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1 Introduction the identified complex modes also constitutes an important prob-

lem, and the study by Sestieri and lbrahifiv] presents a well-
Pcumented discussion. One assumption often employed is that
e vibrational modes of the second-order model are uncoupled

System identification, in the most general sense, can be
scribed as the identification of the conditions and properties
mathematical models that aspire to represent real phenomen bdal damping In this case, arguably the most often employed
an adequate fashion. The choice of such models is very mu P » arg y ploy

S . S thod to retrieve the undamped modal parameters is the so-
dependent on the type of application one considers. In finite e Sllled standard techniquie.g., see Imregun and Ewifsg], Ibra-
ment formulations, identification of physical parameters genera%

) L . . m [19], and Alvin [20]). It is well known, however, that this
refers to the identification of the mass, damping, and stiffne U : - ’ ' ;
parameters in the second order matrix diﬁergnti%]"gll equations proximation loses its validity when the system under consider-

possible approach is to identify these parameters directly froﬂon is highly coupled. To overcome this limitation, many authors

experimental dynamic dataee, for example, the works of Agba-"2Ve focused their attention on how to retrieve the undamped
modal parameters from complex modal parameters for the case of

bian et al.[1] and Smyth et al[2]). However, the most widely : ; . .
e P neral damping. Some of the most noteworthy discussions in-
employed approach consists in identifying the modal parameteqr%de the woPksgof lbrahini19], Alvin and Park[21ﬁ/ Zhang and

T ¢l
of the system, and to use them to update a pre-existing fin(t -
element model. Some of the noteworthy efforts and discussions[ IIezraenCtt[éﬁ],e\t(a}arll?z%nda:gH;as;}m,:IE/zlré]et al.[24), Tseng et al.

this direction are those of Ewins], Mottershead a.nd. Friswell Taking the inverse problem one step further, one might be in-
[4], Berman(5], Baruch[6,7], and Beck and KatafygiotitS]. terested in directly obtaining the parameters of the second-order
The identification of the parameters in a first-order differentiaf

equation formulation has also received considerable attention,fné)rﬂetlhg\ilgggﬂggg St{ftz_;o ;gg';\ged;]evzreigggdmgiﬂﬁgggr?geit;r_s
evidenced by the works of Ibrahim and Mikulc[i®], Ibrahim P ! 9

pose different restrictions on the number of sensors and actuators
[10], Vold et al.[11], Juang and Papfid2], Juang et all13,14, employed, assuming that all the modes of the structure have been

and Luset al.[15,16. However, if one starts with a state-space . . > - :
model and s o idently th parametrs f he second orflEEESSLY BTG, The oSt e eenent s Lol
model, issues such as nonuniqueness of the solution have tonﬁg 9 y

consiered,malking such an “myerse” prolem e complex. [)0C2%, WIEh s ecussed by wang and Vet Laer on
sually, the modal parameters required for updating structu -
models gre the undaFr)npe(dormab m%dal param?aters gwhereas quiring that only the number of sensors should be equal to the

when one works with the first-order formulation, the identh‘ie%u.mber of identified modes, with one co-located sensor—actuator

. ir. A further generalization was presented by Tseng et al.
modal parameters are complex, and correspond, in some sens 2?,’26] for the case when the number of actuators is equal to the

the damped modal parameters of the second-order formulatipfner of second-order modes providing the most general solu-
Therefore, the retrieval of the undamped modal parameters fr(?fﬂn available for a full set of actuators or sensors, with one co-
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tain either a sensoror an actuator, with at least one co-located L M|y
sensor—actuator pair. It should be noted that this solution implic- [ A H A} =1 (4a)
itly contains the solutions for the cases with full set of sensors ¥ M0l
and/or full set of actuators, and therefore, the approach discussed AR 0 } "
in this study provides a more general solution for the inverse }:—A (4b)
problem. YA [0 —MIYA

then, for aproportionally damped systerthe real and imaginary
parts of the components of these complex eigenvectors are equal
2 Symmetric Formulation of a First-Order Dynamic  in magnitude.
Model Once the symmetric eigenvalue probléiqgs. (4)) has been
Eolved, we can now conveniently rewrite Eq8) by using the

One of the most well-known linear time invariant models fo ansformatiorz(t) = [ 4" (#A) T]TE(t) so that

dynamical systems is undoubtedly the matrix form of Newton

second law of motion written for discretized spatial domains, i.e., Uty =ALt)+ Y Bu(t) (5a)
MGt + Lg(t) +1Cq(t) = Bu(t) y(t)=Cpill(t). (5b)
Cpa(t) For ease of exposition, let us indicate wih(k,:) andM(:,I)

y(H=| C,a(t) @ the kth row and theith column, respectively, of a generic matrix

C.a(t) M. The equations of motion rewritten in for(6) have the impor-
ad tant property that, for a generith degree-of-freedom that con-

where q(t) indicates the vector of thégeneralizeyl nodal dis- tains a co-located sensor—actuator pair,

placements, with () and () representing, respectively, the first SN T TR V1T

and second-order derivatives with respect to time. The vector ) c‘_’(l")¢ Lo BCDT o ©)

u(t), of dimensionr X 1, is the input vector containingexternal and this property will be of great usd) for determining and

excitations acting on the system whijét) represents the mea- Scaling the eigenvectors, ari@) for developing the concept of

surement vector, which may contain any combination of nodHlPut-output equivalence, as presented in detail in Section 4.

