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east squares error (LSE) modeling 
is widely employed in a variety of 

modeling. These examples include the 
modeling of empirical data as a sum of L interdisciplinary applications complex exponentials and sinusoids, 

involving the parametric modeling of linear prediction, linear recursive 
empirical data. The signal model to be identification and direction finding. 
considered in this paper is composed In quantitatively based disciplines, 
of a linear combination of basis signals investigators are often confronted with 
which are chosen so as  to reflect the the task of constructing parametnc 
basic nature believed to characterize models which approximate the behav- 
the data being modeled. In the general ior of empirically gathered data. If the 
modeling problem herein considered, data fit is sufficiently accurate, it is 
the basis signals are dependent on a anticipated that the parametric model 
set of real parameters which are to be will provide further insight into the 
selected so that the signal model best characterization of the phenomenon 
approximates the data in a LSE sense. from which the measured data came. 
Nonlinear programming algorithms for The measured data takes the form of a 
computing the optimum parameter sequence of numbers 
selection are presented in which 

efficiency considerations. 
The paper’s development is formulat- The integer ordering argument desig- 

ed in a vector space setting and uses nates the place within the data se- 
such fundamental vector space con- quence where a particular element 
cepts as  inner products, the range and falls. The finite number of data points 
null space of matrices, orthogonal N reflects the fact that in any practical 
vectors and the generalized Gram- experiment one has access to only a 
Schmidt orthogonalization procedure. finite number of measurements. In 
A running set of representative signal many applications, the data elements 
processing examples are presented to are sequentially recorded in a uniform 
illustrate the theoretical concepts as  manner so that the interval between 
well as point out the utility of LSE contiguous data measurements is 

emphasis is placed on computational Y( l ) ,  $3, ’ ” >  Y(N) ( 1 )  
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constant. This constant increment 
might correspond to a time interval, a 
distance length or a temperature 
increment with the nature of this 
interval being dictated by the specific 
application under consideration. 

SIGNAL MODEL 

Based on physical laws hypothesized 
as characterizing the phenomenon 
being observed, the investigator is often 
able to postulate a mathematical model 
that is to be used for subsequent 
analysis. In many important applica- 
tions, this model takes the form of a 
linear combination of basis signals 
{s,(n)) as specified by 

Example 1: Let us consider an applica- 
tion in which it is desired to obtain a 
frequency representation of empirical 
data. The discrete Fourier transform 
(DFT) plays a prominent role in this 
regard. The DFT can be formulated in 
the above signal model representation 
where the model's basis signals are the 
complex sinusoids specijled by 

( n )  = e,3(" ! - l )~, , - l~/M 

for I I tn I M and 1 S n6 N 

In this DFT application, the number of 
basis signals is chosen to equal the 
data's length(i.e., M = N). The complex 
sinusoid amplitudes can therefore be 
chosen so as to give an exact data 
representation. A s  is shortly shown, 
these amplitudes will correspond to the 

M Fourier coe@cients of the data being 
modeled. 9(n)  =E an,s,,,@) for 1 5 n 6 N (2) 

nr= I 

The scalars 4, appearing in our model 
correspond to the amplitudes of the 

MODELING CRITERION 
basis signals. The elements of the 
basis signals used in our model are 
initially considered fned and corre- 
spond to fundamental behaviors 
believed to characterize the empirical 
data. In later Sections, however, we 
shall allow the elements to be depen- 
dent on a set of parameters. For 
example, a sinusoidal basis signal 
s(n)=sin(on+B) would be dependent on 
the frequency (i.e., o) and phase (i.e., 
e) parameters. The ability to prudently 
choose these parameters will enable a 
greater degree of flexibility in accurate- 
ly modeling empirical data. 

For the case in which the basis signal 
elements are considered fixed, the data 
modeling problem corresponds to 
selecting the basis signal amplitudes 
so that data model (2) best represents 
the measured data (1) in some sense. 
Good modeling practice generally 
dictates that the number of basis 
signals M be made much smaller than 
the number of data elements although 
this requirement is relaxed in some 
applications. The effectiveness of signal 
model (2) is clearly dependent on the 
user making a prudent choice of the 
constituent set of basis signals. The 
basis signals constituting this signal 
model can be all of the same type (e.g., 
sinusoids) or be made up of a variety 
of different signal types. The following 
example illustrates one of the most 
widely employed fmed basis signal data 
models used to represent empirical 
data. 

The quality of mathematical model (2) 
is measured by how closely g(n) ap- 
proximates the empirical data yfn) 
being modeled. The modeling error is 
defined to be the difference of these two 
signals (i.e., e(n)=y(n) - y(n)). Our 
objective in the fixed basis signal case 
now being considered is to select the 
basis signal amplitudes so as  to drive 
this modeling error as  close to zero as  
possible. A number of measures exist 
for quantifying how well this objective 
is being met. The following modeling 
criterion provides a useful means for 
measuring modeling fidelity 

f (al, -,a,) 

M 

This modeling criterion has been 
expressed as an explicit function of the 
basis signal amplitudes so as  to 
emphasize this dependency. The w(n) 
scalars here appearing are positive 
constants that are used to weight the 
relative importance of the individual 
error elements. In most applications a 
unit weighting is used in which case 
w(n) = 1. The superscript p is a non- 
negative constant which normally lies 
in the interval [ 1, -1 and is chosen so 
as to achieve certain objectives. For 
instance, if it is believed that some of 
the data elements y(n) are unreliable, 
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the choice p=l will tend to put relatively small weight 
on these so called data outliers. On the other hand, if 
one wishes to minimize the largest model residual the 
selection p=- achieves that goal. 

In what is to follow, we shall use the weighted 
squared error criterion selection which corresponds to 
p=2. There are primarily three reasons for using this 
particular criterion: (i) the minimization of a sum of 
squared error criterion usually leads to acceptably 
good data models, (ii) this criterion has been thorough- 
ly studied and many insightful theorems are available 
for its analysis, and, (iii) in applications where ideal 
data is corrupted by additive Gaussian noise, the LSE 
model often corresponds to the maximum likelihood 
es timate. 

LSE Modeling: Fixed Basis Signals 

vector space setting. In accordance with relationship (2) 
and vector representations (4). the signal model vector 
is given by 

M 

$=  amxm 

m= I 
= S a  

In this expression, _a designates the M x 1 signal 
amplitude vector whose components correspond to the 
a,,, amplitudes of the individual basis signals while the 
Nx M composite basis signal matrixS has as  its columns 
the M basis signal vectors comprising the signal model, 
that is 

. . .  s+,:  z*: ...:xM] 

we the class of least squares The quality of signal model (5) is measured by how 
error (LSE) problems described above. A closely approximates the empirical data vector y. The 

and the basis signals provides a particularly conve- so as to minimize the 
nient mathematical means for carrying out this study. 
In what is to follow, we shall adhere to vector space 
representations. In this approach, the N x 1 empirical 

given by 

vector space representation Of the given data degree of closeness is controlled by the signal amplitude 
vector which is to be 
modeling error vector as governed by 

data vector and basis signal vectors, respectively, are g = y - S g  (7)  

In the spirit of criterion (3) with p=2, we shall use the 
following functional for measuring modeling fidelity (or 
smallness of error) for ' 2 112 4M (4) 

We have here adopted the convention of denoting 
vectors by underlined lower case letters. 

In many applications, the elements of the data vector 
and the basis signal vectors are real valued. These 
vectors are therefore said to be contained in the vector 
space of real N-tuples as denoted by p. In other 
important applications, however, the vector elements 
may be complex numbers. For instance, the basis 
signals in the D I T  are seen to be composed of complex 
sinusoids as shown in Example 1. In such cases, the 
constituent vectors are said to be contained in the 
vector space of complex N-tuples as designated by e. 
To treat the real and complex data cases in a common 
setting, we hereafter consider the constituent vectors to 
be contained in e. All the theoretical results to follow 
are therefore expressed in terms of a complex data 
model. These theoretical results are directly applicable 
to real data modeling applications, however, by the 
simple process of replacing any complex conjugate 
vector transposition operator (i.e, *) that appears by the 
vector transpose operator (i.e, 3. In taking this 
approach, we simultaneously treat the cases of 
modeling real and complex valued data. 

We now formulate the signal modeling problem in a 

where the N x N weighting matrix W is positive definite 
and Hermitian (i.e., W*=W), and, the asterisk symbol 
designates the operation of complex conjugation. The 
weighting matrix is often chosen to be equal to the 
identity matrix (i.e., W=I,) thereby giving rise to the 
unweighted data modeling case. For purposes of 
generality, however, we shall retain the general model 
weighting measure specified in this criterion. 

