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The concept of least squares (LS) as applied to a system
of generally inconsistent linear equations Ax ~ y plays a
central role in algorithms used for solving a varie_ty of im-
portant signal processing problems. In the standard LLS ap-
proach, the smallest unconstrained Euclidean norm pertur-
bation of vector y is sought so that the resultant perturbed
system of linear equations Ax = y + ¢ has a solution. Im-
plicit in the LS problem formulation is the assumption that
only y vector is subject to error. Depending on the nature of
the application, however, system matrix A may also be sub-
ject to error. When both the system matrix and right side
vector are imprecisely known, the use of a least-squares
solution can lead to disappointingly poor results. To miti-
gate the effects of errors in both A and y the concept of total
least squares (TLS) is invoked. In the standard TLS prob-
lem, the smallest unconstrained perturbation of the ma-
trix-vector pair (A, v) is sought so that the perturbed sys-
tem of equations [A + A] x+ = y + § has a solution. In this
paper, theoretical issues regarding TLS are first addressed
in which a singular value decomposition approach is used to
find the optimal unconstrained choices for the perturba-
tions A and 8. The TLS concept is next extended to the case
in which the perturbed matrix-vector pair (4 + A, y + §)
identifying the perturbed linear equations is constrained to
satisfy prescribed properties known (or hypothesized ) to be
possessed in the idealized case. These property constraints
take on such disparate forms as requiring that the per-
turbed auxiliary matrix {A + A — y — §] be positive definite,
Hermitian, block Toeplitz, or of a given nonfull rank. Prop-
erty requirements of this nature characterize a variety of
practical signal processing problems. Applications of these
concepts to the problems of exponential data modeling and
system identification are then made where improvements
over more traditional solution procedures are realized. The
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notion of constrained data perturbations has also been suc-
cessfully applied to the problems of synthesizing one-di-
mensional and higher dimensional linear systems, obtain-
ing positive sequence approximations, and missing data in-
terpolation.

1. LEAST-SQUARES ERROR REVIEW

When formulating a solution procedure for a pre-
scribed signal processing problem, a subsidiary re-
quirement of solving a consistent system of linear
equations or of finding a best approximate solution to
an inconsistent system of inconsistent linear equa-
tions often arises. The individual involved in signal
processing research or its application therefore has to
have a good grasp of fundamental theoretical issues
related to systems of linear equations. With this in
mind, let us consider the following generally inconsis-
tent system of linear equations:

Agz_y—. (1)

In this representation A is the m X n system matrix
while x and y are n X 1 and m X 1 vectors, respec-
tively. The convention of designating vectors by un-
derlined roman letters (i.e., x) is here adapted. The
elements of vectors x and y and matrix A may be
either real or complex valued. In order that our results
be applicable to the broadest class of problems, the
more general case of a complex system of linear equa-
tions is treated. By taking this approach, we are also
treating real systems of linear equations as a special
case. Specifically, any theorem related to complex lin-
ear equations may be immediately converted to its
real case counterpart by the simple process of drop-
ping all complex conjugate operations that appear.
This is usually manifested by the replacement of all
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complex conjugate transposition operations by trans-
position operations so that any conjugate transposed
matrix A* is replaced by the transposed matrix AT.
By adopting this approach, we avoid the duplicative
effort of treating the real and complex cases sepa-
rately.

The system of linear equations (1) corresponds to a
system of m linear equations in the n unknown ele-
ments comprising vector x. The most commonly oc-
curring problem is concerned with the case of an over-
determined system of equations in which there are
more equations than unknowns (i.e., m > n). Appli-
cations involving an underdetermined system of
equations m < n also arises from time to time but are
of less interest. Whatever the case, if there exists a
selection of x for which relationship (1) is satisfied
(i.e., Ax = y) then that choice is called a solution and
the system of equations is said to be consistent. If no
such choice of x exists, the system of equations is said
to be inconsistent. In a typical application, we are con-
fronted with an inconsistent system of overdeter-
mined linear equations. This inconsistency can be
caused by such factors as (i) measurement noise
whereby inaccurate values for the elements of y and
(or) A are used or (ii) the hypothesized linear model
only approximately represents the underlying func-
tional relationship between vectors x and y.

Least-Squares Error Approximate Solution

The classical least-squares error (LSE) approach
in finding an approximate solution to the inconsis-
tent system of linear equations Ax =~ y is that of se-
lecting x so that Ax most closely resembles y. In par-
ticular, the vector x is selected so as to make the equa-
tion error vector defined by e = Ax — y as small as
possible in the Euclidean norm sense. To pose the
least-squares error problem in a format consistent
with a total least squares approach, an equivalent in-
terpretation is now described. Specifically, let it be
desired to select the smallest Euclidean sized additive
perturbation of vector y so that the perturbed system
of linear equations

Ax =y + 29 (2)

is consistent. The perturbation vector § is seen to
correspond to the equation error vector as mentioned
above. Thus, in seeking the smallest perturbation of
vector y so as to render a consistent system of per-
turbed equations we are simultaneously obtaining the
smallest equation error vector and vice versa. Al-
though a number of different means for measuring
the size of the perturbation vector are available, the
squared Euclidean norm as defined by

l8l1® = 6% (3)

is the one invoked in a least-squares approach.! The
superscript symbol (*) here appearing designates the
complex conjugate operation and the subscript 2 on
this Euclidean norm (see relationship (4)) has been
dropped for reasons of notational simplicity.

The least squares error problem corresponds to se-
lecting perturbation vector § so as to solve the follow-
ing constrained optimization problem:

min §*8. (5)

Ax=y+8

It is possible to transform this constrained optimiza-
tion problem into an unconstrained optimization
problem which is conceptually simpler to solve. To
effect this transformation use is made of the observa-
tion that for a consistent system of perturbed equa-
tions the perturbation vector must satisfy the identity
6 = Ax — y. Upon substituting this identity into the
criterion 6* being minimized, the following equiva-
lent least-squares functional is obtained:?

f(x) =8% = (x*A* — y*)(Ax — y)
= x*A*Ax — g*A*Z —y*Ax + y*y. (6)

A solution to constrained optimization problem (5)
may then be alternatively obtained by finding a vector
x° which minimizes this function. This is an uncon-
strained minimization problem since no restrictions
are placed on the choice for an optimum x. Once an
optimum vector x° has been found, the associated
minimum Euclidean norm perturbation vector that
results in a consistent perturbed system of linear
equations is specified by §° = Ax° — y.

In order to find a solution for the LSE problem use
is made of a fundamental theorem from calculus
which states that a necessary condition for a function
of n real variables to assume a local minimum at a

! The £, norm of the perturbation vector as specified by

holl, = L2 16(R)[P]V" {4)
k=1

for any choice of p = 1 serves as a useful choice of perturbation
vector size. The selections p = 1, 2, o provide the most frequently
used selections with p = 2 commonly referred to as the Euclidean
norm.

2 No loss of generality is incurred by using the unweighted
squared error criterion (6). If the weighted squared error criterion
f(x) = (x*A* — y*)W (Ax — y) had instead been employed where
W is a Hermitian positive definite weighting matrix, a simple
transformation converts this to the standard unweighted criterion.
In particular, the weighting matrix is first factored as W = @*Q
and the substitutions y = @y and A = QA yields the equivalent
unweighted criterion f(—ic) = (ﬁ'x‘{‘ - _}7*)(A~£ - ¥).




point is that the n first derivatives of that function
evaluated at that point all be zero. With this in mind,
the required LS solution is obtained by setting to zero
the partial derivatives of functional (6) with respect
to the real and imaginary components of x. This
gives rise to an associated consistent system of linear
normal equations that provide the necessary (and
sufficient) condition for minimizing this functional.
In a companion paper, the following fundamental
theorem captures the essence of the least-squares
error solution [4].