displacements, velocities, and/or accelerations. FoNalegree- 3  |dentification of the Physical Parameters

of-freedom systemM e RNN, £ e RVN and 1ICe RN are

. a4 - ) . of the System

the symmetric positive definite mass, damping, and stiffness ma- ) o ) ]

trices, respectively, whild e 9tV is the input matrix. The ma- The proposed identification algorithm consists of two well-

trix [cgcjc;]Temme represents the output matrix that mafjeflned phaseg1) the determination of a first-order model of the

incorporate position, velocity, and acceleration measuremerf¥Stem: and?) the transformation of such an identified model

with m denoting the total number of outputs. Into a second-or_der model. . . . .
By defining a state vecta(t) =[q(t) Ta(t)T]", the equations of From ge_nerz_;\I input-output dgta, itis p_033|ble to identify a state
motion in (1) can be conveniently written as’ space realization in some arbitrary basis, and such a realization
y can be expressed as

L K< SOH) —
o [0+ 2(t)= lgu(t) (2a) X(O)=AcX() +Beu(t)
M M Y(t)=Cex(t)+Deu(t) ()
y(t)=[C, 0]z(t) (2b)  where nowAce RN BLe RNXT Coe RN, and D¢

where, for ease of exposition, we have considered only positigh" . are continuous time system matrices. In this study, an
measurements in the output equation of E@. However, the ERA/OKID based approach, as discussed by Juang ¢13/14
following results are true for any type of measuremeptsitions, and Luset al.[15,16], was used for the identification of the dis-
velocities, or accelerationsand the generalization to velocity andCrete time system matricésamely the matrice®, I', C, andD),
acceleration measurements will be discussed in detail in a subdBd these discrete time matrices were converted to their continu-
guent section. The advantage of rewriting Ed3.into Eqs.(2) is 0US time counterparts using the zero-order hold assumption. By
that now the associated eigenvalue problem is kept symmetric difsidering the transformation= ¢, the continuous time system

can be written in a matrix form as of Egs.(7) can also be written in modal coordinates as
L Mly] [-K O [ ” o) =A6(t)+ ¢ 'Beu(t) (8a)
= 3
Mmoo lsar o0 mua @) y(1)=Ccet (8b)
where gnson=[ ... P] is the matrix containing the where the matrixA contains the continuous time eigenvalues of
eigenvectors of the complex eigenvalue problem the identified state space model, apdof order 2N X 2N, is the
matrix of the corresponding eigenvectors. The mdiixhas been
()\?M+)\i£+ )y =0 omitted in Eq.(8b) because it is independent of coordinate trans-

and A,y oy IS the diagonal matrix of the complex eigenvaluegorm""tlons_'1It is noteworthy thét in the system .Of E¢8). the
N, =0 jw; (ith j=y—T). When all the modes of the structureProducts¢ "Bc andCc¢ appear; these products impose a strong

are underdamped, all the eigenvalues appear in complex conjug{N fation on the order of the second-order model to be identified,
X A e ose dimensions are now constrained either by the number of
pairs, i.e., they can be ordered such thgt{_,=\3 with i

~ 10 N, where the superscrifit) denotes complex conju- actuators, or by the number of sens6Fseng et al[25,26]).
A A p . P IU" " if the first-order system of Eq€7) was identified using data
gate. This implies that the complex eigenvectors have the S|m|l[%rat actually came from the second-order model of €, the
property thatyy =43 for i=1,2,...N. In general, these ,qe|s represented by EqS) and(8) are different models of the

eigenvectors can be arbitrarily scaled; however, if the scaling dgme system. Therefore, we look for a transformation mafix,
chosen such thdsee Sestieri and lbrahipd7] and Balme [28])  ihat relates these two representations, i.e.:

U MYA+ A M+ T Lap=1 T IAT=A (%)

AP MYPA— T K= A T o Be=y'B (9b)

or in matrix form CcopT=C,i. (%)
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If there are no repeated roots, it is easy to show that the transferN). If there is a sensor at theh degree-of-freedom then th¢h

mation matrix is diagonal, i.eT=diagt, t,, . . . ,tyn) @and its val- row of the matrixgs can be evaluated using Ed.0c), i.e.,
ues are complex conjugate. By examining B3, it is clear that ) £
the matrixZ"has a twofold effect(1) to transform the eigenvec- (k1) =Cc(k,)) T (13)

tors from those of a nonsymmetric eigenvalue problem to those of,
a symmetric eigenvalue problem, af®) to properly scale such
eigenvectors. Here we discuss the identification of this transf
mation matrixZ”and the eigenvectorgs when there are no re-
peated roots, and the input and output matri@sandC,, re-
spectively of the finite element model are known. These input N (-1, -1pE . |\ T

