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The concept of least squares (LS) as applied to an incon-
sistent system of linear or nonlinear equations is a funda-
mental tool in numerical analysis. Furthermore, these tech-
niques have been applied with much success in solving
many of the more challenging problems found in signal pro-
cessing. In the standard LS problem, one seeks a choice for
the vector x governing the inconsistent system of linear
equations Ax = y so that these equations are best approxi-
mated in the least-squares error sense. In this paper, the
concepts underlying an LS solution approach are presented
in a tutorial fashion and only a basic knowledge of Eucli-
dean spaces R™ and C" is presumed. Much of the analysis is
related to a linear system of equations where use of the
fundamental fact that all Hermitian matrices have a full set
of pairwise orthonormal eigenvectors plays a central role.
Once the basic LS solution characterization of a linear sys-
tem of equations has been made, a statistical analysis of
this solution is undertaken, Conditions under which the LS
solution is particularly sensitive to additive noise are estab-
lished. This sensitivity can be decreased by using the con-
cept of reduced rank approximation where a trade-off be-
tween estimation bias and estimation variance is made.
The notion of linear least-squares error is then generalized
to consider the case whereby the inconsistent system of
linear equations A(8) x = y has a system matrix A(f) that
depends on a set of real parameters 8. It is now desired to
select both x and 4 so as to obtain a best approximate solu-
tion. This is shown to lead to a modified LS solution. An
important extension of this problem is next made whereby
the multiple inconsistent system of linear equations A(8) x,
= y, for 1 < k < N is best approximated in the least-squares
error sense. These concepts are then further generalized to
include the task of finding an LS solution to a system of
nonlinear equations described by F( x, §) = y.
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1. INTRODUCTION

In a class of problems of interdisciplinary interest,
it is desired to estimate values assumed by a set of
primary variables which provide a salient characteriza-
tion of a dynamic process (i.e., a system) under inves-
tigation. Due to the nature of the process, however, it
is often not feasible to directly measure these primary
variables. A means for overcoming this dilemma is to
measure a set of auxiliary variables and then employ a
known functional relationship between the primary
and auxiliary variables to generate estimates of the
primary variables. For example, this approach is fre-
quently invoked by the physician when making a med-
ical diagnosis, by the economist when providing an
economic forecast, the meteorologist in making
weather forecasts, and the signal processor in per-
forming filtering or deconvolution operations. In the
first three of these examples the auxiliary and pri-
mary variables correspond to parameters associated
with the underlying system, while in the last example
the variables correspond to number sequences (i.e., a
time series or discrete-time signal). Whatever the
case, the effectiveness of this approach is predicated
on the correctness of the hypothesized functional re-
lationship between the auxiliary and primary vari-
ables.

The above philosophical approach is now mathe-
matically formulated whereby the set of measurably
m auxiliary variables are taken to be the components
of the m X 1 observed vector designated by y. Simi-
larly, the n primary variables which cannot be di-
rectly measured are taken to form the components of
the n X 1 unobserved vector designated by x. Although
the auxiliary and primary variables are real-valued in
most practical applications, in order to study the
cases of real- and complex-valued variables in a single
setting it is convenient to interpret these variables as
being complex-valued so that x € C" and y € C™.
Since real numbers form a subset of the complex num-




bers, the theoretical results to follow are straightfor-
wardly modified to the real data case. This typically
entails removing any complex conjugate operations
that may appear.

Linear Models

In the most general modeling application, the func-
tional relationship between the observed and unob-
served vectors is of a nonlinear nature and takes the
form y = f(x) wheref( ):C"— C™.This expression
represents a system of m generally nonlinear equa-
tions in n variables. Over the past 2 centuries, a great
deal of interest has been directed toward the impor-
tant special case of a system of linear equations. The
eminent mathematician C. F. Gauss laid much of the
groundwork in this area, and his works have had a
great impact on contemporary numerical analysis and
signal processing [9]. This effort has been continued
by numerous mathematicians and scientists, reflect-
ing the importance of linear models in quantitative
disciplines (e.g., see Refs. [1,2,10,14]). One of the pri-
mary purposes of this paper is to put some of the more
important results of these studies as they apply to
signal processing into a common format. Although
the algebraic background needed for this study is
minimal, the reader interested in a more in-depth
treatment has available many excellent sources (e.g.,
[11,12,13,18]).

When invoking a linear model, the observed and
unobserved vectors are related in the linear fashion:
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In particular, the observed vector is taken to be a lin-
ear combination of the n mode (or signal) vectors a,,
a,,...,a,,eachcontained in C™ that characterize the
linear operation with the elements x (k) servicing as
the weights (or amplitudes) associated with these
modes. The system matrix A € C™ " appearing in re-
lationship (1) has as its columns the mode vectors,
while the x (k) weights associated with these modes
form the components of the unobserved vector x
ect!

In a standard application, it is desired to determine
whether an unobserved vector x exists so that Ax = y.
The system of linear equations is said to be consistent

! The more general case of a multiple system of linear equations
as specified by Y = AX where X and Y are matrices can be studied
in fashion similar to that here presented.

if such an unobserved vector exists, and the vector x is
called a solution. When no such vector exists, the sys-
tem of linear equations is said to be inconsistent. In-
consistency can arise from measurement noise
whereby an inaccurate value for y is used, or, when
the given linear model does not accurately represent
the functional relationship between the observed and
unobserved vectors. Furthermore, the linear system
of equations is said to be overdetermined when m > n
and to be underdetermined when m < n. In order to
obtain useful estimates of the unobserved variables, it
is generally good practice to use significantly more
measurements than unknowns (i.e., m > n). This
leads to a system of overdetermined linear equations
which are typically inconsistent. With this in mind,
our primary interest is directed toward analyzing sys-
tems of inconsistent-overdetermined linear equa-
tions.

Least-Squares Error Approximate Solution

The central consideration when investigating the
inconsistent system of linear equations Ax =~ yis that
of selecting x so that Ax most closely resembles y.
The phrase most closely resembles is purposely made
vague so as to encompass a variety of legitimate close-
ness measures. For the purpose of this paper, how-
ever, we restrict the measure of closeness to the
squared Euclidean norm of the error vector Ax — y.
This measure is commonly referred to as the sum of
squared error criterion, as formally defined by

f(x)=1Ax - yl?
(x*A* — y*)(Ax — y)
= x*A*Ax — x*A*y — y*Ax + y*y, (2)

where ||x| = v;:; designates the standard Euclidean
norm of vector x and the asterisk symbol (*) complex
conjugate transposition. The task at hand is then that
of selecting the vector x so as to minimize this Eucli-
dean norm criterion.?

A basic theorem from calculus indicates that a nec-
essary condition for the vector x to minimize squared
error criterion f ( x) is that the derivative of this crite-
rion with respect to the real and imaginary compo-
nents of vector x be equal to zero. Setting these deriva-

2 No loss of generality is incurred by using the unweighted
squared error criterion (2). If the weighted squared error criterion
f(x) = (x*A* — y*)W(Ax — y) had instead been employed where
W is a Hermitian positive definite weighting matrix, a simple
transformation converts this to the standard unweighted criterion.
In particular, the weighting matrix is first factored as W = @*@
and the substitutions y = @y and A = QA yields the equivalent
unweighted criterion f(x) = (x*A* — 3*)(Ax — J).




tives equal to zero is found to yield the following con-
sistent system of linear normal equations:

A*A£ = A*y. (3)

Any solution to these normal equations results in a
least-squares solution. Furthermore, since matrix
A*A comprising the quadratic term in f( x) is posi-
tive-semidefinite, it follows that this necessary condi-
tion is also sufficient. The n X n matrix A*A charac-
terizing these normal equations is commonly referred
to as the Gram matrix associated with system matrix
A. Upon substitution of any solution x to these nor-
mal equations into squared error criterion (2), the
criterion’s minimum value is found to be

flx) =y*y — Z*A*AL. (4)

It is to be noted that if the original system of linear
equations has a solution then Ax = y and this crite-
rion’s value is equal to zero. On the other hand, this
criterion’s minimum value will be positive if the origi-
nal system of linear equations is inconsistent system:.

