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position-command-following problem for asymptotically stable
inear systems is considered. To account for modeling limitations,
e assume that a model is not available. Instead, acceleration
ata are used to construct a compliance (position-output) model,
hich is subsequently used to design a position servo loop. Fur-

hermore, we assume that the acceleration measurements obtained
rom inertial sensors are biased. A subspace identification algo-
ithm is used to identify the inertance (acceleration-output)
odel, and the biased acceleration measurements are used by the
osition-command-following controller, which is constructed us-
ng linear quadratic Gaussian (LQG) techniques.
DOI: 10.1115/1.2807180�

Introduction
Rigid-body position control using inertial sensors is difficult

ue to unknown sensor bias, which leads to position-estimate di-
ergence. In particular, integration of angular velocity measure-
ents from gyros �to obtain Euler angles� as well as double inte-

ration of accelerometer measurements from accelerometers leads
o linearly or quadratically increasing position errors. In practice,
rift in inertial sensors must be carefully managed over limited
ntervals, with supplementary measurements from noninertial
ources �such as global positioning system �GPS�� used periodi-
ally for position resetting.

The difficulty associated with rigid-body position control arises
rom the fact that position is not observable from velocity and
cceleration measurements. However, there is no fundamental im-
ediment to the use of velocity or accelerometer measurements
or estimating position when position is an observable state with
uch measurements. With this distinction in mind, we consider an
nconventional problem in which accelerometer measurements,
hich may be subject to unknown, slowly drifting biases, are used

or both model identification and position servo control. The ap-
roach that we take is based on the use of a backward-path con-
roller with zero dc gain along with LQG control. The basis for
his approach is developed in Ref. �1�, where it is shown that
ejection of unknown sensor bias is not amenable to integral con-
rol.

In the present paper, we assume that only inertial sensors are
vailable for identification and feedback. In practice, single and
ouble integrations of gyro and accelerometer signals with sensor
ias produce position signals with ramp and parabolic noise, re-
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spectively. If estimates of the sensor biases in a servo loop are
available, then the methods described in Ref. �2� can be used to
achieve position-command following. Although estimates of sen-
sor bias can be obtained offline, sensor bias generally does not
remain constant over long periods of operation due to drift. In this
paper, instead of integrating rate or acceleration measurements to
synthesize position measurements, we use biased measurements in
an observer framework within an LQG architecture along with a
discrete-time version of the results of Ref. �1� to design a
backward-path controller to achieve command following while
rejecting sensor bias.

To account for unmodeled dynamics, we use inertial sensors in
combination with system identification methods to develop a
model of the compliance transfer function that can be used for
position-command-following control. To obtain a compliance
model of the system, we use the available measurements in con-
junction with subspace identification methods �3,4�. Subspace
methods provide a direct approach in constructing a state space
model, although the state of the identified model lacks physical
interpretation. With acceleration measurements, the identified
model is an inertance, which has force input and acceleration
output. To obtain a compliance model, we construct an alternative
output matrix that matches the dynamics of the inertance transfer
function cascaded with a double integrator. The inertial sensors
are thus used offline to develop the compliance model and online
as signals for feedback. This approach is applicable when only
inertial sensors such as gyros and accelerometers are available, as
well as when the kinematics and dynamics are not well modeled.
In the present paper, we develop and illustrate an approach to this
problem for systems with linear dynamics. In future work, we
plan to extend this approach to kinematically and dynamically
complex structures such as a 6-DOF Stewart platform using only
inertial sensors.

We develop the LQG framework for acceleration-based posi-
tion control in Sec. 2 and describe the identification procedure in
Sec. 3. Section 4 considers controller synthesis using the identi-
fied model in the LQG framework. Next, in Sec. 5 we apply the
approach to a mass-spring-damper system. The control-design
methodology in this paper is discrete-time LQG theory with a
backward-path controller for rejecting sensor biases as developed
in Ref. �1� for continuous-time systems. A preliminary version of
some of the results of this paper appeared in Ref. �5�. The goal of
this paper is to demonstrate conceptually that identification-based
position-following control based on biased inertial measurements
is feasible. Experimental application with inertial sensors will be
given in a future paper.

