pair in the sense
made precise in Theorem 1.

III. BASIC THEOREMS FOR NONSTATIONARY CONSISTENCY

Throughout this paper, for , a nondecreasing sequence
of positive real numbers, generically denotes a ma-
trix-valued sequence , of fixed dimensions, such that

when tends to infinity.
Also, throughout this paper, we distinguish Conditions from

Assumptions. Assumptions will refer to hypothesized properties
of the system or its inputs; Assumptions may or may not hold.
In contrast, Conditions can be satisfied by proper design of the
algorithm; enforcing these Conditions will be typically part of
the process of designing the subspace algorithms.

Our analysis proceeds in two steps. The first step collects
the arguments that do not involve probability, whereas only the
second step makes use of statistical arguments.

A. Nonprobabilistic Analysis

In this section, we collect all arguments of the analysis that
make no use of probability at all. Therefore, “convergence” is
meant here in the usual, nonprobabilistic, sense.

1) From Hankel Matrices to Eigenstructure: For
and , consider a family of

-matrices, satisfying Condition 1.
Condition 1: The matrices decompose as

(8)

Furthermore, the sequence of -matrices sat-
isfies the following condition:

(9)

where denotes the th largest singular value of matrix
.
Theorem 1 (Consistent Estimator [6]): Under Condition 1,

defined by (4)–(7) is a consistent estimator of
in the following sense:

there exists a sequence of matrices , with and
uniformly bounded w.r.t. , such that

and

Proof: It is found in [6, Sec. III-C], dealing with the bal-
anced realization algorithm. Besides the fact that [6] speaks
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and not , the only slight change is that ma-
trix in (8) replaces the controllability matrix
of [6], where is the sample length.

In the following, we will relate our matrices to empir-
ical covariances of data. For this, we need some more notations.

2) Notations: For and , two matrices of compatible di-
mensions, define

(10)

where denotes the trace and superscript denotes the pseu-
doinverse. For , a -valued data sequence, and ,
a window length, define

and write simply if no confusion can result. For
and , two data sequences of compatible dimensions, we
write

and

Finally, we will make use of the following data Hankel matrices:

... ...

and

The previous notations are introduced because, depending
on the considered algorithms, the data set is indexed
as (when only “future” data are needed), or

(when data are split into future and
past). Many authors use rather ,
or variants thereof. Clearly, the difference is only notational.
Also, we have taken identical index in and when
building . Of course, we could take different indices
and without impairing the validity of what follows.

Finally, in order to refer to the different algorithms in a
systematic way in the sequel, we will superscript the referred

with the index of the corresponding equation. For
example

denotes as specified by (16) (11)

The same convention will be used when we wish to refer to
algorithms in terms of their matrix.

3) Instruments: In this section, we revisit the old concept
of “instrument” and use it in our context. Unlike in Section II,
where our problem was stated, we do not distinguish here be-
tween observed and unobserved inputs. In the following system,
vector collects all inputs of the system considered throughout
this section

(12)

In (12), is the -valued state, is the -valued
input, and is the -valued observed output; fix a window
length . With the notations of Section III-A2, system (12)
rewrites as follows, for :

(13)

In Lemma 1, we introduce instruments as the key tool in our
analysis.

Lemma 1 (Instruments): Let be an -valued data
sequence and an -valued sequence such that

for (14)

(15)

Then

(16)

satisfies Condition 1. In the sequel, we call instrument a signal
satisfying (14) and (15) for some sequence .
Proof: The following decompositions hold, for :

with the convention that and

(17)

Equation (17) rewrites as follows:

(18)

which proves that satisfies Condition 1, thanks to (14)
and (15).
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Lemma 1 and Theorem 1 together ensure that pro-
vides consistent estimators for the pair —see (11) for the
notational convention used here.