Range Space, Null Space, and Solution Set

In order to gain an understanding for the more sub-
tle features of a system of linear equations, we now
examine the notions of range space, null space, and
solution sets. As suggested by relationship (1), we
may interpret vector Ax as being a linear combination
of the column vectors of matrix A in which the ele-
ments of vector x serve as the coeflicients of this lin-
ear combination. It therefore follows that this system
of linear equations has a solution if and only if the
vector y is expressible as a linear combination of
these column vectors. It is useful to formally capture
this notion through the range space associated with
system matrix A as formally specified by

R(A) = {y € C™ : there exists an x € C"
such that Ax = X}' (5)

The range space is therefore composed of all vectors y
€ C™ for which a solution to the system of linear
equations Ax = y exists. It is a simple matter to estab-
lish that the range space is a subspace of C™ with the
dimension of this subspace being equal to the largest
number of linearly independent column ( or row) vec-
tors comprising system matrix A. This dimension is
commonly referred to as the rank of the system ma-
trix.

The null space associated with the system matrix
also provides another useful concept in characterizing

the basic nature of a linear system of equations. For-
mally, the null space is defined as

N(A) = {xEC": Ax = 0} (6)

and consists of all vectors contained in C" which map
into the zero vector under matrix operation A. It is
apparent that the null space is a subspace of C". Fur-
thermore, since matrix A has rank r, it follows that
each row vector of matrix A is expressible as a linear
combination of r linearly independent vectors. Thus,
the dimension of the null space must ben — r. Itis a
simple matter to establish the fact that if the system
of linear equations Ax = y is consistent then the set of

all solutions is contained in the linear variety as speci-
fied by

S(z,A)=gP+N(A) where Ax,=y. (7)

In this expression, x, designates any specific solution
to the given consistent system of linear equations.
Any solution is therefore equal to the sum of a particu-
lar solution (i.e., x,) and a homogeneous solution
(i.e., a vector contained in NV (A)). This is a simple
restatement of the superposition theorem that charac-
terizes linear operators. Upon examination of this so-
lution set, it is clear that the solution to a consistent
system of linear equations is unique if and only if the
null space is composed of only the zero vector (i.e., r
=n).

ExaMpPLE 1. A commonly occurring problem in
signal processing is that of characterizing the basic
nature of a time series given a finite set of samples
x(1), x(2), ..., x(N) of that time series. When in-
voking the concept of linear prediction to solve this
problem, it is postulated that every element of the
time series is expressible as a weighted sum of its most
p immediate preceding elements, that is,

x(R)=ax(k—1) +a,x(k—-2)+ -« +x(k—n)
for n+1<k<N. (8)

The interval n + 1 < k < N here appearing is dictated
by the fact that the values of the time-series elements
appearing in this relationship are known only in this
interval (i.e., x(k) is unknown for k & [1, N]). The
{a, } parameters are commonly referred to as predic-
tion coeflicients since relationship (8) implies that
one can perfectly predict a time-series element from
knowledge of its immediate n most recent values. We
may express this system of linear prediction equa-
tions in the matrix form

Ax =y, (9)




where
x(n) x(n—1) ~--- x(1)
A= x(n+1) x(n) x(2)
(N-1) x(N-2) x(N = n)
x(n+1) a,
y- x(n:+2) , x= a:2 . (10)
x(N) a.n

It is to be noted that this system of linear prediction
equations will have a solution in the overdetermined
case N — n > n only if the given data is perfectly
expressible as a linear combination of exponential
signals of order n or less. In most applications, how-
ever, this is not the case, and a prediction coeflicient
vector x is sought for which this system of equations
is best approximated. In the next section the issue of
obtaining a best approximate solution is addressed.

FUNDAMENTAL THEOREM

As indicated in the last section, one of the first is-
sues to be addressed when studying a system of linear
equations is to determine whether or not a solution
exists. It is seen that this task is equivalent to deter-
mining if y € #(A). Depending on the answer to this
question, ‘we then need to either find a solution(s) or
find a useful approximate solution(s). To determine
whether y € R(A), it is useful to generate a set of
vectors (1L.e., a basis) that spans the same subspace as
do the column vectors of system matrix A. Under the
assumption that A has rank r where r < min(m, n), it
follows that any such basis must be composed of ex-
actly r linearly independent vectors. Let a specific
basis selection be given by

Ql1é2»"')ér‘ (11)

Although these basis vectors could be comprised of
any r linearly independent column vectors of system
matrix A, we do not so restrict the basis choice. It
therefore follows that any vector contained in the
range space can be expressed either as a linear combi-
nation of the n column vectors of the system matrix A
or as a linear combination of the r vectors comprising
this basis. We express this observation as
ﬁ(A):[gl’g%"'rg_n]:[blrb2:"'sér]s (12)

where the bracket notation [:] represents the sub-
space composed of all linear combinations of the vec-

tors enclosed within the brackets. It is important to
note that there exist many nontrivial different bases
that span the range space and the choice made is gen-
erally unimportant when a standard least squares so-
lution is sought. When employing noise reduction ad-
aptations of the least squares solution procedure, how-
ever, the choice of the particular basis used can be
critical. We shortly address this important selection
process.

The basis vectors (11) to be employed are next used
to form the column vectors of the m X r basis matrix as
specified by

B=1[b : by, : -+ 1 bl (13)

Since the subspace spanned by the column vectors of
matrices A and B are identical, any vector expressible
as a linear combination of the column vectors of A is
also expressible as a linear combination of the column
vectors of matrix B. Since each column vector of A is
expressible as a linear combination of the {b,} basis
vectors, it follows that there exists an r X n full rank
matrix R such that

A = BR. (14)

The system matrix has therefore been decomposed
into the product of the basis matrix B and the coeffi-
cient matrix R. The required coefficient matrix is
readily obtained by first left multiplying each side of
expression (14) by B*. Each side of this matrix iden-
tity is then left multiplied by the inverse of the full
rank matrix B* B to obtain the required expression

R = [B*B)'B*A. (15)

It is noted that the commonly used QR decomposition
of a matrix is a special case of decomposition (14). In
a QR decomposition, the B matrix is composed of
orthonormal vectors, while R is a nonsingular upper
triangular matrix. A QR decomposition is realized by
performing a Gram-Schmidt orthogonalization on
the column vectors of matrix A.

Orthogonal Projection Matrix

It is important to note that there exist an uncount-
able number of distinct basis matrices B that span the
same subspace as does system matrix A. Associated
with each of these basis matrices is a unique compan-
ion coeflicient matrix R as specified by relationship
(15). For each such matrix pair, the product BR is
equal to the underlying system matrix A. Depending
on the nature of the problem at hand, however, some
choices of the basis matrix are superior to others. Fur-




thermore, upon substituting matrix relationship (15)
into decomposition (14), the following fundamental
matrix identity is established:

A:PAA. (16)

Here the m X m matrix P, here appearing is specified
by

P, = B[B*B]"'B*. (17)

P, is an orthogonal projection matrix since it pos-
sesses the two prerequisite properties of being Hermi-
tian (i.e., P, = P%) and idempotent (i.e., P = P,).
Furthermore, since B is full rank, it follows that the
range space of this orthogonal projection matrix is
identical with the range space of system matrix A.
Thus, P, is the unique orthogonal projection matrix
with range space R#(A). The subscript A has been
appended to P, to explicitly recognize this property.
It is important to reemphasize that although there
exists an uncountable infinite number of different B
basis matrices associated with system matrix A, each
will generate the same orthogonal projection matrix
P, as specified by relationship (17).

Orthogonal Decomposition

Perhaps the most useful feature of an orthogonal
projection matrix is the ability that it provides in de-
composing a vector into the sum of two vectors that
are orthogonal. It is recalled that the standard inner
product between any two vectors in C™ is defined by

(¥, %2y = ¥iye = Z n(R)y (k) (18)
k=1

Two vectors contained in C™ are said to be orthogonal
if their inner product is zero. Furthermore, if the vec-
tors y,, v. € C™ are orthogonal, the Pythagorean
Theorem states that

oy + yell® = Iyl + Dyl (19)

where || ZII2 = (¥, Z> designates the squared Eucli-
dean norm. This theorem is proven by direct substi-
tution in which the orthogonality assumption is incor-
porated. A visual depiction of this decomposition
principal is shown in Fig. 1.