and output matrices are assumed to contain binary information, Wk)=(T @ Bel(:,k)) (4)

i.e., in the case of the input matrig, the coefficient in théth row Clearly, this argument is valid for all thé degrees-of-freedom
(i=1,2,...N) andjth column (=1,2,...y) of Bis 1if the and so all the rows of the matrig can be evaluated. It should be
jth actuator is placed on tti¢h degree-of-freedom and this coef-noted that, for théth degree-of-freedom that contained the co-
ficient is O if thejth actuator is not placed on thiéh degree-of- |ocated sensor—actuator pair, one can use either(Bj.or Eq.
freedom. Similarly, the coefficient in theith row (i (14), since they lead to the same result by the co-location require-
=1,2,...m) andjth column (=1,2, ... N) of the output ma- ment in Eq.(11).

trix Cp is 1 if theith sensor is placed on théh degree-of-freedom it there is a full set of sensorgank(C,) =N, CIEECP‘ and

and this coefficient is 0 if théth sensor is not placed on théh CE=Cy), or a full set of actuatorérank(B)=N, BE=18, and

degree-of-freedom. E_ . .
To present the proposed methodology in a concise manner,'%= Bc), the scaling factors are still evaluated from Egl).

us assume that the input and output matrices of both represertACe the scaling factors are evaluated, one can identify the com-
tions(in Egs.(9b) and(9c)) have been expanded to incorporate alf'€x elgenvector matrixs using

the degrees-of-freedom. This is most easily achieved by incorpo- -1 -

rating columns of zeros in the input matrid@. andB) and rows Cp CobT=¢ (15)

of zeros in the output matricd€c and C,) for the degrees-of- when there is a full set of sensors, or

freedom that are either not excited or not measured. Furthermore,

assume that these input and output matrices have been arranged so T lo BB 1=y (16)

that theith column of the input matrix corresponds to thé
degree-of-freedonfand hence there will be a column of zeros i
there is no actuator placed on thth degree-of-freedojm and
similarly, theith row of the output matrix corresponds to tith
degree-of-freedonta row of zeros if there is no sensor on ftile
degree-of-freedomNow the previous transformation Eq8) can
be written in an “expanded” form as

On the other hand, if there is no sensor at kitle degree-of-
4F_eedom then CE(k,:)¢= 01xon. However, if a degree-of-
reedom is instrumented with either a sensor or an actuator, the
kth row of the matrixis can be evaluated using E.Ob) as

1When there is a full set of actuators. Clearly, these two cases can
be regarded as special cases of the general formulation presented
in this section.

Once the properly scaled eigenvector maifiis evaluated, the
mass, damping, and stiffness matrices of the finite element model
can be obtained using the orthogonality conditions in Edjs As
discussed in Balnse[28], algebraic manipulations on Eqéd)

T IAT=A (10a) leads to the following identities:
T o BE=y'BE (100) [ c Mr 0 M1 }
= -1 _ aq-1 -1
CEpT= CE‘/’ (100) M 0 M MTLM
vl

where Bg, BF, Cg, andC; are the expanded versions of the = }

matricesBc, B, Cc, andC,, respectively. YA YA

The identification of the transformation matrikand the prop- v YAy
erly scaled complex eigenvectagscan be investigated by study- = T 0T (17a)
ing a general limit case, since it can be shown that the case of full YAy PATS
set of sensors and the case of full set of actuators are special cases i 0 11 -1 0
of the general approach. Let us assume that each degree-of- _
freedom containgither an actuatoor a sensor, with one degree- [ 0 M} { 0 Ml}
of-freedom containing a co-located sensor—actuator (eEnce T
r+m=N+1). With the notation introduced in Section 2, if the :_{ ¥ }A—l{ ¥
co-located sensor—actuator pair is atittredegree-of-freedom the YA YA
well-known co-location requirement can be written as ALY g

Ch(i ) g= (W BT, (11) A

Using the co-location requirement, the transformation ma®iX |, order for Egs(17) to be valid. it is necessary that
can be evaluated from Eqg&l0Ob), (10c), and Eq.(11) as as(17) ' 4

— T\—1 — 2,07
CE(i,)@T=(T ‘¢ BE(:,iI)T; M=AE) ™, L= MPA M, (189)

K== (YA ")™Y gap’=0 (180)

Ca(i,)eT?= (¢ 'BE(:,)". (12)
and Egs.(18) provide the required expressions for the mass,

