Estimation: parts of Chapters 12-13

Wiener and Kalman Filtering

Natasha Devroye <u>devroye@ece.uic.edu</u> http://www.ece.uic.edu/~devroye

Spring 2011

Summary

We look at two examples of sequential estimation:

- Wiener filtering: filtering, smoothing and prediction (wide-sense stationary signals) in sequential LMMSE framework
- Kalman filtering: generalization of Wiener filtering to (non-stationary signals), i.e. sequential MMSE estimator of a signal in noise, where signal characterized by a dynamical model (i.e. tracking)

Signal model: $x[n] = s[n] + w[n], n = 0, 1, 2, \dots N - 1$ where noise w[n] is WSS, zero-mean with $\mathbf{C}_{ww} = \mathbf{R}_{ww}$

Problem: Process x[n] using a *linear* filter to obtain a "de-noised" version of the signal that has *minimum mean square error* relative to the desired signal s[n].

Wiener filtering

Signal model: $x[n] = s[n] + w[n], \ n = 0, 1, 2, \dots N - 1$ where:

- noise w[n] is WSS, zero-mean with $\mathbf{C}_{ww} = \mathbf{R}_{ww}$
- desired signal s[n] is WSS, zero mean with $\mathbf{C}_{ss} = \mathbf{R}_{ss}$
- observed noisy signal x[n] is WSS, zero mean with $\mathbf{C}_{xx} = R_{xx}$

Wiener filtering

Solve all three using general LMMSE estimation

Wiener filtering

http://www.ws.binghamton.edu/fowler/fowler%20personal%20page/EE522_files/EECE%20522%20Notes_28%20Ch_12B.pdf

Wiener filtering

<u>In Principle</u>: Solve WHF Eqs for filter **h** at each n

<u>In Practice</u>: Use Levinson Recursion to Recursively Solve

Kalman filtering

Borrowed heavily from the excellent notes

http://www.ws.binghamton.edu/fowler/fowler%20personal%20page/EE522 files/EECE%20522%20Notes 29%20Ch 13A.pdf http://www.ws.binghamton.edu/fowler/fowler%20personal%20page/EE522 files/EECE%20522%20Notes 29%20Ch 13B.pdf http://www.ws.binghamton.edu/fowler/fowler%20personal%20page/EE522 files/EECE%20522%20Notes 29%20Ch 13C.pdf http://www.ws.binghamton.edu/fowler/fowler%20personal%20page/EE522 files/EECE%20522%20Notes 29%20Ch 13D.pdf

Kalman filtering

- Rudolf Kalman developed in 1960s
- discrete-time and continuous time versions
- used in Control systems, Navigation systems, Tracking systems

Background

- Wiener filter: LMMSE of changing signal (varying parameter)
- Sequential LMMSE: sequentially estimate fixed parameter
- State-space models: dynamical models for varying parameters

 Kalman filter: sequential LMMSE estimation for a time-varying parameter vector that follows a "state-space" dynamical model (i.e. not arbitrary dynamics)

State-space / dynamical models

- **System state:** variables needed to predict system at future times in absence of inputs (i.e. what you need to keep track of)
- Example: constant velocity aircraft in 2-D

$$s(t) = [r_x(t)r_y(t)v_x(t)v_y(t)]^T$$
, where $v_x(t) = V_x, v_y(t) = V_y$ for constant velocity

In discrete-time, take samples every Δ seconds, then if the state at time n is $\mathbf{s}[n]$:

$$\mathbf{s}[n] = \mathbf{A}\mathbf{s}[n] + \mathbf{B}\mathbf{u}[n]$$

$$\begin{bmatrix} r_x[n] \\ r_y[n] \\ v_x[n] \\ v_y[n] \end{bmatrix} = \begin{bmatrix} 1 & 0 & \Delta & 0 \\ 0 & 1 & 0 & \Delta \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} r_x[n-1] \\ r_y[n-1] \\ v_x[n-1] \\ v_y[n-1] \end{bmatrix}$$

Vector Gauss-Markov Model

Linear state model: $s[n] = As[n-1] + Bu[n], n \ge 0$, where

 $\mathbf{s}[n]$: "state vector" is a vector Gauss-Markov process

A: "state transition matrix", with $|\lambda_i| < 1$ for stability

B: "input matrix"

 $\mathbf{u}[n]$: "driving noise" is vector WGN with zero mean

$$\sim \mathcal{N}(\mathbf{0}, \mathbf{Q}), \ E[\mathbf{u}[n]\mathbf{u}^T[m]] = 0, n \neq m$$

 $\mathbf{s}[-1]$: "initial state" $\sim \mathcal{N}(\mu_2, \mathbf{C}_s)$ and independent of $\mathbf{u}[n]$

Thm. 13.1 (Vector Gauss-Markov Model)