Applying Lemma 1 to system (1) with its combined observed
and unobserved inputs can be (tentatively) performed via the
following substitutions:

(19)

Of course, if input is observed, i.e., in (19), then
one can chose instrument in such a way that
exactly. This is no longer feasible if unobserved inputs exist,
since is no longer observed in this case. Therefore, additional
work is needed for analyzing system (1) with its combined ob-
served/unobserved inputs. Section III-B on probabilistic anal-
ysis will address this missing point.

4) Weighting and Squaring: (This section may be ignored
for a first reading.)

As perfectly analyzed in [23], there are many different sub-
space algorithms, and, in addition, each of these possesses a
number of variants. Such variants depend on whether the algo-
rithm uses raw data or frequency domain spectra, or time-do-
main covariance matrices as inputs; they also depend on which
type of “weighting” is being used. In this section, we will de-
velop a toolbox of lemmas to show that, once one of these vari-
ants is shown to be consistent, then so are all related variants.
Our toolbox involves the following two tools: weighting and
squaring.

a) Weighting: Weighting is generally used as part of sub-
space algorithms and plays an important role in algorithm condi-
tioning and convergence rates. In our case, weighting will be in
addition a key tool for the analysis of algorithms, should they be
weighted or not. In particular, some subspace algorithms take as
input matrices whose dimensions are not fixed but vary
with the length of the data set. Consequently, the apparatus
of Section II does not apply directly to such matrices .
Weighting will be used as a preliminary step in analyzing such
algorithms.

We distinguish preweighting, indicated by the symbol in
sub- or superscript, and postweighting, indicated by the symbol

in sub- or superscript. Symbols and are reminiscent of
“left” and “right,” respectively. Preweighting consists in pre-
multiplying the matrix defined in (4) by a square and in-
vertible matrix . Postweighting consists in postmultiplying

by a rectangular matrix , of dimensions possibly varying
with the length of the record. In this discussion, we omit index

when no ambiguity can result.
In what follows, superscript attached to or an-

nounces that corresponding matrices cannot be handled directly
by the apparatus of Section II, and thus, weighting will be used
in analyzing the corresponding algorithm.

Let be a sequence of positive integers (indexed by the
length of the data set). We are given the following:

— a family of -matrices, where ;
— a sequence of preweighting matrices of dimen-

sions ;
— a sequence of postweighting matrices of dimen-

sions .

Let be the matrix obtained by stacking the
matrices as in (4). Then, set

. Partitioning as in (4)
defines a family of matrices. Now, SVD-decomposing

yields

(20)

For given , let be the pair obtained by ap-
plying formulas (6) and (7) to the matrix . On the other hand,
SVD-decompose as

(21)
and set . Then, let be the pair
obtained by applying formulas (6) and (7) to the matrix .

Note that the family possesses constant dimensions
and is, therefore, amenable to a direct application of Theorem
1. In contrast, the family cannot satisfy Condition 1
since its dimensions are and thus may vary with .
Therefore, the consistency of cannot follow
from a direct application of Theorem 1.

Lemma 2 overcomes this difficulty by making it possible to
transfer consistency from to .

To this end, note that pre- and postmultiplying (21) by
and yields

(22)

Lemma 2 (Weighting): Assume that the sequence is
bounded w.r.t. and that the following condition holds:

(23)

Then, the pair is consistent iff the pair
is consistent.

Proof: See the Appendix.
b) Squaring: Squaring is a particular case of post-

weighting, where the weighting matrix is just the transpose of
the original one. Squaring is an instrumental tool in analyzing
projection-based algorithms.

Corollary 1 (Squaring): With the same notations as
before, assume that and are related by

.
1) If satisfies Condition 1, then the pair

is consistent.
2) Vice-versa, if satisfies Condition 1, then the pair

is consistent.
Proof: See the Appendix.
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B. Probabilistic Analysis

So far, probabilities were never invoked. In this section, we
collect the arguments involving probability and assumptions of
probabilistic nature.

Let us discuss the key conditions allowing us to apply Lemma
1 and Theorem 1 to system (1), taking the unobserved inputs
and into account.