We now use the Pythagorean Theorem in conjunc-
tion with orthogonal projection matrix P, to provide
an insight into obtaining a best approximate solution
to an inconsistent system of linear equations. In par-
ticular, let the observed vector appearing in relation-
ship (1) be decomposed as

Y=y+ Py Puy
= Pgy + [~ P,ly. (20)

The two vectors P,y and [ — P,] Yy comprising this
decomposition are orthogonal since their inner prod-
uct equals zero, that is,

[Pay]*[I — Ply = y*PAlI — Paly
= Y*Pall = P4ly
= ¥*[P, — P,P,ly] = 0. (21)

The Hermitian and idempotency properties of the or-
thogonal projection matrix have been used in arriving
at this orthogonality condition. The vector P,y in
decomposition (20) lies in the range space of A, while
vector [I — P, ]y lies in the orthogonal complement of
this range space.

Moore-Penrose Generalized Inverse

Using the fact that the vectors Ax and P,y are con-
tained in 7 (A) and that vector [I — P, ]y is contained
in #(A)*, the Pythagorean Theorem (19) indicates
that

[Az — yll* = [|Ax — Pyyl® + [[[I — P,1yll* (22)
for any x € C" in which orthogonal decomposition
(20) for vector y has been employed. Moreover, using
the fact that the linear system of equations Ax = P,y
is consistent, it is seen that the first term on the right
side can always be made zero. Thus, the smallest
value assumed by squared error criterion (22) is equal
to [ [1 — P,1yll*. Moreover, any x that satisfies

will achieve this minimum. In the set of solutions to
R(A)*

Orthogonal Decomposition of y

{1 - P4y

Fay R(A)

FIG. 1. Orthogonal decomposition of vector y.




this consistent system of linear equations, a logical
selection would be one which has the smallest Eucli-
dean norm. Specifically, it is desired to find a vector
that minimizes x*x subject to constraint (23). Using
Lagrange multiplier techniques, the unique minimum
Euclidean norm best approximate solution is found to
be

= Ay, (24)
where A' is the n X m Moore-Penrose generalized in-
verse matrix as specificed by [6]

A' = R*(RR*)"'[B*B] 'B*. (25)

This Moore-Penrose generalized inverse may be
expressed in the product form A' = R'B" where R'
= R*[RR*]) 'and B' = [B*B] ' B* correspond to the
Moore—-Penrose generalized inverses of matrices R
and B, respectively. Although the number of decom-
positions of A of form BR is uncountable, each gives
rise to the same Moore-Penrose generalized inverse
matrix when employing relationship (25). Upon left-
multiplying the left side of this relationship by A and
the right side by its equivalent BR, we obtain the ad-
ditional important identity

P, = AA". (26)

Thus, the orthogonal projection associated with a
matrix is readily generated once knowledge of its
Moore—Penrose generalized inverse is available. The
following theorem summarizes these observations.

THEOREM 1. Consider the system of m linear equa-
tions in n unknowns as represented by Ax = y where
the m X n system matrix A has rank r. Let B be any m
X r matrix whose column vectors comprise a basts for
the range space of A and P, = B[B*B] 'B* be the
associated projection matrix. It then follows that any
choice of the vector x that satisfies the consistent sys-
tem of linear equations

Ax =P, (27)

minimizes the Euclidean norm of the error vector ¢ =
Ax — y. Furthermore, all solutions to this consistent
system of equations (i.e., AZ = P,y) result in the same
squared Euclidean norm as given by

lAZ — ylI* = II[1 — Palyll®. (28)
Furthermore, the unique minimum Euclidean norm

solution to the consistent system of linear equations
(27) is specified by

x=A'y, (29)

where A" designates the Moore-Penrose generalized
inverse of the system matrix A as specified in relation-
ship (25).

Upon perusal of this theorem, it is clear that the
system of linear equations Ax = y is consistent if and
only if y satisfies the fixed point relationship P,y = y.
Another interpretation is that consistency follows if
and only if y is an eigenvector of the orthogonal projec-
tion matrix P, with an associated eigenvalue of one.

3. SINGULAR VALUE DECOMPOSITION

In the last section, a characterization of the solu-
tions or LSE approximate solutions to a linear system
of equations was presented that depended on the se-
lection of any basis that spans the column space of the
underlying system matrix. Intuitively, a more salient
characterization might result if the particular basis
employed captured more of the essential features of
the system matrix other than merely spanning its
range space. The singular value decomposition (SVD)
provides the most widely used such choice. As is now
shown, the SVD enables us to decompose any matrix
into a sum of rank one outerproduct matrices which
are pairwise orthogonal. This orthogonal decomposi-
tion plays a central role in characterizing the basic
nature of the system matrix.

To motivate the concept of the SVD representation
of a rectangular matrix, it is recalled that a least-
squares error solution to the original system of linear
equations satisfies the consistent system of normal
equations A *AxX = A*y. The nature of a least squares
error solution is therefore dictated by the characteris-
tics of the associated n X n Gram matrix A*A. This
Gram matrix is seen to be both positive-semidefinite
and Hermitian. The Hermitian property indicates
that the eigenvalues of this Gram matrix are strictly
real and that it possesses a full set of n eigenvectors
which can always be selected pairwise orthonormal.
The positive-definite property implies that the eigen-
values of this Gram matrix are nonnegative. Further-
more, if the system matrix A has rank r, it must follow
that A*A also has rank r. This further implies that
this Gram matrix has r positive eigenvalues and a zero
eigenvalue of multiplicity n — r. This eigenanalysis
therefore takes the form

A*Av, =¢lyv, for 1<k<n, (30)

where without loss of generality the eigenvalues are
arranged in the monotonically nonincreasing fashion




and
(31)

G = =02=0,
while the m X 1 eigenvectors are selected to be pair-
wise orthonormal so that
Vv, = 8(k — Q). (32)
Upon left multiplying each side of eigenrelation-
ship (30) by A there results the identity AA*Av, =
o2Av,. From this identity it follows that the vectors
Av, are eigenvectors of the companion m X m posi-
tive-semidefinite Hermitian matrix AA* with the
same positive o2 eigenvalues of matrix A*A. It is a
simple exercise to show that the Av, eigenvectors as-
sociated with the r positive eigenvalues are orthogo-
nal. Moreover, the scalar multiples of the positive ei-
genvalue associated eigenvectors generated according
touy, = Av,/ o, for 1 < k < r are readily shown to have
a Euclidean norm of one. It therefore follows that the
vectors u, satisfying the relationship

Avu, = oyu, for 1<k<r (33)
are orthonormal eigenvectors of AA* with associated
positive eigenvalues ¢%. Furthermore, since the rank
of AA*isr, it follows that this Hermitian matrix has a
zero eigenvalue of multiplicity m — r with an asso-
ciated full set of eigenvectors that span the null space
of A%,

We are now in a position to generate the SVD of
matrix A. This entails right-multiplying each side of
relationship (33) by vy and then summing the resul-
tant products according to

(34)

OplpUk.

.
2 Avyvg =
k=1 1

]

The upper sum limit on the left side summation is
now increased from r to n since it is recalled that Av,
equals the zero vector for r + 1 < k < n as is evident
from eigenrelationships (30) and (31). Furthermore,
since matrix A does not depend on the sum index &, it
may be factored outside the left side summation to
give rise to

(35)

Mw

OpUrUi.
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A Y vy =
k=1

k

1

Finally, using the fact that the eigenvectors v,, v,,

., b, comprise an orthonormal basis for C", it fol-
lows that the matrix right-multiplying A on the left
side is equal to the identity matrix. It has therefore
been established that the m X n matrix A can be de-

composed into the following weighted sum of outer-
products:

A = 2 0plupUk (36)
k=1

This decomposition constitutes the SVD representa-
tion of matrix A in which the r positive scalars o, are
referred to as singular values while the m X 1 vectors
u,and n X 1 vectors v, for 1 < k < r are called the left
stngular and right singular vectors, respectively. The
vectors comprising the set of left singular vectors and
the set of right singular vectors are each pairwise
orthonormal.

