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In this study a new solution for the identification of physical parameters of mecha
systems from identified state space formulations is presented. With the proposed app
the restriction of having a full set of sensors or a full set of actuators for a comp
identification is relaxed, and it is shown that a solution can be achieved by utilizing m
types of information. The methodology is validated through numerical examples,
conceptual comparisons of the proposed methodology with previously presente
proaches are also discussed.@DOI: 10.1115/1.1483836#
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1 Introduction
System identification, in the most general sense, can be

scribed as the identification of the conditions and properties
mathematical models that aspire to represent real phenome
an adequate fashion. The choice of such models is very m
dependent on the type of application one considers. In finite
ment formulations, identification of physical parameters gener
refers to the identification of the mass, damping, and stiffn
parameters in the second order matrix differential equations
possible approach is to identify these parameters directly f
experimental dynamic data~see, for example, the works of Agba
bian et al.@1# and Smyth et al.@2#!. However, the most widely
employed approach consists in identifying the modal parame
of the system, and to use them to update a pre-existing fi
element model. Some of the noteworthy efforts and discussion
this direction are those of Ewins@3#, Mottershead and Friswel
@4#, Berman@5#, Baruch@6,7#, and Beck and Katafygiotis@8#.

The identification of the parameters in a first-order differen
equation formulation has also received considerable attention
evidenced by the works of Ibrahim and Mikulcik@9#, Ibrahim
@10#, Vold et al. @11#, Juang and Pappa@12#, Juang et al.@13,14#,
and Luşet al. @15,16#. However, if one starts with a state-spa
model, and tries to identify the parameters of the second o
model, issues such as nonuniqueness of the solution have
considered, making such an ‘‘inverse’’ problem quite complex

Usually, the modal parameters required for updating struct
models are the undamped~normal! modal parameters, wherea
when one works with the first-order formulation, the identifi
modal parameters are complex, and correspond, in some sen
the damped modal parameters of the second-order formula
Therefore, the retrieval of the undamped modal parameters f
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the identified complex modes also constitutes an important p
lem, and the study by Sestieri and Ibrahim@17# presents a well-
documented discussion. One assumption often employed is
the vibrational modes of the second-order model are uncou
~modal damping!. In this case, arguably the most often employ
method to retrieve the undamped modal parameters is the
called standard technique~e.g., see Imregun and Ewins@18#, Ibra-
him @19#, and Alvin @20#!. It is well known, however, that this
approximation loses its validity when the system under consid
ation is highly coupled. To overcome this limitation, many autho
have focused their attention on how to retrieve the undam
modal parameters from complex modal parameters for the cas
general damping. Some of the most noteworthy discussions
clude the works of Ibrahim@19#, Alvin and Park@21#, Zhang and
Lallement@22#, Yang and Yeh@23#, Alvin et al. @24#, Tseng et al.
@25,26#, Chen et al.@27#, and Balme`s @28#.

Taking the inverse problem one step further, one might be
terested in directly obtaining the parameters of the second-o
model. When one tries to retrieve the second order parame
from the identified state-space model, various methodologies
pose different restrictions on the number of sensors and actua
employed, assuming that all the modes of the structure have b
successfully identified. The most restrictive requirement is tha
having as many sensors and actuators as the number of iden
modes, which was discussed by Yang and Yeh@23#. Later on
~Alvin and Park @21#! this requirement was improved upon b
requiring that only the number of sensors should be equal to
number of identified modes, with one co-located sensor–actu
pair. A further generalization was presented by Tseng et
@25,26# for the case when the number of actuators is equal to
number of second-order modes, providing the most general s
tion available for a full set of actuators or sensors, with one
located sensor–actuator pair.

In this study, we further improve on the requirement concern
the number of sensors and actuators. Based on some con
previously discussed by Sestieri and Ibrahim@17#, and Balme`s
@28#, it is shown that the physical parameters of the second o
model can be obtained by using the solution of a symmetric co
plex eigenvalue problem. The minimum requirement for the p
posed methodology is that all the degrees-of-freedom should
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tain either a sensoror an actuator, with at least one co-locate
sensor–actuator pair. It should be noted that this solution imp
itly contains the solutions for the cases with full set of sens
and/or full set of actuators, and therefore, the approach discu
in this study provides a more general solution for the inve
problem.

2 Symmetric Formulation of a First-Order Dynamic
Model

One of the most well-known linear time invariant models f
dynamical systems is undoubtedly the matrix form of Newto
second law of motion written for discretized spatial domains, i

Mq̈~ t !1Lq̇~ t !1Kq~ t !5Bu~ t !

y~ t !5FCpq~ t !
Cvq̇~ t !
Caq̈~ t !