Since the matrixZ is diagonal, eacly; (i=1,2,...,N) can be . ; ; _
uniquely determined from Eq12). Once these scaling factors aregamplng and stiffness matrices of the second-order model of the

obtained, what is left to be determined is the complex eigenvectc}?Stem'

matrix . 3.1 Observations. There is a sign choice for the square
The information pertaining to a certain degree of freedom i®ots when one solves for the scaling factoritsee Eqs(12));

embedded either in the input matrix or in the output matrix. Goingowever, this does not have any effect on the identified mass,

back to Egs.(10), the output matrices in Eq10c) essentially damping, and stiffness matrices. To investigate this point, first let

contain information about onlyn degree-of-freedomwith m  us note that a sign change in the scaling fa¢tarauses a sign
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change in théth complex modey; . This sign change ik has 4 Concept of Input-Output Equivalence

nmoaterif)f(ecc;r?rg(athvsri;rt];ssfj\smatnx, since the expression for the M35 he formulation presented in this study has one main advantage
over previous studies, in the sense that the methodology presented
M=(AY") I= (Nt + Nty + ..+ Aonondboy) t here has more general theoretical implications about the number
T T of sensors or actuators that can be used in dynamic testing. In
=M= (=) (=) (o) + ... order to clarify this point, let us consider &hdegree-of-freedom
_ T -1 system. By taking the Laplace transform of E(f$.and by com-
FAan( = Yan) (— Yn)) (19) bining the two transformed equations, it is possible to obtain an
and this expression is clearly invariant under a sign change fexpression that relates the input transform vedifs), and the
any of the complex eigenvectors. Analogous arguments can detput transform vectoiy (s), as
used to show that the damping matiék and the stiffness matrix 1T
IC are also invariant under a sign change for tige (i Y(8)=Cpiisl —A] "4 BU(s)=C,H(s)BU(s)  (22)
=12,...,N). ] ] where the matri(s), of dimensionN X N, represents the trans-
On the other hand, a change in the ordering of the rows of the function matrix of the system. The complete knowledge of
complex eigenvector matri changes the final form of the mass,j(s) would allow one to determine the response of the system at
damp_lng, and stiffness matrices in the sense th_at two dlf'ferqmy point for an arbitrary input applied at any degree-of-freedom
ordering schemes lead to two different sets that differ onI_y by tf&eaﬂng a complete predictive model of the system. Hence, the
arrangement of rows and columns. In fact, if we consider thgya| of any identification methodology should be the determina-
expression in Eq(19) for the mass matrix, an interchange betjon of the matrixH(s). For this purpose, the well-known prop-
tween thekth andlth rows of  clearly leads to an mterchang_eerty thatH(s) is a symmetric matrix will be of great help. Again,
between thekth andlth rows and columns of the mass matrixfor ease of presentation, we consider only displacement measure-
However, this rearrangement also takes place in the damping afnts but analogous formulations can be derived for velocity and
the stiffness matrices. In conclusion, this nonuniqueness is equi@geleration measurements, as shown before.
lent to the reordering of the degrees-of-freedom in the represeny et ys first consider the case where, in the identification pro-
tation of Eq.(1). o cess, we haveN outputs andN inputs available(m=N and r
In the foregoing discussion, it was assumed that there was only\). This will correspond to the case df co-located pairs of
one co-located sensor—actuator pair, but in general, it is possiblésors and actuators. In the notation of Section 3, this case cor-
to have more co-located sensors and actuators. These extra ¢880nds to having,=CE and B=BF and the matrixH(s) is
ditions are redundant if the system is noise free, i.e., the scali Pectly determined.p P
factors obtained by investigating one co-located sensor—actua Off the system has been identified usiNgoutputs and 1 input
pair also satisfies the co-location requirement of any other cg- =N andr=1) with the ith output co-located with the input
Io<_:ated sensor—actuator pai_r. However, in the presence of nois%d theith column of the transfer function matrkd(s) can be l
mg*gﬂ?ﬁege&t t‘ﬁepg‘;gfrig,gg:‘ :t'ﬁgfc‘)u?#?;ﬁ;gj%g?;ﬁ*;;otﬁg‘& ctly identified. This will be equivalent to knowing the matrix
cfects of nse o fh proposed approach,he reader  eferedfunce, I £ 22 e MAITCy s e wentty mat an.
the work of Lus[29)). . In this case(N outputs and 1 inpiit it is well known that the
p(HysicaI parameters of the second-order system of @gsan be
retrieved from the identified state-space model, as discussed pre-
viously by many authorgsee, e.g., the works of Alvin and Park

acceleration measurements, the output equation in(Bgsan be
rewritten as

« for velocity measurements: [21] or Tseng et al[25,26]). _
" On the other hand, if the identified system Wa@puts and 1
y(tH)=[0 C,] WA L) =C,PpAL(1) (20) output(m=1 andr =N) with theith input co-located with théth

. output, only theith row of the transfer function matril(s) can
+ for acceleration measurements: be directly identified. In this case, the matrig in Eqs.(22) is the
v identity matrix, and analogous to the previous case, it is possible
llf/\} L) =CpA2L(t) + CopA " Bu(t). to completely determine the matrik(s). A solution for this case
(1) Was presented by Tseng et (25,26, _
In system identification literature, these two previous cases are

Clearly, these changes lead to some alterations ir{9eg. accord-  considered as the two limit cases. In fact, there is no methodology
ing to the type of measurements used: available that allows us to combine information coming from
outputs and inputs, and the possibility of combining these two
types of information is one of the innovations of the proposed