When conducting as analysis, it is often convenient
to express SVD representation (36) in its equivalent
matrix form

A=UZIV* (37)
where the m X r matrix U has as its columns the left
singular vectors, the n X r matrix V has as its columns
the right singular vectors, and 2 is an r X r diagonal
matrix with the positive singular values being its diag-
onal elements. Due to the pairwise orthogonality of
the left and right singular vectors, it follows that U*U
= V*V =I,. This SVD representation provides a con-
venient means for characterizing the range space of
matrix A. In particular, upon setting B = U and R
= IV *, we have a specific decomposition of the sys-
tem matrix as represented by general expression
(14). Substitution of these specific choices into rela-
tionships (17) and (25), it follows that the associated
orthogonal projection matrix is expressed as

P, =UU*, (38)
while the Moore-Penrose generalized inverse matrix
is given by

At = VZITlU*, (39)
These SVD-based expressions provide a specific
means for generating the projection matrix and
Moore-Penrose generalized inverse employed in
Fundamental Theorem 1. It must be emphasized, how-
ever, that there are uncountably many choices for the
basis matrix B other than B = U that accomplish the
same objective. For a variety of numerically based
reasons, the SVD approach is normally preferred.

We may also use the SVD representation for the
system matrix to obtain an explicit characterization
of the null space of A. In particular, this null space is
seen to be equivalent to the set of vectors {x} which
satisfy the homogeneous relationship Ax = UZV *x




= 0. Since matrices U and X each have full rank r, it
follows that N (A) is equivalent to the null space of
V *. Since matrix V has rank r, it follows that there
exists exactly n — r linearly independent vectors that
map into the zero vector under V *. A useful procedure
for identifying these vectors is to augment the right
singular (orthonormal vectors) vy, Us, ..., U, by U,41,
Urs2s -+ ., U, such that the combined set of vectors
constitutes an orthonormal basis for C". It follows
that the augmented vector set constitutes a basis for
the null space of V* and therefore A, that is,

NA)={x€C":x= 2> Uy }- (40)
k=r+1

There are other additional dividends to be accrued
when using an SVD representation for the system
matrix. For example, the concept of rank reduced ap-
proximations of system matrices plays a vital role in
contemporary signal processing. The Frobenius norm
of a general m X n matrix is defined by

[Allp = \/z > layl? (41)

i=1 j=1

and is seen to equal the square root of the sum of
squared component magnitudes of the matrix. A sim-
ple computation shows that this measure is equal to
the square root of the trace of matrix product A*A,
that is,

fAllg = Vtrace(A*A)
-\/ Z Uk, (42)

where {0, } denote the positive singular values asso-
ciated with the rank r matrix A. In arriving at this
result use has been made of the SVD representation A
= UZV*whichgives A*A = VZU*UZV *. The iden-
tities U*U = I and trace(VZ?V*) = trace(Z?) are
then employed to arrive at relationship (42).

Reduced Risk Matrix Approximation

In seeking to cleanse noise corrupted data, a widely
used procedure is to generate rank reduced data matri-
ces. Specifically, let the rank r matrix A have the SVD
representation (36). It is now desired to find a matrix
of reduced rank p < r that lies closest to A in the
Frobenius norm sense. This entails findinga m X n
matrix C that solves the following optimization prob-
lem:

min |A — Cllg. (43)

rankC=p

Eckart and Young have shown that the solution to
this problem is given by [ 7]

P
AP = > ORURUs. (44)

k=1

Thus, the closest rank p approximation of matrix A
entails truncating the SVD of this matrix to its largest
p outerproducts. It is apparent that this rank p Fro-
benius norm approximation is unique if and only if o,
> Op4y1

The relative size of the error in approximating a
matrix by a reduced rank p matrix is a key consider-
ation in selecting the integer p. It directly follows
from expression (42) that the normalized Frobenius
norm of this approximation is given by

oy - 1A= A1,
PP 1Al

_ af,+,+o";,+2+---+of 45
- 2 2 2 g (45)
oy +toe3+ ¢ + o}
This normalized measure always takes on values in
the interval [0, 1] with values closer to zero (one)
indicating that A® provides a good (poor) rank p
approximation of A.

4. STATISTICAL ANALYSIS

In most applications, modeling expression (1) pro-
vides only an approximation to the actual relation-
ship between the observed and the unobserved vari-
ables. This inaccuracy arises primarily from the three
factors: (1) inaccurate measurements of the observed
variables y, (ii) incorrect entries of the system matrix
A, and (iii) the inappropriateness of a linear model.
When invoking a standard least-squares error esti-
mation of the unobserved variables, it is assumed that
the system matrix is known with complete accuracy
but the observed vector is subject to error. We now
examine the standard least-squares method from a
probability viewpoint [15].

In the standard least-squares solution approach, it
is assumed that the underlying observed and unob-
served vectors are perfectly related according in a lin-
ear fashion. Due to an imperfect measurement or mod-
eling process, however, the observed vectoris contami-
nated in an additive fashion giving rise to the
corrupted system of linear equations

y=Ax+w, (46)

where vector w represents measurement error. In




most practical applications of interest, it is generally
found that the perturbed observed vector y does not
lie in the range space of A. Thus, the perturbed sys-
tem of linear equations (Ax = y) is typically inconsis-
tent even though the underlying noise free system Ax
= y is consistent.

Our primary objective is to seek a useful estimate of
the unobserved vector x and noise-free vector v given
the noise corrupted observed vector y =y + w. If it is
suspected that the size of the measurement error vec-
tor w is small in comparison to the underlying vector
y, an intuitively appealing procedure for finding a
useful estimate of the unobserved vector is to apply
least squares estimation methods. From the results
given in Theorem 1, it follows that the least-squares
estimate of the unobserved vectors is given by

g = Af.f
= A'Ax + A'w, (47)

where A' designates the Moore—Penrose generalized
inverse of system matrix A.

Random Error Model

It is possible to provide a useful second-order sta-
tistical analysis for this estimation problem. In this
analysis, the underlying vector x is taken to be un-
known thereby implying no a priori information con-
cerning it is presumed. Furthermore, the error vector
w is taken to be random with an expected value of zero
and covariance matrix R, that is,

E{w}=0
and
R,..=E{(lw—- E{w}lw - E{w}]*}, (48)

where E designates the expected value operator. It
then follows that the corrupted observed vector y has
expected value Ax and covariance matrix Ry; = Ry
In order to mitigate the deleterious effects caused by
the additive noise vector, the LS estimate described
by relationship (47) is commonly employed. In fact, it
follows that if the additive noise is Gaussian with co-
variance matrix ¢27 (i.e., white noise), then this LS
estimate correspond to the maximum likelihood esti-
mate of x.

A measure of the quality of the LS estimate (47) is
obtained by evaluating its expected value. Using the
fact that the additive noise vector has zero mean and
that E{y} = Ax, we have

E{iis} = A'E{y}
AtAx
=VV*x

I

M‘

(VEx) Uy, (49)

k=1

where the SVD representation A = UZV* for the
system matrix has been employed. Ideally, the ex-
pected value of an estimate should be equal to the
quantity being estimated which in this case is x. With
this in mind, the bias vector associated with LS esti-
mator (47) is formally specified by

b=z—E{fLs}

= 2 (vix)v,. (50)

The LS estimator is said to be unbiased if this bias
vector 1s equal to the zero vector. Clearly, we are as-
sured of an unbiased estimate only if the rank of the m
X n system matrix A is equal to n. Fortunately, in
most practical applications the system matrix has a
full column rank, thereby resulting in an unbiased LS
estimate.

The expected value of an estimator provides insight
into the average value assumed by the estimate when
a large number of realizations of the underlying ex-
periment are conducted. It is conceivable that two
different estimators may have the same expected
value yet one may produce a broader spread of experi-
mental realizations than the other. Other things be-
ing equal, an estimator that produces numerical real-
izations on a large number of trials that are closely
clustered about its expected values are to be preferred.
To measure the degree of estimator variability, knowl-
edge of the estimator’s covariance matrix is essential.
The covariance matrix of the LS estimator (47) is
formally given by

R; o= E{lf1s — E{f1s}]{£1s — E{Z£1s}1*}

E{[A'w][A'w]*}
AR, AT (51)

il

It is to be noted that the LS estimate has the effect
of decreasing the noise corruption since R,,
= A'R,,A'. This is further made evident by noting
that the mean square value of the LS estimate is given
by

E{lfs— E{Zis} 1} = E{ ”AYLU.} I
E{|VZT'U*w|®
trace(VZ'U*R, UZ'V*), (52)

fl

In arriving at this result, use has been made of the




readily established identity x*z = trace(zx*) which
holds for all same-dimensioned vectors x and z.