In certain applications, the components of the basis 
signal amplitude vector may be constrained. The nature 
of these constraints are dependent on the specific 
application at  hand. Whatever the case, the minimizing 
selection provides a data model that is most compatible 
with the given data in a weighted least squares error 
sense. For the purposes of presentation simplicity, we 
hereafter consider the signal amplitudes to be 
unconstrained. In the unconstrained case, a necessary 
condition for minimizing criterion (8) is that the 
derivatives of this criterion with respect to the signal 
amplitude components all be zero. Allowing for the 
possibility of complex signal amplitudes, it is a simple 
matter to show that this necessary condition takes on 
the form spelled out in the following theorem. 
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Theorem I :  A necessary and sufficient condition that a 
signal amplitude vector minimize squared error criterion 
(8) is that it satisfy the system of consistent "normal 
equations" 

s* w Sa" = s* wy (9) 

Moreover, any solution to this system of normal 
equations results in the squared error criterion taking on 
the value 

where [S*WS]# designates the pseudo inverse of matrix 
S*WS. In the set of optimum amplitude vectors speciJed 
by relationship (9). the minimum Euclidean norm (i.e., 
- a*@ is given by 

a",,,, =[s*ws]+s *w y 

Finally, all solutions to normal equations (9) may be 
expressed as a sum of this minimum Euclidean norm 
solution and any vector contained in the null space of 
matrix s*ws.' 

NORMALIZED MODELING CRITERION 

Theorem 1 provides a convenient closed form 
representation for the optimum signal model. The next 
question posed is that of quantifying exactly how well 
the data model represents the empirical data. We 
cannot simply employ the minimum value (10) 
assumed by the squared error criterion, since it 
explicitly depends on the size of the empirical data. If 
the empirical data is large, it is possible that this 
criterion's minimum value will itself be relatively large 
even though the optimum model provides an excellent 
representation of the empirical data. Conversely, this 
criterion can take on a small value in those applica- 
tions where the empirical data elements are small even 
though the data model renders a poor representation of 
the empirical data. Clearly, what is needed is a 
criterion which is independent of empirical data size. 
This is readily achieved by simply dividing the original 
criterion (8) by the weighted energy in the data being 
represented to give rise to the normalized modeling 
criterion 

It is apparent that the minimum value of this normal- 
ized functional must always lies in the interval [ O , l ] .  
This is apparent since this functional takes on the 
value one for the choice g=g. We may therefore 

' The null space of S*WS is formally specified by N(S*WS) = {_a ; S W S g  

= 0). 
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measure the fidelity of our model by determining how 
close to zero the normalized functional is. Values close 
to zero indicate good data modeling while values close 
to one suggest poor data modeling. 

A variety of important signal processing applications 
can be posed in the form of a weighted LSE problem in 
which the basis signals are known a priori. We may 
therefore employ the results of Theorem 1 to treat this 
class of problems. The next two sections provide two 
important applications that can be characterized in this 
fashion. 

Linear Prediction 

The operation of linear prediction constitutes one of the 
more important applications in which the basis signal 
vectors are known a priori. When employing the concept 
of linear prediction, it is tacitly assumed that the 
underlying idealized data being analyzed possess the 
following attribute 

LINEAR PREDICTION PROPERTY: every 
contiguous subsequence of length p+ 1 formed 
from the data y(l) ,  y(2) ,..., y(N), satisfies a 
fixed linear homogeneous relationship. 

It is well known that the only data sequences which 
possess this property are expressible as a linear 
combination of p or fewer exponential type signals. 
Thus, when employing linear prediction to data 
sequences, we are in effect invoking an exponential 
signal model. 
To measure the propensity of noise contaminated non- 

idealized data to be modeled as a linear combination of 
p exponentials, it is therefore useful to appeal to the 
above property. In particular, we seek to find a set of 
prediction coencients a,, . . . , a,, so that the linear prediction 
sequence generated according to 

best approximates y(n) in some sense. In effect, we are 
attempting to use the most recent p values of the data 
under analysis to predict the next data point in a linear 
fashion. If a set of prediction coefficients can be found 
such that y(n) = y(n), then the homogeneous relation- 
ship as described in the above property is satisfied. 

From relationship (13), it is clear that the prediction 
sequence y(n) is an  implicit function of the prediction 
coefficients. The interval p+l < n 5 N identifjmg this 
signal model is equal to the largest set of indices for 
which the right side of relationship (13) is comprised of 
data elements that are wholly contained in the data (1) 
under analysis. If each set of p+l contiguous data 
elements is strongly linearly related in a consistent 
fashion, it then follows that the parameters a,,, of this 
linear relationship can be selected so that the 
prediction error sequence as defined by 

e ( n ) = y ( p + n ) - y ( p + n )  for1 < n < N - p  (14) 
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can be made as small as possible. 
It is possible to formulate the linear prediction 

problem in the format of the data modeling problem 
treated in the last section. This is achieved by inserting 
linear prediction formula (1  3) into relationship (14) and 
putting this result into the following equivalent vector 
format 

or more compactly as 

g = y - Y g  

In this relationship, g is the [N-p) x 1 prediction error 
uector, y is the [N-p) x 1 vector whose Vh element is 
y(k+p), and _a is the p x 1 predictor cwflcient vector. 
Similarly, Y is the associated [N-p) x p Toeplitz 
structured data matrix whose (n,mjth element is 
specified by y[p+n-m). The data matrix Y plays the 
same role as the composite basis signal matrix S of the 
preceding Section. Thus, the columns of the data 
matrix correspond to the basis signal vectors. 

Our objective is to select the prediction coefficient 
vector _a so as to minimize the sum of the squared 
prediction errors. In accordance with the results of 
Theorem 1 ,  the minimum norm prediction coefficient 
vector is given by 

a",,, = [Y'WY]: Y*WI 

Furthermore, the sum of squared errors for this set of 
prediction errors is 

with known frequencies. To test the validity of this 
conjecture, investigators have often appealed to the 
discrete Fourier transform. We shall approach this 
problem, however, from the signal modeling approach 
taken in the last section. Specifically, the basis signals 
used in our model are comprised of M complex valued 
sinusoid vectors each having structure 

for 1SmSM (19) 

In this set of basis signals, the sinusoidal frequencies 
q,..., wM are taken to be distinct and selected to lie in 
the interval [0, 2x1. If the data being modeled is real, it 
is necessary that the frequencies chosen occur in 
conjugate pairs (i.e., wk and 2x-0~) .  

Due to the makeup of the basis signals (19), it follows 
that the corresponding composite basis signal matrix 
will have a Vandermonde structure. that is 

Furthermore, since the M sinusoidal frequencies are 
taken to be distinct and to lie in the interval [0, 2x1, it 
follows that this composite basis signal matrix has full 
rank(S)=min(M,N). Theorem 1 indicates that the normal 
equations (9) will have a unique solution as specified by 
relationship (1  1).  The quality of the resultant sinusoidal 
model is critically dependent on the selection of the 
model's sinusoid frequencies. They should be selected 
to closely correspond to the frequencies thought to be 
contained in the data. A standard procedure for 
accomplishing this is now briefly described. 

DISCRETE FOURIER TRANSFORM 

It is readily shown that the matrix Y[y*WylfY*W 
appearing in this sum of squared error criterion is a 
projection operator whose range space is the equal to 
the range space of Y. 

LSE Modeling of Noise Contaminated 
Sinusoidal Data 

The discrete Fourier transform provides a convenient 
procedure for obtaining a sinusoidal model of empirical 
data. The basis signal vectors used in a DFT representa- 
tion are specified by the complex sinusoidal vectors 

Sm = 

In the next example, we shall consider an application 
in which the underlying data (1)  is believed to be 
composed of a noise contaminated sum of sinusoids 
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In this case, the number of basis signal vectors 
employed exactly equals the number of data points. It 
is a simple matter to show that these N basis vectors are 
painvise orthogonal and they must therefore be linearly 
independent. Thus, the N x N composite basis signal 
matrix S formed from these basis signal vectors is 
nonsingular. This directly implies that the data vector 
y in the unity matrix weighting case W = IN can be 
exactly modeled by the linear combination (5). that is 

In amving at the above expression for the inverse of S,  
use has been made of the fact that the sinusoidal basis 
vectors are painvise orthogonal and each has an 
Euclidean norm equal to dN.  Upon carrying out the 
matrix-vector multiplication in expression (22). it is 
found that the unique basis signal amplitudes for 
which a perfect data model is obtained are given by 

These optimum amplitudes, however, are recognized as 
being the N point DFT coefficients associated with the 
empirical data (1). 