G (1)

where q(t) indicates the vector of the~generalized! nodal dis-
placements, with (̇) and (̈ ) representing, respectively, the fir
and second-order derivatives with respect to time. The ve
u(t), of dimensionr 31, is the input vector containingr external
excitations acting on the system whiley(t) represents the mea
surement vector, which may contain any combination of no
displacements, velocities, and/or accelerations. For anN-degree-
of-freedom system,MPRN3N, LPRN3N, andKPRN3N are
the symmetric positive definite mass, damping, and stiffness
trices, respectively, whileBPRN3r is the input matrix. The ma-
trix @Cp

TCv
TCa

T#TPRm3N represents the output matrix that ma
incorporate position, velocity, and acceleration measureme
with m denoting the total number of outputs.

By defining a state vectorz(t)5@q(t)Tq̇(t)T#T, the equations of
motion in ~1! can be conveniently written as

F L M
M 0 G ż~ t !1FK 0

0 2MGz~ t !5FB0 Gu~ t ! (2a)

y~ t !5@Cp 0#z~ t ! (2b)

where, for ease of exposition, we have considered only posi
measurements in the output equation of Eqs.~2!. However, the
following results are true for any type of measurements~positions,
velocities, or accelerations!, and the generalization to velocity an
acceleration measurements will be discussed in detail in a su
quent section. The advantage of rewriting Eqs.~1! into Eqs.~2! is
that now the associated eigenvalue problem is kept symmetric
can be written in a matrix form as

F L M
M 0 G F c

cLGL5F2K 0

0 MG F c
cLG (3)

where cN32N5@c1c2 . . . c2N# is the matrix containing the
eigenvectors of the complex eigenvalue problem

~l i
2M1l iL1K!c i50

and L2N32N is the diagonal matrix of the complex eigenvalu
l i5s i6 j v i ~with j 5A21!. When all the modes of the structur
are underdamped, all the eigenvalues appear in complex conju
pairs, i.e., they can be ordered such thatl2i 215l2i* with i
51,2, . . . ,N, where the superscript~* ! denotes complex conju
gate. This implies that the complex eigenvectors have the sim
property thatc2i 215c2i* for i 51,2, . . . ,N. In general, these
eigenvectors can be arbitrarily scaled; however, if the scalin
chosen such that~see Sestieri and Ibrahim@17# and Balme`s @28#!

cTMcL1LcTMc1cTLc5I

LcTMcL2cTKc5L

or in matrix form
618 Õ Vol. 69, SEPTEMBER 2002
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F c
cLGTF L M

M 0 G F c
cLG5I (4a)

F c
cLGTFK 0

0 2MG F c
cLG52L (4b)

then, for aproportionally damped system, the real and imaginary
parts of the components of these complex eigenvectors are e
in magnitude.

Once the symmetric eigenvalue problem~Eqs. ~4!! has been
solved, we can now conveniently rewrite Eqs.~2! by using the
transformationz(t)5@cT(cL)T#Tz(t) so that

ż~ t !5Lz~ t !1cTBu~ t ! (5a)

y~ t !5Cpcz~ t !. (5b)

For ease of exposition, let us indicate withM (k,:) andM (:,l )
the kth row and thei th column, respectively, of a generic matr
M . The equations of motion rewritten in form~5! have the impor-
tant property that, for a generici th degree-of-freedom that con
tains a co-located sensor–actuator pair,

Cp~ i ,:!c5@cTB~ :,i !#T, (6)

and this property will be of great use~1! for determining and
scaling the eigenvectors, and~2! for developing the concept o
input-output equivalence, as presented in detail in Section 4.

3 Identification of the Physical Parameters
of the System

The proposed identification algorithm consists of two we
defined phases:~1! the determination of a first-order model of th
system, and~2! the transformation of such an identified mod
into a second-order model.

From general input-output data, it is possible to identify a st
space realization in some arbitrary basis, and such a realiza
can be expressed as

ẋ~ t !5ACx~ t !1BCu~ t !

y~ t !5CCx~ t !1DCu~ t ! (7)

where now ACPR2N32N, BCPR2N3r , CCPRm32N, and DC

PRm3r are continuous time system matrices. In this study,
ERA/OKID based approach, as discussed by Juang et al.@13,14#
and Luşet al. @15,16#, was used for the identification of the dis
crete time system matrices~namely the matricesF, G, C, andD!,
and these discrete time matrices were converted to their con
ous time counterparts using the zero-order hold assumption
considering the transformationx5wu, the continuous time system
of Eqs.~7! can also be written in modal coordinates as

u̇~ t !5Lu~ t !1w21BCu~ t ! (8a)

y~ t !5CCwu (8b)

where the matrixL contains the continuous time eigenvalues
the identified state space model, andw, of order 2N32N, is the
matrix of the corresponding eigenvectors. The matrixDC has been
omitted in Eq.~8b! because it is independent of coordinate tran
formations. It is noteworthy that in the system of Eqs.~8!, the
productsw21BC andCCw appear; these products impose a stro
limitation on the order of the second-order model to be identifi
whose dimensions are now constrained either by the numbe
actuators, or by the number of sensors~Tseng et al.@25,26#!.