Suppose first that there is no unobserved input disturbance,
i.e., in (1). Then, the s introduced in (12) are
observed and thus can be explicitly used to satisfy a stronger
condition than (14) in Lemma 1, namely . Note
that no assumption of stochastic nature is required for this rea-
soning.

Next, consider the opposite case in which there is no observed
input, i.e., in (1). Since input disturbances are not
observed, the actual values of are unknown when applying
Lemma 1, and therefore, cannot be used while constructing the
instrument .

This problem, however, can be solved by using stochastic
knowledge about unobserved input disturbances. To this end,
we now introduce the needed probabilistic setting, and, prior to
this, the martingale argument we will use.

1) Martingale Argument:
Lemma 3: Let and be two sequences

of square integrable vector-valued random variables defined
over some probability space and let be an
increasing family of sub- -algebras of such that

and

w.p. (24)

and are -measurable and . Then, for
any , the following holds:

w.p.

where (25)

Notice: In (25), the conditional expectation
should not be confused with our matrix projection operator

in (10).
Proof: It is a mild variation of the argument of [6, Sec.

III.A]. We repeat it here for the sake of completeness. Since
we can reason on each entry of matrix separately, we can,
without loss of generality, assume that and are both scalar
signals. By the second condition of (25), we know that
is a square integrable scalar martingale w.r.t. . By (25),
we have

. The proof is then completed by using
Theorem 2, which can be found in [15] and [20].

The real-valued stochastic process is called a lo-
cally square integrable martingale w.r.t. if, for every

, and, for every
.
Theorem 2 [15], [20]: Let be a locally square in-

tegrable martingale w.r.t. , such that . Set

Then

w.p.

on the set where holds. On the other
hand

exists and is finite w.p.

on the set where holds.
2) Analyzing the Generic Subspace Algorithm: In this sec-

tion, we combine the results from Sections III-A3 and III-B1 to
handle system (1) with its combined observed/unobserved in-
puts. We repeat again system (1) for convenience

(26)

where is the -valued observed output, is the
-valued state, is the -valued observed input, and

is an unobserved input disturbance.
To be able to use stochastic information on the unobserved

inputs , we assume that all variables arising in system (26)
are defined over some probability space .

Available information is captured by the following -alge-
bras:

where denotes the smallest -algebra containing and
. In these formulas, -algebra is the information provided

by the entire observed input sample; -algebra is the
information provided by the unobserved inputs and and the
output up to time ; finally, -algebra is the information
provided by the only output up to time . Regarding inputs,
we assume the following.

Assumption 1 (Regarding Inputs): Stochastic inputs and
satisfy the following conditions:

and

Note that these conditions do not request any kind of station-
arity. Assumption 1 involves the joint distribution of , and

. It is in particular satisfied when observed and unobserved
inputs are independent. Besides Assumption 1, no condition is
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required on the statistics of the observed input . Consider the
following conditions regarding instruments.

Condition 2 (Regarding Instruments): Instrument satis-
fies the following conditions:

is measurable (27)

where (28)

for (29)

(30)

Property (27) guarantees that instrument depends only on ob-
served quantities. Integer in (28) is a constant selected
according to each particular instance of the family . Prop-
erty (28) expresses that instrument possesses sustained en-
ergy.

a) Covariance-based subspace: Theorem 3 is our first
main result. It provides the analysis of algorithms of the form
(16), i.e., covariance-based ones.

Theorem 3 (Covariance-Based Subspace): Assume that As-
sumption 1 regarding unobserved inputs, and Condition 2 re-
garding instruments, are in force. Then, satisfies Con-
dition 1, with Probability 1.

In other words, the set of trajectories of the system for which
Condition 1 is satisfied has Probability 1. Pick any trajectory in
this set; we can apply Theorem 1, which shows that, for this tra-
jectory, our generic algorithm provides consistent estimators in
the sense of Theorem 1. This shows that our generic algorithm
provides consistent estimators in the statistical sense (conver-
gence w.p. 1 to the true value for the parameters to be estimated).

