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A position-command-following problem for asymptotically stable
linear systems is considered. To account for modeling limitations,
we assume that a model is not available. Instead, acceleration
data are used to construct a compliance (position-output) model,
which is subsequently used to design a position servo loop. Fur-
thermore, we assume that the acceleration measurements obtained
from inertial sensors are biased. A subspace identification algo-
rithm is used to identify the inertance (acceleration-output)
model, and the biased acceleration measurements are used by the
position-command-following controller, which is constructed us-
ing linear quadratic Gaussian (LQG) techniques.
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1 Introduction

Rigid-body position control using inertial sensors is difficult
due to unknown sensor bias, which leads to position-estimate di-
vergence. In particular, integration of angular velocity measure-
ments from gyros (to obtain Euler angles) as well as double inte-
gration of accelerometer measurements from accelerometers leads
to linearly or quadratically increasing position errors. In practice,
drift in inertial sensors must be carefully managed over limited
intervals, with supplementary measurements from noninertial
sources (such as global positioning system (GPS)) used periodi-
cally for position resetting.

The difficulty associated with rigid-body position control arises
from the fact that position is not observable from velocity and
acceleration measurements. However, there is no fundamental im-
pediment to the use of velocity or accelerometer measurements
for estimating position when position is an observable state with
such measurements. With this distinction in mind, we consider an
unconventional problem in which accelerometer measurements,
which may be subject to unknown, slowly drifting biases, are used
for both model identification and position servo control. The ap-
proach that we take is based on the use of a backward-path con-
troller with zero dc gain along with LQG control. The basis for
this approach is developed in Ref. [1], where it is shown that
rejection of unknown sensor bias is not amenable to integral con-
trol.

In the present paper, we assume that only inertial sensors are
available for identification and feedback. In practice, single and
double integrations of gyro and accelerometer signals with sensor
bias produce position signals with ramp and parabolic noise, re-
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spectively. If estimates of the sensor biases in a servo loop are
available, then the methods described in Ref. [2] can be used to
achieve position-command following. Although estimates of sen-
sor bias can be obtained offline, sensor bias generally does not
remain constant over long periods of operation due to drift. In this
paper, instead of integrating rate or acceleration measurements to
synthesize position measurements, we use biased measurements in
an observer framework within an LQG architecture along with a
discrete-time version of the results of Ref. [1] to design a
backward-path controller to achieve command following while
rejecting sensor bias.

To account for unmodeled dynamics, we use inertial sensors in
combination with system identification methods to develop a
model of the compliance transfer function that can be used for
position-command-following control. To obtain a compliance
model of the system, we use the available measurements in con-
junction with subspace identification methods [3,4]. Subspace
methods provide a direct approach in constructing a state space
model, although the state of the identified model lacks physical
interpretation. With acceleration measurements, the identified
model is an inertance, which has force input and acceleration
output. To obtain a compliance model, we construct an alternative
output matrix that matches the dynamics of the inertance transfer
function cascaded with a double integrator. The inertial sensors
are thus used offline to develop the compliance model and online
as signals for feedback. This approach is applicable when only
inertial sensors such as gyros and accelerometers are available, as
well as when the kinematics and dynamics are not well modeled.
In the present paper, we develop and illustrate an approach to this
problem for systems with linear dynamics. In future work, we
plan to extend this approach to kinematically and dynamically
complex structures such as a 6-DOF Stewart platform using only
inertial sensors.

We develop the LQG framework for acceleration-based posi-
tion control in Sec. 2 and describe the identification procedure in
Sec. 3. Section 4 considers controller synthesis using the identi-
fied model in the LQG framework. Next, in Sec. 5 we apply the
approach to a mass-spring-damper system. The control-design
methodology in this paper is discrete-time LQG theory with a
backward-path controller for rejecting sensor biases as developed
in Ref. [1] for continuous-time systems. A preliminary version of
some of the results of this paper appeared in Ref. [5]. The goal of
this paper is to demonstrate conceptually that identification-based
position-following control based on biased inertial measurements
is feasible. Experimental application with inertial sensors will be
given in a future paper.