If the first-order system of Eqs.~7! was identified using data
that actually came from the second-order model of Eq.~1!, the
models represented by Eqs.~5! and~8! are different models of the
same system. Therefore, we look for a transformation matrix,T,
that relates these two representations, i.e.:

T 21LT5L (9a)

T 21w21BC5cTB (9b)

CCwT5Cpc. (9c)
Transactions of the ASME
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If there are no repeated roots, it is easy to show that the tran
mation matrix is diagonal, i.e.,T5diag(t1,t2, . . . ,t2N) and its val-
ues are complex conjugate. By examining Eqs.~9!, it is clear that
the matrixT has a twofold effect:~1! to transform the eigenvec
tors from those of a nonsymmetric eigenvalue problem to thos
a symmetric eigenvalue problem, and~2! to properly scale such
eigenvectors. Here we discuss the identification of this trans
mation matrixT and the eigenvectorsc when there are no re
peated roots, and the input and output matrices~B andCp , re-
spectively! of the finite element model are known. These inp
and output matrices are assumed to contain binary informat
i.e., in the case of the input matrixB, the coefficient in thei th row
( i 51,2, . . . ,N) and j th column (j 51,2, . . . ,r ) of B is 1 if the
j th actuator is placed on thei th degree-of-freedom and this coe
ficient is 0 if the j th actuator is not placed on thei th degree-of-
freedom. Similarly, the coefficient in thei th row (i
51,2, . . . ,m) and j th column (j 51,2, . . . ,N) of the output ma-
trix Cp is 1 if the i th sensor is placed on thej th degree-of-freedom
and this coefficient is 0 if thei th sensor is not placed on thej th
degree-of-freedom.

To present the proposed methodology in a concise manne
us assume that the input and output matrices of both repres
tions~in Eqs.~9b! and~9c!! have been expanded to incorporate
the degrees-of-freedom. This is most easily achieved by inco
rating columns of zeros in the input matrices~BC andB! and rows
of zeros in the output matrices~CC andCp! for the degrees-of-
freedom that are either not excited or not measured. Furtherm
assume that these input and output matrices have been arrang
that the i th column of the input matrix corresponds to thei th
degree-of-freedom~and hence there will be a column of zeros
there is no actuator placed on thei th degree-of-freedom!, and
similarly, the i th row of the output matrix corresponds to thei th
degree-of-freedom~a row of zeros if there is no sensor on thei th
degree-of-freedom!. Now the previous transformation Eqs.~9! can
be written in an ‘‘expanded’’ form as

T 21LT5L (10a)

T 21w21BC
E5cTBE (10b)

CC
EwT5Cp

Ec (10c)

where BC
E , BE, CC

E , andCp
E are the expanded versions of th

matricesBC , B, CC , andCp , respectively.
The identification of the transformation matrixT and the prop-

erly scaled complex eigenvectorsc can be investigated by study
ing a general limit case, since it can be shown that the case of
set of sensors and the case of full set of actuators are special
of the general approach. Let us assume that each degre
freedom containseither an actuatoror a sensor, with one degree
of-freedom containing a co-located sensor–actuator pair~hence
r 1m5N11!. With the notation introduced in Section 2, if th
co-located sensor–actuator pair is at thei th degree-of-freedom the
well-known co-location requirement can be written as

Cp
E~ i ,:!c5~cTBE~ :,i !!T. (11)

Using the co-location requirement, the transformation matrixT
can be evaluated from Eqs.~10b!, ~10c!, and Eq.~11! as

CC
E~ i ,:!wT5~T 21w21BC

E~ :,i !!T;

CC
E~ i ,:!wT 25~w21BC

E~ :,i !!T. (12)

Since the matrixT is diagonal, eacht i ( i 51,2, . . . ,2N) can be
uniquely determined from Eq.~12!. Once these scaling factors a
obtained, what is left to be determined is the complex eigenve
matrix c.