THEOREM 1. Consider the generally inconsistent
system of m linear equations in n unknowns as repre-
sented by Ax =~ y. It follows that any choice of the
vector x that satisfies the consistent linear system of
normal equations

A*Ax = A*y (7)

minimizes the squared Euclidean norm of error vector
e = Ax — y. Furthermore, all solutions % to these nor-
mal equations have associated equation error vectors
that have the same squared Euclidean norm as given

by
1Az — yI? = I{I- Palyl?, (8)

where P(A) denotes the m X m orthogonal projection
matrix whose range space equals the range space of
matrix A. The unique minimum Euclidean norm solu-
tion to the consistent system of normal equations (7) is
specified by

Rs=A'y, (9)
where A’ designates the Moore-Penrose generalized
inverse of system matrix A. If A has full column rankn
then the associated orthogonal projection matrix and

Moore-Penrose generalized inverse matrices are speci-
fied by

P, = A[A*A]™'A and A'=[A*A]T'A*. (10)

2. TOTAL LEAST SQUARES

In applications related to the generally inconsistent
system of linear equations Ax ~ y, the elements of
the system matrix A and right side vector y are often
each subject to error. If the classical least-squares
error approach is employed in analyzing these equa-
tions, the resultant approximate solution is usually
poor in quality because errors in the system matrix
have not been taken into account. To mitigate the

deleterious effects of these errors, it is possible to
straightforwardly modify the perturbation concept
invoked in the least-squares approach. This modifica-
tion gives rise to the so-called total-least-squares
(TLS) problem. Total least squares has a rich history
dating back more than one century. Adcock first stud-
ted the univariate version of this problem [2] with
other contributions being made by Pearson [24],
Koopmans [19], Madansky [22], York [29], and
others. A generalization of TLS to the multivariate
case (i.e., n > 1) was advanced by several authors
including Golub and Van Loan [15,16], Sprent [26]
(for a more complete listing see [28]). Gleser further
generalized TLS to the case of multiple systems of
linear equations [14]. A very readable summary of the
present state of TLS is to be found in Van Huffel and
Vandewalle [28].

When invoking a total least squares error interpre-
tation to an inconsistent system of linear equations
Ax =~ y, it is useful to express these equations in their
equivalent homogeneous format

[A—;][ﬂmg, (11)

where 0 denotes the zero vector. It is therefore clear
that the original system of linear equations is consis-
tent if and only if there exists a (n + 1) X 1 vector
whose last component is one that maps into the zero
vector under the m X (n + 1) augmented matrix as
defined by

(A -yl (12)

This augmented matrix is obtained by appending the
column vector — y to the system matrix. If the system
matrix A has rank r, it follows that the rank of this
augmented matrix must be either r or r + 1. Thus, a
necessary and sufficient condition that the original
system of linear equations be consistent is that the
rank of the augmented matrix also be r. This is an
immediate consequence of the observation that under
this equivalent rank condition, vector y must be ex-
pressible as a linear combination of A’s column vec-
tors. On the other hand, if ¥ cannot be expressed in
this linear combination format, then the original sys-
tem of linear equations must be inconsistent thereby
establishing that the augmented matrix has rank r +
1. It will be useful to formally emphasis these obser-
vations in terms of the singular value decomposition
(SVD) of the system matrix A and its associated aug-
mentation [A — y]. Since the rank of system matrix A
has rank r, its SVD takes the form




A= ol (13)

In this SVD representation the positive valued o, are
called singular values and without loss of generality
are ordered in the standard monotonically nonin-
creasing fashion s, > 0,,,. Moreover, the associated
m X 1 left singular vectors u,, u,,...;u,andthen x 1
right singular vectors vy, u,, . . ., U, forming the outer-
products terms in this SVD representation each form
orthonormal vector sets. We are now able to give a
basic lemma relating to the consistency of a linear
system of equations.

LEMMA 1. The system of linear equations Ax =~ vy
is inconsistent if and only if every vector in the null
space of the augmented matrix (A — y] has its last
component equal to zero. Equivalently, this system of
linear equations is inconsistent if and only if rank[ A —
y¥1=r+ 1wherether =rank(A). Moreover, the SVD
of the augmented matrix for the case of an inconsistent
system of linear equations takes the form

r+l
[A = y] = 2 Guinly, (14)
k=1

in which ¢, designates the smallest positive singular
value.

Perturbed System of Linear Equations

Since our primary interest is directed towards the
case of an inconsistent system of linear equations, the
properties expressed Lemma 1 are now used to for-
mulate a solution procedure using a total-least-
squares approach. When using the TLS concept, the
system matrix and right side vector are each per-
turbed in the additive fashion A + A and v + é, respec-
tively. These perturbations are chosen so that the re-

sultant perturbed system of linear equations as given
by

[A+Alx=y+3 (15)

is consistent. It is to be noted that there will exist an
uncountable infinite number of such perturbations
that result in the required consistency. Since the per-
turbed system of equations should bear some resem-
blance to the original system of equations, it is logical
to select the smallest possible perturbation that
achieves equation consistency. T'o measure perturba-
tion size, the Frobenius norm of the augmented per-
turbed matrix [A — §] is used.?

3 The Frobenius norm of the M X N matrix B is defined by

| Blls = \/ g g | by | %

m=1 n=1

From the above remarks, the total least squares
problem is concerned with solving the following con-
strained optimization problem:

min  {|[A ~ 8] s. (16)

[A+A}z=y+8

A solution to this problem is readily obtained by ap-
pealing to the observation made in Lemma 1 that a
necessary condition for the original system of linear
equations to have a solution is that the rank of aug-
mented matrix [A — y} by equal to rank(A). When
the augmented matrix has rank 1 + rank(A4), how-
ever, a solution is not possible. We therefore seek a
matrix [A — ¥] of rank A that lies closest to aug-
mented matrix [A — y] in the Frobenius norm sense.
These concepts are now formally described.

THEOREM 2. Consider the system of inconsistent
linear equations Ax =~ y in which the rank of system
matrix A is r and the SVD representation of the rank r
+ 1 augmented matrix [A — y ] is given by relationship
(14). Moreover, let the smallest nonzero singular value
7,4 be unique with b, ., being its assoctated right singu-
lar vector. If the last component of U, ., is nonzero (i.e.,
U,+;(n+1)#0), then the unique minimum Frobenius
norm perturbation of the given system of linear equa-
tions that results in a consistent system of perturbed
equations is specified by

[A®—¢°] = — &r+1_er+1Q~:+1, (17)

and the Frobenius norm of this perturbed auxiliary
matrix is

1A = &1le = G41- (18)

Furthermore, the solution of the resultant consistent
system of perturbed linear equations (15) that has the
smallest Euclidean norm has its components specified

by

Qr-f-l(k)

_— 1<k< 19
Gont D) for n (19)

xpg(k) =

and is referred to as the total-least-squares solution.*

* The set of all solutions to this perturbed system of consistent
linear equations is specified by

Stis = Xy + N (A + A°),

where A° and x5 and specified in relationships (17) and (19),
respectively, and &/ (A + A°) denotes the null space of matrix A +
A°,




A proof of this theorem is straightforward since by
selecting the TLS perturbations according to rela-
tionship (17), the perturbed augmented matrix is
identical to expression (14) but with the upper sum
limit r + 1 replaced by r. This reduced rank r per-
turbed augmented matrix, however, is the closest
rank r matrix to the original augmented matrix in the
Frobenius norm sense. It is interesting to note that
the standard LSE solution (9) can be interpreted as
corresponding to a TLS type perturbation in which
the constraint A = 0 is imposed. This indicates that
the Euclidean norm of the perturbation vector é em-
ployed when taking an LS solution approach is always
at least as large as the Frobenius norm of the pertur-
bation matrix [A — §] incurred when a TLS solution
procedure is invoked.

This theorem is based on the assumption that the
smallest singular value of the augmented matrix is
unique. Although this assumption is met in most
practical applications, in rare situations the mini-
mum positive singular value is multiple (e.g., ¢,,, =
a,). If the smallest nonzero singular value has multi-
plicity g, then at most only one of the g associated
right singular vectors need have a nonzero last compo-
nent for this theorem to apply. A TLS solution is ob-
tained by simply dropping any outerproduct asso-
ciated with one of the smallest right singular vectors
with nonzero last component. Moreover, if more than
one of these smallest right singular vectors has a non-
zero last component, it is easily shown that there ex-
ists an uncountable infinite number of minimum Fro-
benius norm perturbations that result in a consistent
system of perturbed linear equations. On the other
hand, if all of the right singular vectors associated
with the smallest nonzero singular value have a zero
last component, then another solution approach must
be pursued. A plausible alternative procedure would
be to find all right singular vector in the set (v,, v,,

., U,+1) that have a nonzero last components. There
must exist at least one such vector since the appended
right singular vectors form a basis of C*. We then
select that right singular value in this restricted set
that has the smallest associated singular value. This
right singular vector would then constitute a pseudo-
TLS solution and the Frobenius norm of the corre-
sponding perturbed auxiliary matrix would be equal
to its associated singular value.

Special Case: Rank(A) = n

In most practical applications, the rank of the m X
n system matrix A is n. If the associated system of
linear equations A x ~ y is inconsistent then the aug-
mented matrix [A — y] has full rank n + 1. From
Theorem 2 it is seen that the TLS solution has its
components specified by

—;:—_ for 1<sk<n (20)

provided that the last component of 0, ,, is nonzero. It
is apparent that for this full rank case, the two require-
ments that (i) ¢, > 6,4, and (ii) 0,,,(n + 1) # 0
will result in the perturbed system of equations (15)
having the unique solution and is equivalent to 7, >
on+y [28].