2 Acceleration-Based Position Control
Consider the system

x�k + 1� = Ax�k� + Bu�k� �2.1�

where x�Rn, u�Rm, with acceleration measurements yacc�Rp

given by

yacc�k� = Caccx�k� + Daccu�k� + v�k� �2.2�

where v�Rp is the unknown sensor bias. We assume that
�A ,Cacc� is observable. Let the position ypos�Rp of the system be
given by

ypos�k� = Cposx�k� �2.3�
so that the systems with outputs ypos and yacc are the compliance
and inertance, respectively. Hence, the discrete-time inertance
Ginrt�z� and discrete-time compliance Gcomp�z� have realizations

Gcomp�z� � � A B

Cpos 0
� Ginrt�z� � � A B

Cacc Dacc

�

�2.4�
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Let r�Rp be a reference position command so that, for all k
0, r�k� is the desired position at time k. The objective is to

esign a controller that uses the biased acceleration measurements
acc to track the position command, that is, ensure that ypos�k�
r�k�→0 as k→�. Due to the presence of sensor bias and lack of
nowledge of the initial position, we cannot synthesize position
easurements by integrating the acceleration measurements. In-

tead, we consider an LQG approach to achieve position tracking
sing biased acceleration measurements. We use the acceleration
easurements within an observer framework to estimate the po-

ition and determine the control input based on these estimates
sing LQG. In order to reject the sensor bias, it is shown in Ref.
1� that a backward-path controller with zero dc gain is required.

e thus include a backward-path controller Gbp in the control
rchitecture.

Let Gbp have a minimal realization

Gbp�z� � �Abp Bbp

Cbp Dbp

� �2.5�

ith state xbp�Rnbp. To account for the backward-path controller
n the LQG design, we define ỹacc by

ỹacc = Gbpyacc �2.6�
o that

xbp�k + 1� = Abpxbp�k� + Bbpyacc�k� �2.7�

ỹacc�k� = Cbpxbp�k� + Dbpyacc�k� �2.8�
ext, we define the controller input y by

y � �ỹacc
T rT�T �2.9�

o that the LQG controller uses the output ỹacc from the backward-
ath controller Gbp and the reference position trajectory r to pro-
uce the controller output u. Define the position-error perfor-
ance variable zpos by

zpos � ypos − r �2.10�
here r is the position command to be followed. To include the

ontrol effort in the performance variable, we define the perfor-
ance variable z by

z � �zpos
T �Euu�T�T �2.11�

here the control weighting Eu has full column rank.
To facilitate LQG design, the position command r and the sen-

or bias v are modeled as outputs of linear filters Wr and Wb
xcited by white noise signals wr and wb, respectively. Let Wr and

b have minimal realizations

Wr�z� � �Ar Br

Cr Dr

� Wb�z� � �Ab Bb

Cb Db

� �2.12�

ith state xr�Rnr and xb�Rnb, respectively. Furthermore, we de-
ne w by

w � �wr
T wb

T w�
T�T �2.13�

here w� is a fictitious white process that facilitates LQG synthe-
is. It then follows from Eqs. �2.1�–�2.3� and �2.5�–�2.13� that

�z

y
� = G�w

u
� �2.14�

here G has a realization

G � �A D1 B
E1 0 E2

C D2 D
	 �2.15�

˜ T T T T T
ith state x� �x xbp xr xb� and
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A � �
A 0 0

BbpCacc Abp 0 0

0 0 Ar 0

0 0 0 Ab

	 B � �
B

BbpDacc

0

0
	

�2.16�

D1 = �
0 0 0

0 0 0

Br 0 0

0 Bb 0
	

E1 � �Cpos 0 − Cr 0

0 0 0 0
� E2 � � 0

Eu
� �2.17�

C � �DbpCacc Cbp 0 DbpCb

0 0 Cr 0
� D � �DbpDacc

0
�

�2.18�

D2 � � 0 DbpDb 0

Dr 0 �I
�

Next, we use the standard problem �2.15� shown in Fig. 1 and
LQG �see Refs. �6,7�� to obtain a controller Gc to achieve position
tracking using acceleration measurements. To solve the estimator
Riccati equation, we introduce �I in Eq. �2.18� so that D2D2