Proof: Using the notations of Section III-A2, system (26)
writes as follows, for :

(31)

On the other hand, system (26) yields the following decompo-
sition for (we use the convention that ):

where and . Using the notations
of Section III-A3, this decomposition rewrites as follows, for

:

(32)

where and . Note that

(33)

and a similar formula holds with instead of . By (27) and
(28) of Condition 2, instrument satisfies (25) in Lemma 3.
By Assumption 1, noises and satisfy (25) in Lemma 3,
with substituted for . Therefore, Lemma 3 can be applied
with substituted for , which yields, with Probability 1

(34)

Set

where the subscripts and indicate the dimensions of the cor-
responding matrices. Using this change of notation allows us to
rewrite system (26) in the form (12) used in Lemma 1.

Consider now Condition 2. Combining (34) with (29) shows
that system (12) satisfies (14) in Lemma 1. On the other hand,
(15) in Lemma 1 is ensured by (30) of Condition 2. Therefore,
by Lemma 1, we conclude that Condition 1 is satisfied, with
Probability 1.

Remark: In fact, our method could accommodate as well ad-
ditional “small” perturbations in system (26), i.e., additional in-
puts and in state and observation equations, respectively,
such that

Transient terms or leakage effects such as considered in [8] and
[9] are covered by these additional terms, and therefore, do not
impair nonstationary consistency.

b) Projection-based subspace: Projection-based subspace
methods, i.e., methods of the form

(35)

are in fact more popular than covariance-based ones; see [23].
They are often referred to as “data-based” subspace methods.
Unfortunately, these methods cannot be handled directly by
Theorem 3. In fact, Theorem 1 itself does not apply. The reason
for this is simple: has dimensions ;
so its dimensions vary with , and therefore, Theorem 1 cannot
apply. Fortunately, the weighting technique of Section III-A4
can be used to overcome this difficulty as we will see now.

Corollary 1 of Section III-A4 can be used to relate covariance-
based methods, i.e., of the form

to projections-based ones

(36)
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The former are handled by Theorem 3 but the latter are not. To
establish this relation, stack the matrices as usual and
consider

(37)

Note that this Hankel matrix has its second dimension that varies
with the length of the data sample and thus cannot be handled
by Theorem 3. To study this algorithm, we will, therefore, use a
“squaring” method based on Corollary 1. Consider

By point 1 of Corollary 1, it is enough to guarantee that
satisfies Condition 1. To this end, renormalize instrument

(38)

where superscript denotes the square root of the pseudoin-
verse. Note that (38) amounts to whitening instrument . Then,

rewrites

(39)

By point 2 of Corollary 1, it is enough to guarantee that the
square root matrix satisfies Condition 1. Note that
instrument satisfies the measurability property (27) of Con-
dition 2. Our second main result, therefore, states as follows.

Theorem 4 (Projection-Based Subspace): Assume that As-
sumption 1 is in force, as well as properties (27)–(30) of Condi-
tion 2, for instrument (38). Then, satisfies Condition
1, with Probability 1.

Consequently, yields a consistent subspace algo-
rithm, in the statistical sense.

C. Discussing Assumptions and Conditions

Here, we collect remarks concerning our assumptions and
conditions.

What if matrix is unstable?: Strictly speaking, it is
nowhere required that matrix should be stable. However, if

has some unstable eigenvalues and some stable ones, then
property (30) of Condition 2 can hardly be satisfied.

What Can the Observed Inputs Be?: Property (29) of
Condition 2 relates instrument to input ; however, the latter
condition should rather be seen as a condition on the instrument,
not as a condition on the input. The only important requirement
on is Assumption 1. This assumption is, in particular, satisfied
if future unobserved inputs are independent
from inputs . For example, if is white noise, As-
sumption 1 is satisfied if does not depend on future outputs.2

On the other hand, there is no requirement per se that should
be stationary. In some sense, the probability distribution of
does not matter and we regard as stochastic in Section III-B2
only for mathematical convenience.