3. CONSTRAINED TOTAL LEAST SQUARES

When taking the conventional TLS approach to
finding an approximate solution to the system of lin-
ear equations A x ~ y, the only consideration given in
generating the perturbations of system matrix A and
vector y is that the resultant perturbed system of lin-
ear equations be consistent. In various applications of
interest, however, the allowable perturbations may be
additionally restricted in order that the perturbed
augmented matrix [A + A — y — §] satisfy additional
requirements. These requirements can be general in
nature and may include both structural and algebraic
based constraints. For example, the perturbed aug-
mented matrix may be required to have a Toeplitz
structure, to have a prescribed singular value distri-
bution, or (and) to be positive semidefinite. Although
the imposition of additional constraints on the per-
turbations typically results in a much more difficult
optimization problem to solve, the advantage thereby
accrued can be considerable in that a conceptually
superior means for removing errors in the elements of
A and y is possible. Intuitively, if the allowable per-
turbations are such that the underlying requirements
are satisfied, then errors present in the augmented
matrix due to random factors should be mitigated to a
greater extent than would be the case if only the con-
sistency constraint were imposed. As is subsequently
demonstrated by means of examples, this conjecture
is fulfilled in many important applications.

With the above comments in mind, we now exam-
ine the constrained total-least-squares (CTLS) prob-
lem as defined by

min  [[[A = §][g. (21)

[A+A —y—5lEM

In this problem formulation, M designates the com-
posite feasible matrix set and is composed of all matri-
ces contained in C™ ("*1 that satisfy the prescribed
conditions (or properties). In the standard TLS ver-
sion of this more general problem, the only condition
imposed is that the perturbed augmented matrix [A +
A — y — §] must correspond to a consistent system of




linear equations. In the more general CTLS problem
this consistency requirement as well as other require-
ments are typically imposed. The CTLS problem here
being considered is very general in nature and is not
to be confused with a similarly named problem which
considered only a specific type of linear constraint
[1]. In retrospect, this latter problem might have been
more properly called the linear constrained total-
least-squares problem. With this in mind, we hereaf-
ter refer to optimization problem (21) as the CTLS
problem.

In many practical applications, a closed form solu-
tion to CTLS problem (21) is generally precluded due
to the highly complex nature of the composite feasible
matrix set M. In such instances one must appeal to
nonlinear programming techniques to obtain a solu-
tion in an iterative fashion. We now formulate the
CTLS problem so as to make it amenable to a nonlin-
ear programming solution. Implicit in this approach
is the hypothesis that the composite feasible matrix
set can be expressed as the intersection of simpler
feasible matrix sets. Specifically, let M,, M,, ..., M,
designate g sets of matrices contained in C™*"*!
where set M, containing all matrices that satisfy a
given condition (or property ). For example, M, might
denote all m X (n + 1) Toeplitz matrices. In order
that optimization problem (21) have a solution, it is
tacitly assumed that the intersection of these g matrix
sets as designated by

M=MNMONO- - NM, (22)

is nonempty. Clearly, the composite feasible matrix
set M is composed of all matrices contained in
Cm™{»*+1) that possess each of the g properties.

Corresponding to each individual property set M,
there exists an associated operator P,(-) as formally
defined by

P (X)={Ye ™,
IY = Xllp = min | X - Xg}. (23)

XEM,

The set P, (X)) is seen to be composed of all m X (n +
1) matrices contained in M, (or having property k)
that lie closest to X in the Frobenius norm sense. The
mapping P,(-) is a projection operator since it pos-
sesses the prerequisite idempotent property P2 = P,.
Depending on the nature of matrix set M,, the set
P,(X ) may be composed of a single matrix or of many
matrices. Thus, the projection mapping P,(-) may
not be of the traditional one-to-one type. Further-
more, for many relevant matrix properties sets the
associated projection mapping is nonlinear.

For many commonly employed matrix property
sets M,, it is subsequently shown that a convenient
formulation of the associated P, ( - ) projection opera-
tor exists. As suggested previously, however, when
two or more of these relatively simple property sets
are employed to form the composite feasible matrix
set (22), the associated composite projection operator
P,,(-) generally does not have a closed form represen-
tation. This is manifested in optimization problem
not having a convenient closed form solution. An ef-
fective means for achieving a solution in such cases is
described in the next section.

4. METHOD OF SUCCESSIVE PROJECTIONS

The method of successive projections provides an
useful means for solving a class of optimization prob-
lems which includes the CTLS problem as a special
case. In the method of successive projections, the un-
derlying optimization problem is formulated in a vec-
tor space setting. Specifically, the entities of interest
are taken to be vectors contained in a normed vector
space X with the norm of any vector x € X being
denoted by || x|. The approximation problem defined
on this space is formally given by

min ly — xll, (24)
ZGMIMZ' <M,

where x € X is a fixed vector. In effect, a solution to
this problem corresponds a vector y° contained in
each of the sets M, M,, ..., M, that best approxi-
mates of x in the minimum norm sense. The individ-
ual set M, is composed of all vectors contained in
normed vector space X that satisfy a prescribed prop-
erty imposed on the approximating vector. Thus, the
given vector x is to be approximated by a vector that
possesses the g properties associated with the sets M,
M,, ..., M,. For the purposes of this paper, the un-
derlying vector space X is taken to be the setof m X n
matrices and the norm employed is the Frobenius
norm. In this section’s discussion, we do not so re-
strict X in order to formulate the method of succes-
sive projections in a more general setting. ‘

Associated with each of the sets M, that in part
comprise the optimization problem there is a projec-
tion operator as defined by

P.(x)={yEM,:lly — x| =min |z - x| }. (25)

2EM,

The set P,(x) is seen to be composed of all vectors
contained in M, that lie closest to x in the normed
sense. Projection operator P, (+) therefore projects x




onto all vectors contained in M, that lie closest to x. A
little thought will convince oneself that any solution
to optimization problem (24) must be a fixed point of
the composite projection operator P = P, P,_,: - - P,
(i.e., P(.X) = Z)‘

For many of the more interesting approximation
problems of form (24), there will not exist a conve-
nient closed form solution due to the extreme nonlin-
earity of the composite projection operator P. This
being the case, a solution to the approximation prob-
lem must be obtained in an iterative fashion using
nonlinear programming techniques. The method of
successive projections constitutes a particularly effec-
tive means for solving the approximation problem. A
typical iteration of this algorithm takes the form

€ PP, -+ P (x.,) for =1, (26)

where x, designates the approximate solution at the
kth iteration. The initial vector used in this algorithm
is set equal to the vector being approximated (i.e., x°
= x). The process of generating the vector x, from
x,_, employing this algorithm is to be implemented in
the following manner. First, the set P, ( x,.,) is found.
This set consists of all vectors contained in M, that lie
closest to x,_, in the minimum norm sense. Next, the
set P,(P;(x,_,)) is formed and is composed of all
vectors contained in M, that lie closest to one or
more of the vectors in the set P, (x,_,). It is impor-
tant to note that although each of the vectors in
P,(P,(x,_,))is contained in M,, the projection oper-
ation P, typically projects the vector P, ( x,_;) outside
of M,. This process is continued until each of the ¢
projection operations have been invoked according to
relationship (25). One iteration of the algorithm is
completed by arbitrarily selecting one vector from
vector set P, P,_,- -+ P, (x,_,) to be x,. It is to be
noted that if the individual projection mappings P,
are each point-to-point mappings, the vector x, gen-
erated in this fashion is unique.

It has been shown that the under different condi-
tions imposed on the M, sets, the successive projec-
tion algorithm produces a vector sequence that con-
tains a convergent subsequence which converges to a
solution of optimization problem (24). As original
formulated, the g sets were taken to be closed sub-
spaces. For this case, Halperin established that the
successive projection algorithm converged to a solu-
tion of approximation problem (24) [18]. This result
is readily generalized to include the case in which the
M, sets are closed linear varieties. Youla and Webb
then generalized these results to the case in which the
sets M, are each closed and convex [30]. Although a
solution to the optimum solution could not be ensured
in this case, they showed that the method of succes-

sive projections produces a vector sequence which al-
ways contains a subsequence that converges to a vec-
tor possessing the g prerequisite properties.

The author further generalized Youla and Webb’s
result to the case in which each of the sets M, is only
required to be closed [5]. The importance of this gen-
eralization follows from the fact that many of the sets
used in practical applications are closed but not con-
vex. For example, the set of m X n matrices that have
a given rank is closed but not convex. The author has
proven that the method of successive projections algo-
rithm (26) produces a vector sequence that always
contains a subsequence that converges to a vector
that possessing the g prerequisite properties provided
that

1. the mapping P,P,_,- - - P, is a closed mapping.