LSE Modeling: Parametric Dependent 
Basis Signals 

Up to this point, our efforts have been restricted to 
signal modeling applications in which the model’s basis 
signals are considered fixed. A desirable enhancement 
in modeling fidelity is made possible, however, by 
allowing the basis signals behavior to be dependent on 
a set of parameters. Values are to be then assigned to 
these parameters so that the basis signal vectors are 
most compatible with the data being modeled. To 
illustrate this point, let us consider the sinusoidal 
modeling problem treated in the last section for the 
case in which the data is a perfect linear combination 
of two sinusoids. Thus, the invocation of a two sinusoi- 
dal model (i.e., M=2) is valid. Unfortunately, if the 
model’s two sinusoidal frequencies (0, ,m2) do not agree 
with the data’s two sinusoid frequencies, then the 
corresponding optimum model can be poor. In allowing 
the sinusoidal model’s frequencies to be parameters, 
however, it is conceptually possible to assign them the 
correct values and thereby attain a perfect data match. 
By taking this parametric approach, a more accurate 
modeling of the data is therefore made possible. 

With these thoughts in mind, we shall now consider 
the modeling problem in which the basis signals are 
dependent on the components of a real valued P x 1 
signal parameter vector 9. The composite basis signal 
matrix is therefore dependent on this signal parameter 
vector and is accordingly designated by S(’. In typical 
applications, each basic signal is a function of only a 

subset of the components of 9. Whatever the case, the 
associated data modeling problem entails selecting this 
signal parameter vector and the associated signal 
amplitude vector so as to minimize the weighted 
squared error criterion 

Although the imposition of a basis signal parameter 
dependency has the desirable attribute of providing en- 
hanced modeling capability, it also gives rise to a new 
difficulty. Specifically, in most applications the 
parameters of the basis signals enter in a highly 
nonlinear manner. A closed form solution for a signal 
parameter vector and signal amplitude vector that 
minimizes weighted squared error criterion (23) is 
therefore not feasible. This being the case, we must then 
appeal to nonlinearprogramming methods for minimizing 
this criterion. Since the computational load of nonlinear 
programming methods is proportional to the number of 
variables being optimized, it is advisable to reduce this 
number whenever possible. 

In order to reduce the computational load of a 
nonlinear programming solution , we shall decouple the 
selection of an optimum composite parameter vector 
from an optimum signal amplitude vector. This is made 
possible due to the quadratic manner in which the 
signal amplitude vector enters criterion (23). Golub and 
Peryra first presented this decoupling technique using 
a QR decomposition procedure [5 ] .  We shall achieve this 
same objective in a computationally more efficient 
fashion. The decoupling operation is composed of the 
two step process of 

finding an optimum composite parameter 
vector by minimizing criterion (23) in which 
the corresponding optimum signal amplitude 
vector is implicitly used. 

determining the associated optimum 
amplitude vector using a convenient closed 
form expression. 

In the development that follows, it is assumed that the 
composite basis signal matrix S(5) has full rank M. No 
loss of generality arises from this assumption since one 
can always remove any linearly dependent columns from 
the composite basis signal matrix until this full rank 
condition is satisfied. Whatever the case, the required 
decoupling operation is achieved by appealing to the 
concepts of W-orthogonality and projection matrices 
from linear algebra (e.g., see reference 1151). 

W-OFTHOGONAL VECTORS AND 
PROJECTION MATRICES 

The concept of W-orthogonal vectors plays a central 
role in the theoretical developments that follow where W 
is the positive-definite Hermitian matrix used in the 
squared error criterion being employed. The vectors y, 
and contained in are said to be W-orthogonal if 
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their inner product as specified by y,*Wy, is zero, that 
is 

Step 
1. 

2. 

Furthermore, if y, and & are W-orthogonal vectors, it is 
a simple matter to show that 

Description of Step 

let qi(6) = S ) d z ~ ( e ) ' w g @ ) D  
for2 2 k <  M 

This readily proven identity is a generalization of the 
two-dimensional lJythagorean theorem. 

From our perspective, the most important use of the 
above generalized Pythagorean theorem arises from the 
fact that all vectors y E CP can be uniquely decom- 
posed as 

where y, is a unique vector contained in the range 
space of S@) as designated by %[S@)) and is a 
unique vector that is W-orthogonal to y,. These W- 
orthogonal vector components are readily computed by 
first determining the N x N projection matrix P@) whose 
range space is %[S@)) and whose null space is the W- 
orthogonal complement subspace of %[S[g)) as 
designated by 3 (S(e)p. This W-orthogonal complement 
subspace consists of all vectors in which are W- 
orthogonal to every vector in %(S[g)). A closed form 
expression for this required projection matrix is given 
by 

The dependency of this projection matrix on the 
parameter vector e has been explicitly recognized. The 
effect of this projection operator when applied to a 
general vector is shown in Fig. 1. Due to the basic 
behavior displayed in this figure, the projection matrix 
(27) is said to be a projection on %[S@)) along %@(e)?. 
The two vector components will be orthogonal in the 
standard sense (i.e., separated by a 90" angle) for the 
case of a unit matrix weighting selection W=I,. 

Fig. 1 .  Orthogonal decomposition of y. 

To prove that matrix (27) defines a projection matrix 
with the prescribed range and null spaces, we first 
establish that it is a projection matrix. A necessary and 
sufficient condition that a matrix be a projection is that 
it be idempotent (i.e., P@y =P@)). The idempotency of 
matrix (27) is readily established by direct substitution. 
Furthermore, the range and null spaces of this matrix 
are readily found to be equal to %[S@)) and %[S@)?, 
respectively. Thus, P@) is the required projection 
matrix. The two vectors required in decomposition (26) 
are therefore given by 

DECOUPLING ALGORITHM 

To obtain the aforementioned parameter decoupling, 
we first apply the generalized Gram-Schmidt Ortho- 
gonalization procedure described in Table I to the M 
basis signal vectors. This procedure produces a set of 
vectors q,@) , . . . ,qM@) which are W-orthogonal in the 
sense described by relationship (24). Moreover, these 
vectors span the same subspace as do the basis signal 
vectors s,@ ,..., sM@) from which they were generated. To 
analytically capture this concept, let u s  introduce the 
associated N x M matrix Q@) whose columns are the 
qk@) vectors, that is 

From Table I, it is clear that the following matrix 
relationships are a direct consequence of this general- 
ized Gram-Schmidt orthogonalization process 

and 

where IN is the N x N identity matrix and R@) is a M x 
M nonsingular upper triangle matrix. 

j 4. 1 let qde) = &p3)dq*k(e)wgk(e) 

Table I. 
Generalized Gram-Schmidt Orthogonalization Algorithm. 
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Our ultimate objective is to select the signal parameter 
vector and signal amplitude vector so that the signal 
model S@)g best approximates data vector y in the 
sense of minimizing weighted squared error criterion 
(23). With this is mind, we now uniquely decompose the 
data vector into the sum of a vector contained in the 
range space of S(€J and a W-orthogonal vector. The 
projection operator required for this decomposition is 
directly obtained by substituting representation (3 1) into 
expression (27) and then using identity (30) to give 

and the squared error criterion's (35) value for these 
optimum source amplitudes is given by 

I t  is important to appreciate the significance of the 
results described in Theorem 2. Namely, the minimiza- 
tion of criterion (35) that is dependent on both the 
signal amplitude vector _a and the parameter vector 9 
has been equated to that of first solving the following 
reduced parameter optimization problem 

This required vector decomposition is therefore given by minf(8, g) = min f(0, go) e, a e 
(38) 

=I* w 2 - max y+ w Q ( ~ ) Q ( ~ ) * w  1 
21 = e@)* w2: + [ / N - Q ( Q )  e@)* W ]  ?: (33 )  e 

With this decomposition result established, the modeling in the parameter vector 9' In this parameter 
vector minimization, the optimal amplitude vector is 
implicitly entered. Once an optimum parameter vector 

error vector can be expressed as 

has been determined, the associated minimum 
Euclidean norm signal amplitude vector is generated 
using expression (36) here repeated 1 - s(e) g = [ ece) a e ) *  w 1 - s(e) g ]  

(34) 
+ [I I N  - Q@) €?@)* W]Y 

go = R(Q")-' Q(Q")" W z  (39) 

in which the two vectors contained in the first 
rectangular brace both lie in the range space of S@) and 
the vector contained in the second rectangular brace lies 
in its orthogonal complement. Using the W-orthogonal 
property (25), it therefore follows that the weighted 
squared error criterion is given by 

Upon examination of this expression, it is seen that 
the weighted squared error criterion has been 
decomposed into two positive semi-definite terms. The 
second term on the right side is independent of the 
signal amplitude vector. On the other hand, the first 
term can be made equal to zero by a proper choice of 
the signal amplitude vector. This is a direct conse- 
quence of the fact that the range space of Q@)Q@)*W 
is equal to the range space of S@). With these thoughts 
in mind, the following fundamental decoupling result 
has been proven. 