2Note that the latter condition is not compatible with closed-loop identifica-
tion.

What Is Really Allowed Regarding Unobserved Input Noise
?: First, the time-varying matrices and in (2)

may be random. This must, however, occur in a way that As-
sumption 1 is not be invalidated. For example, referring to (2),
it is possible that and are stochastic processes that
are independent from both underlying white noise and ob-
served input .

Can be colored in (1)?: Yes, in part. In fact, moving
average measurement noise is allowed

where is a possibly nonstationary white noise. To see this,
rewrite (1) as follows, with :

(40)

where is the nilpotent matrix having 1s on
the lower diagonal entries and 0s elsewhere, ,
and . Applying the generic algorithm with (16)
to system (40) yields the eigenstructure of the pair

where we recall that has 0 as unique (multiple) eigenvalue.
When does not have 0 as an eigenvalue, this immediately
yields the desired eigenstructure of the pair .

IV. ANALYSIS OF SOME SUBSPACE ALGORITHMS

In this section, we apply our toolbox of theorems and lemmas
to sample subspace methods. To avoid annoying notational ad-
justments, we keep our notational conventions and will, there-
fore, sometimes deviate from the original presentations in this
respect.

Key conditions ensuring nonstationary consistency are As-
sumption 1 and Condition 2. Assumption 1 involves the unob-
served inputs; we assume it to hold throughout this section and
will not discuss it any further. In contrast, Condition 2 is a de-
sign constraint on the selection of the instruments: This is the
key condition to be verified or enforced when analyzing spe-
cific algorithms.

Regarding the details of Condition 2, we will pay great at-
tention to verifying that (27) and (29) are satisfied, as these
conditions drive the choice of the instruments. Condition (30)
amounts to requiring that the instrument is well correlated to
the state. In contrast, we will not discuss the satisfaction of con-
dition (28); this condition just translates, for each particular al-
gorithm, into corresponding conditions for the original system
(26).

Finally, checking for consistency requires that proper normal-
ization is applied. This is the very role of the scaling factor .
In practice, the algorithms are applied with given sample length

, and then, scaling is just an irrelevant issue. Therefore, we
will ignore scaling in this section.
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A. Output-Only (OO) Subspace Algorithms

By definition, these algorithms assume in (26).
Therefore, (29) in Condition 2 is trivially satisfied for such al-
gorithms.

a) Basic OO subspace algorithm: This is the simplest algo-
rithm to analyze. Introduce the instrument

... or equivalently ... (41)

and take

(42)

Instrument (41) satisfies (27) in Condition 2. Points (27) and
(29) are the key points of Condition 2. Regarding the other
points, note that

where ; hence, (30) in Condition 2 can be
interpreted as being “uniformly of order .” Finally, (28) in
Condition 2 is a mild condition related to excitation persistency.
These two remaining points will not be discussed any further in
the sequel and we will, therefore, focus on (27) and (29).

In conclusion, Theorem 3 applies and proves consistency of
.

b) Covariance-driven OO subspace algorithm [1], [6], [14],
[21]: This algorithm is a variation of the previous algorithm;
it was, however, proposed earlier. It consists in computing, for

where (43)

With instrument as in (41), we have

where is such that

where

This implies

(44)

provided that the Assumption 2 holds.
Assumption 2: For fixed, : Under the pre-

vious additional assumption, (44) holds, and therefore, instru-
ment defined in (41) satisfies Condition 2. Therefore, by The-
orem 3, we derive that yields a consistent subspace
algorithm.

c) Data-driven OO subspace algorithms [23]: This algo-
rithm is found in [23, Ch. 3, Th. 8]. It consists in computing

(45)

To study this algorithm, we will use Theorem 4 about projec-
tion-based methods. To this end, set

(46)

which amounts to whitening the instrument (41). Instrument
(46) satisfies the measurability condition (27) of Condition 2.
Assuming that (28) and (30) are satisfied, this yields consis-
tency, by Theorem 4.