The information pertaining to a certain degree of freedom
embedded either in the input matrix or in the output matrix. Go
back to Eqs.~10!, the output matrices in Eq.~10c! essentially
contain information about onlym degree-of-freedom~with m
Journal of Applied Mechanics
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,N!. If there is a sensor at thekth degree-of-freedom then thekth
row of the matrixc can be evaluated using Eq.~10c!, i.e.,

c~k,:!5CC
E~k,:!wT. (13)

On the other hand, if there is no sensor at thekth degree-of-
freedom then Cp

E(k,:)c50132N . However, if a degree-of-
freedom is instrumented with either a sensor or an actuator,
kth row of the matrixc can be evaluated using Eq.~10b! as

c~k,:!5~T 21w21BC
E~ :,k!!T. (14)

Clearly, this argument is valid for all theN degrees-of-freedom
and so all the rows of the matrixc can be evaluated. It should b
noted that, for thei th degree-of-freedom that contained the c
located sensor–actuator pair, one can use either Eq.~13! or Eq.
~14!, since they lead to the same result by the co-location requ
ment in Eq.~11!.

If there is a full set of sensors~rank(Cp)5N, Cp
E[Cp , and

CC
E[CC!, or a full set of actuators~rank(B)5N, BE[B, and

BC
E[BC!, the scaling factors are still evaluated from Eq.~11!.

Once the scaling factors are evaluated, one can identify the c
plex eigenvector matrixc using

Cp
21CCwT5c (15)

when there is a full set of sensors, or

T 21w21BCB215cT (16)

when there is a full set of actuators. Clearly, these two cases
be regarded as special cases of the general formulation pres
in this section.

Once the properly scaled eigenvector matrixc is evaluated, the
mass, damping, and stiffness matrices of the finite element m
can be obtained using the orthogonality conditions in Eqs.~4!. As
discussed in Balme`s @28#, algebraic manipulations on Eqs.~4!
leads to the following identities:

F L M
M 0 G21

5F 0 M21

M21 2M21LM21G
5F c

cLGF c
cLGT

5F ccT cLcT

cLcT cL2cTG (17a)

FK 0

0 2MG21

5FK21 0

0 2M21G
52F c

cLGL21F c
cLGT

52FcL21cT ccT

ccT cLcTG . (17b)

In order for Eqs.~17! to be valid, it is necessary that

M5~cLcT!21, L52McL2cTM, (18a)

K52~cL21cT!21, ccT50 (18b)

and Eqs.~18! provide the required expressions for the ma
damping and stiffness matrices of the second-order model of
system.

3.1 Observations. There is a sign choice for the squa
roots when one solves for the scaling factors inT ~see Eqs.~12!!;
however, this does not have any effect on the identified m
damping, and stiffness matrices. To investigate this point, first
us note that a sign change in the scaling factort i causes a sign
SEPTEMBER 2002, Vol. 69 Õ 619
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change in thei th complex modeci . This sign change inci has
no effect on the mass matrix, since the expression for the m
matrix can be written as

M5~clcT!215~l1c1c1
T1l2c2c2

T1 . . . 1l2Nc2Nc2N
T !21

5~l1~2c1!~2c1
T!1l2~2c2!~2c2

T!1 . . .

1l2N~2c2N!~2c2N
T !!21 (19)

and this expression is clearly invariant under a sign change
any of the complex eigenvectors. Analogous arguments can
used to show that the damping matrixL and the stiffness matrix
K are also invariant under a sign change for theci ( i
51,2, . . . ,2N).

On the other hand, a change in the ordering of the rows of
complex eigenvector matrixc changes the final form of the mas
damping, and stiffness matrices in the sense that two diffe
ordering schemes lead to two different sets that differ only by
arrangement of rows and columns. In fact, if we consider
expression in Eq.~19! for the mass matrix, an interchange b
tween thekth and l th rows of c clearly leads to an interchang
between thekth and l th rows and columns of the mass matri
However, this rearrangement also takes place in the damping
the stiffness matrices. In conclusion, this nonuniqueness is equ
lent to the reordering of the degrees-of-freedom in the repre
tation of Eq.~1!.

In the foregoing discussion, it was assumed that there was
one co-located sensor–actuator pair, but in general, it is pos
to have more co-located sensors and actuators. These extra
ditions are redundant if the system is noise free, i.e., the sca
factors obtained by investigating one co-located sensor–actu
pair also satisfies the co-location requirement of any other
located sensor–actuator pair. However, in the presence of noi
might be best to proceed with a least-squares approach to o
the entries of the matrixT ~for a thorough investigation on th
effects of noise on the proposed approach, the reader is referr
the work of Luş@29#!.