T is
nonsingular. The discrete-time LQG controller Gc can be obtained
from the standard problem �2.15� by solving two discrete-time
Riccati equations �see Ref. �8�, p. 560�. The resulting controller
uses the reference position command r and the output ỹacc from
the backward-path controller Gbp to produce the control input to
minimize the error between the actual position ypos and the refer-
ence command. The control architecture is shown in Fig. 2. Note
that the filters Wr and Wb are used only for synthesizing the LQG
controller and are not implemented during position tracking.

We now use the results in Ref. �1� to choose a backward-path
controller Gbp that ensures that the sensor bias v does not affect
the position-tracking performance variable zpos when used with
the LQG controller Gc.

PREPOSITION 2.1. Let the closed-loop system in Fig. 2 be inter-
nally stable and assume that v�k� is constant. If r=0 and Gbp�1�
=0, then, for all v�Rm, limk→�zpos�k�=0.

Proof. Let Gc have entries

Gc = �Gc,y Gc,r�
so that

u = Gc,yỹacc + Gc,rr �2.19�
Since r=0, Eq. �2.19� implies that u=Gc,yỹacc and hence it follows

Fig. 1 Standard problem for designing a position-tracking
controller Gc that uses biased acceleration measurements. To
facilitate controller synthesis using LQG, the backward-path
controller Gbp that is used to reject the sensor bias is included
in the Plant G.
from Eq. �2.6� that
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u = Gc,yGbp�ȳacc + v� �2.20�

here ȳacc is the acceleration of the system given by

ȳacc = Ginrtu �2.21�

herefore, substituting Eq. �2.20� into Eq. �2.21� yields

ȳacc = Gy,vv

here

Gy,v � �I − GinrtGc,yGbp�−1GinrtGc,yGbp �2.22�

ubstituting Eq. �2.22� into Eq. �2.20� yields

u = Gc,yGbp�I + Gy,v�v �2.23�

ince ypos=Gcompu and r=0, Eq. �2.23� implies that

zpos = Gz,vv �2.24�

here

Gz,v � GcompGc,yGbp�I + Gy,v�
Since the closed-loop system in Fig. 2 is internally stable, there

re no closed-right-half-plane pole-zero cancellations and hence
z,v�1�=0. Since Gz,v is asymptotically stable, the final value

heorem yields

lim
k→�

zpos = lim
z→1

�z − 1�Gz,v
v

z − 1
= Gz,v�1�v = 0

Since the LQG controller ensures that the closed-loop system in
ig. 1 is internally stable, it follows from Proposition 2.1 that, as
→�, the sensor bias has no effect on the position-tracking per-
ormance. Hence, the LQG controller along with the backward-
ath controller can be used for position tracking with biased ac-
eleration measurements. Although the backward-path controller
an be chosen without knowledge of the system dynamics, it fol-
ows from Eqs. �2.14�–�2.18� that LQG synthesis requires knowl-
dge of the system dynamics, that is, knowledge of A, B, Cacc,
acc, and Cpos. However, if A, B, Cacc, Dacc, and Cpos are un-
nown, then we use the acceleration measurements to identify the
nertance and compliance of the system and use the identified
ynamics to synthesize an LQG controller. We describe the pro-