2 Acceleration-Based Position Control
Consider the system

x(k+ 1) =Ax(k) + Bu(k) (2.1)

where x € R”, u € R™, with acceleration measurements y,.. € R
given by

y(lCC(k) = CﬂCCx(k) + DﬂCCu(k) + v(k) (2'2)

where v e RP is the unknown sensor bias. We assume that

(A,Cy) is observable. Let the position y,. € R? of the system be
given by

Ypos(k) = Cposx(k) (23)

so that the systems with outputs yp,, and y,. are the compliance
and inertance, respectively. Hence, the discrete-time inertance
Ginn(z) and discrete-time compliance G omp(z) have realizations

A B
Cpos 0

A B
Cacc DB.CC

Gcomp(z) - Ginrl(z) -~
(2.4)
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Let r € R? be a reference position command so that, for all &
=0, r(k) is the desired position at time k. The objective is to
design a controller that uses the biased acceleration measurements
Yace to track the position command, that is, ensure that y,.(k)
—r(k) —0 as k—oo. Due to the presence of sensor bias and lack of
knowledge of the initial position, we cannot synthesize position
measurements by integrating the acceleration measurements. In-
stead, we consider an LQG approach to achieve position tracking
using biased acceleration measurements. We use the acceleration
measurements within an observer framework to estimate the po-
sition and determine the control input based on these estimates
using LQG. In order to reject the sensor bias, it is shown in Ref.
[1] that a backward-path controller with zero dc gain is required.
We thus include a backward-path controller Gy, in the control
architecture.

Let Gy, have a minimal realization

Gbp(z) ~ | A By
Cop| Dy
with state xy,, € R". To account for the backward-path controller
in the LQG design, we define y,.. by

(2.5)

j’vacc = Gbpyacc (26)
so that
xbp(k +1) =Abpxbp(k) + Bbpyacc(k) (2.7)
yacc(k) = Cbpxbp(k) + Dbpyacc(k) (2.8)
Next, we define the controller input y by
Y& Fiee 1 (2.9)

so that the LQG controller uses the output y,.. from the backward-
path controller Gy, and the reference position trajectory r to pro-
duce the controller output u. Define the position-error perfor-
mance variable z,,, by

Zpos £ Ypos =T (2 1 0)
where r is the position command to be followed. To include the
control effort in the performance variable, we define the perfor-
mance variable z by

& (g0 (Ea)T (2.11)

where the control weighting E,, has full column rank.

To facilitate LQG design, the position command r and the sen-
sor bias v are modeled as outputs of linear filters W, and W,
excited by white noise signals w, and w,, respectively. Let W, and
W,, have minimal realizations

Wy(z) ~ | Avl B

Gyl Dy
with state x, € R"r and x;, € R", respectively. Furthermore, we de-
fine w by

W,(z) ~ (2.12)

(2.13)

where w, is a fictitious white process that facilitates LQG synthe-
sis. It then follows from Egs. (2.1)—(2.3) and (2.5)—(2.13) that

wé[w,T WZ WZ]T

Z 1 w
[ = g[ ] (2.14)
v | u
where G has a realization
A D, B
g~ 0 & (2.15)
C D, D
with state T2 [x" x{ ) x| x;]" and
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Fig. 1 Standard problem for designing a position-tracking
controller G, that uses biased acceleration measurements. To
facilitate controller synthesis using LQG, the backward-path
controller Gy, that is used to reject the sensor bias is included
in the Plant G.

A 0 0 B
.Aé Bbpcacc Abp 0 0 Bé Bpracc
0 0 A4, 0
0 0 0 4, 0
(2.16)
0 0 O
0 0 0
D, =
B, 0 0
0 B, 0
Coe 0 =C, 0 0
51A[ P ] ezﬁ[ ] (2.17)
0 0 0 0 E,
C£|:Dbpcacc Cbp 0 Dbpcb:| D£|:Dpracc:|
0 0 C. 0 0
(2.18)

D, 0 el

Next, we use the standard problem (2.15) shown in Fig. 1 and
LQG (see Refs. [6,7]) to obtain a controller G, to achieve position
tracking using acceleration measurements. To solve the estimator
Riccati equation, we introduce &/ in Eq. (2.18) so that D,D} is
nonsingular. The discrete-time LQG controller G, can be obtained
from the standard problem (2.15) by solving two discrete-time
Riccati equations (see Ref. [8], p. 560). The resulting controller
uses the reference position command r and the output y,.. from
the backward-path controller Gy, to produce the control input to
minimize the error between the actual position yp,, and the refer-
ence command. The control architecture is shown in Fig. 2. Note
that the filters W, and W,, are used only for synthesizing the LQG
controller and are not implemented during position tracking.

We now use the results in Ref. [1] to choose a backward-path
controller Gy, that ensures that the sensor bias v does not affect
the position-tracking performance variable z,,; when used with
the LQG controller G,.