Theorem 2: L A  the N x M composite basis signal matrix 
S@) have full rank M so that it may be represented by 
factorization (31). It then follows that the optimum 
source amplitude vector for any composite source 
parameter vector is speci$ed by 

Using this approach, we have effectively decoupled the 
determination of e. from that of go. This is significant 
since the computational requirements for solving 
minimization problem (38) using nonlinear program- 
ming techniques are much smaller than those required 
in a minimization of weighted squared error criterion 
(23). It is to be noted that this Golub-Pereyra 
decoupling procedure has been extended to include 
more general nonlinear separation of variables 
problems [ 121. 

Newton Type Algorithmic Solutions 
The most difficult phase of the decoupled optimum 

modeling procedure described in the previous section is 
normally that of solving the nonlinear optimization 
problem (38). here repeated: 

In effect, we are to select 9 so that the projection 
mapping component Q@)Q(e)*Wy lies as close to the 
data vector y as  possible. For most applications, this 
functional is a highly nonlinear function of 9 and we 
must resort to nonlinearprogramming methods to obtain 
a maximum. 

We shall now describe a general class of descent type 
algorithms which can be used to iteratively minimize 
functional (40). The gradient vector and Jacobian matrix 
associated with this functional will play prominent roles 
in these descent algorithms. The components of the 
gradient vector of functional (40) are, by definition, equal 
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to the partial derivatives of this functional with respect 
to the elements of the signal parameter vector 9. Using 
standard differentiation, it is readily shown that this 
gradient vector is specified by 

where the symbol real designates the "taking the real 
part of' operator. In this expression, J(CJ is the N x P 
Jacobian matrix associated with model criterion (40) as 
specified by 

In the class of descent algorithms to be here considered, 
the trial signal parameter vector at iteration k is denoted 
by 9'"'. This vector is updated according to the formula 

In this expression, ak is a positive step size scalar that 
is ideally selected to minimizej@'k'",go). For our purpos- 
es, we shall only require that this step size parameter be 
chosen so as  to satisfy the improving condition 

It is essential that this improving condition be satisfied 
if update algorithm (43) is to yield a parameter vector 
sequence that converges to a relative minimum of 
functional (40). 

The value assigned to the p scalar appearing in 
expression (43) determines the specific descent 
algorithm that is implemented. For p=O, this relation- 
ship corresponds to the Gauss-Newton algorithm while 
an appropriately assigned positive value leads to the 
Leuenberg-Marquardt algorithm. As the scalar p 
approaches positive infinity, relationship (43) corre- 
sponds to the method of steepest descent. The Gauss- 
Newton and Levenberg-Marquardt algorithms generally 
provide a rapid quadratic convergent rate with an 
attendant moderate computational load per iteration. 
On the other hand, the method of steepest descent has 
a small computational load per iteration but its 
convergent rate is disappointingly slow. For most 
applications, the Gauss-Newton or Levenberg-Marqua- 
rdt algorithms are preferable because of their rapid 
quadratic convergence capabilities. 

STEP SIZE DETERMINATION 

The step size scalar ctk is to be normally selected SO 

that a sufficiently adequate decrease in functional 
value of fre,go) is achieved at each iteration. A simple 
but effective procedure which has proven successful is 
to evaluate the function J9m+",go) for the following 
sequence of decreasing step sizes 

until the first value of ctk is found for which the 
function flefk'JJ,go) is less than j@'kJ,go). This step size 
procedure has the useful property of initially taking a 
full step (i.e., ct = 1) and if that step proves too large 
then decreasing the step until an improving parameter 
vector is eventually found. The use of an initial full 
step ensures that quadratic or superlinear convergence 
rates are maintained in a neighborhood of a relative 
minimum [ 31. 

STOPPING C OND IT1 ONS 

In using parameter vector updating scheme (43). a 
means for determining when to stop the iterative 
process is required. In particular, a systematic 
procedure must be employed which terminates the 
algorithm whenever the parameter vector is deemed 
sufficiently close to the desired optimum value. There 
exist a variety of heuristically based measures for 
estimating when this condition is met. For our purpos- 
es, the algorithm is stopped whenever one (or both) of 
the following stopping conditions is satisfied. 

(45) 
(;;)step size scalar ct, must he made smaller 

than E~ in order to improve the LSE criterion. 

The scalars E, and E, are user selected with smaller 
values leading to more iterations of the algorithm 
before the stopping condition is triggered. It is 
important that these constants be selected small 
enough so that the algorithm stops when 8, is 
sufficiently close to an optimum, but, large enough so 
that an unduly large number of iterations are not 
employed to gain insignificant changes in the parameter 
vector. 

Gradient and Jacobian 
Matrix Determination 

In accordance with the comments made in the last 
section, our emphasis is concentrated on nonlinear 
programming algorithms which depend only on the 
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determination of the gradient and Jacobian associated 
with squared error functional (40). These entities are 
seen to depend on the partial derivatives of the vector 
Q@)Q@)*Wy relative to the elements of the parameter 
vector. To determine these partials, we will make use of 
the fact that Q@)*Q@)W is a projection matrix whose 
range space equals the range space of S@). It therefore 
follows that 

Upon taking the partial derivative of this identity with 
respect to 8, and then rearranging terms, we have 

We next right multiply each side of this expression by 
S@) fQ(e)Q@)* = Re)  'Q@)* and use the readily estab- 
lished identity S(e)S@)fQ@) = Q@) to obtain 

To complete our development we next take the partial 
derivative of the projection idempotent property 
Q@)Q@)*W = [Q@)Q@)*WI2 to obtain 

The two matrices appearing within the braces on the 
right hand side of this identity are seen to be complex 
conjugates. Upon right multiplying each side of this 
expression by y and substituting in relationship (48). the 
expression for the required partial derivative is given by 

Kaufman has suggested a modification to the Golub- 
Pereyra method in which a significant easing in the 
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computational load often arises [7]. Kaufman's 
approximation of the required partial derivatives is given 
by 

Empirical evidence suggests that this approximation 
provides similar convergence characteristics as does the 
Golub-Pereyra method. Since the computational load is 
typically much smaller, the Kaufman modification is 
generally preferred in many applications. 

Initial Parameter Value Assignment 

A critical factor in the satisfactory performance of any 
nonlinear programming algorithm is that of generating 
an  appropriately good set of parameter values to 
initiate the algorithm. If the initializing parameters are 
chosen sufficiently close to the global minimum, then 
most well behaved algorithms will produce a parameter 
vector sequence that converges to that minimum. On 
the other hand, a poor choice for the initial parameter 
values can cause even the best performing algorithm to 
produce a parameter vector sequence that converges to 
an inferior relative minimum. With this in mind, we 
shall now direct our attention to the vital issue of 
initial parameter value selection. 

It is impossible to provide a universally effective 
procedure for selecting initializing parameters for the 
general class of LSE modeling problems. A method 
which has proven successful in several important LSE 
problems, however, is now described. It is applicable to 
those modeling problems for which the basis signal 
vectors comprising the columns of composite basis 
signal matrix S(e) are each dependent on their own 
individual parameter vectors, that is 

where e,, designates the parameter vector associated 
with the m"' basis signal vector. Fortunately, many 
important LSE modeling problems can be described in 
this fashion. The proposed initializing procedure is 
predicated on a generalization of the coordinate descent 
algorithm employed in nonlinear programming 191. In 
the coordinate descent algorithm, a function of many 
variables is minimized through the process of generat- 
ing an improving value for one variable at a time, while 
holding the other variables fixed. This process is 
sequenced through all the variables and then repeated 
until the variables converge hopefully to the desired 
global minimum. 