Reduced Rank Estimator

Useful insight into the effectiveness of the LS esti-
mate is obtained when the additive noise vector w is a
zero mean white process. In this case, the noise covari-
ance matrix is specified by

R,. = ¢%1, (53)

where ¢ designates the variance of each component
of w. If this noise covariance is substituted into the
mean squared measure, it follows that

E{lf1s — E{frs}I®} = 0* 2 (54)

It is seen that the mean square associated with the LS
estimate is directly proportional to the additive noise
variance and inversely proportional to the reciprocal
of the positive singular values of system matrix A.
This expression indicates that the mean squared error
can become quite large if one or more of the nonzero
singular values of A are close to zero. Thus, the direct
employment of a least squares solution can lead to
poor estimation performance.

To mitigate the deleterious effects resulting from
small positive singular values, it would be desirable to
remove the offending terms associated with these sin-
gular values. In particular, suppose that a preliminary
SVD analysis of the system matrix indicate that r — p
of the positive singular values are “small” enough to
cause an unacceptably large mean square value. To
excise the impact of these small singular values, let us
consider the following reduced rank p approximation
of the system matrix:

P
AP = 3 gqu,ui. (55)

k=1

As indicated in the last section, this matrix corre-
sponds to the closest rank p Frobenius norm approxi-
mation of system matrix A. The Moore-Penrose gen-
eralized inverse and projection matrices associated
with this rank p approximation are therefore given by

P 1 p
A" =¥ —pur and PP = 3 u,ul.(56)
k=1 T k=1

As is now shown, a reduction of the mean square
value is achievable if the reduced rank system matrix
(55) is used instead of A, The LS estimator asso-

ciated with the reduced order system matrix is for-
mally defined by

;) — AtlD)
x5 = APy

P fu,w
- 3 (otpu,+ z( : )g,,
k=1 k=1 Ok
d P {ujw
=x— 2 (uix)v, + 2 (_ ")yk- (57)
k=p+1 k=1 Ok

Examination of this expression indicates that the LS
estimate is composed of an additive term due exclu-
sively to the signal vector x and an additive term due
to the noise vector w. It is useful to study the effects of
employing a reduced rank approximation on these
signal and noise components. The expected value of
this reduced rank LS estimate is seen to be

E{iR}=x— 2 (uix)v,. (58)

It is therefore concluded that the bias of the reduced
order LS estimate is specified by

n

B = > (vrx)v,. (59)

k=p+1

Unfortunately, the use of a reduced order estimator is
seen to result in a generally larger bias vector than is
the case of the full order estimator, that is,

r

1B20% — gl = %

k=p+1

lorx|®. (60)

This difference is clearly positive if at least one of the
inner products v;x is nonzero for r > p.

Although the reduced order LS estimate leads to an
inferior behavior in bias behavior, its employment re-
sults in a mean square error that can be considerably
smaller than its full order counterpart. In particular,
the mean square error of the reduced rank estimator
(57) is found to be

E{lz—5" — 287} = 0?3 ~.  (61)

Upon comparison of this reduced order mean square
error expression with the full-order expression (54),
it is seen that the reciprocal terms associated with the
smaller valued singular values o,,;, ..., o, are re-
moved, Thus, the possibility of trading off a modest
increase in bias for a significant decrease in means
square error is indicated. The reduced rank principle




has been successfully applied by numerous investiga-
tors to an important and diverse set of applications.

Non-SVD Reduced Rank Approximation

The reduced rank SVD representation for the sys-
tem matrix provides the standard tool for achieving a
reduction in estimation variance at the cost of in-
creased bias. It should be noted, however, that other
reduced rank procedures can be employed for attain-
ing this trade-off. In particular, it is recalled that the
system matrix A can always be represented in the
product form BR with the column vectors of basis
matrix B chosen to span the same subspace as the
column vectors of A. A rank k& approximation of the
basis matrix B is designated by B‘® and its columns
are composed of any set of k columns from the basis
matrix. It then follows that a rank %k approximation
for the system matrix is specified by

AR = B®R® - where
R™ = [B®W*BW-1BWI*4  (§2)

It must be emphasized that this rank k approximation
of A corresponds to the SVD-based approximation if
and only if B is equal to U or a column rearrangement
of U. Since there exists an uncountable number of
distinct BR representations for the system matrix, it
is logical to inquire whether there exists any advan-
tages in using a non-SVD-based choice. For example,
in a given application it may be possible to obtain a
decomposition that leads to a superior trade-off be-
tween estimation bias and estimation variance than
does an SVD decomposition. This possibility is
currently under investigation.

5. NONLINEAR LEAST-SQUARES MODELING

In many applications of interest, the phenomenon
under investigation can be represented by a system of
linear equations in which the elements of the system
matrix are known functions of a set of real-valued
parameters. This is illustrated by problems found in
array processing where the parameters correspond to
directions-of-arrival angles and in linear data model-
ing where feedforward and feedback coefficients serve
as the parameters. Whatever the case, we are inter-
ested in analyzing a system of equations that is ex-
pressible as

A@zx~y, (63)

where A (8) is an m X n matrix whose components are
known functions of the real parameters 8,,8,,...,6,.

These parameters comprise the elements of the pa-
rameter vector § € RP. Due to a variety of reasons
already alluded to, this system of equations will be
inconsistent. Our task is to then find a selection of the
parameter vector § and unobserved vector x so that
A(8) x best approximates y in the Euclidean norm
sense. This entails solving the following squared Eu-
clidean norm optimization problem:

min min |y — A(8) x| *. (64)

xECn gERP T

A closed form solution to this optimization problem
is generally not feasible due to the highly nonlinear
fashion in which the entities x and 8 appear. It is then
necessary to employ nonlinear programming tech-
niques to numerically find a solution. Since the com-
putational load of any nonlinear programming algo-
rithm is directly dependent on the number of parame-
ters being optimized, it behooves us to decrease this
number whenever possible. With this in mind, we now
appeal to the theory presented in Sections 2 and 3 to
effectively remove the unobserved vector in the opti-
mization process. In particular, for any selection of 8
(optimum or nonoptimum) it follows from Theorem 1
that an associated optimum selection of the unob-
served vector is specified by

ills(Q) = A(Q)Irl- (65)

Upon substitution of this selection into expression
(64), the optimization problem simplifies to

min min [y — A(8) x||*

xEC™ §ERP
=min [y —A(D)AD y]*
9ERP
=min [[I-P@)]yl? (66)
4ERP

where the identity P(8) = A(8)A(8)" as specified by
relationship (26) has been used. Thus the original
problem entailing minimization with respect to the
vectors x and § has been reduced to a minimization
with respect to vector §. Once the optimal choice for §
that solves problem (66 ) has been found, relationship
(65) is then used to find the associated optimal selec-
tion for x.

Although the number of variables being optimized
has been reduced by the above procedure, the resul-
tant decreased dimensioned optimization problem is
generally very nonlinear in §. We must therefore re-
sort to a nonlinear programming algorithm to ap-
proximate an optimal solution. Relationship (66) in-
dicates that the functional to be minimized is speci-
fied by




f®=I1I-P@®]yl> (67)
The term {I — P(8)]y appearing in this functional is
seen to correspond to the equation error Axy;g — Yy
associated with the least-squares error choice of x.
Many of the more widely used nonlinear program-
ming algorithms used for minimizing functionals
such as (67) employ the method of descent. In a de-
scent based algorithm, the present estimate of the so-
lution # is additively perturbed to § + & where ¢ is
referred to as the perturbation vector. The basic task is
to select the perturbation vector so that the improving
condition

f(8+9) <f(0 (68)
is satisfied. There are a variety of different procedures
for selecting the perturbation vector to satisfy this
improvement condition. A particularly effective
method is now developed.

First-Order Analysis

If the perturbation vector is sufficiently small in
size, a Taylor series expansion of the perturbed crite-
rion can be made in which only the first two terms of
the expansion are retained. This expansion is speci-
fied by

F8+8)=111-P@+]yl?