Fig. 2 Control architecture for discrete-time LQG
backward-path controller Gbp
edure in the following two sections.
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3 Acceleration-Based Identification of the Compliance
We now assume that a model of the system is not available,

although acceleration measurements can be used for system iden-
tification to obtain a model of the inertance. Although the sensor
bias is unknown, we assume that the bias remains constant during
the identification procedure. Hence, Eqs. �2.1� and �2.2� can be
expressed as

x�k + 1� = Ax�k� + B̃ũ�k� �3.1�

yacc�k� = Caccx�k� + D̃ũ�k� �3.2�

where ũ�Rm+1 is defined by

ũ�k� � �u�k�T 1�T �3.3�

and

B̃ � �B 0n�1� D̃ � �D vb� �3.4�
For system identification, the force input u is chosen to be a

white noise signal, and the outputs are the acceleration measure-
ment yacc given by Eq. �3.2�. We use the inputs ũ and acceleration
measurements yacc in a subspace identification algorithm �3,4� to
obtain discrete-time system matrices Aid, Bid, Cacc,id, Dacc,id, and
an estimate vid of the bias v, for the nth-order linear time-invariant
discrete-time state space inertance model

x̂�k + 1� = Aidx̂�k� + Bidu�k� �3.5�

yacc�k� = Cacc,idx̂�k� + Dacc,idu�k� + vid �3.6�

The bias estimate vid is discarded since the sensor bias is assumed
to drift.

For LQG synthesis for position-command-following control, it
is necessary to weight the position-tracking error. However, as a
consequence of subspace identification, the components of x̂�k� do
not have a physical interpretation. The state space models �2.1�
and �3.5� are realizations of the same system and hence the states

ˆ

sition control using acceleration feedback and a
po
x and x are related by a similarity transformation
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x�k� = Sx̂�k� �3.7�

here S�Rn�n is nonsingular. Hence, it follows from Eq. �2.3�
hat

ypos�k� = Ĉposx̂�k� �3.8�

here

Ĉpos � CposS �3.9�

owever, S is unknown, and thus Ĉpos cannot be determined using
q. �3.9�. To overcome this difficulty, we construct an estimate of

he compliance based on the identified inertance. The output of the
ompliance is used to form the weighted performance variable in
QG command-following synthesis.
Let Ĝinrt be the identified inertance transfer function with real-

zation

Ĝinrt�z� � � Aid Bid

Cacc,id Dacc,id

� �3.10�

ext, consider the p� p discrete-time transfer function

Gdint�z� � �
ts
2

�z − 1�2

�

ts
2

�z − 1�2
	 �3.11�

here ts is the sampling time of the discrete-time model of the
lant. Note that the output of Gdint is obtained by twice integrating
he input. Hence, the compliance transfer function Ĝcomp with po-
ition as the output is defined by �Fig. 3�

Ĝcomp�z� � Gdint�z�Ĝinrt�z� �3.12�

et Gdint have the 2pth-order minimal realization

Gdint�z� � �Adint Bdint

Cdint 0
� �3.13�

ith state xdint�R2p and

Aint � �
1 ts

0 1

�

1 ts

0 1
	 Bint � �

ts
2/2 0

ts ]

0 � 0

] ts
2/2	

Fig. 3 Construction of the compliance Ĝ
the identified inertance
0 ts

14501-4 / Vol. 130, JANUARY 2008
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Cint � �
1 0 0 0 ¯ 0

0 0 1 0 ¯ 0

� �

0 ¯ 0 0 1 0
	

It follows from Eqs. �3.10�, �3.12�, and �3.13� that Ĝcomp has a
�2p+n�th-order realization

Ĝcomp�z� � �Âcomp B̂comp

Ĉcomp 0 	 �3.14�

where

Âcomp � � Aid 04�4

BdintCacc,id Adint
� B̂comp � � Bid

BdintDacc,id
�

�3.15�
Ĉcomp � �0 Cdint�

Therefore, the state x̂comp� �x̂T xdint
T �T satisfies

x̂comp�k + 1� = Âcompx̂comp�k� + B̂compu�k� �3.16�

ypos�k� = Ĉcompx̂comp�k� �3.17�

Furthermore, it follows from Eq. �3.6� that

yacc�k� = �Cacc,id 02�4�x̂comp�k� + Dacc,idu�k� �3.18�

Note that all of the matrices in Eqs. �3.16�–�3.18� are known.
However, the states xdint of the double integrator are not observ-
able through the acceleration measurement yacc, that is,
�Âcomp, �Cacc,id 02�4�� is not observable. Since the eigenvalues of
Adint are not observable, the realization Ĝcomp in Eq. �3.14� is not
suitable for LQG synthesis.