2. the mapping P,P,_,- - - P, is distant reducing
relative to a reference signal x,.

3. the set of vectors { y } satisfying |y — x| < {x —
x|l comprises a closed and bounded set where x desig-
nates the signal being approximated and x, denotes a
fixed reference vector.

The reference vector referred to in the third condition
is often set to the zero vector. Extensive experience
with a variety of approximation problems indicates
that the successive projection algorithm as applied to
closed property sets typically generates a useful ap-
proximate solution to optimization problem (24). A
closed mapping is a generalization of the notion of
continuity as applied to standard point-to-point map-
pings [32], that is

DEFINITION 1.  The point-to-set mapping P is said
to be closed at x if the assumptions (i) x, - x, and,
(ii) y, = y with y, € P, P,_,- - - P,(x,) implies that
Y E PPy, P(x).

Matrix Enhancement Algorithm

As is shown in the next several sections, the ability
to use nonconvex sets can be critical in many practical
applications involving the cleansing of empirically
gathered data. The method of successive projections
when applied to data that is expressed in the form of
data matrices shall hereafter be referred to as the ma-
trix enhancement algorithm. This matrix enhance-
ment algorithm therefore takes the form

XkquPq_l' * 'Pl(Xk—l)
for £k=1,2,3,--+,1, (27)

where X, is a matrix that designates the algorithm’s
result after k iterations. If the conditions previously
specified in this section are satisfied, then the matrix
sequence generated according to this algorithm is




guaranteed to have a subsequence that converges to
matrix which lies within each of the matrix sets M,
associated with the projection operators P, for k = 1,
2, ..., q. Principal among these requirements is that
these projection operators be each closed.

To illustrate a typical application of the matrix en-
hancement algorithm, let us consider the constrained
TLS problem associated with the inconsistent system
of linear equations A x = y. It is desired to perturb the
m X n system matrix A and m X 1 vector Yy so as to
achieve consistency. In particular, it is desired to find
the smallest Frobenius norm perturbation of the m X
(n + 1) auxiliary matrix

X=[A-Y] (28)

so that the perturbed auxiliary matrix is contained in
each of the sets M,, M,, ..., M,of m X (n + 1) com-
plex valued matrices. If P, designates the projection
operator associated with set M,, then the matrix en-
hancement algorithm (27) produces a convergent
subsequence that converges to a matrix which lies
within each of the sets M, M,, ..., M,. This conver-
gence behavior is contingent on the projection opera-
tors satisfying the previously stated requirements.
The matrix used to initiate the algorithm is set equal
to the auxiliary matrix (28) being perturbed, that is
X, = X. The utility of this signal enhancement algo-
rithm is dependent on our ability to implement the P,
projection mappings in a computational viable fash-
ion for matrix properties that identify practical appli-
cations. In the next three sections we describe how
the projection mappings are implemented for impor-
tant matrix properties.

5. RANK “p"” MATRIX APPROXIMATION

The singular valued decomposition (SVD) of data
generated matrices plays an increasingly important
role in contemporary signal processing applications.
In particular, we now examine some fundamental
SVD properties of a general complex valued m X n
data matrix X of rank r. In accordance with our pre-
vious discussion, the SVD representation for this ma-
trix takes the form

X = 2 ol (29)

k=1

The augmented data matrix (28) provides a specific
example of how such a matrix may arise. In signal
processing applications, it is frequently desired to
find a matrix of rank p that best approximates X is

the Frobenius norm sense. Eckart and Young pro-
vided a convenient solution to this problem as now
formally stated [11].

THEOREM 3. Let X be a generally complex valued m
X n matrix of rank r whose SVD representation is
given by expression (29). If p < r, it then follows that a
matrix of rank p that best approximates X in the Fro-
benius and Euclidean norm sense is given by truncat-
ing this SVD representation to its largest p outer prod-
ucts, that is®

P
X®P = pr(X) =3 ok (30)

k=1

This best rank p approximation is unique if and only if
0, > 0,4;. Furthermore, the projection mapping P* is
closed and continuous if 6, > 0,,,, and, is closed but not
continuous if ¢, = o,,,;. The Frobenius and Euclidean
norms of the resultant approximation error are given
by

S
\\/f 25 02’
k

=p+1

IX — X e

1l

and

IX - X®; = 0,4 (31)

A proof of the conditions needed for projection oper-
ator P to be closed and continuous is found in Ref.
[23]. This theorem states that the best rank p matrix
approximation (30) is unique if and only if 6, > ¢,,,;.
When the smallest positive singular value has multi-
plicity greater than one, however, there will exist an
infinite number of distinct rank p matrices that opti-
mally approximate X. It therefore follows that the
mapping from X into X is a point-to-point map-
pingif ¢, > 0,,, and is a point-to-set mapping when g,
= 0p+. The point-to-set case raises a number of theo-
retical as well as practical issues that must be ad-
dressed in using an SVD matrix representation. The
following related theorem is also useful in signal pro-
cessing applications related to correlation matrices.

THEOREM 4. Let the generally complex valued m X
n matrix X of rank r have SVD representation (29).
The m X n matrix which best approximates X in the
Frobenius norm sense and has its smallest r — p non-
zero eigenvalues equal is given by

r

p
Xy = 2 ollals + 0 2 Wi, (32)
k=1 k=p+1

5 The Euclidean norm of matrix A is defined to be [[A} =
supl Azl /1| x[.




- S o (33)
' =P pn

Furthermore, the projection mapping P,,: X = X, is
closed and continuous if o, > é,.,, and is closed but not
continuous if 6, = 0,4,

In typical signal processing applications of the
SVD, the distribution of the singular values of a data
matrix is often used to determine model order infor-
mation when analyzing empirical data. Ideally, the
gap between the so-called signal level and noise level
singular values (i.e., o, — g,,,) is large enough so that
questions of uniqueness and continuity of mapping do
not arise. Unfortunately, in challenging applications
{e.g., the detection of multiple sinusoids whose fre-
quencies are closely spaced) the gap can be very small,
thereby leading to possible undesirable algorithmic
sensitivities.

6. LINEAR STRUCTURED MATRICES

In various applications, the matrix X under consid-
eration is known to have its elements functionally de-
pendent on a set of parameters. To illustrate this
point, a listing of some typically matrix classes which
fall into this category are given in Table 1. In each
case, there exists a functional interdependence be-
tween the matrix elements since they are each depen-
dent on a set of real valued parameters. For example,
a m X n Toeplitz matrix is completely specified by the
m + n — 1 parameters identifying its first row and
first column elements. In this paper we shall be inter-
ested in classes of matrices whose elements are lin-
early dependent on a set of parameters. We now for-
malize this concept.

DEFINITION 2. Letx;(8)forl<i<mandl<j<n
designate a set of mn functions that are dependent on
the real valued components of parameter vector § =
[6,+ - 8,17 in which p < mn. Furthermore, consider
the class of all m X n matrices whose components are
governed by the functional relationships

X(i,j)=x;(8) for 1<si<mandl<j<n (34)
for specific choices of the parameter vector §. This
matrix class is said to have a structure induced by the
functions x;(8) and to have p degrees of freedom. If
these functions are linear in the p parameters then
the matrix class M is said to have a linear structure.

TABLE 1

Structured Matrices

Matrix
class Matrix elements
Hermitian x(i, Jy = x{j, 1)
Toeplitz x(i+1,j+1) = x(i,))
Hankel x(i+1,7) = x(i,] + 1)
Circulant x(i+1,j)=x(,j— Dwith X+ 1,1) = X(i,n)

Vandermonde x(i,j) = x(1, j)

Linear Structured Matrix Approximation

In what is to follow, we are concerned with the task
of finding a matrix of a specified linear structure that
lies closest to a given matrix X of the same size. The
importance of linear structured matrices is made evi-
dent by noting that each of the matrix classes given in
Table 1 is so characterized with the exception of Van-
dermonde matrices. A little thought indicates that
any matrix possessing a linear structure can be
uniquely expressed in the decomposed format

. P
X(Q) = Z Hka (35)
k=1

with the fixed matrices X,, X,, ..., X, constituting a
basis for the subspace of linear structured matrices
under consideration. The nature of these basis matri-
ces depends on the particular linear structure being
characterized.® The matrix approximation problem
under consideration can be formally expressed as

p
min | X — 3 0 Xellp- (36)
k=1

¢cre
It is therefore desired to select the parameter vector

§ so as to minimize the squared Frobenius normed
functional specified by

P
) =1X- 2 0:.Xl%
k=1

M

p
= trace{[X — 0, X )¥IX — > 6,X,]}. (37)
k=1

k

J
—

In arriving at this result, use has been made of the fact
that the squared Frobenius norm of matrix A is equal
to the trace of A*A. Upon carrying out the matrix

¢ For instance, it is demonstrated in Example 1 that the basis
matrices corresponding to the class of m X n Toeplitz matrices are
given by those m + n — 1 matrices of size m X n that have all zero
elements except for ones that appear along a specific diagonal.




multiplications comprising this functional, it is found
that

P
f(8) = trace{ X*X | — 2 b,trace | XX}
k=1

|
M

6, trace{ X X ;!