To adapt the coordinate descent algorithm to the LSE 
modeling problem in which the composite basis signal 
matrix takes the form (51). we shall examine the 
general case in which there are m basis signals where 
m 5 M. Applying the generalized Gram-Schmidt 
orthogonalization process described in Table I to the 
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basis signals ~,(~l) ,~2(0J, . . . ,~ , ,@ J. there is generated 
the set of W-orthogonal vectors which form the rn 
columns of the rn x N matrix given by 

The first W-orthogonal vector g,&) is seen to depend 
only on parameter vector e,, the second W-orthogonal 
vector q2(9,,&,J to depend only on the parameter vectors 
@,,~,) and so forth. This is a direct consequence of the 
fact that the basis signals are each dependent on there 
own parameter vectors. It is instructive to decompose 
matrix (52) as 

The first rn - 1 columns of this matrix are seen to 
correspond to the first rn - 1 W-orthogonal vectors 
generated by the generalized Gram-Schmidt orthogonal- 
zation process while the last column is generated 
according to 

It is apparent that relationships (53) and (54) constitute 
a convenient implementation of the generalized Gram- 
Schmidt process outlined in Table I in which at the first 
iteration rn = 1 one sets Qo equal to the zero matrix. 

We next apply the results of Theorem 2 in which the 
optimal signal amplitude vector is implicitly selected. 
The associated weighted squared error criterion is by 
relationship (37) given by 

This expression provides an iterative means for updating 
the squared error modeling criterion as new basis 
vectors are entered. 
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COORDINATE DESCENT ALGORITHM 

The coordinate descent algorithm entails a sequential 
application of expressions (53)-(55) to generate a set of 
initial parameter vectors. At the first iteration rn = 1, the 
vector ql(e,) is generated using relationship (54) with 
Qo(el) set equal to the zero matrix, that is 

This vector is then substituted into relationship (55) to 
give the amplitude optimized weighted squared error 
criterion's value 

We now seek a parameter vector 9, that minimizes this 
criterion. In most applications of interest, a closed form 
solution for a minimizing parameter vector is not 
feasible. In this all to common situation, an approxima- 
tion to an optimum parameter vector generally entails 
a direct evaluation of criterion (57) on a grid of e, 
values believed to encompass the minimum. This 
entails the evaluation of vector expression (56) on this 
grid and then substituting these grid evaluated vector 
values into criterion (57). That grid point which renders 
this criterion its minimum is taken as a first approx- 
imation to the optimum choice for 9,. Computational 
considerations usually dictate that the grid points be 
sparse thereby giving rise to a relatively crude 
approximation of the optimum parameter vector. 
Interpolation techniques can then be employed to 
improve upon this first approximation. The parameter 
vector obtained by this direct evaluation procedure is 
designated by rl. The matrix Q,(f,) is also formed 
using expression (53). 

At the next step of the sequential process, the first 
parameter vector is held fixed at the approximate 
optimum value obtained at the first step (i.e. e',). We 
then seek the two parameter vector combination 
( f l , f iJ  which best represents the data vector y in the 
minimum squared error sense. It is important to realize 
that the two parameter vectors obtained in this manner 
are generally not the optimum selection for all possible 
two parameter vector combinations. The process of 
fixing the first parameter vector and then selecting the 
conditioned optimum second parameter vector, 
however, typically leads to a sufficiently good subopti- 
mum choice. Although we generally lose the possibility 
for obtaining an optimum parameter vector pair, this 
procedure of decomposing the problem into a sequence 
of simpler individual parameter vector optimizations is 
computationally more viable. With this in mind, the 
second step is now outlined. 

The W-orthogonal vector g2(r1,9J thht arises from 
the generalized Gram-Schmidt procedure is generated 
according to relationship (54) with rn = 2, that is 
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From expression (55), the signal amplitude vector 
optimized weighted criterion is given by 

(59) 

The first term on the right side is fixed and equals the 
minimized criterion value for a one basis signal model 
found at step one. It is now desired to select a value for e, which minimizes the two basis signal model 
criterion (59). For reasons just elaborated upon in step 
one, a direction evaluation of this criterion will typically 
be required for an minimizing selection. A direct 
evaluation of this criterion on a grid of (3, values is 
then camed out. The approximation to this minimizing 
selection is here denoted by eo,. The determination of 
the matrix Q,(f,,fJ using expression (53) completes 
the second step of the coordinate descent algorithm. 
This process may be straightforwardly continued in an 

iterative fashion. Specifically, at the m - 1"' stage it is 
assumed that a set of m - 1 parameter vectors f,, go,, 
..., f,,, I have been selected to represent the empirical 
data by m - 1 basis signals. It is now desired to append 
to this set another parameter vector e,, so that the 
enlarged set of parameter vectors best represent the data 
vector. To achieve this objective, we simply use expres- 
sion (54) to generate qm(fl, ..., f m l ,  9,) and then 
evaluate criterion (55) on a grid of e, values. This leads 
to an  approximation of the minimizing value eo,,,. The 
procedure is continued until a full set of M signal 
parameter vectors {r,, f 2 ,  ..., e",) have been obtained 
to represent the given data vector. Typically, the signal 
parameter vectors obtained using this iterative 
procedure provide good initial model parameter values 
for many modeling problems of interest. 

Exponential Signal Models 

The notion of modeling empirical data as a linear 
combination of exponential signals is popular and widely 
employed. An exponential signal model may be directly 
obtained using the nonlinear programming approach 
taken in the earlier Section on "Gradient and Jacobian 
Matrix Determination." In particular, the N x 1 basis 
signal vectors comprising the composite signal matrix 
take the form 

s ( I' m, O n ! )  = for I < n i < M  (60) 

where r,, and a,,, represent the damping factor and 
frequency parameters of this basis signal, respectively'. 
These exponential signal vectors form the columns of the 
composite basis signal matrix S((3). If the data being 
modeled is real, it is essential that complex conjugate 
pairs of exponential signal vectors (60) appear in S@). 
To implement the proposed nonlinear programming 

algorithms presented in the two preceding Sections, it 
is necessary to compute the partials derivatives of 
matrix S@) with respect to the parameters r,,, and con,. 
Since these parameters only appear in the column which 
contains vector z(r,,,, o,,j (and its complex conjugate for 
real data models), the required partials derivatives are 
straightforwardly given by 

With these partial derivatives available, we are in a 
position to implement the nonlinear programming 
algorithms of the earlier Section on "Gradient and 
Jacobian" methods to find the best exponential signal 
model. 

Example 2: To illustrate the effectiveness of the 
exponential modeling algorithm, we shall now treat the 
special case of identifying two complex sinusoids in 
additive noise. For this purpose, we shall use the 
example treated by Kumaresan and Tufts in testing 
their sinusoidal identijlcation method 11 81. In particular, 
the data consisted of the sum of two unit amplitude 
complex sinusoids 

with frequencies f1=0.50 and f,=0.52 corrupted by 
additive zero mean white Gaussian noise w(n) whose 
real and imaginary components each have variance 0'. 
The sinusoid signal-to-noise ratios (SNR) are each 
specsed by 10 U)G,,(1/2 0'). One hundred inde- 

* For purposes of presentation simplicity, we here employ only a first 
order exponential model. Basis signals of higher order (e.g., nz") can be 
incorporated in a similar fashion. 
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pendent runs of data sequence (63) were generated for 
each of the signal-to-noise ratios of 0, 5, I O ,  15, 20, 25 
and 30 dl3. 
These data sets were used to statistically test the 

eflectiveness of the Gauss-Newton algorithm implemen- 
tation of a two sinusoid signal model [i.e., r,=r,=l) in 
which the unit weighting W=I, is used. In this testing, 
the parameter initializing scheme of the preceding 
Section is employed to obtain initialfrequency estimates 
@ , “ , f ~ I )  for each of the one hundred data sets. The grid 
offrequency values used in this scheme is taken to be 
w, = 2 ~ k / N ,  for k = 0,1, ..., N - I .  It is readily shown that 
this initializing scheme is equivalent to taking the D I T  
of the data and choosing the twofrequencies that are 
associated with the two largest Fourier coefficient 
magnitudes. Using these initial frequency estimates, the 
Gauss-Newton algorithm with step size selection (44) is 
employed to generate refined fi-equency estimates. The 
algorithm was deemed to have converged when one of 
the two stopping conditions 145) is first met. The 
stopping condition scalars were chosen as E, = IO-’* 
and E, = [1/2)’. Stopping condition [ii) invariably 
triggered the algorithm’s termination with this conver- 
gence typically requiring four iterations. 