L. aP(8) z
= ”[I_P(Q)_El 26, 6"]1
> ToP(8 2
- H (- Py - z[ aa‘"’g]ak
k=1 k
=||[I—P(Q)]1—L(Q)é||2, (69)

where dP(6)/30, are m X m matrices, while the g,
entities are the components of the perturbation vec-
tor 8. The m X p Jacobian matrix L(8) here appearing
is specified by

_[8P(®) .oP(®) . .3P(®
LO) =|—5=y 5= 2] (70

This Jacobian matrix provides a means for obtaining
a first-order approximating of the effect which incre-
mental changes made in the prevailing parameter
vector have on the Euclidean norm criterion being
minimized.

A logical choice for the perturbation vector would
be one that minimizes the approximation of the Eu-
clidean norm criterion as specified by relationship
(69). An expression for this optimum selection is

TABLE 1

Nonlinear Programming Algorithm

Step Description

Generate an initial estimate of 6.

Evaluate Euclidean norm criterion [[[I — P(8)]y{>

Determine the Jacobian matrix L(f).

Compute the optimum perturbation §°.

Evaluate the perturbed Euclidean norm criterion
HI— P8+ ad)yl* fora=1,;,1, %, +-- until an
improving value is found.

Evaluate stopping condition(s) for algorithm. If these
conditions are not satisfied, set § = 8 + «°6° and
go to Step 2.

9RO

achieved by expanding this squared error criterion to
obtain

O+ =F(8)—8"L(O*I-PD]y
—y*[(I-P(O))L()8+3"L(O)*L(Ba. (71)

Upon setting the gradient of this expression with re-
spect to the real vector § equal to the zero vector, the
optimal selection for the perturbation vector is found
to be

8°=[Real { L(O)*L(8) }1"Real { L(0)*[I - P(§)]y}.
(72)

It can happen that the perturbation vector arising
from this computation will be relatively large in size
thereby putting into question the validity of approxi-
mation (69) which generally holds only for small
sized perturbations. To ensure a sufficiently small
perturbation the scaled perturbation vector a8® is in-
stead used. It can be shown that improvement condi-
tion (68) can always be met by selecting the step size
scalar « to be sufficiently small positive. With these
thoughts in mind, the basic steps of the linearization
descent algorithm are given in Table 1.

Computation of Jacobian Matrix

In order to implement the linearization matrix, it is
necessary to compute the Jacobian matrix as speci-
fied in relationship (70). This in turn entails the need
to determine the partial derivatives of the projection
matrix P(#) with respect to the parameter vector com-
ponents. As is now shown, there exists a convenient
closed form solution for these partial derivatives. To
begin this development, the partial derivative of the
projection matrix identity P(8) = P(8)? is first taken
with respect to 8, to give




aP(6) P(0) oP(0)
= TP+ P e
- aP(Q)P(QH[aP(Q)P(Q)]*. (73)
36, .

The second line of this identity is a direct conse-
quence of the fact that the projection matrix is Her-
mitian, which in turn implies that its derivative with
respect to 4, must also be Hermitian.

To compute the terms on the right-hand side of

relationship (73), each side of the matrix identity
P(0)A(8) = A(8) as specified in Eq. (16) is differen-
tiated with respect to f,. Upon carrying out this dif-
ferentiation and then rearranging terms, we have

P , A (D)
G AW = 1= PO ==

(74)

Right-multiplying each side of this relationship by
the Moore-Penrose generalized inverse A (8) " and us-
ing the identity P(#) = A(#)A(8)" as specified by ex-
pression (26) results in

AP (0)
30,

P(0) = [1—- P(0)] 19é(-QlA(_f))*- (75)
a0,

This expression is then substituted into relationship
(73) to obtain the partial derivative expressions

P [ . A0 |,
0, —[[1 PO =5 A(Q)]
_ A 1
+[[1 P(8)) =5 A(Q)]

for 1<k<gqg. (76)

Under the assumption that one is able to determine
the partial derivatives dA(8)/0,, each entity in this
expression is computed and then substituted into re-
lationship (70) to obtain the required Jacobian ma-
trix.

QR and SVD Representations

From a computational perspective, an effective
means for determining the partial derivatives is to
first make a QR decomposition of the prevailing rank
r system matrix A (6), that is,

A() = QIDR(I). (77)
In this decomposition @(8) is an m X r matrix whose

columns are orthonormal so that Q(8)*Q(8) = I,
while R (8) is an r X r invertible upper triangular ma-

trix. Moreover, using this QR decomposition in con-
junction with relationship (25) for the Moore-
Penrose generalized inverse of the system matrix and
expression (26) for the associated orthogonal projec-
tion matrix, we have

A(®'=R(0)7'Q(H)* and
P(9) = QDA™ (78)

Substitution of these two relationships into Eq. (76)
then yields the @R decomposition representation for
the prerequisite partial derivatives. Moreover, if
the SVD representation for system matrix A ()
= U()Z()V(6)* is employed, the expressions for
the Moore-Penrose generalized inverse matrix and
projection matrix are given by

A = V(O Z(9UW*
and
P(g) =U@BU* (79)

6. NONLINEAR LEAST-SQUARES MODELING:
MULTIPLE SAMPLES

In many practical applications involving nonlinear
least squares modeling, there is given multiple sam-
ples of the data under analysis. For example, in array
signal processing one generally has available multiple
time samples of the snapshot vector characterizing the
array’s sensor signals. We may directly extend the
concepts developed in the last section to treat this
important class of modeling problems. In particular,
let us consider the case in which there is given multi-
ple samples of the nonlinear phenomenon governed
by

yr=A(@x, +w, for 1<sk< N, (80)

where A (8) is an m X n matrix which is a function of
the model parameter vector § € RP and w, € C™ repre-
sents additive noise. The task at hand is to select the
model parameter vector and the { x,} that are most
compatible with the given data (80). To measure data
compatibility, we employ the standard squared error
criterion as specified by

N
8, {xx}) =2 1A@xx— yul®.  (81)

k=1

The objective is to select model parameter vector and
the vectors { x, } so as to minimize this squared error
criterion.

Upon examination of criterion (81) and using the
results from the last section, it is noted that for any




choice of the model parameter vector the optimal se-
lection of the { x,} vectors are given by

2= Ay, for 1<k<N, (82)

where A(8)' designates the Moore-Penrose general-
ized inverse of A (f). Substitution of this optimum
selection into the above squared error criterion yields

N
F(8,{x2)) = 3 I~ P(B)]y,l?
k=1
forl< k<N, (83)

where P (#8) denotes the orthogonal projection matrix
whose range space is identical to the range space of
A(8). This substitution process has effectively re-
duced the minimization problem to that of selecting
the model parameter vector §.

Since squared error criterion (83) is a highly non-
linear function of 6, it is again necessary to use non-
linear programming techniques to iteratively deter-
mine an optimal choice for the model parameter vec-
tor. If a descent algorithm is to be used, a procedure
for obtaining an effective perturbation vector for the
prevailing model parameter vector is required. To
achieve such a selection, a first-order analysis of the
perturbed squared error criterion is made. This analy-
sis takes the form

N
F8+8,{x2}) =3 I~ P8+ 8yl
k=1

Mz

~z

1= P(®)]y, — Le(9)l®

£
I

1

™M=z

YA = P(D]ye — "LHD I — P(D) ]y

k

— YxlI = P(O)1Ly(8)5 + 8TLE(O) 8Ly (8) 6. (84)

]
-

In this expression, L, (8) designates the Jacobian ma-
trix associated with the orthogonal projection matrix
P(8) as specified in expression (70) with y replaced
by v,. Upon setting to zero the gradient of this first-
order approximation of the perturbed squared error
criterion, it is found that the optimum choice for the
minimizing model parameter vector is given by

1 N
0= 2. Real {Ly(B) L, (8) }17"
k=1

N
Real{ 2 L{()[I — P()]y.}. (85)

k=1

The nonlinear programming algorithm described in
Table 1 is then employed in which selection (85) for
the perturbation vector is substituted in Step 4 while
the multiple sample criterion (83) is used in Steps 2
and 5.

It is possible to further generalize the above results
whereby a nonlinear function of the squared error cri-
terion is incoporated. The results of this generaliza-
tion are captured in the following theorem.