If instead of displacement measurements one uses velocit
acceleration measurements, the output equation in Eqs.~5! can be
rewritten as

• for velocity measurements:

y~ t !5@0 Cv#F c
cLGz~ t !5CvcLz~ t ! (20)

• for acceleration measurements:

y~ t !5@0 Ca#F c
cLGz~ t !5CacL2z~ t !1CacLcTBu~ t !.

(21)

Clearly, these changes lead to some alterations in Eq.~9c!, accord-
ing to the type of measurements used:

CCwT5CvcL for velocity measurements

CCwT5CacL2 for acceleration measurements.

Analogous to the output matrixCp , the output matricesCv and
Ca also contain binary information~as discussed in Section 3!.
Therefore, all we have to do to use the algorithms and discuss
of Section 3 is to useCCwL21 in Eq. ~9c! for velocity measure-
ments orCCwL22 in the case of acceleration measurements. I
noteworthy that, in the case of acceleration measurements,
the first term enters in the identification process while the sec
term, independent of the transformation matrix, needs to be
counted only for simulation purposes.

In general, one can possibly use all types of measurem
simultaneously, and in that case each row of the matrixCCw must
be handled separately with regards to the changes discu
above. Once appropriate alterations are made according to
type of sensor one uses, the formulations and discussions
sented in Section 3 remain unchanged.
620 Õ Vol. 69, SEPTEMBER 2002
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4 Concept of Input-Output Equivalence
The formulation presented in this study has one main advan

over previous studies, in the sense that the methodology prese
here has more general theoretical implications about the num
of sensors or actuators that can be used in dynamic testing
order to clarify this point, let us consider anN degree-of-freedom
system. By taking the Laplace transform of Eqs.~5! and by com-
bining the two transformed equations, it is possible to obtain
expression that relates the input transform vector,U(s), and the
output transform vector,Y(s), as

Y~s!5Cpc@sI2L#21cTBU~s!5CpH~s!BU~s! (22)

where the matrixH(s), of dimensionN3N, represents the trans
fer function matrix of the system. The complete knowledge
H(s) would allow one to determine the response of the system
any point for an arbitrary input applied at any degree-of-freed
creating a complete predictive model of the system. Hence,
goal of any identification methodology should be the determi
tion of the matrixH(s). For this purpose, the well-known prop
erty thatH(s) is a symmetric matrix will be of great help. Again
for ease of presentation, we consider only displacement meas
ments but analogous formulations can be derived for velocity
acceleration measurements, as shown before.

Let us first consider the case where, in the identification p
cess, we haveN outputs andN inputs available~m5N and r
5N!. This will correspond to the case ofN co-located pairs of
sensors and actuators. In the notation of Section 3, this case
responds to havingCp[Cp

E andB[BE and the matrixH(s) is
directly determined.

If the system has been identified usingN outputs and 1 input
~m5N and r 51! with the i th output co-located with the input
only the i th column of the transfer function matrixH(s) can be
directly identified. This will be equivalent to knowing the matri
c, since in Eqs.~22! the matrixCp is the identity matrix, and,
consequently, the entire transfer function matrix can be obtain
In this case~N outputs and 1 input!, it is well known that the
physical parameters of the second-order system of Eqs.~1! can be
retrieved from the identified state-space model, as discussed
viously by many authors~see, e.g., the works of Alvin and Par
@21# or Tseng et al.@25,26#!.

On the other hand, if the identified system hasN inputs and 1
output~m51 andr 5N! with the i th input co-located with thei th
output, only thei th row of the transfer function matrixH(s) can
bedirectly identified. In this case, the matrixB in Eqs.~22! is the
identity matrix, and analogous to the previous case, it is poss
to completely determine the matrixH(s). A solution for this case
was presented by Tseng et al.@25,26#.

In system identification literature, these two previous cases
considered as the two limit cases. In fact, there is no methodo
available that allows us to combine information coming fromm
outputs andr inputs, and the possibility of combining these tw
types of information is one of the innovations of the propos
approach. To present this generalization, let us identify anN
degree-of-freedom system withm outputs andr inputs ~with m
,N and r ,N and m1r 5N11!, with one co-located sensor–
actuator pair on thei th degree-of-freedom. At this point it is use
ful to remind the importance of having at least one pair of c
located sensor and actuator for the determination of
transformation matrixT, which leads to the presence of11 in the
m1r 5N11 condition. What is noteworthy in this case is the fa
that neitherCp norB are square~identity! matrices and this im-
plies that neither a column nor a row ofH(s) is fully identified.