=
I
—

Mo

P
+ > 00, trace{ Xy X, }
m=1

k

1

= trace | X*X | — 26"b + 07C4, (38)
where the elements of the real valued vector b and real
valued matrix C are given by

b(k) = 2 Real[trace{ Xz X }]
and
C(m,n)=trace{ XX, },
for 1<k, m,n<p. (39)

The matrix of the specified linear structure that
best approximates the given matrix X is therefore ob-
tained by selecting § to minimize functional (38).
Upon setting the gradient of this functional with re-
spect to f equal to the zero vector, the optimum param-
eter vector is found to satisfy the consistent system of
linear equations

Real {C }6° = b, (40)

where real{ C | designates the real part of matrix C.
Substituting this optimal parameter choice back into
the relationship (35), the matrix of the prerequisite
linear structure that most closely approximates X in
the Frobenius norm sense is given by

- p
X(0)° = 2 03X, (41)
k=1
ExampLE 1. To illustrate the above procedure, let
us consider the specific case of the class of real 3 X 2
Toeplitz matrices. It is observed that any such matrix
can always be uniquely represented as

6, 6, 10 0 1
9, 6, |=6,]0 1]|+06,]0 0
b, 8, 00 00
0 0 0 0
+001 ol+alo of. (42)
0 1 10

The four matrices appearing in this representation
constitute a basis for the space of real 3 X 2 Toeplitz

matrices. In accordance with expression (41), the
closest Toeplitz matrix in the Frobenius norm sense
is obtained by first computing for the vector b and
matrix C specified by relationships (39). It is a simple
matter to show that

FX(1,1) + X(2,2)

- X(1,2)

2T X(2,1) + X(3,2)
L X1
2 0 0 0

_j0o10 0

€=lo 020 (43)
[0 0 0 1

Since matrix C is nonsingular, the unique Toeplitz
matrix that approximates a general 3 X 2 matrix X is
associated with the parameter vector

LX(1,1) + X(2,2))
X(1,2)

X (2,1) + X(3,2)]
X(3,1)

0° = (44)

It is seen that the components of this vector corre-
spond to the means of the diagonals of the matrix
being approximated.

Appealing to the results of the above example, it is
readily established the best Toeplitz approximation
to a general m X n matrix is obtained by first deter-
mining the sampled means of each of its m + n — 1
diagonals and then using these sampled means as en-
tries for the corresponding diagonals of the best ap-
proximating Toeplitz matrix. A similar statement
holds for obtaining the approximating Hankel matrix
in which the term diagonal is replaced by antidia-
gonal. Other properties related to linear structured
matrices are found in Ref. [5].

7. POSITIVE SEMIDEFINITE MATRICES

In this section an examination of some salient
characteristics of the class of generally complex val-
ued n X n positive semidefinite matrices is made. The
n X n matrix X is said to be positive semidefinite if the
associated quadratic form inequality as specified by

*Xx=0 (45)
is satisfied for all vectors x € C™. Furthermore, if the
only vector that causes this quadratic form to be zero
is the zero vector, then A is said to be positive definite.
Since a positive quadratic form is real valued, this




further implies that any positive semidefinite matrix
must also be Hermitian. Our interest in positive semi-
definite matrices is motivated by their frequent ap-
pearance in studies related to quantitative oriented
disciplines. As examples of there importance in signal
processing applications, the following matrices are
each positive semidefinite: (i) autocorrelation matri-
ces associated with wide-sense stationary time series,
(ii) orthogonal projection matrices appearing in opti-
mization problems, and (iii) weighting matrices used
in quadratic criterion related to optimization prob-
lems.

With the importance of positive semidefinite matri-
ces in mind, the basic problem of finding a positive
semidefinite matrix that lies closest to a given Hermi-
tian matrix X in the Frobenius norm sense is now
considered.” The ingredients of a solution to this
problem are made evident upon examining the eigen-
analysis of X as given by
<

Xx, = A\x, for 1<ks<n. (46)
Since X is Hermitian, it follows that the A, eigen-
values are exclusively real. Furthermore, there always
exist a full set of n eigenvectors which can be always
chosen orthonormal (i.e., xfx,, = 6(k — m)). With
this characterization, the following lemma is readily

proven.

LEMMA 2. Let X be a Hermitian matrix contained
in C™* whose eigenanalysis is specified by relationship
(46). Furthermore, let the eigenvalues be ordered in
the monotonically nonincreasing fashion A\, = A, in
which the first p eigenvalues are positive and the last n
— p are nonpositive. It then follows that Hermitian
matrix X can be uniquely decomposed as

X

MNXpXp + 2 Mxpxp = X+ X7, (47)
k=p+1

M=

ar
I
—-

in which Hermitian matrix X = 25.; A\, x,x} is posi-
tive semidefinite with rank p while Hermitian matrix
X~ = 2o+ MeXaxXy is negative semidefinite.

Examination of this theorem indicates that any
Hermitian matrix may be uniquely be decomposed
into the sum of a positive and negative semidefinite
Hermitian matrix as specified by (47). From this de-
composition, the solution to the best approximating
positive semidefinite matrix immediately follows and
is characterized as follows.

" No loss of generality is incurred by assuming that X is Hermi-
tian, since if it is not then it is replaced by its closest Frobenius
Hermitian image (X + X *)/2.

THEOREM 5. Let X be a Hermitian matrix con-
tained in C™™ whose SVD representation is given by
expression (47). The unique positive semidefinite ma-
trix that lies closest to X in the Frobenius and Euclid-
ean norm sense is given by the following truncated
SVD mapping:

(48)

The projection operator P* defined by relationship
(48) is both closed and continuous. The Frobenius
norm of the error associated with this optimum positive
semidefinite matrix approximation is given by

/ n
IX=X"le=\/ % of

k=p+1

(49)

Similarly, an orthogonal projection matrix which lies
closest to X in the Frobenius and Fuclidean norm sense
is specified by

>

L
R:Ag=0.5

X =PPX)= (50)

Xp X

This closest orthogonal projection matrix is unique
provided that none of the eigenvalues of X are equal to
0.5. Moreover, projection operator P°P closed for any
distribution of eigenvalues. The Frobenius norm of the
error assoctated with this optimum projection matrix
approximation is given by

/o
||X7X+|]F:\’,r“/ Z [0k

kirg=0.5

(51)

This theorem’s proof is a direct consequence of the
fact that the Frobenius and Euclidean norm of the
matrices X — Yand Q*[ X — Y] X@Q are equal for any
choice of the unitary matrix  and Hermitian matrix
Y. For our purposes, @ is set equal to the n X n unitary
matrix whose columns are equal to the n orthonormal
eigenvectors of matrix X. For this selection D =
QR*XQ is a diagonal matrix whose diagonal elements
are equal to the eigenvalues of X sothat @*[ X — Y]Q
=D — @*YQ. It then follows that the closest positive
semidefinite choice for matrix Y that minimizes the
Frobenius norm of @*[ X — Y]Q is made according to
relationship (48). This corresponds to truncating the
SVD representation of X to its positive singular value
outer products. In a similar fashion, the closest or-
thogonal projection matrix is obtained by replacing
each singular value by one if the singular value is
greater than or equal to 0.5 and by zero otherwise.
This closest idempotent Hermitian matrix is unique
provided that none of the eigenvalues of X are equal




to 0.5. Moreover, projection operator P°? is closed for
any distribution of eigenvalues.