For the Gauss-Markov model on the previous page, the signal process $\mathbf{s}[n]$ is Gaussian with mean

$$E[\mathbf{s}[n]] = \mathbf{A}^{n+1} \mu_{\mathbf{s}},$$

and

$$\mathbf{C}_{s}[m, n] = E\left[\left[\mathbf{s}[m] - E[\mathbf{s}[m]]\right] \left[\mathbf{s}[n] - E[\mathbf{s}[n]]^{T}\right]\right]$$

$$= \mathbf{A}^{m+1} \mathbf{C}_{s} \left(\mathbf{A}^{n+1}\right)^{T} + \sum_{k=m-n}^{m} \mathbf{A}^{k} \mathbf{B} \mathbf{Q} \mathbf{B}^{T} (\mathbf{A}^{n-m+k})^{T}$$

for
$$m \geq n$$
,

$$\mathbf{C}_s[m, n] = \mathbf{C}_s^T[n, m] \qquad \text{for } m < n,$$

and

$$\begin{split} \mathbf{C}_{[n]} &:= \mathbf{C}_s[n,n] \\ &= \mathbf{A}^{n+1} \mathbf{C}_s (\mathbf{A}^{n+1})^T + \sum_{k=0}^n \mathbf{A}^k \mathbf{B} \mathbf{Q} \mathbf{B}^T (\mathbf{A}^k)^T \end{split}$$

The mean and covariance propagation equations are

$$E[\mathbf{s}[n]] = \mathbf{A}E[\mathbf{s}[n-1]]$$
$$\mathbf{C}[n] = \mathbf{A}\mathbf{C}[n-1]\mathbf{A}^T + \mathbf{B}\mathbf{Q}\mathbf{B}^T$$

Example - constant velocity 2-D aircraft

$$\mathbf{s}[n] = \mathbf{A}\mathbf{s}[n] + \mathbf{B}\mathbf{u}[n]$$

$$\mathbf{s}[n] = \begin{bmatrix} r_x[n] \\ r_y[n] \\ v_x[n] \\ v_y[n] \end{bmatrix} = \begin{bmatrix} 1 & 0 & \Delta & 0 \\ 0 & 1 & 0 & \Delta \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} r_x[n-1] \\ r_y[n-1] \\ v_x[n-1] \\ v_y[n-1] \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ u_x[n] \\ u_y[n] \end{bmatrix}$$

where we have a random perturbation of the constant velocities with

Have state model, now observation model

- Have a state-space or dynamical system model for the desired signal
- Need a model for the noisy measurements and how it relates to the states (depends on how we acquire the data)

Linear observation model: $\mathbf{x}[n] = \mathbf{H}[n]\mathbf{s}[n] + \mathbf{w}[n]$, where

- $\mathbf{x}[n]$ is the measured observation vector at each time
- $\mathbf{H}[n]$ is the Observation Matrix and can change with time
- $\mathbf{s}[n]$ is the state vector process being observed
- $\mathbf{w}[n]$ is a vector noise process

Estimation problem

Given the linear state-space and observation models, giving us a sequence $\mathbf{x}[0], \mathbf{x}[1], \cdots \mathbf{x}[n]$, we wish to compute an estimate of the state vector $\mathbf{s}[n]$, that is we wish to obtain

$$\hat{\mathbf{s}}[n|n]$$
, where $\hat{\mathbf{s}}[n|m] = \text{estimate of } \mathbf{s}[n] \text{ using } \mathbf{x}[0], \mathbf{x}[1], \dots, \mathbf{x}[m]$

Furthermore, we want a recursive solution, i.e.

Given : $\hat{\mathbf{s}}[n|n]$ and a new observation vector $\mathbf{x}[n+1]$ Find : $\hat{\mathbf{s}}[n+1|n+1]$

Three cases of interest:

- scalar state, scalar observation
- vector state, scalar observation
- vector state, vector observation

Scalar state, scalar observation Kalman

State model: $s[n] = as[n-1] + u[n], u[n] \sim \mathcal{N}(0, \sigma_u^2), \text{ WGN, WSS}$

Observation model: $x[n] = s[n] + w[n], \ w[n] \sim \mathcal{N}(0, \sigma_n^2), \text{ WGN, can depend on } n$

Minimum MSE: let M[n|m] be the minimum MSE incurred when s[n] is estimated based on $x[0] \cdots x[m]$

Additional assumptions:

- initial state if $s[-1] \sim \mathcal{N}(\mu_s, \sigma_s^2)$
- ullet u[n], w[n], s[-1] are all independent
- for now, assume $\mu_s = 0$

Goal: to recursively compute $\hat{s}[n|n] = E[s[n]|x[0], x[1], \cdots x[n]]$ To exploit:

- MMSE estimator for uncorrelated data x_1, x_2 is additive, i.e. $\hat{\theta} = E[\theta|x_1, x_2] = E[\theta|x_1] + E[\theta|x_2]$
- If $\theta = \theta_1 + \theta_2$ then $\hat{\theta} = E[\theta|x] = E[\theta_1|x] + E[\theta_2|x]$

Scalar state, scalar observation Kalman

State model: $s[n] = as[n-1] + u[n], \ u[n] \sim \mathcal{N}(0, \sigma_u^2), \text{ WGN, WSS}$

Observation model: $x[n] = s[n] + w[n], \ w[n] \sim \mathcal{N}(0, \sigma_n^2), \text{ WGN, can depend on } n$

Initialization: $\hat{s}[-1|-1] = E[s[-1]] = \mu_s, M[-1|-1] = \sigma_s^2$

Prediction: $\hat{s}[n|n-1] = a\hat{s}[n-1|n-1]$

Prediction MSE: $M[n|n-1] = a^2M[n-1|n-1| + \sigma_u^2]$

Kalman gain: $K[n] = \frac{M[n|n-1]}{\sigma_n^2 + M[n|n-1]}$

Update: $\hat{s}[n|n] = \hat{s}[n|n-1] + K[n](x[n] - \hat{s}[n|n-1])$

Estimation MSE: M[n|n] = (1 - K[n])M[n|n-1]

Let's derive this!!!

Some observations

- dynamical model provides update from estimate to prediction
- in the Kalman filter, prediction acts like the prior information about the state at time n before we observe the data at time n
- must know noise and initial state distributions and dynamical and observation model

Kalman Filter: Scalar State & Scalar Observation

State Model:
$$s[n] = as[n-1] + u[n]$$
 $u[n]$ WGN; WSS; $\sim N(0, \sigma_u^2)$

Observation Model:
$$x[n] = s[n] + w[n]$$

$$w[n]$$
 WGN; $\sim N(0,\sigma_n^2)$

Must Know: μ_s , σ_s^2 , a, σ_u^2 , σ_n^2

13

Initialization:
$$\hat{s}[-1|-1] = E\{s[-1]\} = \mu_s$$

$$M[-1|-1] = E\{(s[-1]\} - \hat{s}[-1|-1])^2\} = \sigma_s^2$$

Prediction:
$$\widehat{s}[n \mid n-1] = a\widehat{s}[n-1 \mid n-1]$$

Pred. MSE:
$$M[n|n-1] = a^2M[n-1|n-1] + \sigma_u^2$$

Kalman Gain:
$$K[n] = \frac{M[n \mid n-1]}{\sigma_n^2 + M[n \mid n-1]}$$

Update:
$$\hat{s}[n \mid n] = \hat{s}[n \mid n-1] + K[n](x[n] - \hat{s}[n \mid n-1])$$

Est. MSE:
$$M[n \mid n] = (1 - K[n])M[n \mid n - 1]$$

http://www.ws.binghamton.edu/fowler/fowler%20personal%20page/EE522_files/EECE%20522%20Notes_29%20Ch_13B.pdf

Kalman Filter: Vector State & Scalar Observation

State Model:
$$\mathbf{s}[n] = \mathbf{A}\mathbf{s}[n-1] + \mathbf{B}\mathbf{u}[n] \quad \mathbf{s} \ p \times 1; \mathbf{A} \ p \times p; \mathbf{B} \ p \times r; \mathbf{u} \sim N(\mathbf{0}, \mathbf{Q}) \ r \times 1$$

Observation Model:
$$x[n] = \mathbf{h}^{T}[n]\mathbf{s}[n] + w[n]; \quad \mathbf{h}^{T}[n] p \times 1 \quad w[n] \text{ WGN}; \quad \sim N(0, \sigma_n^2)$$

Initialization:
$$\hat{\mathbf{s}}[-1 \mid -1] = E\{\mathbf{s}[-1]\} = \boldsymbol{\mu}_s$$
 Must Know: $\boldsymbol{\mu}_s$, \mathbf{C}_s , \mathbf{A} , \mathbf{B} , \mathbf{h} , \mathbf{Q} , σ^2_n

$$\mathbf{M}[-1 \mid -1] = E\{(\mathbf{s}[-1]\} - \hat{\mathbf{s}}[-1 \mid -1])(\mathbf{s}[-1]\} - \hat{\mathbf{s}}[-1 \mid -1])^T\} = \mathbf{C}_s$$

Prediction:
$$\hat{\mathbf{s}}[n \mid n-1] = \mathbf{A}\hat{\mathbf{s}}[n-1 \mid n-1]$$

Pred. MSE
$$(p \times p)$$
: $\mathbf{M}[n \mid n-1] = \mathbf{A}\mathbf{M}[n-1 \mid n-1]\mathbf{A}^T + \mathbf{B}\mathbf{Q}\mathbf{B}^T$