THEOREM 2. Let the set of vector measurements be
governed by the relationships

Ye=A@)x,+w, for 1<k<N, (86)
where A(89) is a m X n matrix which is a function of the
model parameter vector § € R and w, € C™ represents
additive noise. It is now desired to select the model
parameter vector and the vectors {x,} so as to mini-
mize the nonlinear squared error criterion

N
FO8 1{x}) = 2 WA x, — l?),  (87)

k=1

where Y(x) is a monotonically increasing function of its
nonnegative argument so that y(x,;) > ¢{(x,) forall 0 <
x; < x5 and Y(0) = 0. The optimum choice for the { x ,, }
vectors are given by the standard least-squares error
selection

x3=A@)'y, for 1<k<N. (88)

Furthermore, the selection of the perturbation vector
that minimizes a first-order approximation of the non-
linear squared error criterion (87) is specified by®

N
8° = [T YU~ P(®)1y,ll*) Real { Li(0) Ly (8) }17

k=1
N »
X Real{ 2 ¥ (II[1 = P(8)1yl?)L3(6)
k=1
X (- Py}, (89)
where y(x) designates the derivative of the nonlinear

function y(x).

The validity of this theorem is easily proven using
elementary reasoning. For instance, the optimum se-
lection (88) is a direct consequence of the monotoni-

* The perturbed nonlinear squared error criterion with the opti-
N

mum selection (88) is given by f(8 + 4, {x¢}) = Z w(l{!
Pt

- POy,




cally increasing assumption of the nonlinear function
¥(x). Moreover, the optimum selection of the pertur-
bation vector is readily obtained by making a Taylor
series expansion of perturbed criterionf (6 + 6, { x3})
about the point (8, { x5 }). It is interesting to note that
the optimum selection for the perturbation vector
(89) is in agreement with the standard least-squares
error choice (85) since in that case  (x) = 1 for x > 0.

Utilization of a nonlinear squared error criterion of
form (87) can be employed to achieve significant im-
provement in parameter estimation performance over
that obtained with the standard least-squares ap-
proach. For example, if it is known that a subset of the
data vector samples are not as reliable as others (i.e.,
data outliers), then a choice for ¢(x) which saturates
for increasing values of x will tend to mitigate the
effects of the more unreliable data. As an example, the
function ¥(x) = b[1 — e *]u(x) possesses this prop-
erty where a and b are positive parameters. The pa-
rameter b controls the saturation level, while a deter-
mines the rate of saturation. The derivative of this
function as given by ¥ (x) = ae *u(x) is seen to ap-
proach zero for significant large positive values of x.
This derivative behavior is noteworthy since those
model error terms [ — P(8) ] v, which are large in size
(i.e., potential data outliers) do not greatly influence
the perturbation vector (89). A judicious choice for a
and b can therefore result in significantly improved
modeling performance relative to that achieved with
the classical least squares error approach when data
outliers are present. The benefits of this approach
have been demonstrated for the direction-of-arrival
problem in which the saturating function ¥(x) is
taken to be the sigmoid function [19].

7. LINEAR RECURSIVE MODELING AND
IDENTIFICATION

To illustrate the concepts developed in the last sec-
tion, we now examine the important application
problem of establishing whether there exists a func-
tional relationship between the elements of two time
series. In particular, let there be given the following
finite-length time-series sample pair:

(x,,¥,) for 1<n<N. (90)

Based on the physical laws governing the process
from which these time-series samples arose or on sim-
ple intuition, it is hypothesized that the elements of
the individual time series {x,} and {y, } are interde-

pendent. This interdependency is based on the hy-
pothesis that the x, variables give rise to the variables
¥, in a cause—effect manner. To test this conjecture,
one may employ any number of linear or nonlinear
models. A commonly invoked model is governed by a
linear recursive system of order (p, ¢) as described by
(e.g., see Ref. [4,5,8,16,17])

P q
yn(g’ Q) = - Z ak}’;n—k(ga l_)) + Z bkxn—k' (91)

k=1 k=0

This model’s response has been explicitly expressed
as a function of the model parameter vectors a and b
whose g, and b, components are taken to be real val-
ued for presentation simplicity. A straightforward
modification of the procedure to be now given can be
made for the case of complex valued parameters.
The linear recursive model parameters are to be
selected so that the sequence y,(a, b) generated by
relationship (91) best approximates the given mea-
surements y,, ¥,, - . . , ¥n. In keeping with the squared
error criterion being employed in this paper, we seek a
selection of the parameter vectors a and b so as to
minimize the sum of squared errors criterion

fla, b) = ly — y(a, b |I%, (92)

where y and y(a, b) are each N X 1 vectors whose
components correspond to the given measurement
(90) and the model response (91), respectively. We
now formulate this modeling problem to put it into
the form described in the last section.

The model response elements (91) are dependent
on the a, and b, parameters in a highly nonlinear
manner due to the recursive ( feedback ) nature of this
recursive model. In order to minimize squared error
criterion (92), it is therefore necessary to employ
nonlinear programming methods for obtaining an op-
timum selection for these p + ¢ + 1 parameters. In
order to make such an approach computational effi-
cient, a scheme for decreasing the number of variables
to be optimized from p + ¢ + 1 to p is now described.
This entails evaluating the components of an auxil-
iary sequence as governed by

P
wn(.a_) =X, — Z akwn—k(g) fOl'
k=1

l<sn<N. (93)

This auxiliary sequence elements {w,(a) } have been
explicitly expressed as a function of the g parameter
vector to emphasize this dependency. It has here been
implicitly assumed that the elements of the time se-




ries {x,} and {y,} are identically zero for all indices
less than or equal to zero.* It is readily shown that the
linear recursive model (91) response is given by

Yala, b) = bow,(a) + byw,_ (@) +- -+ bw,_,(a).

(94)

An evaluation of this expression forn=1,2,...,Nis
next made and put into the vector format

$(a, b) = Ala)b. (95)

The full rank N X (g + 1) lower triangular Toeplitz
matrix A (a) here appearing is specified by

wl(g) 0 « o 0
wy(a) wlfg) . . O
A= i@ wle wi ()
wy(a) wy_,(a) wa_, (@)
(96)

The implications of relationship (95) are notewor-
thy in that the model response is seen to depend on
the b, parameters in a linear fashion. If this vector
response expression is substituted into squared error
criterion (92), it directly follows that

fla, b) =lly —A(a)b)|I*. (97)

This functional is seen to correspond to the squared
error criterion associated with the inconsistent sys-
tem of linear equations A (a)b =~ y. We may therefore
employ the result of the last few sections to obtain an
optimum recursive model. In particular, fundamental
Theorem 1 indicates that for any selection of the pa-
rameter vector g, the unique minimizing selection for
b is given by

bis(a) = A(a)'y. (98)

Furthermore, upon substitution of this optimum se-
lection into criterion (97) and then dividing this crite-
rion by |y ||, we obtain the normalized sum of errors
criterion

¢ If this assumption cannot be justified, then the auxiliary time
series is alternatively evaluated on the smaller integersetp+ 1<n
< N where all samples of the time series are known.

fa bis(@) _ 11— P@ly)]?
Mk HE

fnorm(g) = ’ (99)

where P(a) = A(a)A (a)* corresponds to the orthogo-
nal projection matrix associated with matrix A (a).
The purpose of dividing the original criterion by || y ||
is to provide a measure for judging the goodness of the
recursive model which is independent of the magni-
tude of the data being modeled. In particular, this nor-
malized criterion is seen to take on values exclusively
in the interval [0,1] with values close to zero (one)
indication a good (poor) recursive model approxima-
tion.

The linear recursive modeling problem has there-
fore been formulated into the problem considered in
the last section. In order to determine the vector a
that minimizes squared error criterion (99), it will be
necessary to employ a nonlinear programming
method. If the linearization algorithm as described in
Table 1 is to be used, it is necessary to compute the
partial derivatives of P(a) with respect to the compo-
nents a,. From relationship (76), this is in turn seen
to entail the determination of the derivatives of A (a)
with respect to the components q,. For example, the
partial derivative of A(#) with respect to a, is from
expression (96) found to be

[ 6w, (a) ]
—_— 0 [ 0
da,
dw,(a) Ow,(a) 0
da, da,
dAla) : I .
da, awqﬂ(g) awq(g) L dw, (@)
oq, da, da,
dwpla) Swy_,(a) .. awN—q (@)
| dq, da, dq,
(100)

The partial derivatives dw,, (@) /da, appearing in this
expression are obtained by taking the derivative of
auxiliary sequence relationship (93) with respect to
a,. This differentiation gives rise to the following re-
cursive relationship:

P
9w () = -w,,(a) - 2 Qy Outns(2)

. (101
da, &=1 da, ( )




The required entries to partial derivative matrix
(100) are then obtained by evaluating this recursive
expression for 1 < n < N in which zero initial condi-
tions are assumed.