ExaMPLE 2. Let us consider the problem of find-
Ing a positive semidefinite Toeplitz matrix that lies
closest to the matrix

2 4
X= .
2 4
Although this matrix is positive semidefinite, it does
not possess the specified Toeplitz structure. To find a
positive semidefinite Toeplitz matrix that provides an
acceptably accurate approximation it is necessary to

apply nonlinear programming techniques. The ma-
trix enhancement algorithm governed by

Xpi1 = P+P’I‘(Xk)

has guaranteed convergence to a positive semidefinite
Toeplitz matrix approximation. In this algorithm P*
corresponds to the positive semidefinite projection op-
erator (48) while Py denotes the Toeplitz projection
operator heretofore described. Using matrix X as ini-
tial condition, it is found that the matrix sequence
thereby generated converges in two iterations to

. [3.0811 2.9230
2.9230 3.0811]

Convergence was deemed to have occurred when the
normed matrix error | X, — X ||/l X | became less
than 107%. It is to be noted that the positive semidef-
inite Toeplitz matrix which lies closest to X in Fro-
benius norm sense is specified by

- 3
e[,
3 3

This example nicely illustrates the point that al-
though the matrix enhancement algorithm does not
have guaranteed convergence to the closest matrix
approximation (for the properties of this example), it
typically results in sufficiently good substitution. A
modification of the matrix enhancement algorithm
that has guaranteed convergence to the optimal solu-
tion was proposed by Dykstra [10].

Spectral Estimation Application

In the field of spectral estimation, the basic goal is
that of estimating the spectrum associated with a
wide-sense stationary time series. This estimation is
to be based on a finite set of contiguous samples of the
time series as exemplified by

x(1),x(2), ..., x(N) (52)

This estimation process is normally explicitly or im-
plicitly begun by forming estimates of the time series’
autocorrelation lags r,, (k) = E{x(n + k)x(n)* for k
=0, +1,+2,. ... The spectrum of the wide-sense sta-
tionary time series is defined to be the Fourier trans-
form of the autocorrelation lag sequence. With these
remarks in mind, we shall now examine a typical
spectral estimation approach which employs the
standard unbiased estimate of the associated auto
correlation lags generated from the finite samples
(52) as specified by

) 1 Nk ~
ra(k) = N—% m§=:1 x(k+ m)x(m)

for 0<k<N-1. (53)

Using these correlation lag estimates, the following n
X n Hermitian-Toeplitz structured correlation matrix
estimate is formed

.. '3;(”—1)
<o n(n—2)

®

Fuln —1) Frn —2) Fre(0)

(54)

This correlation matrix estimate serves as an ap-
proximation of the underlying correlation matrix R,,
which is typically unknown to the signal processor.
Under the ergodic assumption, this correlation ma-
trix estimate converges to R, as the number of obser-
vations N approaches infinity. In the practical case
where N is finite, however, this estimate serves as
only a relatively crude approximation of R,,. To ob-
tain a superior estimate, we now employ the matrix
enhancement algorithm to hopefully remove a signifi-
cant amount of the estimation error. For this pur-
poses, the matrix properties (or sets M;) employed
that characterize the unknown correlation matrix are
that (i) R, is positive semidefinite and (ii) R,, pos-
sesses a Toeplitz—-Hermitian structure. Although
correlation matrix estimate (54 ) possesses the prereq-
uisite Toeplitz~Hermitian structure, it often fails to
be positive semidefinite. Our task is to then find an
approximation of this correlation matrix estimate
that possesses these two properties. To achieve this
objective, we employ the matrix enhancement algo-
rithm

R, (k) = PruP*R..(k—1) for k=1, (55)

in which the initial matrix estimate Ién(O) is given by




expression (54). Since the closest Toeplitz—Hermi-
tian projection mapping Pty and the closest positive
semidefinite definite projection mapping P* are each
closed, it follows that the matrix sequence generated
by this algorithm produces a subsequence that con-
verges to a matrix which is positive semidefinite and
has a Toeplitz—Hermitian structure. The matrix to
which this sequence converges may then be used in
any of a variety of spectral estimation methods to ob-
tain hopefully improved spectral estimates relative to
that achieved with the initial estimate (54).

8. EXPONENTIAL MODELING

TR

One of the more important applications of matrix
enhancement is that of approximating empirical data
by a linear combination of exponentials. In particular,
let there be given the finite set of time-series observa-
tions

x(1),x(2),...,x(N). (56)

It is well known that this data set can be modeled
exactly as a linear combination of p or fewer exponen-
tial signals if and only if there exists a, coefficients
such that the following homogeneous relationships of
order p are satisfied:

x(ny+a,x(n—1)+ --- +ax(n—-p)=0

for p+1<n<N. (57)

The a, terms are often referred to a prediction coeffi-
cients. Most relevant data modeling applications are
concerned with the overdetermined case in which the
number of homogeneous equations N — p exceed by a
wide margin the number of prediction coeflicients p
to be determined (i.e., N — p » p). For the practical
case in which the data is not perfectly modeled as a
linear combination of p or fewer exponential signals,
these homogeneous equations have no solution.

For the development that follows it is useful to for-
mulate the ideal homogeneous relationships (57) in
their equivalent matrix-vector format

Xa=0. (58)

In this representationa = [la,a, * * * a,]Tisthe (p +
1) X 1 prediction coefficient vector and X is the corre-
sponding (N — p) X (p + 1) data matrix as specified
by

x(p+1) x(p) x(1)
x(p+t2) x(pt1l) --- x(2)

x(N) x(N-1) x(N = p)

(59)

This data matrix is seen to have a Toeplitz structure
since the elements along any of its diagonals are iden-
tical. Furthermore, if homogeneous relationship (58)
is to have a nontrivial solution, it follows that the
rank of data matrix X must be equal to or less than p.
These salient properties play a critical role in various
exponential modeling algorithms and are formally rec-
ognized in the following lemma.

LEMMA 3. The finite set of time series samples
x(1), x(2), ..., x(N) is exactly represented by a gth
order exponential time series if and only if the SVD of
the associated (N — p) X (p + 1) Toeplitz structured
data matrix (59) has g nonzero singular values where q
< p.

The exponential modeling characterization spelled
out in this lemma provides the conditions under
which the given data is exactly represented by an ex-
ponential model. In most practical applications, how-
ever, the data can only be approximately represented
by an exponential model of reasonably small order.
For such situations, we can employ the matrix en-
hancement algorithm to slightly perturb the given
data matrix so that the associated perturbed data set
is perfectly modeled by an exponential model of order
q. To achieve this objective, we need to introduce ma-
trix properties consistent with this goal. T'wo obvious
properties which the idealized data matrix must pos-
sess are

Property 1. Data matrix X has rank q.

Property 2. Data matrix X has a Toeplitz struc-
ture.

The rank q projection operator P? corresponding
to Property 1 is governed by relationship (30) and is
implemented by first computing the SVD of data ma-
trix X and then truncating this SVD representation
to its p largest singular value weighted outerproducts.
Theorem 3 states that projection mapping P@ is
closed so it can be employed in a matrix enhancement
algorithm. The Toeplitz projection mapping Pr
corresponding to Property 2 is also closed. It is re-
called that when Toeplitz projection operator Pg is
applied to a general matrix X it yields a Toeplitz ma-
trix whose diagonal elements are equal to the average
value of the corresponding diagonal elements of ma-
trix X.




Since projection operators Pr and P'? are each
closed, it follows that the matrix enhancement algo-
rithm as specified by

X, = PrP (X)) for k=1 (60)

is ensured to have a subsequence that converges to a
rank g Toeplitz matrix. The initial data matrix used
in this iterative scheme is set equal to the given data
matrix (59) so that X, = X. To begin this algorithm,
the rank g approximation of the data matrix X is first
computed. The corresponding rank g matrix P9 (X)
is generally non-Toeplitz in structure. To recover the
required Toeplitz structure, we next apply projection
mapping Pr to matrix P9 (X)) to complete the first
iteration of the matrix enhancement algorithm. It is
generally found that this new Toeplitz structured
data matrix X, = P P'“ (X ) has full rank. It is closer
to a rank ¢ matrix, however, than was the original
data matrix X. The first iteration has therefore led to
a data matrix whose elements comprise a data se-
quence that is more compatible with a gth order expo-
nential model than was the original data. Often, this
first iteration is sufficient for modeling applications.

To obtain a data sequence that is exactly represent-
able by a gth order exponential model, we may con-
tinue this iterative process in an obvious manner. In
particular, one sequentially computes the data matri-
ces Xz, = PrP9(X,) fork =0,1,2, - - - until the
data matrix X,,, is deemed to have a rank that is
sufficiently close to g. This stopping condition could
be implemented by computing the ratios of the (¢ +
1)st to gth singular values of X, ,, (i.e., o,(g + 1)/
o, (g). If this ratio is found to be sufficiently close to
zero then matrix X, ,, is said to have an approximate
rank of g. It has been empirically determined that this
algorithm converges in a rapid fashion and typically
takes from three to ten iterations to converge for mod-
erately sized data matrices. More importantly, the re-
sulting enhanced data matrix has component data ele-
ments that generally provide a better representation
of the underlying exponential signal components
than did the original data. This enhancement process
has therefore effectively stripped away noise that con-
taminated the original data. A particularly important
special case of the exponential modeling problem is
now addressed.