Kalman Gain
$$(p \times 1)$$
:
$$\mathbf{K}[n] = \frac{\mathbf{M}[n \mid n-1]\mathbf{h}[n]}{\sigma_n^2 + \underbrace{\mathbf{h}^T[n]\mathbf{M}[n \mid n-1]\mathbf{h}[n]}_{\text{ixl}}}$$

Update:
$$\hat{\mathbf{s}}[n \mid n] = \hat{\mathbf{s}}[n \mid n-1] + \mathbf{K}[n](x[n] - \underbrace{\mathbf{h}^{T}[n]\hat{\mathbf{s}}[n \mid n-1]}_{\hat{x}[n \mid n-1]})$$

Est. MSE
$$(p \times p)$$
: : $\mathbf{M}[n \mid n] = (\mathbf{I} - \mathbf{K}[n]\mathbf{h}^T[n])\mathbf{M}[n \mid n-1]$

14

 $\widetilde{x}[n]$: innovations

Kalman Filter: Vector State & Vector Observation

State Model: $\mathbf{s}[n] = \mathbf{A}\mathbf{s}[n-1] + \mathbf{B}\mathbf{u}[n]$ $\mathbf{s} \ p \times 1; \mathbf{A} \ p \times p; \mathbf{B} \ p \times r; \mathbf{u} \sim \mathbf{N}(\mathbf{0}, \mathbf{Q}) \ r \times 1$

Observation: $\mathbf{x}[n] = \mathbf{H}[n]\mathbf{s}[n] + \mathbf{w}[n]; \quad \mathbf{x} \ M \times 1; \ \mathbf{H}[n] \ M \times p; \mathbf{w}[n] \sim \mathbf{N}(\mathbf{0}, \mathbf{C}[n]) \ M \times 1$

Initialization: $\hat{\mathbf{s}}[-1|-1] = E\{\mathbf{s}[-1]\} = \mathbf{\mu}$ Must Know: $\mathbf{\mu}_s$, \mathbf{C}_s , \mathbf{A} , \mathbf{B} , \mathbf{H} , \mathbf{Q} , $\mathbf{C}[n]\}$

 $\mathbf{M}[-1 \mid -1] = E\{(\mathbf{s}[-1]\} - \hat{\mathbf{s}}[-1 \mid -1])(\mathbf{s}[-1]\} - \hat{\mathbf{s}}[-1 \mid -1])^T\} = \mathbf{C}_s$

Prediction: $\hat{\mathbf{s}}[n \mid n-1] = \mathbf{A}\hat{\mathbf{s}}[n-1 \mid n-1]$

Pred. MSE $(p \times p)$: $\mathbf{M}[n \mid n-1] = \mathbf{A}\mathbf{M}[n-1 \mid n-1]\mathbf{A}^T + \mathbf{B}\mathbf{Q}\mathbf{B}^T$

Kalman Gain $(p \times M)$: $\mathbf{K}[n] = \mathbf{M}[n \mid n-1]\mathbf{H}^T[n] \left(\mathbf{C}[n] + \underbrace{\mathbf{H}[n]\mathbf{M}[n \mid n-1]\mathbf{H}^T[n]}_{\mathbf{M} \in M}\right)^{-1}$

<u>Update</u>: $\hat{\mathbf{s}}[n \mid n] = \hat{\mathbf{s}}[n \mid n-1] + \mathbf{K}[n](\mathbf{x}[n] - \mathbf{H}[n]\hat{\mathbf{s}}[n \mid n-1])$

 $\widetilde{\mathbf{x}}[n]$: innovations

15

Est. MSE $(p \times p)$: $\mathbf{M}[n \mid n] = (\mathbf{I} - \mathbf{K}[n]\mathbf{H}[n])\mathbf{M}[n \mid n-1]$

http://www.ws.binghamton.edu/fowler/fowler%20personal%20page/FF522_files/FFCE%20522%20Notes_29%20Ch_13B.pdf

Properties of the Kalman filter

- extension of sequential MMSE (fixed parameter) to time-varying parameter with a known dynamical model
- Kalman filter is a time-varying filter (Kalman gain changes with n)
- Kalman filter computes and uses its performance measure M[n|n]
- prediction increases error, update decreases error

- as n→∞ Kalman filter reaches "steady-state" and becomes a linear timeinvariant filter (i.e. k[n] constant, M[n|n] constant)
- Kalman filter created uncorrelated sequence of "innovations"
- Kalman filter is optimal for Gaussian, if not Gaussian, optimal Linear MMSE
- M[n|n-1], M[n|n], K[n] can be computed off-line (ahead of time)

More observations

- Kalman vs Wiener?
- What about if don't have linear observation and dynamical models?

• Much more to know about Kalman filter!!!