Ce@T=C.pA? for acceleration measurements. approach. To present this g_eneralization, Iet_ us identifyl\bn

degree-of-freedom system with outputs andr inputs (with m
Analogous to the output matri€,, the output matrice€, and <N andr<N and m+r=N+1), with one co-located sensor—
C, also contain binary informatiofas discussed in Section.3 actuator pair on théth degree-of-freedom. At this point it is use-
Therefore, all we have to do to use the algorithms and discussigasto remind the importance of having at least one pair of co-
of Section 3 is to us€c¢A 1 in Eq. (9c) for velocity measure- located sensor and actuator for the determination of the
ments orCc@A 2 in the case of acceleration measurements. It tsansformation matrixZ; which leads to the presence #fl in the
noteworthy that, in the case of acceleration measurements, omy-r =N+ 1 condition. What is noteworthy in this case is the fact
the first term enters in the identification process while the secotitht neitherC, nor B are squardidentity) matrices and this im-
term, independent of the transformation matrix, needs to be gidies that neither a column nor a row Hii(s) is fully identified.
counted only for simulation purposes. Due to the co-located sensor—actuator pair ai thelegree-of-
In general, one can possibly use all types of measuremefrsedom the entry at thigh row andith column ofH(s) (H;(s))

simultaneously, and in that case each row of the m&gix must is identified. Now, if we consider an input on tihéh degree-of-
be handled separately with regards to the changes discusfeddom and an output on theh degree-of-freedom, we are ca-
above. Once appropriate alterations are made according to pable of determinindd, (s), which represents the component of
type of sensor one uses, the formulations and discussions pis) on thekth row andlth column. The main innovation in this
sented in Section 3 remain unchanged. study is that the formulations developed herein allow us to use the

y(t)=[0 ca]

CcT=C,A for velocity measurements
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Table 3 Identified discrete time matrices of the state-space
model for the uncoupled damping case

$ x 10

9.9520 0.0956 -0.6987 0.2243 0.0072 0.0178
-0.0761  9.8881 -0.5836 -0.6557 0.0264 0.0032
0.6886 0.5640 9.9450 -0.0075 -0.4241 -0.0190
-0.2833  0.7991 0.0135 9.8893  0.1779 -0.0022
0.1586 -0.0056 0.4669 -0.1255 9.6269 0.8757
0.0158 -0.0335 -0.0190 0.0679 -1.0219 9.9322

Cx 10

1.6132 -1.2168 04631 -1.1516 0.1377 -0.0220
Fig. 1 Three-degree-of-freedom system considered for the ap-

plication of the proposed approach 1.4748 0.6048 1.8841 0.2602 0.2798 -0.0377
r’x10
property thatH(s) is symmetric, and hence even though we have 0.4917 0.0904 02763 0.0800 -2.5024 -0.4362

not identified the componemi (s), we can useH,(s) instead.
Therefore, if all the degrees-of-freedom have either an actuator or
a sensor, the entirgh row and/orith column of H(s) can be
determined directly. This implies that it is possible to transform
the general case of sensors and actuators to an equivalent case o
of a full set of sensors or of a full set of actuators. This has bedfe second-order vibrational modes, and therefore, more conven-
possible because of the concept of “input—output equivalencejonal methods that employ the modal damping assumption are
so that for this methodology, it is indifferent to have either anot applicable. Furthermore, we assume that the system is excited
input or an output at each degree-of-freedom. ) by only two actuators, located at the first and the second degrees-
This concept of input—output equivalence is possible becausefreedom and that accelerations are also measured only at two
of the particular eigenvector basis discussed, i.e., the eigenvecigégrees-of-freedonfsecond and third degrees-of-freedowith
for the symmetric eigenvalue problem of the system in EB5. this particular setup, methodologies that require either a full set of
On the other hand, if we were to use the eigenvectors of thensors, or a full set of actuators, are also not applicable.
nonsymmetric problem, the transpose of the eigenvector matrix inThe state-space model is identified using the simulated pulse
Egs. (9a) would be replaced with the inverse of the matiix response data of the systefwith a sampling time ofAT
(dimension N X 2N), and hence, we would be limited to the case-0.05 seg, and by employing the ERA/DC algorithrduang
of either a full set of sensor@lvin and Park[21] or Tseng et al. et al.[13]). Using the identified state-space models for both the

-0.4112  1.2005 02179 -1.2017 0.1888  0.3338

[25,26) or a full set of actuator§Tseng et al[25,26)). coupled and the uncoupled cases, the scaling factorZ; ithe
. eigenvectorsp, and the mass, damping, and stiffness matrices of
5 Numerical Examples the second-order modélM, £, and IC, respectively are re-

To show the validity of the proposed approach, first a simpléieved using the methodology presented in this work.
but general numerical example is presented. The system, shown i
Fig. 1, has been previously studied by Agbabian efldland Koh id
and Seq30]; the values for the mass and stiffness matrices usg
in this study are given in Table 1.