B. Input–Output (IO) Subspace Algorithms

Many variants have been considered. We review some repre-
sentative ones.

a) Covariance-driven subspace algorithm using projected
past inputs and outputs as instruments [28]: Those methods
encompass the methods also known as instrumental variable
method (IVM), canonical variate analysis (CVA), past output
multivariable output error state space (PO-MOESP), and nu-
merical algorithm for subspace state space system identification
(N4SID) in their covariance form [28]. In this paper, we will
focus on the unweighted IV related to defined as

(47)

where is obtained, with the notations of Section III-A2,
by stacking, for

where (48)

In our general setting, this amounts to starting from matrices

(49)

The parallel with algorithm can be stated as follows:
in (48) corresponds to in (41). The associated instrument
is, therefore, the sequence of the successive columns of matrix

. Note that is -measurable, which proves point (27)
of Condition 2. The rest of the analysis is the same as for .

We can parallel the variant of ; just take

and

Thus

(50)

Algorithm relates to in the very same way that
relates to .
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b) Covariance-driven IO subspace algorithms with projec-
tion on the orthogonal of the input [14]: This algorithm con-
sists in computing, for [cf. notations (10)]

where

(51)

This algorithm relates to by simply changing the instru-
ment. Only point (27) of Condition 2 regarding measurability
needs to be checked, which is immediate.

c) Data-driven IO subspace algorithm with projection on the
orthogonal of the input [23]: This algorithm is known as the
projection algorithm in [23, Ch. 2.3.2.]. It consists in computing

, where is as in (51). We conclude as

for .
d) Data-driven subspace algorithm using projected inputs as

instruments [10], [25], [26]: This algorithm was first proposed
in [25] and [26] under the name of past input multivariable out
put error state space (PI-MOESP). It was studied recently in [10]
and [11]; a detailed presentation is found in [11]. It consists in
computing a (left) weighted version of

(52)

where is obtained, with the notations of Section III-A2,
by stacking

for (53)

Introduce the following instrument:

(54)

The squaring argument already used in analyzing (45) can be
used here as well. Once more, instrument (54) satisfies the mea-
surability property (27) in Condition 2, and we conclude as for

. Note that, to get this measurability condition, it was
essential that the observation -algebra contains both past
and future of the observed input .

Remark: Note that the same analysis would work if the fol-
lowing substitution was made in (53):

is replaced by (55)

while keeping unchanged.
e) Data-driven subspace identification using oblique projec-

tions [22], [23]: This category includes popular subspace al-
gorithms such as N4SID and MOESP [22], [23] as well as any
variation of them by using weights, including the CVA method
[23]. We focus on N4SID and MOESP.

The popular N4SID algorithm of [22] and [23, Sec. 4.3.1],
consists in computing the so-called oblique projection of

on along

(56)

Formula (56) rewrites as follows [23, Sec. 4.3.1]:

(57)

where

(58)

and and are obtained, with the notations of
Section III.A.2, by stacking, for , the vectors

and defined in (48). Introduce [compare with (57)]

(59)

Set and .
Note that . By using repeatedly the squaring
argument of Corollary 1, we deduce that, if satisfies
Condition 1, then provides consistent estimators for

. Next, notice that in (58) coincides with (47), so
we already know that it satisfies Condition 1. Finally, according
to Lemma 2, the pair of matrices corresponding
to will be consistent provided that (23) holds, with

.
The following remark can be stated about (30) and (23).

These conditions are fragile if the postweighting in (59) is close
to having rank less than , which happens when the future
of input is almost parallel to . The latter fact is indeed
known from the practice about N4SID and is also analyzed in
[12].