Due to the co-located sensor–actuator pair at thei th degree-of-
freedom the entry at thei th row andi th column ofH(s) (Hii (s))
is identified. Now, if we consider an input on thel th degree-of-
freedom and an output on thekth degree-of-freedom, we are ca
pable of determiningHkl(s), which represents the component
H(s) on thekth row andl th column. The main innovation in this
study is that the formulations developed herein allow us to use
Transactions of the ASME
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property thatH(s) is symmetric, and hence even though we ha
not identified the componentHlk(s), we can useHkl(s) instead.
Therefore, if all the degrees-of-freedom have either an actuato
a sensor, the entirei th row and/ori th column of H(s) can be
determined directly. This implies that it is possible to transfo
the general case ofm sensors andr actuators to an equivalent cas
of a full set of sensors or of a full set of actuators. This has b
possible because of the concept of ‘‘input–output equivalenc
so that for this methodology, it is indifferent to have either
input or an output at each degree-of-freedom.

This concept of input–output equivalence is possible beca
of the particular eigenvector basis discussed, i.e., the eigenve
for the symmetric eigenvalue problem of the system in Eqs.~2!.
On the other hand, if we were to use the eigenvectors of
nonsymmetric problem, the transpose of the eigenvector matr
Eqs. ~9a! would be replaced with the inverse of the matrixw
~dimension 2N32N!, and hence, we would be limited to the ca
of either a full set of sensors~Alvin and Park@21# or Tseng et al.
@25,26#! or a full set of actuators~Tseng et al.@25,26#!.

5 Numerical Examples
To show the validity of the proposed approach, first a sim

but general numerical example is presented. The system, show
Fig. 1, has been previously studied by Agbabian et al.@1# and Koh
and See@30#; the values for the mass and stiffness matrices u
in this study are given in Table 1.

To consider the effects of the modal coupling on the structure
the eigenvectors, we consider two different damping matrices
shown in Table 2. The first one leads to the more classical cas
modal damping. The second matrix instead induces coupling

Fig. 1 Three-degree-of-freedom system considered for the ap-
plication of the proposed approach

Table 1 Mass and stiffness matrices used for the system of
Fig. 1

Table 2 Damping matrices leading to uncoupled and coupled
second-order vibrational modes for the system of Fig. 1
Journal of Applied Mechanics
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the second-order vibrational modes, and therefore, more con
tional methods that employ the modal damping assumption
not applicable. Furthermore, we assume that the system is ex
by only two actuators, located at the first and the second degr
of-freedom and that accelerations are also measured only at
degrees-of-freedom~second and third degrees-of-freedom!. With
this particular setup, methodologies that require either a full se
sensors, or a full set of actuators, are also not applicable.

The state-space model is identified using the simulated p
response data of the system~with a sampling time ofDT
50.05 sec.!, and by employing the ERA/DC algorithm~Juang
et al. @13#!. Using the identified state-space models for both
coupled and the uncoupled cases, the scaling factors inT, the
eigenvectorsc, and the mass, damping, and stiffness matrices
the second-order model~M, L, andK, respectively! are re-
trieved using the methodology presented in this work.

5.1 Uncoupled Second-Order Modes. For this case, the
identified system matrices for the discrete time state space m
are presented in Table 3. Once these matrices have been obta
they are converted to their continuous time counterparts, and
equations are written in the modal coordinates, as in Eqs.~8!. At
this point, it is possible to calculate the diagonal transformat
matrix T using the information at the co-located sensor–actua
pair, leading to: diag(T )5(2.9667 j 2.322, 8.9967 j 8.164,
6.4497 j 4.789), where diag(T ) refers to the components on the
main diagonal of the transformation matrixT ~with all off-
diagonal terms equal to zero!. As expected, they appear in com
plex conjugate pairs.

Once these scaling factors have been evaluated, the eigenv
matrix c can be identified, as discussed in Section 3. The eig
vector matrix has the formc5@c1c1* c2c2* c3c3* # and for this
case the identified complex eigenvectorsc1 , c2 , andc3 are

c15F20.1592 j 0.159
20.2762 j 0.276
20.1852 j 0.185

G ; c25F 0.1091 j 0.109
20.1352 j 0.135
0.2741 j 0.274

G ;

c35F 0.3341 j 0.334
20.0312 j 0.031
20.1142 j 0.114

G .

As discussed in Section 2, for a proportionally damped syst
the particular scaling choice employed in the proposed metho
ogy leads to complex eigenvectors whose components have
and imaginary parts of equal magnitude. Once these eigenve

Table 3 Identified discrete time matrices of the state-space
model for the uncoupled damping case
SEPTEMBER 2002, Vol. 69 Õ 621
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have been obtained, the mass, stiffness, and damping matrice
be evaluated using the expressions presented in Eq.~18!