PREPOSITION 2.1. Let the closed-loop system in Fig. 2 be inter-
nally stable and assume that v(k) is constant. If r=0 and Gy,(1)
=0, then, for all v e R™, limy_,..z50,(k)=0.

Proof. Let G, have entries

G.=[G., G.]
so that
(2.19)

Since =0, Eq. (2.19) implies that u=G,. ,J,c. and hence it follows
from Eq. (2.6) that

u= GC,}'yaCC + GC,l‘r
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Fig. 2 Control architecture for discrete-time LQG position control using acceleration feedback and a

backward-path controller Gy,

u= Gc,bep(yacc +0) (2.20)
where y,.. is the acceleration of the system given by
yacc = Ginrtu (221)
Therefore, substituting Eq. (2.20) into Eq. (2.21) yields
Yace = yoU
where
Gy,v £ (I - Ginrle,bep)_lGinrlG(-,bep (222)
Substituting Eq. (2.22) into Eq. (2.20) yields
u=G. Gy (I+G, v (2.23)
Since Ypos=Geompit and r=0, Eq. (2.23) implies that
Zpos = G0 (2.24)

where

Gz,v é Gcomch,)'Gbp(I+ Gy,u)

Since the closed-loop system in Fig. 2 is internally stable, there
are no closed-right-half-plane pole-zero cancellations and hence
G,,(1)=0. Since G, is asymptotically stable, the final value
theorem yields

v
lim z,0, = lim(z - 1)G,,—— =G, (v =0
koo z—1 Tz—-1 ’

Since the LQG controller ensures that the closed-loop system in
Fig. 1 is internally stable, it follows from Proposition 2.1 that, as
k— oo, the sensor bias has no effect on the position-tracking per-
formance. Hence, the LQG controller along with the backward-
path controller can be used for position tracking with biased ac-
celeration measurements. Although the backward-path controller
can be chosen without knowledge of the system dynamics, it fol-
lows from Egs. (2.14)—(2.18) that LQG synthesis requires knowl-
edge of the system dynamics, that is, knowledge of A, B, Cy.
Dyce, and Cp. However, if A, B, Cyeeo Dyeer and Cpg are un-
known, then we use the acceleration measurements to identify the
inertance and compliance of the system and use the identified
dynamics to synthesize an LQG controller. We describe the pro-
cedure in the following two sections.

Journal of Dynamic Systems, Measurement, and Control

3 Acceleration-Based Identification of the Compliance

We now assume that a model of the system is not available,
although acceleration measurements can be used for system iden-
tification to obtain a model of the inertance. Although the sensor
bias is unknown, we assume that the bias remains constant during
the identification procedure. Hence, Egs. (2.1) and (2.2) can be
expressed as

x(k+ 1) = Ax(k) + Bii(k) (3.1
Yacelk) = Coeex(k) + Di(k) (3.2)
where &7 € R"*! is defined by
(k) = [uk)” 17" (3.3)
and
B2[B 0,,] DZ2[D v, (3.4)

For system identification, the force input u is chosen to be a
white noise signal, and the outputs are the acceleration measure-
ment y,.. given by Eq. (3.2). We use the inputs i and acceleration
measurements y,.. in a subspace identification algorithm [3,4] to
obtain discrete-time system matrices Ajg, Bjg, Cyccids Daccid» and
an estimate v;q of the bias v, for the nth-order linear time-invariant
discrete-time state space inertance model

.XA(k + 1) =A1d)?(k) + Bldu(k) (35)

yacc(k) = Cacc,id)e(k) + Dacc,idu(k) + Uid (36)

The bias estimate vjq is discarded since the sensor bias is assumed
to drift.

For LQG synthesis for position-command-following control, it
is necessary to weight the position-tracking error. However, as a
consequence of subspace identification, the components of £(k) do
not have a physical interpretation. The state space models (2.1)
and (3.5) are realizations of the same system and hence the states
x and X are related by a similarity transformation
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Fig. 3 Construction of the compliance émmp by cascading a double integrator with

the identified inertance

x(k) = S£(k) (3.7)

where S € R"*" is nonsingular. Hence, it follows from Eq. (2.3)
that

Ypos(K) = Cpost(K) (3.8)

where

Cpos = CposS (3.9)
However, S is unknown, and thus épos cannot be determined using
Eq. (3.9). To overcome this difficulty, we construct an estimate of
the compliance based on the identified inertance. The output of the
compliance is used to form the weighted performance variable in
LQG command-following synthesis.