Instead, we determine an output matrix Ĉpos,id so that the iden-
tified compliance Ĝcomp has the minimal realization

Ĝcomp�z� � � Aid Bid

Ĉpos,id 0
� �3.19�

and the position ypos is given by

ypos�k� = Ĉpos,idx̂�k� �3.20�

In particular, Ĉpos,id is identified by comparing the Markov param-
eters of Ĝcomp in Eqs. �3.14� and �3.19�. It follows from Eqs.

p by cascading a double integrator with
com
�3.14� and �3.19� that, for all i�1,
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Ĉpos,idAid
i−1Bid = ĈcompÂcomp

i−1 B̂comp �3.21�
nd hence

F = Ĉpos,idG �3.22�
here

F � �ĈcompB̂comp ¯ ĈcompÂcomp
n B̂comp� G � �Bid ¯ Aid

n Bid�
�3.23�

he least squares fit is given by

Ĉpos,id = �G†F�T �3.24�

Next, we use the compliance model in Eq. �3.19� with Ĉpos,id
iven by Eq. �3.24� for LQG synthesis of the position-tracking
ontroller.

Acceleration-Based Position Control Using the Iden-
ified Model

In this section, we obtain a position-tracking controller by ap-
lying discrete-time LQG synthesis using the identified compli-
nce and inertance models. We consider Eqs. �2.14�–�2.18� with
, B, Cacc, Dacc, and Cpos replaced by Aid, Bid, Cacc,id, Dacc,id, and

ˆ
pos,id, respectively. The standard problem for LQG synthesis is
iven by Eq. �2.15� with x̃ defined by x̃� �x̂T xbp

T xr
T xb

T�T. The
mplementation of the controller is shown in Fig. 2.

Let the LQG controller Gc have the minimal realization

Gc ��Ac Bc

Cc 0
� �4.1�

ith state xc�Rnc. Note that the order of the controller Gc is the
ame as the dimension of x̃, that is, nc=n+nbp+nr+nb. To analyze
he closed-loop dynamics, define xcl by

xcl � �xT xc
T xbp

T �T �4.2�
here x is given by Eq. �2.1� and xbp is the state of the backward-
ath controller Gbp. Note that zpos is the error between the position
ommand and the positions of the two masses. The closed-loop
ystem dynamics are then given by

xcl�k + 1� = Aclxcl�k� + Bclr�k� + D1,clv�k� �4.3�

zpos�k� = Cclxcl�k� + Dclr�k� + D2,clv�k� �4.4�
here

Acl � � A BCc 0

Bc,yDbpCacc Ac + Bc,yDbpDaccCc Bc,yCbp

BbpCacc BbpDaccCc Abp
	

�4.5�

Bcl � � 0

Bc,r

0
	 D1,cl � � 0

Bc,y

Bbp
	

Ccl � �Cpos 0 0� Dcl = − I D2,cl = 0 �4.6�

nd Bc has entries Bc= �Bc,y Bc,r�, with Bc,y �Rnc�2 and Bc,r
Rnc�2.
Let Gsens,r be the sensitivity transfer function with the position

ommand r as input and the error zpos as the output. It follows
rom Eqs. �4.3�–�4.6� that Gsens,r is realized by

Gsens,r�z� � �Acl Bcl

Ccl Dcl

� �4.7�

imilarly, the sensitivity transfer function Gsens,v with the sensor
ias v as input and the actual position ypos as the output is realized

y

ournal of Dynamic Systems, Measurement, and Control
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Gsens,v�z� � �Acl D1,cl

Ccl D2,cl

� �4.8�

Note that the dynamics of the plant are unknown and hence the
sensitivity functions Gsens,r and Gsens,v in Eqs. �4.7� and �4.8�,
respectively, cannot be constructed in practice. However, these
sensitivity functions can be constructed for simulation examples
and can be used to evaluate the performance of the position-
tracking controller designed using the procedure presented in this
paper. Next, we design a position-tracking controller for a linear
mass-spring-damper system by using biased acceleration measure-
ments of the masses for identification and feedback.