M5F 0.8 0 0

0 2.0 0

0 0 1.2
G ; K5F 4.0 21.0 21.0

21.0 4.0 21.0

21.0 21.0 4.0
G ;

Table 4 Identified discrete time matrices of the state-space
model for the coupled damping case

Table 5 Mean values of the identified samples for the mass,
damping, and stiffness coefficients. The estimates for the coef-
ficients are obtained at 5% RMS noise level.

Table 6 Absolute values of the percentage errors in the mean
values of the identified samples for the mass, damping, and
stiffness coefficients. The estimates for the coefficients are ob-
tained at 5% RMS noise level. The ‘‘-’’ entries in the tables cor-
respond to coefficients for which the true values are 0.

Table 7 Coefficients of variation „%… of the identified samples
for the mass, damping, and stiffness coefficients. The esti-
mates for the coefficients are identified at 5% RMS noise level,
and the ‘‘-’’ entries in the tables correspond to coefficients for
which the true values are 0.
622 Õ Vol. 69, SEPTEMBER 2002
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L5F 0.4 20.1 20.1

20.1 0.4 20.1

20.1 20.1 0.4
G

which are exactly the system matrices we used to obtain the
namic data. These matrices automatically come out as real,
the imaginary components are of the order of 10215 and therefore
are numerical zeros for all purposes.

5.2 Coupled Second-Order Modes. The procedure for
coupled systems are exactly the same as for uncoupled syst
only now the matrices we obtain at each step will look differe
than the ones obtained in the uncoupled case. In this case
identified discrete time system matrices are presented in Tab
while the diagonal entries of the matrixT are diag(T )5(0.256
6 j 4.218, 0.4797 j 16.492, 9.9807 j 0.754). The complex eigen

Fig. 2 Truss structure with eight unrestrained degrees-of-
freedom „one horizontal and one vertical for each of the nodes
denoted by 1, 2, 3, and 4 …

Table 8 Mass, damping, and stiffness matrices for the truss
system of Fig. 2. Only the unrestrained degrees-of-freedom are
included in these matrices, and the order of the degrees-of-
freedom are chosen as u 1 , v 1 , u 2 v 2 , u 3 , v 3 , u 4 , v 4 .
Transactions of the ASME
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Table 9 Properly scaled complex mode shapes „amplified by a factor of 100
for presentation … for the truss system of Fig. 2 identified with five sensors and
four actuators via the proposed approach. Note that all the eigenvectors
appear in complex conjugate pairs.
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re-
dom
vector matrixc still has the same structure as in the previous c
but now the identified complex eigenvectorsc1 , c2 , andc3 are

c15F 0.1661 j 0.154
0.2661 j 0.284
0.2071 j 0.171

G ; c25F 0.1271 j 0.088
20.1612 j 0.120
0.2511 j 0.296

G ;

c35F20.3272 j 0.345
0.0181 j 0.045
0.1391 j 0.0093

G .

It is important to see that, since the system is not proportion
damped, the relation between the real and imaginary parts~that
they are equal in magnitude in a proportionally damped system! is
not valid anymore. However, this makes no difference on the
of the procedure, and the identified physical parameters are

M5F 0.8 0 0

0 2.0 0

0 0 1.2
G ; K5F 4.0 21.0 21.0

21.0 4.0 21.0

21.0 21.0 4.0
G ;

L5F 0.5 20.1 20.2

20.1 0.7 20.3

20.2 20.3 0.6
G

which are identical to the initial second-order matrices.

5.3 Effects of Noise on Identified Parameters. In order to
discuss, in a statistically meaningful framework, the effects
noise perturbations on the proposed approach, we perform M
Carlo type simulations on the 3-degree-of-freedom system w
nonproportional damping. Here we assume that a long dura
pulse response data in the form of acceleration measuremen
hanics

ics.asmedigitalcollection.asme.org/ on 10/21/20
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available at the second and the third masses, and that the resp
of the structure is due to unit pulses applied at degrees-of-free
1 and 2 only. The output data is then polluted with Gaussi
zero-mean, white noise sequences, whose root-mean-squ
~RMS! values are adjusted to be 5% of the unpolluted time his
ries. We consider 200 different noise patterns, and each of
polluted time histories are used to identify a discrete time sta
space model with ERA.