Let GAim be the identified inertance transfer function with real-
ization

Gina(2) ~ (3.10)
Cacc,id acc,id
Next, consider the p X p discrete-time transfer function
A
(z-1)?
Gamlz) & (3.11)
2
s
(z-1)

where f; is the sampling time of the discrete-time model of the
plant. Note that the output of Gg;,, is obtained by twice integrating
the input. Hence, the compliance transfer function écomp with po-
sition as the output is defined by (Fig. 3)

écomp(z) £ Gdim(z)éinrt(z) (3 12)
Let G, have the 2pth-order minimal realization
Gin(2) ~ (3.13)

with state xg;, € R and

1 72 0

01 1 :

Aimé Binté 0 0
11 22

01 0 t,
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000 -0
0010 -0

0---00 10

It follows from Egs. (3.10), (3.12), and (3.13) that écomp has a
(2p+n)th-order realization

Geomp(2) (3.14)
where
i a [ Ajg 04x4] I [ By ]
comp Bdintcacc,id Adim comp BdintDacc,id
(3.15)
Ccomp £ [0 Cdim]
Therefore, the state £omp=[£7  x7, " satisfies
xAcomp(k + 1) = Acomp)ecomp(k) + écompu(k) (3 16)
ypos(k) = CAvcompfcomp(k) (3.17)
Furthermore, it follows from Eq. (3.6) that
Yacc(k) = [Cacc,id 02><4]xAcomp(k) + Dacc,idu(k) (318)

Note that all of the matrices in Egs. (3.16)—(3.18) are known.
However, the states xg;,, of the double integrator are not observ-
able through the acceleration measurement Yy,., that is,

A

(Acomp>[Cacciia  02x4]) is not observable. Since the eigenvalues of

Agine are not observable, the realization éwmp in Eq. (3.14) is not
suitable for LQG synthesis.

Instead, we determine an output matrix CA‘POSJd so that the iden-
tified compliance G has the minimal realization

Geompl®) ~ (3.19)
Cpos,id 0
and the position y is given by
ypos(k) = CA‘pos,idje(k) (320)

In particular, ép‘,s,id is identified by comparing the Markov param-
eters of Geomp in Egs. (3.14) and (3.19). It follows from Egs.
(3.14) and (3.19) that, for all i=1,
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CAwpos,idA;lc;lBid = écompAAi;):npécomp (3.21)
and hence
F=Cpos1aG (3.22)
where
F £ [écompécomp o écomp"&gompécomp] G £ [Bid o A?dBid]
(3.23)
The least squares fit is given by
Coosia=(G'F)" (3.24)

Next, we use the compliance model in Eq. (3.19) with CA‘post
given by Eq. (3.24) for LQG synthesis of the position-tracking
controller.

4 Acceleration-Based Position Control Using the Iden-
tified Model

In this section, we obtain a position-tracking controller by ap-
plying discrete-time LQG synthesis using the identified compli-
ance and inertance models. We consider Egs. (2.14)—(2.18) with
47 B» Cacc» Daccv and Cpos replaced by Aid’ Bid’ Cacc,idv Dacc,id’ and
Cpos,ia> respectively. The standard problem for LQG synthesis is
given by Eq. (2.15) with X defined by ¥2 [£7 xgp x! x;]". The
implementation of the controller is shown in Fig. 2.

Let the LQG controller G, have the minimal realization

(4.1)

with state x, € R”. Note that the order of the controller G, is the
same as the dimension of X, that is, n,=n+ny,+n,+n,. To analyze
the closed-loop dynamics, define x by

T 7T

xg =[xl Xop (4.2)

where x is given by Eq. (2.1) and xy, is the state of the backward-
path controller Gy,,. Note that z, is the error between the position
command and the positions of the two masses. The closed-loop
system dynamics are then given by

xcl(k + 1) =Aclxcl(k) + Bclr(k) + Dl,clv (k) (43)
Zpos(k) = Cclxcl(k) + Dclr(k) + DZ,CIU(k) (44)
where
A BC, 0
Acl £ Bc,thpCacc Ac + Bc,yDpraccCc Bc,ycbp
B pracc B pr acc Cc Abp
(4.5)
0 0

Bclé Bcr Dl,clé Bl'q}’

0 By,
Ca=[Chs 0 0] Dy=-1 Dyy=0 (4.6)

and B, has entries B.=[B., B,,], with cheﬂ?\”fxz and B,
c RnEXZ. ’ ’