The same analysis also applies to the MOESP algorithm de-
scribed in [23, Sec. 4.3.2], [25], [26], and [3]. This algorithm
consists in computing

where denotes the (orthogonal) projection on

. Thus, MOESP amounts to computing

(60)

Following the same lines as for N4SID, MOESP yields con-
sistent estimates. The same remark as for N4SID applies, re-
garding the conditioning of the postweighting and its impact on
the behavior of the algorithm. The class of subspace methods
described in [23], including CVA, is analyzed along the same
lines.

C. Time- Versus Frequency Domain

For , an -valued data sequence and , a
window length, the discrete Fourier transform (DFT) of ,
denoted by , is equal to

(61)

where [in (62), denotes the Kronecker product]

...
...

...
(62)
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Since matrix is orthogonal, then

and

Hence, Condition 2 can be considered equivalently in the time
domain or in the frequency domain. Therefore, frequency-do-
main subspace algorithms corresponding to [17] and [18] be-
have exactly the same way as their time-domain counterparts
regarding nonstationary consistency.

V. CONCLUSION

In this paper, we have revisited eigenstructure identification
via subspace methods. This problem is clearly easier than full
system matrix identification. On the other hand, consistency of
eigenstructure identification still holds for nonstationary inputs
(in fact, for “nonstationary zero part”).

For this paper, we have adapted the original method of [6]. We
believe that our presentation enlightens the reasons for subspace
methods to converge, and therefore, can serve as a guideline for
further new designs. Our analysis shows that the old fashioned
“instruments” are still a useful concept in this respect.

Martingale techniques were used to deal with unobserved
inputs—for unobserved inputs, “deterministic” projections
based on observed data cannot be used; they can be replaced
by “stochastic” projections via conditional expectations. This
technique requires a probabilistic setting for the unobserved
inputs, and the white noise assumption provides a situation
in which finding instruments is easy. This suggests that our
martingale approach could possibly be replaced by any other
method providing orthogonality conditions without the need
for observing data.

Not surprisingly, transient and leakage effects are not an issue
for nonstationary consistency and the results equivalently apply
to both time- and frequency-domain methods.

Finally, we have only studied nonstationary consistency, not
nonstationary convergence rates. The latter subject is definitely
much harder. The only results we are aware of in this direction
are found in [19].

APPENDIX

MISSING PROOFS OF SECTION III-A4

A. Proof of Lemma 2

The proof relies on the Lemma 2 in [6, App. C], which we
repeat here for completeness.

Lemma 4 [6]: Let and be two sequences of ma-
trices of fixed dimensions, satisfying the following conditions:

1) sequence is bounded and when
;

2) for every , the SVD of matrix is
, and holds.

By an SVD-decomposition, rewrite as
higher order terms. Then, there ex-

ists a sequence of -matrices , bounded with bounded
inverse, such that when .

Return to the proof of Lemma 2. Set and

By (22) and (23), we have . On the other
hand, it is assumed for Lemma 2 that is
bounded. Therefore, Lemma 4 applies. Since has rank
exactly , the left most factor in the SVD of is obtained
from by a postmultiplication by an invertible ma-
trix. On the other hand, the left factor associated to

by Lemma 4 coincides with in formula (20). Hence,
and are related via the postmultiplication by an

invertible matrix. From this, the conclusion of Lemma 2 follows.

B. Proof of Corollary 1

For , a matrix, and , an integer, denote by the matrix
obtained by zeroing all singular values of rank in the SVD
of , and set . We successively prove points
1 and 2.

Consider first point 1. Since satisfies Condition 1,
then

(63)

holds. By the orthogonality property of the SVD, we have

whence

(64)

Matrices and are related as in Lemma 2 with
and . With this choice for

the weights, (64) is exactly (23). On the other hand, since
satisfies Condition 1, then, by Theorem 3, the pair

is consistent. Thus, Lemma 2 applies and
yields the consistency of .

Consider now point 2. Since satisfies Condition 1, it
follows that , which implies (63), and thus also
(64). Since satisfies Condition 1, then, by Theorem 3,
the pair is consistent; and we conclude again,
by a reverse use of Lemma 2.
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