The quality of the Gauss-Newton generated estimates 
is compared to that achieved by the Kumaresan-Tufts 
sinusoidal identi$cation algorithm 1181. In using the KT 
maximum likelihood behaved method, their suggested 
optimal prediction3lter order L = 18 is chosen. Also in 
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,,L *Cramer-Rao bound 
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30 t 

of the fact that the unit-impulse response of a linear 
recursive system is equal to a linear combination of 

Cramer-Rao bound damped complex exponentials. An example of this 
specific application is shortly given. 

- 

Gauss-Newton 4 
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I 

With the above thoughts in mind, it is now desired to 
model the two-tuple data (65) by the following linear 
recursive system of order [p,q) 

Fig. 2. Reciprocal of the squared frequency error 
estimates for f,. 

accordance with their method, the two KT frequency esti- 
mates are taken to correspond to the angles of the two 
roots of the KT prediction error filter polynomial that lie 
closest to the unit circle. The goodness of the frequency 
estimates obtained using the LSE modeling and KT algo- 
rithms is measured by the sum of squared error criterion 

inn- 

for each of the two frequency estimates. 
Statistics relating to the results of the one hundred trial 

runs at each of the SNRs tested are displayed in Table 
I1 and in Figs. 2 and 3. Table I1 lists the sample means 
of the frequency estimates obtained with the initial 
frequency estimates, the Gauss-Newton algorithm and 
the Kumaresan-Tufts method. For all SNR’s tested except 
0 dl3, the LSE modeling algorithms provided virtual 
unbiasedfrequency estimates. The statistics arising from 
thefrequency parameter error criterion (64) are displayed 
in Figs. 2 and 3 in reciprocal fashion along with the 
associated Cramer-Rao bound [see reference 11 11). From 
these results it is apparent that the parametric sinusoidal 
model algorithm outperforms the Kumaresan-Tufts 
method at all SNRs exceeding 0 dl3 with both approach- 
ing the Cramer-Rao bound performance at higher SNRs. 
Furthermore, the proposed initial parameter selection 
procedure provided sufficiently good initial frequency 
estimates in this application. 

Linear Recursive System Identification 

In modeling empirical data, linear recursive systems 
often provide a particularly powerful means for obtaining 
useful representations. When using this approach, it is 
generally assumed that the empirical data is specified 
by a two-tuple sequence 

(xk , yk )  for 1 I k 5 N  (65)  

In standard system identification applications, x, and y, 
represent the measured excitation and output sequences 
of the phenomenon being modeled, respectively. On the 
other hand, in applications where it is desired to 
approximate a single measured data sequence y, as a 
linear combination of damped complex exponentials, the 
fictitious excitation sequence x, is taken to be a unit- 

I 
5 10 15 20 25 30 for l I n l N  10 ’ 

SNR 

Fig. 3. Reciprocal of the squared frequency error We have here explicitly expressed the system response 
estimates for f,. y&,k) as  a function of the feedback parameter vector _a 
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11 SiVR0(dEV I/ A"" I fi"" / /  f,"" 1 fz"" 1; fi" 1 f," 11 
0.4291 0.5890 0.4283 0.5900 0.4562 0.5402 

0.5050 

0.5067 

0.5076 

0.5081 

0.5081 

0.5081 

0.5254 0.5000 0.5284 0.4806 0.5348 

0.5151 0.4999 0.5207 0.4982 0.5197 

0.5138 0.5000 0.5204 0.4994 0.5197 

0.5132 0.5000 0.5202 0.4998 0.5199 

0.5131 0.5000 0.5201 0.4999 0.5199 

0.5131 0.5000 0.5201 0.4999 0.5200 

with components a, and the feedforward parameter 
vector b with components b,. This is done so as  to 
emphasize this dependency. In using this recursive 
model, it is tacitly assumed that data sequences x, and 
y, are identically zero for n I 0. If this is not the case in 
a given application, then one simply reduces the 
indices over which modeling expression (66) holds to 
(p+ 1 ,N] so that each term on the right side is available. 
For purposes of presentation brevity, we shall not 
pursue this latter possibility. A straightforward 
modification of the approach now taken, however, can 
be made to accommodate for this possibility. 

Our objective is to select the linear recursive model's 
parameters a, and b, so that the model's response 
S,,(g,b) best matches the given data yn in the LSE 
sense. The minimization problem to be considered is 

. .  ... . 

or more compactly as  

therefore given by 
The Nx (q+ 1) matrix S(@ has a Toeplitz lower triangular 
structure with response entries yk@). 

The task of selecting the linear recursive model's 
parameters so that its response is most comDatible to 

(67) 

where and d(a,bl are each vectors whose 
elements correspond to the given data (65) and the 
model response (66). respectively. In order to formulate 
this problem in the fashion presented in previous 
sections, we introduce the awcilianl linear recursive 

the given data observations (65) has now been posed in 
a manner consistent with that of the general nonlinear 
LSE previously treated. In particular, we wish 
to select the linear recursive system's parameter vectors 
a and b so as  to minimize the squared error criterion 

system as specified by 

P In terms of the modeling notations employed in the 
earlier Section on "Parametric Dependent Basis Signals", 
the signal parameter vector and signal amplitude vector 

(68) j,(u) = x(n) - U ~ , - ~ ( U )  for- 1 In 5 N 
k= I 

correspond to the feedback par--eter vector _a and the 
feedfonvard parameter vector b, respectively. We may 

to obtain the reduced dimensioned criterion. In 

where the awriliaq response has been 

parameter vector _a. It is a simple matter to show that 
the response of linear recursive system (66) is given by particular, the factorization of s(a) as specified by 
the linear combination 

expressed as an function Of the feedback now use the factorization approach taken in that Section 

%a) = Q ( d R ( 4  (72) 
(69) 

We may now represent relationship (69) in the vector 
format dimensioned functional 

OCTOBER 1990 IEEE ASSP MAGAZINE 

is computed. It follows from the results of the "Paramet- 
ric Dependent" Section that squared error criterion (7 1) 
can be expressed to that of minimizing the reduced 

y^n(a,h) = hoyn(d+hlj,-l(a)+ ... +bqjn-q(a) 

2s 



Our task is to then select the p x 1 feedback parameter 
vector g so as to minimize this functional. Once an 
optimum go has been determined, the corresponding 
minimum Euclidean norm selection for the feedforward 
parameter vector _b is from expression (39) given by 

h" = R(u")-' Q(go)* W y  (74) 

The determination of an optimum linear recursive 
model has therefore been reduced to minimizing squared 
error criterion (73) by a proper choice of the feedback 
vector g. If the Newton type algorithms described in an  
earlier Section are to be used, it is necessary to 
determine the Jacobian matrix associated with the 
weighted squared error criterion. This entails determin- 
ing the partial derivatives of Q@)Q(g)*y with respect to 
the a, coefficients. In accordance with relationship (50). 
the key requirement is to determine the partial 
derivatives aS(g)/a a,. 

DETERMINATION OF dS(aJ/da,,, 

The determination of the matrices dS(g)/aa,,, are 
obtained by taking the partial derivatives of the auxiliary 
system response elements y,,(g) which comprise matrix 
S(g) as is evident from expression (70). With this in 
mind, the partial derivatives of auxiliary system 
relationship (68) with respect to 4, are specified by 

for I 5 n S N  (75)  

Upon examination of this expression, the required 
partial derivatives can be interpreted as being the 
response of the linear system with transfer function 

-1 -1 
(76) H ( z )  = ~ = 

S ( z )  1 + a ,  z-* + a*z-2+. .. +a@ 

to the excitation yn.,,,(g). For example, the partial 
derivatives &j,@)/)/aa, for 1 5 n 5 N are obtained by 
using the configuration shown in Fig. 4. This response 
sequence forms the first column of matrix aS(g)/)/aa,. 
The remaining columns of this matrix are simply down 
shifted versions of the first column, that is 

. . .  

(77) 

The remaining partial derivatives matrices aS(g)/aa, 
are related to matrix aS(g)/aa, in a straightforward 
manner. In particular, relationship (75) indicates that 
matrix aS(g)/aa,,, is obtained by simply downshifting 
each column of aS(g)/aa, by m positions and putting 
zeros in the vacated first m rows while dropping the 
last m rows of aS(@/aa,. 