Let Ggeps, - be the sensitivity transfer function with the position
command r as input and the error z,,, as the output. It follows
from Eqgs. (4.3)—(4.6) that G, is realized by

Acl Bcl
Ccl Dcl

Similarly, the sensitivity transfer function G, with the sensor
bias v as input and the actual position y, as the output is realized
by

Gsens,r(z) -~ (47)
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Gsens,v(z) -~ (48)

Note that the dynamics of the plant are unknown and hence the
sensitivity functions Gy, and G, in Eqs. (4.7) and (4.8),
respectively, cannot be constructed in practice. However, these
sensitivity functions can be constructed for simulation examples
and can be used to evaluate the performance of the position-
tracking controller designed using the procedure presented in this
paper. Next, we design a position-tracking controller for a linear
mass-spring-damper system by using biased acceleration measure-
ments of the masses for identification and feedback.

5 Two-Mass System

Consider the two-mass system shown in Fig. 4 with force in-
puts u;, u, and two acceleration sensors (accelerometers) measur-
ing X; and X,. The equations of motion are

mxX,+ (e + c)x; + (ky + ky)x) — coXy —koxy =—u;  (5.1)
MyXy + CoXy + koXy — CoX ) — koX | = Uy + Uy (5.2)
The state space representation of Egs. (5.1) and (5.2) is
X=Ax+B.u (5.3)
where x € R* and u € R? are defined by
x2lg xn i Bl wEle w] (5.4)
and A, e R*** and B, € R**? are defined by _ 3
0 0 | 0 0 0
0 0 0 1 0 0
ki +k k ci+c c 1
a |t b _ate o e sl 1o
my my my my my
k B o _o RN
) ) my my m; mp
(5.5)
Let the acceleration measurement y,.. of X; and X, be given by
Yace = CaceX + Dyeelt +v (5.6)
where
kl + k2 ﬁ cr+e 2
my my my m
Cacc é
h _h o _o
my nmy my my
(5.7)
1
-— 0
my
Dacc i 1 1
my My

and v € R? is the unknown sensor bias. Let the positions Ypos Of
the two masses be given by

Ypos = Cpos¥ (58)

A1 000
Cpos =
0100

The systems with outputs yp,s and y,.. are the compliance and
inertance, respectively.

The equivalent zero-order-hold discrete-time state space repre-
sentation of Egs. (5.1), (5.6), and (5.8) with sampling time ¢, is

x(k+1) = Ax(k) + Bu(k) (5.10)

where

(5.9)
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Fig. 4 Two-mass system

yacc(k) = Cacc-x(k) + Daccu(k) + U(k) (5] 1)
ypos(k) = Cposx(k) (5 12)
where
tS
A2 A BE f eMelsB ds (5.13)
0

To illustrate position-following control with acceleration-based
identification and acceleration feedback, we excite the two-mass
system with white noise inputs #; and u,, and corrupt the accel-
eration measurements with a bias but no other noise. Next, we
identify the inertance and compliance transfer functions using the
procedure described in Sec. 4. To compare the true system with
the identified model, we plot the position yp,, ; of n; when u; is
an impulse and u,=0, and when u;=0 and u, is an impulse in
Figs. 5 and 6, respectively. The errors between the position mea-

Error in position of m, (in meters)
o

_3 1 L L 1 L L .
0 10 20 30 40 50 60 70 80

time (in seconds)

Fig. 5 Error between the actual position of m; and the output
Ypos,1 Of the identified compliance model when u, is an impulse
and u,=0. For position-tracking controller synthesis, the iden-
tified compliance is used.

014501-6 / Vol. 130, JANUARY 2008

surements and the outputs of the identified model are small, and
thus the identified inertance and compliance models are good ap-
proximations of the inertance and compliance.