5 Two-Mass System
Consider the two-mass system shown in Fig. 4 with force in-

puts u1, u2 and two acceleration sensors �accelerometers� measur-
ing ẍ1 and ẍ2. The equations of motion are

m1ẍ1 + �c1 + c2�ẋ1 + �k1 + k2�x1 − c2ẋ2 − k2x2 = − u1 �5.1�

m2ẍ2 + c2ẋ2 + k2x2 − c2ẋ1 − k2x1 = u1 + u2 �5.2�
The state space representation of Eqs. �5.1� and �5.2� is

ẋ = Actx + Bctu �5.3�

where x�R4 and u�R2 are defined by

x � �x1 x2 ẋ1 ẋ2�T u � �u1 u2�T �5.4�

and Act�R4�4 and Bct�R4�2 are defined by

Act � �
0 0 1 0

0 0 0 1

−
k1 + k2

m1

k2

m1
−

c1 + c2

m1

c2

m1

k2

m2
−

k2

m2

c2

m2
−

c2

m2

	 Bct � �
0 0

0 0

−
1

m1
0

1

m2

1

m2

	
�5.5�

Let the acceleration measurement yacc of ẍ1 and ẍ2 be given by

yacc = Caccx + Daccu + v �5.6�
where

Cacc � �−
k1 + k2

m1

k2

m1
−

c1 + c2

m1

c2

m1

k2

m2
−

k2

m2

c2

m2
−

c2

m2

	
�5.7�

Dacc � �−
1

m1
0

1

m2

1

m2

	
and v�R2 is the unknown sensor bias. Let the positions ypos of
the two masses be given by

ypos = Cposx �5.8�
where

Cpos � �1 0 0 0

0 1 0 0
� �5.9�

The systems with outputs ypos and yacc are the compliance and
inertance, respectively.

The equivalent zero-order-hold discrete-time state space repre-
sentation of Eqs. �5.1�, �5.6�, and �5.8� with sampling time ts is
x�k + 1� = Ax�k� + Bu�k� �5.10�
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yacc�k� = Caccx�k� + Daccu�k� + v�k� �5.11�

ypos�k� = Cposx�k� �5.12�

here

A � eActts B �

0

ts

eActtsBctds �5.13�

To illustrate position-following control with acceleration-based
dentification and acceleration feedback, we excite the two-mass
ystem with white noise inputs u1 and u2, and corrupt the accel-
ration measurements with a bias but no other noise. Next, we
dentify the inertance and compliance transfer functions using the
rocedure described in Sec. 4. To compare the true system with
he identified model, we plot the position ypos,1 of m1 when u1 is
n impulse and u2=0, and when u1=0 and u2 is an impulse in
igs. 5 and 6, respectively. The errors between the position mea-

Fig. 4 Two

ig. 5 Error between the actual position of m1 and the output
pos,1 of the identified compliance model when u1 is an impulse
nd u2=0. For position-tracking controller synthesis, the iden-
ified compliance is used.
14501-6 / Vol. 130, JANUARY 2008
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surements and the outputs of the identified model are small, and
thus the identified inertance and compliance models are good ap-
proximations of the inertance and compliance.

The control objective is to have the positions of m1 and m2
follow commands that are sinusoidal with a spectral bandwidth
between 0.1 Hz and 1 Hz. In accordance with this specification,
the transfer function Wr defined in Eq. �2.12� is chosen to be