To consider the effects of the modal coupling on the structure
the eigenvectors, we consider two different damping matrices, @ hoint, it is possible to calculate the diagonal transformation

shown in Table 2. The first one leads to the more classical case @lyjy 7-sing the information at the co-located sensor—actuator
modal damping. The second matrix instead induces coupling Ohir, leading to: diagl)=(2.966+j2.322, 8.996 |8.164
6.449+ j4.789), where diagl’) refers to the components on the-
main diagonal of the transformation matrid (with all off-
diagonal terms equal to zerdAs expected, they appear in com-

81 Uncoupled Second-Order Modes. For this case, the
ntified system matrices for the discrete time state space model
presented in Table 3. Once these matrices have been obtained,
they are converted to their continuous time counterparts, and the
8huations are written in the modal coordinates, as in EBBjsAt

Table 1 Mass and stiffness matrices used for the system of

Fig. 1 M Stiff plex conjugate pairs.
ass ttfness Once these scaling factors have been evaluated, the eigenvector
08 00 00| 40 -1.0 -10 matrix ¢ can be identified, as discussed in Section 3. The eigen-
vector matrix has the formb=[ yn i r i st ] and for this
00 20 00|-10 40 -10 case the identified complex eigenvectars, ¥, andys; are
00 00 12| -1.0 -1.0 40 —0.159-j 0.159 0.109+j 0.109
P =| —0.276-j 0.276|; y,=| —0.135-] 0.135(;
Table 2 Damping matrices leading to uncoupled and coupled —0.185-j 0.185 0.274+j 0.274
second-order vibrational modes for the system of Fig. 1 .
0.334+) 0.334
uncoupled coupled Y= —0.031-j 0.031,
04 -01 01| 05 -01 -02 ~0.114-) 0.114
As discussed in Section 2, for a proportionally damped system,
01 04 -01)-01 07 -03 the particular scaling choice employed in the proposed methodol-
01 01 0402 03 06 ogy !ead; to complex eigenvectors whose components have real
and imaginary parts of equal magnitude. Once these eigenvectors
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Table 4 Identified discrete time matrices of the state-space
model for the coupled damping case

P x 10

9.9461 0.3794 -0.5714 0.1773 0.0032 0.0157
-0.3310  9.8771 -0.5938 -0.6294 0.1211  0.0084

0.5782 04676 9.8825 -0.2419 -0.3919 -0.0220

-0.2784 0.8119 03483 9.8572 0.0833 -0.0785 Fig. 2 Truss structure with eight unrestrained degrees-of-
freedom (one horizontal and one vertical for each of the nodes
0.1925 -0.1088 05346 0.0501 9.5282 0.9199 denoted by 1, 2, 3, and 4 )

0.0117 -0.0764 -0.0880 0.1883 -0.9465 9.9287

Cx10 04 -01 -01

£=|-01 04 -01
1.3362 0.0325 1.5306 0.2360 0.2277 -0.0230 ~01 -01 0.4

1.5236 -1.2545 02148 -0.8687 0.0960 -0.0348

I x10 which are exactly the system matrices we used to obtain the dy-
05234 00030 06595 03176 -2.8212  0.0959 namic data. These matrices automatically come out as real, i.e.,
' the imaginary components are of the order of ¥0and therefore
are numerical zeros for all purposes.

-0.5469  1.2525 1.0654 -1.3654 0.2666 0.6835

5.2 Coupled Second-Order Modes. The procedure for
) _ _ ~ coupled systems are exactly the same as for uncoupled systems,
have been obtained, the mass, stiffness, and damping matrices@alg now the matrices we obtain at each step will look different

be evaluated using the expressions presented ir{1By. than the ones obtained in the uncoupled case. In this case, the
08 0 0 40 —-10 -10 identified discrete time system matrices are presented in Table 4
' ' ’ ' while the diagonal entries of the matriX are diag ) =(0.256
M= 0 20 O0f;: K=|-10 40 -10|; +j4.218, 0.479j16.492, 9.986-j0.754). The complex eigen-
0 0 12 -1.0 -1.0 4.0

Table 8 Mass, damping, and stiffness matrices for the truss
system of Fig. 2. Only the unrestrained degrees-of-freedom are
included in these matrices, and the order of the degrees-of-
freedom are chosen as u,, vy, Uy Vy, U3z, V3, Uy, V4.

Table 5 Mean values of the identified samples for the mass,
damping, and stiffness coefficients. The estimates for the coef-
ficients are obtained at 5% RMS noise level.