The control objective is to have the positions of m; and m,
follow commands that are sinusoidal with a spectral bandwidth
between 0.1 Hz and 1 Hz. In accordance with this specification,
the transfer function W, defined in Eq. (2.12) is chosen to be

(z-1)
(z—0.995)(z — 0.9995)

so that W, has high gain in the required bandwidth. The magni-
tude of the diagonal entry of W, is shown in Fig. 7. The LQG
controller is designed using the identified model using the proce-
dure described in Sec. 5. The position command for m, is a sinu-
soid of amplitude 0.5 m and frequency 0.25 Hz, while the posi-
tion command for m, is a sinusoid of amplitude 1.0 m and
frequency 0.125 Hz. Furthermore, we assume that the acceleration
measurements of m; and m, have constant biases of 5 m/s” and

W,(z) = I (5.14)

Error in position of m, (in meters)

_8 1 L L 1 L L .
0 10 20 30 40 50 60 70 80

time (in seconds)
Fig. 6 Error between the position of m, and the output y,»

from the identified compliance model when u;=0 and u, is an
impulse
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Magnitude (dB)
w w
o (3]

n
o

107 10 10
Frequency (Hz)

Fig. 7 Magnitude of the diagonal entries of W,(z)

7 m/s?, respectively, during position-command following. The

backward-path controller Gy, is chosen to be
z-1

ook

z-0.99

so that G, is asymptotically stable and Gy,(1)=0. Note that the

backward-path controller is proper and thus does not require com-
putation of any signal derivatives, and hence can be implemented

Gbp(z) = (5.15)

Magnitude (dB)

—1 0

10 10 10' 10
Frequency (Hz)

Fig. 8 Magnitude of the diagonal entries of Gy,(2)

in practice. The magnitude plot of the diagonal entries of the
backward-path controller is shown in Fig. 8.

Finally, we design the LQG controller using the procedure de-
scribed in Secs. 3 and 5. The position commands and the actual
positions of the two masses with the discrete-time LQG controller
and the backward-path controller are shown in Fig. 9. Note that in
a real-world application, the positions of the two masses are not
available. However, in the two-mass system simulation, although

1 T T T T T T
actual position
= = = position command
0.5 ) ‘ vy . | H y
i l
» [}
5]
@
E  OH i
f=
T ]
> |I ‘
L v i
—05 -rl 4 9 Y \' ' 4 | ] v 2
_1 1 1 1 1 1 1
0 20 40 60 80 100 120
time ins
T T T T
A i
n f
o a
Q
©
1S
=
jal}
x
\
P ] v m
| 1 | |
60 80 100 120
timeins

Fig. 9 Position-command following for the two-mass system using an LQG controller and a
backward-path controller. The LQG controller G, produces the control input u to track the position
command r, while the backward-path controller with zero dc gain, that is, a zero at z=1, rejects the
sensor bias.
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Fig. 10 Acceleration measurements of the two masses. The sensor biases in the accelerometers are

shown as dashed lines.

we do not use the position output from the model for tracking, we
plot the position output to illustrate the performance of the imple-
mented controller. The biased acceleration measurements during
position tracking are shown in Fig. 10. In spite of the presence of
the bias, the positions of the two masses accurately follow the
reference command. The magnitude of the diagonal entries of the
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Fig. 11 Magnitudes of the diagonal entries of G » the sen-
sitivity transfer function between the reference position com-
mand r and the position-tracking error z,,.. The magnitude of
the sensitivity function is low in the required bandwidth be-
tween 0.1 Hz and 1 Hz.
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sensitivity transfer function Gy, given by Eq. (4.7) is shown in
Fig. 11. It can be seen that the sensitivity is low in the desired
frequency range between 0.1 Hz and 1 Hz. Furthermore, the
input-output characteristic of the closed-loop system is highly de-
coupled in the sense that the position command for one mass has
minimal effect on the position of the other mass. The magnitudes
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Fig. 12 Magnitudes of the diagonal entries of Ggs,,, the sen-
sitivity function between the bias v and position-tracking error
Z,0s- The inclusion of a backward-path controller with zero dc
gain ensures that as k— « the position-tracking performance is
not affected by the sensor bias v.
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of the diagonal entries of the sensitivity function G, in Eq.
(4.8) are plotted in Fig. 12. Note that Gy,,(1)=0, and hence Propo-
sition 2.1 guarantees that z,,(k) —0 as k—c when r=0. How-
ever, in this example, the reference position command r is non-
zero, and therefore zpos(k) may not converge to 0 as k— .
However, since the sensitivity between z,,,, and r is small between
0.1 Hz and 1 Hz, the steady-state position-tracking performance is
satisfactory.

6 Conclusion

In this paper, we developed a position-command-following
controller for linear systems using acceleration measurements that
are biased for both system identification and feedback. The
method outlined here is applicable to systems that have stable
dynamics and when the measurement biases are unknown. Since a
system identification procedure is used to obtain the inertance and
compliance models, no modeling information is required. This
method is easy to implement because displacement measurements,
which are usually difficult to obtain, are not required and a linear
controller is used.
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