Tables 5, 6, and 7 concisely summarize the results of this st
It can be seen in Table 5 that the mean values of the identi
samples are very close to the exact values; indeed Table 6 re
that the maximum relative error~in the absolute value sense! in
the identified mean values is about 1%. In addition, the coe
cients of variation presented in Table 7 show that the scat
around the mean values for the mass and stiffness estimate
quite acceptable, especially for the degree-of-freedom with
co-located sensor–actuator pair~degree-of-freedom 2!. The coef-
ficients for the damping matrix, however, are generally larger th
those of the mass and stiffness matrices. This could partially
attributed to the high sensitivity of the damping to the phase
lations between the mode shape components which generi
makes the identification of the damping matrix a harder task t
the identification of the mass and stiffness matrices. Overall
results show that the proposed methodology provides extrem
satisfactory results even in the presence of noise perturbation

5.4 Identification of a Truss Structure. In order to present
the applicability of the proposed methodology to a more comp
case, we now consider a two-dimensional truss structure with
ited number of sensors and actuators. This system, shown in
2, has a total number of eight nodes of which four are fully
strained, and hence the total number of active degrees-of-free
SEPTEMBER 2002, Vol. 69 Õ 623
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is 8 ~one horizontal and one vertical per each node!. The horizon-
tal degrees-of-freedom are denoted byui and the vertical degrees
of-freedom are denoted byv i , with the subscript referring to the
node number~i.e., i 51,2,3,4!. The mass, damping, and stiffnes
matrices for this system are presented in Table 8. Note that t
second-order matrices contain the coefficients for only the u
strained degrees-of-freedom and that these degrees-of-freedo
ordered such that the displacement vector can be written asq(t)
5@u1(t)v1(t) . . . u4(t)v4(t)#T.

The instrument scheme we consider is such that there are
output sensors and four actuators:u1 , v1 , v2 , v3 , and v4 are
instrumented with output sensors, the forcesf 2

u(t) and f 3
u(t), are

applied horizontally at degrees-of-freedom 2 and 3, whereas
other two, denoted byf 1

v(t) and f 4
v(t) are applied vertically at

degrees-of-freedom 1 and 4, such that the force vector ma
defined asu(t)5@ f 1

v(t) f 2
u(t) f 3

u(t) f 4
v(t)#T. In this case the initial

discrete time state-space model is identified from unpolluted g
eral input/output data using the OKID/ERA approach.

The co-location requirement for this case can be written
Cp

E(2,:)c5(cTBE(:,2))T, or equivalently

CC
E~2,:!w5~w21BC

E~ :,2!!TT 2. (23)

Once the transformation matrix is evaluated from Eq.~23!, the
rows of the eigenvector matrixc can be identified either from

c~ i ,:!5CC
E~ i ,:!wT 21 for i 51,2,4,6,7 (24)

for the rows corresponding to the degrees-of-freedom with ou
sensors, or from

c~ i ,:!5~Tw21BC
E~ :,i !!T for i 52,3,5,8 (25)

Table 10 Mass, damping, and stiffness matrices for the truss
system of Fig. 2 identified with five sensors and four actuators
via the proposed approach
624 Õ Vol. 69, SEPTEMBER 2002
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for the rows corresponding to the degrees-of-freedom with ac
tors ~note that the row corresponding tov1 can be identified from
either ~24! or ~25! due to the co-location!. Since all degrees-of-
freedom of this structure are instrumented with either a senso
an actuator, all the rows of the matrixc can be identified, and
these eigenvectors are presented in Table 9. Analogous to the
of the 3-degrees-of-freedom system with proportional dampi
also in this case the real and imaginary parts of the eigenvec
are equal to each other in magnitude since the damping matri
the truss structure was constructed so as to lead to a clas
damping case.

Using the identified complex eigenvector matrixc, the mass,
damping, and stiffness matrices can once again be constructe
Eqs. ~18!, and these are presented in Table 10. All the identifi
quantities are exactly equal to those reported in Table 8 and so
proposed methodology has once again provided an exact solu

6 Conclusions
In this study, a new methodology for the identification

second-order structural parameters from identified state-space
resentations was presented. It was shown that, with the form
tion developed herein, it is possible to formulate the inverse pr
lem as a problem of transforming the identified compl
eigenvectors to a certain basis. The requirements for a succe
transformation are that there should be a co-located sen
actuator pair, and that all the degrees-of-freedom should con
either a sensoror an actuator. The numerical results included
this study emphasize the efficiency and generality of the propo
approach.

The main innovation in this study is that, with the propos
methodology, it is possible to utilize mixed types of informatio
thereby enabling one to treat the information from a sensor o
actuator in an analogous fashion. This conceptual ‘‘input–out
equivalence’’ helps relaxing the necessity of having either a
set of sensors or a full set of actuators, allowing a more gen
sensor–actuator setup than those required in previously discu
approaches.
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@15# Luş, H., Betti, R., and Longman, R. W., 1999, ‘‘Identification of Linear Stru
tural Systems Using Earthquake-Induced Vibration Data,’’ Earthquake E
Struct. Dyn.,28, pp. 1449–1467.
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