Mass
Mass Damping Stiffness
100 0 0 0 0 0 0 0
0.797 0.000 0.000 | 0.501 -0.099 -0.201 | 3.984 -0.998 -0.995 0 100 0. 0 0 0 0 0
0.000 2.002 0.000 | -0.099 0.702 -0.301 [ -0.998 4.003 -1.004 0 o] 100 0 0 0 0 0
0.000 0.000 1203 |-0201 -0.301 0.600 | -0.995 -1.004 4.006 0 0 0 100 0 0 0 0
0 0 0 0 100 0 0 0
0 0 0 0 0 100 0 0
Table 6 Absolute values of the percentage errors in the mean 0 0 0 0 0 0 100 0
values of the identified samples for the mass, damping, and 0 o 0 o 0 0 0 100
stiffness coefficients. The estimates for the coefficients are ob- -
tained at 5% RMS noise level. The “-” entries in the tables cor- Damping
respond to coefficients for which the true values are 0. 136.4 0.0 0.0 0.0 -50.0 0.0 -17.7 177
I . 0.0 86.4 0.0 -50.0 0.0 0.0 -17.7 -17.7
Mass Damping Stiffness
0.0 0.0 136.4 0.0 177 17.7 -50.0 0.0
0.36 - -|015 103 048039 0.8 0350 0.0 -50.0 0.0 86.4 177 177 0.0 0.0
- 0.08 -1 103 029 029018 006 0.36 -50.0 0.0 -17.7 17.7 136.4 0.0 0.0 0.0
— - 030[048 029 004|050 036 0.5 00 00T T 00 64 00 00
-17.7 -17.7 -50.0 0.0 0.0 0.0 136.4 0.0
. o ) n -17.7 -17.7 0.0 0.0 0.0 -50.0 0.0 86.4
Table 7 Coefficients of variation (%) of the identified samples * -
for the mass, damping, and stiffness coefficients. The esti- Stiffness
mates for the coefficients are identified at 5% RMS noise level, 27071.1 0.0 0.0 0.0 -10000.0 00 -35355  -3535.5
anq the “-” entries in the tables correspond to coefficients for 00 170711 00 -10000.0 00 00 35355  -3535.5
which the true values are 0.
0.0 00 270711 00 -3535.5 35355 -10000.0 0.0
Mass Damping Stiffness 0.0 -10000.0 00 170711 35355  -35355 0.0 0.0
6.11 _ _12305 897 529|567 626 457 -10000.0 00 -35355 35355 2707L.1 0.0 0.0 0.0
0.0 00 35355  -3535.5 00 170711 0.0 -10000.0
- 0.65 —1 897 296 390|626 063 492
35355  -35355 -10000.0 0.0 0.0 00 270711 0.0
- - 329 529 390 1436|457 492 254 35355 35355 0.0 0.0 00 -10000.0 00 170711
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Table 9 Properly scaled complex mode shapes

(amplified by a factor of 100

for presentation ) for the truss system of Fig. 2 identified with five sensors and
four actuators via the proposed approach. Note that all the eigenvectors
appear in complex conjugate pairs.

1/’1/‘/’?

¢27¢;

1/)37 1/’3

¢47 ¢Z

—0.122 ¥ —0.122;
—1.050 F —1.050y
0.122 £ 0.1229
—1.050 = —1.050;
0.122 £ 0.1229
—1.050 = —1.050;
—0.122 F —0.122)
—~1.050 % —1.0507

—0.243 F —0.2435
0.764 £+ 0.764;
0.243 +0.2437
0.764 + 0.764;

—0.243 F —0.243)

—0.764 F —0.764;
0.243 =+ 0.243;

~0.764 F —0.764)

—0.714 F ~0.714)
—0.227 F —0.2279
—0.714 F —0.7149
0.227 + 0.2279
~0.714 F —0.7149
0.227 + 0.2277
—0.714 F —0.7143
—0.227 F —0.2277

0.621 £ 0.621;
0.197 + 0.197y
—0.621 F —0.621
0.197 +0.197)
0.621 +0.621
—~0.197 + —0.197;
—0.621 F —0.621
—0.197 F —0.197;

T/’s,"l’;

1/’671,[’;

1/)77 1/);

11)87 1/’;

0.191 +0.1915
~0.601 F —0.6017
0.191 £+ 0.1915
0.601 +.0.6017
0.191 £ 0.1917
0.601 + 0.6017
0.191 4 0.1917
—0.601 F —0.6017

0.183 £ 0.183
—0.575 F —0.575
0.183 £ 0.183
0.575 + 0.5757
—0.183 = —0.183)
—~0.575 = —0.575)
—0.183 F—0.183)
0.575 - 0.575

—0.579 F —0.579y
0.067 % 0.0677
0.579 + 0.579;
0.067 + 0.0677
0.579 + 0.579;
0.067 % 0.0677

~0.579 F —0.579;
0.067 % 0.0677

—0.527 F —0.5277
~0.168 F —0.168;
—0.527 F —0.5277
0.168 + 0.168;
0.527 + 0.527)
—0.168 F —0.168;
0.527 & 0.5277
0.168 + 0.168;

vector matrixs still has the same structure as in the previous caswailable at the second and the third masses, and that the response
but now the identified complex eigenvectaps, i,, andds; are  of the structure is due to unit pulses applied at degrees-of-freedom
0166+ 0154 [ 0127+j ooms) L and 2 onk The ouput daia o then polted wib Sassin,
= 0'266+J, 0284 o= _0'161_,J 0.120; (RMS) values are adjusted to be 5% of the unpolluted time histo-
0.207j 0.171 0.251+] 0.296 ries. We consider 200 different noise patterns, and each of the
—0.327-j 0.345 polluted time histories are used to identify a discrete time state-
0.018+] 0.045 space model with ERA. ' _ _
0.139+] 0.0093 Tables 5, 6, and 7 concisely summarize the results of this study.
' ' It can be seen in Table 5 that the mean values of the identified
It is important to see that, since the system is not proportionalamples are very close to the exact values; indeed Table 6 reveals
damped, the relation between the real and imaginary [jdrég that the maximum relative errdin the absolute value sensim
they are equal in magnitude in a proportionally damped system the identified mean values is about 1%. In addition, the coeffi-
not valid anymore. However, this makes no difference on the regénts of variation presented in Table 7 show that the scatters

of the procedure, and the identified physical parameters are  around the mean values for the mass and stiffness estimates are
quite acceptable, especially for the degree-of-freedom with the