Sinusoidal Signal Identification

In a surprisingly large number of fundamental sig-
nal processing applications, the primary objective is
that of identifying sinusoidal components present in
noise contaminated data. For example, multiple plane
waves incident on an equispaced linear array give rise
to sinusoidal steering vectors. To identify sinusoidal

signals, a widely employed procedure is to first form
the data matrix whose upper and lower halves corre-
spond to the forward and backward prediction equa-
tions associated with the finite length data (56). The
forward prediction equations take the homogeneous
form

x(n) +ax(n—1)+ --- +a,x(n—p)
for p+1<n<N, (61)

while the backward prediction equations are specified
by the homogeneous relationships

x(n)+ax(n+1)+ -+ +a,x(n+p)
for 1sn<N-p. (62)

If the data under analysis is composed of a linear com-
bination of pure complex sinusoids of order g or less
where g < p it is well known that there exist a choice
for the g, predictor coeflicients so that homogeneous
relationships (61) and (62) are each satisfied. This
observation forms the basis for many contemporary
sinusoidal identification algorithms.

The algebraic properties associated with sinusoidal
modeling are best described by expressing forward
and backward prediction relationships (61) and (62)
in their equivalent matrix format, that is

Xa = 0. (63)

In this relationship X is the 2(N — p) X (p + 1)
combined forward-backward data matrix as specified
by

X
X=| -1, (64)
Xy
where X designates the (N — p) X (p + 1) Toeplitz
structured forward prediction data matrix (59) and is
associated with forward prediction equations (61).
Similarly, X’JPH denotes the Hankel structured
backward prediction data matrix in which J,,, is the
(p + 1) X (p + 1) order reversal matrix whose ele-
ments are all zero except for p + 1 ones that appear
along its main antidiagonal while X denotes the con-
jugate of X. This backward prediction matrix arises
from the backward prediction equations (62).

If the data under analysis is noise free and com-
posed of g complex sinusoids, then the block Toe-
plitz—Hankel data matrix X has rank g provided that
p = q. To identify the component sinusoids in this
ideal pure sinusoidal case, we simply find a prediction
coeflicient vector a with first component one that sat-




isfies homogeneous relationship (63). The compo-
nents of this vector are then used to form the auxil-
iary polynomial

p
A(z) =1+ 2 a%z"

n=1

=(1—zz27") (1 —227") -+ (1 — 227 "). (65)

A component sinusoid is associated with each of the g
roots of A (z) that lie on the unit circle (i.e., z, = e /%)
with the sinusoid frequencies corresponding to the 6,
angles of these roots.

When the data is noise contaminated or the data is
not perfectly represented as a linear combination of ¢
complex sinusoids, data matrix X typically has full
rank p + 1. In this more realistic case, homogeneous
relationship (63) has no nontrivial solution and we
must appeal to alternate solution procedures. Various
methods for modeling the given data as a linear combi-
nation of ¢ sinusoids (with ¢ < p) have been proposed.
Two related methods based on the idealized case of
data matrix X being of rank g have been effective for
this purpose. In the method developed by this author,
the rank g approximation of data matrix (64) is first
computed. This rank g approximation is then decom-
posed as

X9 =[x, X,], (66)

in which x, designates the first column of X9 and X,
its remaining p columns. Finally, the proposed model
coeflicient vector estimate is then specified by [6]

1 B
M pup—— I ‘4.4 IF " 67
%= TR s (67)

where ' designates the Moore—Penrose generalized
inverse operator. In a similar fashion, the Kumaresan
and Tufts method is based on the decomposition of
the data matrix given by

X: [519 Xr]’ (68)

in which x, designates the first column of X and X, its
remaining p columns. The corresponding Kumare-
san-"Tufts coeflicient vector estimate is then given by
[21,27]

axr = — [ X 1'x,. (69)

Kumaresan and Tufts have demonstrated that their
method has a maximum-likelihood performance. It is
interesting to note that the first selection (67) for
identifying the a, parameters are TLS solutions to a

linear system of equations. This TLS association was
observed by Rahman and Yu [25] and later shown to
be equivalent to expression (67) [20].

It is to be noted that although the two coeflicients
vectors solutions (67) and (69) are similar, the latter
approach excludes the first column of X in the rank q
approximation. As such, it does not take full advan-
tage of the rank g reduction data cleansing SVD oper-
ation and is therefore marginally inferior to the first
method (e.g., see Refs. [9,20]). In both methods, the
sinusoid frequencies estimates are generated by sub-
stituting the components of the prediction coefficient
vectors (67) or (69) into polynomial (65). A compo-
nent sinusoid is then associated with each root of
A(z) that lies within a user prescribed distance of the
unit circle (i.e., [|z,| — 1| <e€).

Although the above two algorithms are effective in
identifying sinusoidal components, application of a
data cleansing matrix enhancement algorithm can sig-
nificantly improve their performance. An appropriate
matrix enhancement algorithm for this purpose is
specified by

X, = PryP(X, ;) for k=1. (70)

In this algorithm Pry designates the projection opera-
tor that determines the unique block Toeplitz—Han-
kel matrix lying closest to a given matrix in the Fro-
benius norm sense. It is implemented in a fashion
identical with P.. Mapping P‘?’ corresponds to the
aforementioned closest rank ¢ projection operator.
These two projection operators correspond to the
properties known to be possessed by the data matrix
when the data being analyzed is perfectly represented
as a linear combination of complex sinusoids of
order q.

Upon application of matrix enhancement algo-
rithm (70) to the given data matrix, a matrix se-
quence is thereby generated which has a subsequence
that converges to a cleansed data matrix which has
possesses the two prerequisite properties of being
block Toeplitz-Hankel and having rank g. This
cleansed data matrix may therefore be used in either
algorithms (67) or (69) to obtain improved sinusoidal
frequency estimates. The example to follow illus-
trates the benefits of this precleansing data operation.

ExampLE 3. To illustrate the effectiveness of the
matrix enhancement algorithm, let us consider the
following data set

x(n) — ej(21/1n+01) + ej(21f2n+82) + w(n)

for 1<n<25 (71)

with f, = 0.50, f, = 0.52, 0, = 7/4, 8, = 0 and w(n) is
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FIG. 1. Sampled mean and MSE statistic for noise-corrupted si-
nusoidal data.

Gaussian white noise whose uncorrelated real and
imaginary components have standard deviation o.
The individual sinusoidal signal-to-noise ratio
(SNR) for this time series is therefore 10 log(1/2¢2).
One hundred statistically independent runs (differ-
ent noise samples) of this times series are next made
at several SNRs. The two prediction coeflicient vec-
tor estimates (67) and (69) are then computed for
each of the trial runs with a choice of p = 17 (the
choice advocated in [27] and ¢ = 2 to yield unen-
hanced frequency estimates.

Statistics relating to sampled means and mean
squared error for the unenhanced frequency esti-
mates of the frequency parameter f, = 0.50 for the one
hundred trial runs made at several SNRs are summa-
rized Fig. 1. Similar statistics for the parameter f, =
0.52 were obtained and are therefore not shown. From
these statistics it is seen that for high SNRs the two
methods yield virtually identical performance with
method (67) being marginally better at SNRs less
than 10 dB. Furthermore, each estimate is basically
unbiased for SNRs exceeding 0 dB.

The effectiveness of the proposed precleansing ma-
trix enhancement procedure is next determined. In
particular, algorithm (70) is applied to the noise con-
taminated data. After 15 iterations, the enhanced
data matrix with the prescribed block Toeplitz-Han-
kel structure and approximate rank g is substituted
into expressions (67) and (69). The statistics asso-
ciated with the enhanced estimates are also shown in
Fig. 1. From these results it is apparent that the en-
hancement process has provided a significant im-
provement at low signal-to-noise ratios in reducing
bias and MSE. It has been shown that sinusoidal de-
tection performance is also improved [9].

9. SYSTEM IDENTIFICATION

An application of interdisciplinary interest is con-
cerned with the linear recursive modeling of excita-
tion-response data. This problem is more commonly
referred to as system identification. For purposes of
presentation simplicity, we here only deal with the
case in which the data is dependent on a single time
variable. The procedure to be now described, however,
is readily extended to the multidimensional time vari-
able case (see Ref. ({7]). In the one-dimensional time
case as developed in Ref. [8], there is given the data
pair sequence

(x,,y,) for 0<n<N, (72)

where x(n) and y(n) are identified as the excitation
and response data, respectively. This data set is said
to be recursively related if there exist choices for the
a, and b, coeflicients such that the following linear
recursive relationship of order (p, q) is satisfied:

p q
y(n) + 2, apy(n — k) = 2 byx(n ~ k)

k=1 k=0

for 0<n<N. (73)

In specifying the time interval 0 < n < N over which
this recursive relationship holds, it has been tacitly
assumed that the data pairs are identically zero prior
to n = 0. If this is not the case, then the time interval
over which relationship (73) holds must be changed
to max(p, q) < n < N.Modification of the analysis to
follow for this case is straightforward and therefore
not given.