The partial derivatives of A () with respect to the
general coefficient a, are readily shown to be given by

0A(0) _ 0y 0A(0)

for 2< k<p,
da, a,

(102)

where S designates the N X (N — 1) down-shifting
matrix whose elements are all zero except for ones
that appear along the diagonal immediately below the
main diagonal (i.e., S(i,j) =8(i —j — 1)). Thus, the
partial derivative dA (a) /da, is obtained by simply ap-
pending (k — 1) rows of zeros to the top of A (a) /da,
and simultaneously dropping the last (k — 1) rows.

Initial Parameter Selection

An important consideration for the successful em-
ployment of any nonlinear programming algorithm
for the minimization of a functional dependent on a
set of parameters is the selection of a good set of pa-
rameters values to initiate the algorithm (e.g., see
Step 1 in Table 1). If the initial parameters are cho-
sen too far from their unknown optimum values, the
distinct possibility exists that the algorithm will con-
verge to a poor relative minimum of the functional. In
many minimization problems there exists no system-
atic method for making a good initial selection. Fortu-
nately, this is not the case for the linear recursive
modeling problem here being considered. A method
for making an initial parameter selection that typi-
cally leads to effective recursive modeling is now pre-
sented [16].

If the recursive model being employed is of high
quality, it follows that the time series [y, } and {¥,(aq,
b)} will be almost identical. Under this assumption,
let us replace the element y(a, b) appearing in recur-
sive model (91) by y,. Since these two time series are
not identical, it follows that this substitution results
in the residual error sequence as defined by

24 q
€ =Yt 2 GYnor — 2 DuXnx
k=1 k=0

for 1<n<N. (103)

The q, and b, parameters are to be chosen so as to
minimize the sum of residual squared errors. To effect
this minimization, it is useful to express these resid-
ual errors in the vector format

€ B
€ | _ | Yo
Y YN
( 0 0 .. 0 ]
¥ 0 ‘e 0 o
Y2 Y e 0 a
+| ST |
om0 e
LyN—1 YN-2 YN-p |
B X 0 . e 0 ]
Xy x “ee 0 be
X3 X, “ee 0 b
— : . . L1, (104)
x X v- - x :
a+l g 1 b,
L *n-1 XN-2 XN-g-1 ]
or, more compactly,
a
g=_y_+[Y~X][b}. (105)

From Fundamental Theorem 1 it follows that the se-
lection of the parameter vectors a and b that minimize
the sum of squared residual errors is given by

.y - x)
by y
YTY -YTX1! YTy
= — T T by . (108)
-XTy XTX | |-XTy

It has been empirically found that when this initial
parameter vector selection is used in Step 1 of the
algorithm described in Table 1, the recursive model
that iteratively arises is generally acceptable in most
applications.

ExaMPLE 2. When synthesizing frequency discrim-
ination filters, the zero-phase ideal lowpass, bandpass,
and highpass filters often serve as objectives to be ap-
proximated. For each of these filters, the symmetric infi-
nite length sequence

sin (nw,)

h(n) = (107)




TABLE 2

Recursive Lowpass Filter Approximation

Model Number of
order Faorm (2°) frorm (@) iterations
(3,3) 1.3278 X 1072 7.7083 X 107° 17
(6, 6) 4.3181 x 10°* 3.2079 X 10°° 8
(9,9) 3.2942 x 107 4.2189 x 1078 8
(12, 12) 4.1673 x 1078 1.1953 x 107'° 8

plays a central role.® The recursive model as governed
by relationship (91) is now employed to approximate
the truncated causal component of this sequence as de-
fined by y(n) = h(n — 1) for 1 < n < N in which «,
= 0.257m and N = 128. In this approximation, the N
X 1 vector x has all its components equal to zero except
for its first, which equals one.

In employing the linearization algorithm outlined in
Table 1, the initial parameters were selected accord-
ing to expression (106). Furthermore, the stopping
condition was invoked whenever successive values of
the normalized criterions’ (99) had a relative change of
less than 0.0001 from one iteration to the next (i.e.,
frorm(@1) = from(@iy) < 107%f (@, ). Under
these conditions, the linearization algorithm was em-
ployed with a choice of N = 128 and for various values
of the order parameters (p, q). The results of the algo-
rithm are described in Table 2. It is apparent from
these tables that the parameter initialization selection
(106 ) proved satisfactory and the algorithm improved
on these initial choices by a considerable factor. A plot
of the unit-impulse response that arises from the linear
recursive model of order (6,6) is shown in Fig. 2, as is
the ideal unit-impulse response (107). These responses
are virtually indistinguishable over the interval [0,
127}, indicative of the quality of approximation.

8. GENERALIZED NONLINEAR LEAST-SQUARES
MODELING

It is possible to straightforwardly modify the con-
cepts presented in Section 5 to treat a more general
modeling problem. In particular, let there be given a
vector y € C™ that is to be approximated by the vector

entity F (x, Q) where F(-) corresponds to a nonlinear

mapping from C* X R? into C™. The accuracy of this
model is measured by the squared error criterion

5 Sequence (107) corresponds to the inverse Fourier transform
of the ideal zero-phase lowpass filter with cutoff frequency w,
whose transfer function is equal to one in the frequency inter-
val [~ w,, w.] and is zero for all other frequencies in the interval
[—m, =].

(108)

The vectors x and Q are to be selected so as to mini-
mize this squared error criterion. For notational sim-
plification, it is useful to form the real (2n + p) X 1
parameter vector 8 whose components are comprised
of the real and imaginary components of x and the
components of §. Using this representation, the
squared error criterion (108) can be equivalently ex-
pressed as

) =ly—-F@l?, (109)

where F(8) = F(x, §), f(0) = f(x, 6), and, § = [§",
Real {x}T,Imag{ x}T]. Upon comparison of this crite-
rion with criterion (67), they are seen to be of a simi-
lar form with the projection P(#) ¥ being replaced by
nonlinear mapping F(8). In order to minimize crite-
rion (108), we shall therefore employ the descent ap-
proach taken in Section 5.

If the prevailing value of the parameter vector § is
additively perturbed by §, the perturbed squared error
criterion (109) is approximated by truncating the
Taylor series expansion of F(fl + §), to its first two
terms, that is,

f@+8) =y —F@+8

P oF(8)
~ - F(8) — —
”Z 0= 2,

=ly - F(8) - L(8)3)?,

2

O

(110)

where dF () /36, are m X 1 vectors while the 3, enti-
ties are the components of the perturbation vector §.
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FIG. 2. Plot of the ideal and recursive unit-impulse responses.




In this truncated Taylor series expansion, the m X p
Jacobian matrix L(#) is specified by

OF(8) . OF(0) . . dF(8)
o, - a6, o8,

L(§) = . (111)

This Jacobian matrix provides a first-order approxi-
mation of the effect that incremental changes made in
the prevailing parameter vector have on the Eucli-
dean norm criterion being minimized.

A logical choice for the perturbation vector would
be one that minimizes the approximation of the Eu-
clidean norm criterion as specified by relationship
(110). To obtain an expression for this selection, let
us expand this squared error criterion is obtain

fB+8)=f(8) —3TL(O*[y — F(8))

~ [y —F(OI*L( o+ TLO*L(P&. (112)
Upon setting the gradient of this expression with re-
spect to the real vector § equal to the zero vector, the
optimal selection for the perturbation vector is found
to be
& = [Real{L(§*L(6)}]"Real (L())*[y — F(8)].

(113)

9. CONCLUSION

A development of basic principles related to the
characterization and use of systems of linear and
nonlinear equations for modeling data has been pre-
sented. Emphasis has been given to the notions of
projection matrices and Moore-Penrose generalized
inverses.
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