Y=

08 0 0 4.0 10 -10 co-located sensor—actuator péiegree-of-freedom)2The coef-
M= 0 20 O0f; K=-10 40 -1.0(; ficients for the damping matrix, however, are generally larger than
0O 0 1.2 ~10 —-1.0 4.0 those of the mass and stiffness matrices. This could partially be
attributed to the high sensitivity of the damping to the phase re-
05 -01 -02 lations between the mode shape components which generically
c=|-01 07 -03 makes the identification of the damping matrix a harder task than
0.2 03 06 the identification of the mass and stiffness matrices. Overall the

results show that the proposed methodology provides extremely

which are identical to the initial second-order matrices. satisfactory results even in the presence of noise perturbations.

5.3 Effects of Noise on Identified Parameters. In order to 5.4 Identification of a Truss Structure. In order to present
discuss, in a statistically meaningful framework, the effects dhe applicability of the proposed methodology to a more complex
noise perturbations on the proposed approach, we perform Mogase, we now consider a two-dimensional truss structure with lim-
Carlo type simulations on the 3-degree-of-freedom system witled number of sensors and actuators. This system, shown in Fig.
nonproportional damping. Here we assume that a long duratidnhas a total number of eight nodes of which four are fully re-
pulse response data in the form of acceleration measurementstiained, and hence the total number of active degrees-of-freedom
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Table 10 Mass, damping, and stiffness matrices for the truss for the rows corresponding to the degrees-of-freedom with actua-

system of Fig. 2 identified with five sensors and four actuators tors (note that the row corresponding ¢q can be identified from
via the proposed approach either (24) or (25) due to the co-location Since all degrees-of-
Mase freedom of this structure are instrumented with either a sensor or
an actuator, all the rows of the matrix can be identified, and
100 0 0 0 0 0 0 91 these eigenvectors are presented in Table 9. Analogous to the case
0 100 0 0 0 0 0 0 of the 3-degrees-of-freedom system with proportional damping,
0 0 100 0 0 0 0 0 also in this case the real and imaginary parts of the eigenvectors
o o o 100 0 o 0 o are equal to each other in magnitude since the damping matrix.of
o o o o 10 . 0 . the truss structure was constructed so as to lead to a classical
damping case.
Y 0 0 0 0 100 0 0 Using the identified complex eigenvector matgix the mass,
0 0 0 0 0 0 100 0 damping, and stiffness matrices can once again be constructed via
o 0 0 0 0 0 0 wo!| EQgs.(18), and these are presented in Table 10. All the identified
Damping quantities are exactly equal to those r_eportec_:l in Table 8 and so_the
proposed methodology has once again provided an exact solution.
136.4 0.0 0.0 0.0 -50.0 0.0 -17.7 -17.7
0.0 86.4 00  -500 00 00 -177 1171 6 Conclusions
00 00 1364 00 177 177 500 00 In this study, a new methodology for the identification of
00 -50.0 00 86.4 17.7 177 00 oo | second-order structural parameters from identified state-space rep-
-50.0 00 -177 177 1364 00 00 00| resentations was presented. It was shown that, with the formula-
tion developed herein, it is possible to formulate the inverse prob-
0.0 0.0 17.7 -17.7 0.0 86.4 0.0 -50.0 . . .
lem as a problem of transforming the identified complex
77 - 500 0.0 00 00 1364 00| eigenvectors to a certain basis. The requirements for a successful
-17.7 -17.7 00 00 00  -500 00 864 |  transformation are that there should be a co-located sensor—
Stiffness actuator pair, and that all the degrees-of-freedom should contain
270711 00 o0 00 100000 o0 as3ss 15| €ithera sensomwor an actuator. The numerical results included in
this study emphasize the efficiency and generality of the proposed
0.0 17071.1 0.0 -10000.0 00 00  -35355 -3535.5 approach.
0.0 00 270711 00 -35355 35355 -10000.0 0.0 The main innovation in this study is that, with the proposed
0.0 -10000.0 00 170711 35355  -3535.5 0.0 0.0 methodology, it is possible to utilize mixed types of information,
-10000.0 00 35355 35355  2707L1 00 00 00| thereby enabling one to treat the information from a sensor or an
actuator in an analogous fashion. This conceptual “input—output
00 00 35355 35355 00 170711 00 -100000 )\ aquivalence” helps relaxing the necessity of having either a full
-35355 35355 -10000.0 00 00 00 27071t 00| set of sensors or a full set of actuators, allowing a more general
35355 -3535.5 0.0 00 00 -10000.0 00 170711 sensor—actuator setup than those required in previously discussed

approaches.
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