It will be convenient to represent recursive rela-
tionships (73) in matrix format so as to take advan-
tage of algebraic properties that characterize the data.
This matrix representation takes the form




y(0) 0 .. 0 1
y(1) y(0) e 0 a
y(N- y(N-1) -+- y(N-p)lla,
x(0) 0 cee 0 b,
x(1) x(0) e 0 b,
x(N) x(N-1) x(N - g)llLb,
(74)
or equivalently
Yoa, = Xb,. (75)

In this latter representation, Y, and X_ are referred to
asthe (N + 1) X (p + 1) response matrix and the (N +
1) X (g + 1) excitation matrix, respectively. Similarly,
a, and b, are the recursive coeflicient vectors identify-
ing the recursive operator with a,(1) = 1. With this
preliminary development, the basic properties char-
acterizing recursively related data are now formally
spelled out (see Ref. [8]).

THEOREM 6. Let the excitation-response data
(x(n), y(n)) for 0 < n < N be related through a re-
duced-order recursive relationship of order (p, q) in
whichp <p,g<gq, and p + q < N. It then follows that
the extended order recursive relationship (75) always
has a solution in which the constraint a,(1) = 1 is
satisfied. Moreover, if the excitation and response ma-
trices are full rank so that rank[X,] = ¢ + 1 and
rank[Y,] = p + 1, it then follows that the null space of
the (N + 1) X (p + q + 2) composite excitation-re-
sponse data matrix

D,o= 1Y, —X,] (76)

p.q

has dimension s = 1 + min(p — p, ¢ — q). Further-
more, the set of all solutions to relationship (75) in
which a,(1) = 1 is specified by

a 1
S={l""I= f s
“b} TV Vxforall xe C

in which eI Vx is nonzero}, (77)

where e, designates the (p + q + 2) X 1 vector whose
components are all zero except for its first which is one
while Visa(p + g + 2) X s matrix whose columns are
composed of any set of linearly independent vectors
that span the null space of the composite excitation-re-

sponse matrix (76).® Furthermore, the transfer func-
tion associated with any solution contained in the lin-
ear variety set (77) reduces to ( after common pole-zero
cancellation) the underlying reduced-order transfer
function of order (p, G). The minimum Euclidian norm
solution contatned in solution set (77) is given by

a; 1

efVV©e,

b

V V*e,. (78)

In using the algebraic characteristics of the compos-
ite excitation-response matrix to form a rational
model of empirical data, there is much to be gained by
using an over-ordered model (i.e., p <pand § <q)).
By taking this overordered approach, the resultant
recursive model parameters estimates are made less
sensitive to quirks in the empirical data. A more de-
tailed explanation of this concept is found in Ref. [9].

Matrix Enhanced System Identification

From the above development, it follows that when
the given observations { (x(n), y(n))} are perfectly
represented by a recursive relationship of order (p,
g), the excitation-response data matrix satisfies the
two properties

Property 1.
plitz structure.

D, , has a lower triangular block Toe-

Property 2. D, hass =1+ min(p —p,g— q) of
its singular values equal to zero.

In most practical applications, the given data ob-
servations are not perfectly represented by a low-
order recursive relationship. This is typically mani-
fested in the composite data matrix being full rank.
To use the concept of matrix enhancement to achieve
a suitably good approximate recursive model, we
could suitably modify the given excitation-response
data so that the modified data has an associated com-
posite data matrix that satisfies the above two proper-
ties. A logical choice for a matrix enhancement algo-
rithm associated with this objective is given by

Dy = PLe PP 2=(D, ) for k>1. (79)

This algorithm is initiated by the selection D, being
set equal to the original excitation-response data ma-
trix (76). We have dropped the subscript p, g in the
composite data matrix in order to simplify notation.
Projection operator P has the dual task of (i) find-

8 As an example the required column vectors can be set equal to
the s right singular vectors associated with the zero singular value
of the composite excitation-response matrix D, ,.




ing the closest block Toeplitz matrix and (ii) setting
to zero the upper triangular elements associated with
the of submatrices Y and —X in keeping with the pre-
requisite structure (74).

The theory related to the matrix enhancement algo-
rithm ensures that the composite data matrix se-
quence ( 79) contains a subsequence that converges to
a composite data matrix that satisfies the prerequisite
lower triangular block Toeplitz structure and null
space dimension s properties. The recursive coeffi-
cient vectors as specified by relationship (78) when
applied to the convergent composite data matrix typi-
cally gives a satisfactory recursive model of the given
data. It should be noted that in some applications, it is
known that either the excitation or the response data
is accurate and should not be perturbed when apply-
ing the projection operator P¥#*?*>~%)_ This is readily
accomplished by inserting the original block after pro-
jection mapping P®*7*? %) has been applied to D,, _, as
is now demonstrated.

Recursive System Design

In various applications, it is desired to approximate
the dynamics of a given linear operator (e.g., an ideal
low-pass filter) by a linear recursive system. If such
an approximation can be achieved, then the linear
operator can be effectively replaced by means of a
computational efficient linear recursive operation. In
the approach to be taken, use is made of the observa-
tion that the dynamics of the linear operator being
approximated and a linear recursive system are simi-
lar if and only if their associated unit-impulse re-
sponses are themselves similar. With this in mind, let
hy(0), hy(1), hy(2),- - - designate the generally infi-
nite length unit-impulse response of the causal linear
operator. Since numerical methods are to be used, it is
first necessary to appropriately truncate this impulse
response to a finite length, that is,

ha(0), hy(1), - -+, hy(N). (80)

The integer N must be selected sufficiently large so
that this truncated unit-impulse response has essen-
tially the same dynamics as its untruncated counter-
part being approximated.

To obtain a linear recursive approximation of the
truncated ideal behavior (80), we simply set y(n) =
hy(n) and x(n) = 6(n) in relationship (74) to give

Dp,q[i"]=g where D, = [H,} —A]]. (81)

=q

In this expression first component of g, is constrained
to be one and the (N + 1) X (¢ + 1) excitation matrix

A, has all zero elements except for ones that appear
along its main diagonal. The restricted structure of
the excitation matrix is due to the nature of the unit-
impulse excitation. Since the truncated unit-impulse
response is almost never perfectly represented by a
linear recursive operation, it follows that this system
of homogeneous linear equations is inconsistent. In
this case, it is desired to select the filter coefficient
vectors g, and b, so as to best satisfy this homoge-
neous relationship in the LSE sense. Under the con-
straint that the first component of g, is one, it is
readily shown that the LSE solution is specified by

[s)

gp — 1 * -1
be - e"ll"[D* D ]7191 [Dp,qu,q] €1, (82)
= = pPaTp.g =

q

where e, designates the standard basis vector whose
first component is one and its remaining components
are zero.

It is generally found that the filter coefficient vec-
tors obtained from relationship (82) provide a close
approximation to the ideal behavior. By employing
the matrix enhancement, it is possible to improve
upon this approximation. For this application, the
signal enhancement algorithm makes use of the fact
that the given unit-impulse response data is perfectly
represented by a linear recursive system if and only if
the composite unit-impulse response-excitation ma-
trix D, , possesses the two properties of having: (i) a
lower triangular block Toeplitz structure and (ii) a
null space of dimension at least equal to of one. We
may therefore use the signal enhancement algorithm
(79) with s = 1 to iteratively obtain a nearby compos-
ite unit-impulse response-excitation matrix that pos-
sesses these two properties. When implementing the
projection operator P;r, the excitation matrix
thereby resulting is replaced by A, in order to enforce
the unit-impulse excitation constraint. The coeffi-
cients of the corresponding linear recursive system
are then obtained by employing expression (78) with
the prescribed selection of s on this nearby composite
unit-impulse response-excitation matrix. Examples
illustrating the modelling improvement accrued using
this approach are found in Ref. [9].

10. CONCLUSION

The concepts of constrained total least squares and
matrix enhancement have been developed and ap-
plied to a number of important signal processing
problems. In addition to the problems described in
this paper, the matrix enhancement algorithm has
been successfully used for the task of data interpola-
tion, deconvolution, and high-dimensional filter syn-




thesis. In order to employ the concept of matrix en-
hancement to its fullest extent, it is incumbent on the
user to innovatively introduce matrix properties that

characterize the underlying data matrix.
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