Wr�z� =
�z − 1�

�z − 0.995��z − 0.9995�
I2 �5.14�

so that Wr has high gain in the required bandwidth. The magni-
tude of the diagonal entry of Wr is shown in Fig. 7. The LQG
controller is designed using the identified model using the proce-
dure described in Sec. 5. The position command for m1 is a sinu-
soid of amplitude 0.5 m and frequency 0.25 Hz, while the posi-
tion command for m2 is a sinusoid of amplitude 1.0 m and
frequency 0.125 Hz. Furthermore, we assume that the acceleration
measurements of m1 and m2 have constant biases of 5 m /s2 and

ss system

Fig. 6 Error between the position of m2 and the output ypos,2
from the identified compliance model when u1=0 and u2 is an
impulse
-ma
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m /s2, respectively, during position-command following. The
ackward-path controller Gbp is chosen to be

Gbp�z� =
z − 1

z − 0.99
I2 �5.15�

o that Gbp is asymptotically stable and Gbp�1�=0. Note that the
ackward-path controller is proper and thus does not require com-
utation of any signal derivatives, and hence can be implemented

Fig. 7 Magnitude of the diagonal entries of Wr„z…

Fig. 9 Position-command following for the tw
backward-path controller. The LQG controller Gc
command r, while the backward-path controller w
sensor bias.
ournal of Dynamic Systems, Measurement, and Control
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in practice. The magnitude plot of the diagonal entries of the
backward-path controller is shown in Fig. 8.

Finally, we design the LQG controller using the procedure de-
scribed in Secs. 3 and 5. The position commands and the actual
positions of the two masses with the discrete-time LQG controller
and the backward-path controller are shown in Fig. 9. Note that in
a real-world application, the positions of the two masses are not
available. However, in the two-mass system simulation, although

Fig. 8 Magnitude of the diagonal entries of Gbp„z…

ass system using an LQG controller and a
oduces the control input u to track the position

zero dc gain, that is, a zero at z=1, rejects the
o-m
pr
ith
JANUARY 2008, Vol. 130 / 014501-7
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e do not use the position output from the model for tracking, we
lot the position output to illustrate the performance of the imple-
ented controller. The biased acceleration measurements during

osition tracking are shown in Fig. 10. In spite of the presence of
he bias, the positions of the two masses accurately follow the
eference command. The magnitude of the diagonal entries of the

Fig. 10 Acceleration measurements of the two m
shown as dashed lines.

ig. 11 Magnitudes of the diagonal entries of Gsens,r, the sen-
itivity transfer function between the reference position com-
and r and the position-tracking error zpos. The magnitude of

he sensitivity function is low in the required bandwidth be-
ween 0.1 Hz and 1 Hz.
14501-8 / Vol. 130, JANUARY 2008
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sensitivity transfer function Gsens,r given by Eq. �4.7� is shown in
Fig. 11. It can be seen that the sensitivity is low in the desired
frequency range between 0.1 Hz and 1 Hz. Furthermore, the
input-output characteristic of the closed-loop system is highly de-
coupled in the sense that the position command for one mass has
minimal effect on the position of the other mass. The magnitudes

ses. The sensor biases in the accelerometers are

Fig. 12 Magnitudes of the diagonal entries of Gsens,v, the sen-
sitivity function between the bias v and position-tracking error
zpos. The inclusion of a backward-path controller with zero dc
gain ensures that as k\� the position-tracking performance is
not affected by the sensor bias v.
as
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f the diagonal entries of the sensitivity function Gsens,v in Eq.
4.8� are plotted in Fig. 12. Note that Gbp�1�=0, and hence Propo-
ition 2.1 guarantees that zpos�k�→0 as k→� when r=0. How-
ver, in this example, the reference position command r is non-
ero, and therefore zpos�k� may not converge to 0 as k→�.
owever, since the sensitivity between zpos and r is small between
.1 Hz and 1 Hz, the steady-state position-tracking performance is
atisfactory.

Conclusion
In this paper, we developed a position-command-following

ontroller for linear systems using acceleration measurements that
re biased for both system identification and feedback. The
ethod outlined here is applicable to systems that have stable

ynamics and when the measurement biases are unknown. Since a
ystem identification procedure is used to obtain the inertance and
ompliance models, no modeling information is required. This
ethod is easy to implement because displacement measurements,
hich are usually difficult to obtain, are not required and a linear
ontroller is used.
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