INITIAL PARAMETER VALUES 

As indicated earlier, a critical point in the successful 
use of any nonlinear programming algorithm is that of 
generating a good set of parameters to initiate the 
algorithm. If these initiating parameters are poorly 
selected, then the resulting parameter vector sequence 
may converge to a poor relative minimum or it may not 
converge at  all. With this in mind, we now describe a 
systematic method first presented by Shanks [ 141 that 
typically generates acceptably good initial recursive 
system parameters. It is predicated on the assumption 
that the system response (66) accurately approximates 
y,. If this is true, it follows that by replacing g,,(g,_b) by 
y,, in relationship (66), the associated model error 
sequence 

k=O k=o 

should be sufficiently close to zero where a,= 1. We shall 
use this hypothesis to obtain a set of parameter values 
to initiate a nonlinear programming algorithm. 

We first formulate the model error equations (78) in 
the familiar vector format 

This residual expression can be compactly represented 
as 
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where matrices X and Y are specified in relationship 
(79). A good set of initial values for the parameter 
vectors _a and _b can generally be obtained by minimizing 
the sum of squared residuals g*g. The required 
minimum Euclidean norm solution is given by 

h,1= 

[;] = s+?: 

' o n(O 

- n=O U1 

n 
sin (no,.) 

1721 
. nn 

where S' designates the pseudo inverse of S. 

0 

0.2500 

Example 3: The above modeling approach is now used 
to find the best recursive approximation of the causal 
unit-impulse response component of an ideal low-pass 
$filter. Iterative procedures for solving this class of 
problems have been advanced by several uuthors [e.g., 
see references 111, 161. 1171. Using the inverse Fourier 
transform of the ideal zero phase low-pass filter with 
cutoff frequency o,, the causal component is specGed by 

1 2 3 4 5 6 

-3.6166 36.3769 -6.5215 4.0849 -1.4561 0.2388 

-0.6799 0.9416 -0.6998 0.3027 -0.0554 0.0067 

We shall now approximate this ideal unit-impulse 
response behavior by a linear recursive$lter of order p 
= q = 6. Since this ideal response is of inJnite length, 
computational considerations dictate that only a 
truncated version of this ideal sequence be approximated. 
The length of the truncated should be chosen suitably 
large so that it contains most of energy of the infinite 
length sequence. 

With these thoughts in mind, the recursive system's 
parameters are to be selected so that its unit-impulse 
response (i.e., x, = 6,J best approximates h,, over the 
interval 0 5 n I 127. The Shank's initializing procedure 
(81) is used to obtain initial parameter values. The 
refined recursive parameters generated by the Gauss- 
Newton algorithm with unit weighting W=I, are given in 
Table III. I t  took 15 iterations for the Gauss-Newton 
algorithm to converge to these values. The algorithm was 
deemed to have converged when stopping condition (45i) 
isJrst met with E, = I O  Io. 

Plots of the truncated unit-impulse response for the ideal 
filter and the linear recursive filter of order (6,61 are 
shown in superimposed fashion in Fig. 5. They are 
virtually indistinguishable in this plot. The normalized 

sum of squared error criterion (12) is found to equal 
0.0057 for this optimumfilter quantming the close match 
observed in Fig. 5. Clearly, this low order linear 
recursive Jlter provides an excellent approximation of 
the ideal behavior. 

I t  is readily established that twice the real part of the 
Fourier transform of the untruncated ideal unit-impulse 
response 182) equals the frequency response of the ideal 
low passJlter. Plots of twice the real part of the Fourier 
trans form of the truncated ideal unit-impulse response 
and the recursive system's frequency response are 
displayed in %. 6. This truncation operation is seen to 
yield only a close approximation of the ideal low pass 
frequency response behavior. Upon increasing the 
length of the truncated ideal unit-impulse response 
signficantly beyond 128, a better approximation may 
be obtained. This may require increasing the order of 
the recursive system above (6,6). 

0.25, I I I I I I 

0 O 2 l  15 

ideal filter----- 
recursive filter - 

0 1 C I  1 
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k 

Fig. 5. Unit-impulse response of ideal [dashed line) and 
recursive [solid line) system model. 

Multiple Data Set Modeling Problem 

In many signal processing applications, one is given a 
sequence of N x 1 measurement vectors of the form 

for- l 5 k S  : I  (83) 

For example, in array signal processing these vectors 

Table III. 
Coefficients of Optimum LSE Recursive Low Pass Filter. 
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Fig. 6. Twice the "real part" of the Fourier transform of the 
ideal unit-impulse response (dashed), and of the recursive 
system model's frequency response (solid). 
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would correspond to sampled values of the N sensors 
comprising an array. Whatever the case, it is desired to 
represent each of these data sequences as  a linear 
combination of the column vectors of the same N x M 
matrix S@) whose elements are dependent on a P x  1 
real parameter vector e. The associated modeling 
problem corresponds to finding a parameter vector 9 
and the K x 1 amplitude vectors _a, which render a 
minimum to the weighted squared error function 

K 

f(e, ai ..., a K )  = biA)- s(e)ail 'W [ 2" - S(e)gil (84) 
i= 1 

A minimizing choice for the above function is readily 
obtained in a fashion similar to that taken in previous 
sections. In particular, the Gram-Schmidt generated 
representation for S(e) is first made as spelled out by 
relationship (31). It then follows that the optimum 
selection of e is obtained by minimizing the functional 

K 

Marquardt algorithms is given by 

Direction Finding 

A natural application of the general problem considered 
in the previous section is that of direction finding. The 
author has applied this approach to solve the direction 
finding problem using a LSE procedure (see reference 
[2]). A brief description of this solution procedure is now 
given. In the direction finding problem, there exists an 
array of N sensors located at the points g , ,  gz, ..., & in 
real three dimensional space. I t  is assumed that Mplane 
(or spherical) waves are incident on this array and it is 
desired to use sampled values of the induced sensor 
signals to estimate the direction-of-arrival of the incident 
wave fronts. For this purpose, the data vector set (83) 
corresponds to K samples of the N sensor signals. The 
so-called N x 1 snapshot vector yfk' has as its compo- 
nents the ynM' which correspond to the Fh sample of the 
nth sensor signal. 

For narrowband incident plane waves whose center 
frequency are each a,, it is well known that in the noise 
free case the K snapshot vectors associated with this 
problem are each equal to a linear combination of the M 
steering vectors associated with each of the incident 
plane waves3. The steering vector for a plane wave is 
specified by 

Once the optimum choice has been determined, the 
corresponding optimum values for the amplitude 
vectors are then given by 

< = R (e)-' Q@)' W 2" forlSkll( (86) 

The nonlinear programming techniques described 
earlier (i.e., the Newton method and the parameter 
initialization procedure) may now be employed for 
minimizing function (85). For example, it is readily 
shown that the gradient vector associated with this 
functional is, according to expression (411, given by 

Moreover, the KN x P Jabobian matrix associated with 
this residual vector is readily obtained. In particular, 
using the same approach taken in the earlier Section on 
Newton type algorithms, the Jacobian matrix required 
to implement the Gauss-Newton or Levenberg- 

where w, designates the center frequency of the incident 
narrowband source and c is the medium's velocity of 
propagation. In this expression, the 3 x 1 vector ~ ( 9 )  
corresponds to the unit direction of an incident source 
as  specified by 

(90) 

with 8, and e2 being the azimuth and elevation angles, 
respectively, of the incident plane wave. 

For this direction-of-arrival problem, the N x M matrix 
S&) employed in the earlier Section on "Gradient and 

' A n  analogous characterization can be made for broadband plane 

wave by working in the spectral domain. 

28 IEEE ASSP MAGAZINE OCTOBEll 1990 



Jacobians" has the M steering vectors associated with 
each incident plane wave as its columns, that is 

1 Mus*: 
2 Eigenvector . 
3 Snapshot domain 
4 Cramer-Rao Bound - 

where (3, designates the 2 x 1 vector whose compo- 
nents are the azimuth angle e,(l) and elevation angle 
e,(Z) corresponding to the mth incident plane wave. It 
is a simple matter to show that the partial derivatives 
needed to compute the associated Jacobian matrix are 
directly determined from 

where the four trigonometric functions f and the 
exponent L are defined as follows: 

Example 4: To illustrate the effectiveness of LSE 
techniques for generating direction-of-arrivals, let us 
consider the special two-dimensional case in which the 
array sensors are located in the (x,y) plane a t  the points 

~1 =[0,-287.5]' g2 =[O; 187 51' 6 3  =LO, -87 51' z4 =[O, 87.51' 
65 =[O, / 87.51' z6 =[O, 287.51' z7 =[287.5, 01' _zS =[ 187.5, 01' 

xi87.5, GI' 610=[-87.5, 01' _~,,=[-187.5,0]' _~,2=[-2875,0]' 

The sensor locations are here expressed in units of feet. 
Furthermore, let there be two (M=2) unit power 
narrowband plane waves incident on this array with 
center frequency 14.85 MHz in which the velocity of 
propagation is taken to be 3 x 1 0 8  meters/second. The 
plane waves travel parallel to the (x,y) plane with 
direction of arrivals 

The snapshot data is generated according to 

For ourpurpose, the ak(n) amplitudes characterizing the 
snapshot data are taken to be random zero mean, unit 
variance Gaussian processes. Moreover, qR' represents 
a N x 1 additive independent zero mean Gaussian noise 
vector. One hundred independent trial runs were made 

a t  each of the SNRs of -5,0,5,10,15, and 20 dB. The 
number of snapshots used in each trial run was set a t  K 
= 100. The two incident sources are said to be incoherent 
if the two Gaussian sequences a,(n) and a&) are 
independent and coherent if these sequences have unit 
correlation. The latter coherence condition is here met by 
letting alRl = qfk'. Source coherency plays a n  important 
role in direction-of-arrival estimation methods. Some 
algorithms perJorm well for incoherent sources but not 
well for coherent sources (e.g., MUSIC [13/). 

The general coordinate descent method described in the 
Section on 'Tnitial Parameter Value Assignment" was 
used togenerate initial angle of arrival estimates required 
in the Gauss-Newton algorithm. It is to be noted that this 
initialization procedure for the direction3nding problem 
wasfust developed by Ziskind and Wax [19]. Using these 
initial angle estimates, the Gauss-Newton algorithm with 
step size selection (44) is used to generate reJned DOA 
angle estimates. The algorithm was deemed to have 
converged when one of the two stopping conditions (45) 
isfirst met. The stopping condition scalars were chosen 
as E, = 10" and E, = ( l /Z ) ' .  Stopping condition (ii) 
invariably triggered the algorithm's termination with this 
convergence typically requiring three to four iterations. 
The results of the trial runs are summarized in Fig. 7 for 
the case of incoherent sources. In this Bgure, the 
estimates achieved with the MUSIC algorithm as well as 
the Cramer-Rao bound are also shown. From these 

1 Musr 
2 Eigenvector 
3 Snapshot domain . 
4 Cramer-Rao Bound 

0 2  

0 
0 5 10 15 20 

SNR 

(a) 20 degrees 

1.8 

1 
20 

SNR 

lbl 23 degrees 

Fig. 7. Root mean squared error of azimuth angle-of 
anival estimates for LSE modeling and MUSIC 
algorithms: Incoherent Case. 1 = Music; 2 = Eigenvector: 
3 = Snapshot domain; 4 = Cramer-Rao bound. 
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results it is seen that the LSE modeling method provides 
betterperformance than MUSIC. In fact, the LSE modeling 
approach has a performance that approaches the 
Cramer-Rao bound for the snapshot data. Also shown in 
this fgure are the estimates achieved when an 
eigenvector LSE modeling approach is taken (see 
reference 121). 

When the two sources were coherent, the MUSIC 
algorithm was unable to resolve the two sources for any 
of the one hundred trial runs. The LSE modeling 
method, however, was able to achieve a resolution for 
each run. The root mean squared error behavior for 
these twofrequencies estimates are summarized in Fig. 
8 for the coherent case. Not surprisingly, the incoherent 
case estimates are generally superior to the coherent 
case estimates. 

hand. LSE algorithms for obtaining the optimal choice 
for the parameter vector 9 were developed. Although 
the Gauss-Newton type algorithm occupied center 
stage in this development, a variety of other algorithms 
could have been employed in the same model setting. 
This is illustrated by the Rosenbrock algorithm as 
briefly described in the Box. Of critical importance in 
any of these nonlinear programming techniques was 
the development of an effective procedure for generat- 
ing initial parameter estimates. One such method was 
described in the Section on "Initial Parameters" for an  
important class of modeling problems. The utility of the 
LSE modeling approach and the initial parameter 
estimation procedure were illustrated by several 
examples. 

1.Snapshot domain 
2.Cigenvector 

3.Cramer-Rao bound 

1.5 t \ 

1 
0 '  -5 0 5 10 15 20 

SNR 

(a) 20 degrees 

a 

1.Snaprhot domain 
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3.Cramer-Rao bound . 
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\ I 

sN1 

lb) 23 degrees 

Fig. 8. Root mean squared error of azimuth angle-of- 
anival estimates for LSE modeling and MUSIC 
algorithms: Coherent Case. 1 = Snapshot domain: 2 = 
Eigenvector; 3 = Cramer-Rao bound. 

Conclusion 

A systematic LSE modeling procedure for approximat- 
ing empirically obtained data has been presented. In 
the approach taken, the data is to be approximated by 
a linear combination of basis signal vectors constitut- 
ing a composite signal matrix S@). These basis signals 
are user selected and reflect the given application at  

The Rosenbrock Algorithm 

As indicated previously, the most computationally intense 
component of the proposed LSE modeling approach is usually 
that of minimizing the weighted squared error functional 

Although we have used Gauss-Newton type algorithms for 
achieving this minimization. other distinctly different 
algorithms could have been used instead. To demonstrate this 
point, the little-known Rosenbrock algorithm is now briefly 
described. This algorithm has the valuable attribute of only 
requiring evaluations of functional (96) and not its gradient. 
This can be important in those applications where either a 
closed formed expression for the gradient is unavailable or 
where the gradient's evaluation is computationally expensive. 
When the number of model parameters is modest, it has been 
the author's experience that the Rosenbrock algorithm 
performs as  effectively as  does the Gauss-Newton algorithm 
on the class of modeling problems considered in this paper. 

A description of a typical iteration of the Rosenbrock method 
for minimizing squared error criterion (96) is now given (see 
reference [8 ]  for a more thorough description). The following 
entities will be required 

an initial set of P pairwise P x 1 orthonormal 
direction vectors denoted byd,"', dF', ..., SF'. These 
vectors can be chosen to be the standard basis 
vector in Rp. 

a set of P step size scalars sk associated with 
directions cik. 

multiplying scalars a > 1 and 0 < p < 1 that are 
used to adaptively adjust the step sizes. Rosenbrock 
has suggested the choice a = 3 and = 0.5. 

The current value of the nonlinear signal parameter vector is 
denoted by @'. A step of the Rosenbrock algorithm is said to 
be successful if the perturbed value of functional (96) is less 
than or equal to its unperturbed value (i.e., j@'k' + sdk,g0) 2 

@k',:o)). With these preliminaries completed, a standard 
iteration of the Rosenbrock algorithm is outlined in Table W .  

The Rosenbrock algorithm has proven to be useful on a 
diversified set of modeling problems. Its utility is primarily 
based on the requirement that at  each iteration improvements 
are made in each of P orthogonal directions. Furthermore, the 
first perturbation vector d, is selected to point in the direction 
of total improvement made at the previous iteration (see step 
9). This direction reflects, in some sense, the local direction in 
which functional (96) decreases most rapidly. 
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Using an appropriate algorithm (e.g., see "Initial Parameter Value Assignment"), compute 
values for the initial signal parameter vector gfJJ and set k = 1. 
Enter the initial perturbation directions and step size scalars. 
A step s, in the direction ci, is taken from the prevailing signal vector. 
IfJg'" + s,dk,go) S J f i f k J , ~ o ) ,  a success is recorded, the step size s, is multiplied by cx and the 
perturbed parameter vector (efkJ + s&,) replaces the prevailing parameter vector. 
If Jg'" + s,dk,go) ) JgfkJ,@), a failure is recorded, the step size is multiplied by -p, and the 
prevailing signal parameter is retained. 
If k ( P, set k = k + 1 and repeat Steps 4 - 6. 
Repeat Steps 3 - 6 until a t  least one success followed by a failure is recorded in each of the 
Pdirections. When this condition is met, set the prevailing signal parameter vector to gfk+JJ. 
Select a new set of orthonormal direction vectors. The critically important first direction 
vector cl, is selected to be a unit length vector pointing in the direction gfk+" - gfkJ. The 
remaining P - 1 orthonormal direction vectors can be selected in an arbitrary fashion (e.g., 
see [SI). 
If a user-prescribed stopping condition is satisfied, the algorithm is terminated. Otherwise, 
return to Step 3. 

Table N. 
Steps of the Rosenbrock Algorithm. 
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