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Summary

We look at two examples of sequential estimation:

e Wiener filtering: filtering, smoothing and prediction (wide-sense stationary
signals) in sequential LMMSE framework

e Kalman filtering: generalization of Wiener filtering to (non-stationary sig-
nals), i.e. sequential MMSE estimator of a signal in noise, where signal char-
acterized by a dynamical model (i.e. tracking)

Signal model: z[n] = s[n] +w[n], n=0,1,2,--- N — 1 where noise w[n| is WSS,
zero-mean with C,, = Ryw

Problem: Process z[n| using a linear filter to obtain a “de-noised” version of the
signal that has minimum mean square error relative to the desired signal s[n].




Wiener filtering

Signal model: z[n] = s[n| +w[n], n=0,1,2,--- N — 1 where:
e noise win| is WSS, zero-mean with C,,,, = Ry

e desired signal s[n] is WSS, zero mean with Cys = Ry

e observed noisy signal x[n] is WSS, zero mean with C,, = R,
Filtering Smoothing Prediction
Given: x[0], x[1], ..., x[n] Given: x[0], x[1], ..., x[N-1] Given: x[0], x[1], ..., x[N-1]

Find: §[n] Find: 3[0], 3[11,..., S[N —1] Find: XN+, [>0
x[n] x[n] x[n]
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Wiener filtering

Solve all three using general LMMSE estimation

Cx

x rr

0 =Cy

Filtering Smdothin Prediction
Given: x[0], x[ 11,4, x[n] Given: x[0\J[11, ..., x[N-1] [0, X[1], ..., x[N-1]

Find: §[n] Find: 3[0], 3[11,..., SN —1] Find: XN +/], [>0
x[n] x[n] x[n]
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Wiener filtering
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Wiener filtering
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Wiener Filter as
Time-Varying FIR
Filter

e Causal!

h:[h(")[O] A h"”[n]]T

:[an Ap-1 - aO]T

. . . . e Length G !
Wiener-Hopf Filtering Equations St
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Symmetric & Toeplitz

In Principle: Solve WHF Egs for filter h at each n

In Practice: Use Levinson Recursion to Recursively Solve 13
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Kalman filtering

Borrowed heavily from the excellent notes
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Kalman filtering

¢ Rudolf Kalman developed in 1960s
e discrete-time and continuous time versions

¢ used in Control systems, Navigation systems, Tracking systems




Background

¢ Wiener filter: LMMSE of changing signal (varying parameter)

e Sequential LMMSE: sequentially estimate fixed parameter

e State-space models: dynamical models for varying parameters

¢ Kalman filter: sequential LMMSE estimation for a time-varying parameter
vector that follows a “state-space” dynamical model (i.e. not arbitrary
dynamics)

State-space / dynamical models

¢ System state: variables needed to predict system at future times in absence
of inputs (i.e. what you need to keep track of)

e Example: constant velocity aircraft in 2-D

s(t) = [re(t)ry (t)ve (t)v, (1)]F, where v, (t) = V,, v, (t) = V,, for constant velocity

In discrete-time, take samples every A seconds, then if the state at time n is s[n|:

s[n] = As[n] +Buln]

5[N] 1 0 A 0 ry[n — 1]
ryln] | 10 1 0 A ry[n —1]
ven) | O 0O 1 O vg[n — 1]
vy[n] 00 0 O vy[n — 1]




Vector Gauss-Markov Model

Linear state model: s[n| = As[n — 1] + Bun|, n > 0, where

s[n| : “state vector” is a vector Gauss-Markov process
A : “state transition matrix”, with |\;| < 1 for stability
B : “input matrix”

u[n] : “driving noise” is vector WGN with zero mean

~N(0,Q), Elu[n]u”[m]] =0,n#m
s[—1] : “initial state” ~ N (2, Cs) and independent of u[n]

Thm. 13.1 (Vector Gauss-Markov Model)

For the Gauss-Markov model on the previous page, the signal process s[n] is Gaussian with mean
Efs[n]] = A"+,
and

Cilm.n] = B [[s[m] — Elslm]] [s[] — Els[n])"]

— Am+1cs (An+1)T + Z AkBQBT(Anferk)T
k=m-—n

for m > n,

C.[m,n] = CT[n,m] for m < n,

and
Cn] := Cs[n,n|

_ A7L+ICS(A'VL+1)T + ZAkBQBT(Ak)T
k=0

The mean and covariance propagation equations are

E[s[n]] = AE[s[n — 1]]
C[n] = AC[n — 1]AT + BQB”




Example - constant velocity 2-D aircraft

s[n] = As[n] + Bu[n]
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Have state model, now observation model

e Have a state-space or dynamical system model for the desired signal

e Need a model for the noisy measurements and how it relates to the states
(depends on how we acquire the data)

Linear observation model: x[n] = H[n|s[n] + w(n|, where
e x[n| is the measured observation vector at each time
e Hjn] is the Observation Matrix and can change with time
e s[n| is the state vector process being observed

e w(n| is a vector noise process




Estimation problem

Given the linear state-space and observation models, giving us a sequence
x[0], x[1], - - - x[n], we wish to compute an estimate of the state vector s[n],
that is we wish to obtain

§[n|n], where §[n|m| = estimate of s[n| using x[0], x[1], - - - x[m)]

Furthermore, we want a recursive solution, i.e.

Given : §[n|n] and a new observation vector x[n + 1]
Find : §[n+ 1|n + 1]

Three cases of interest:

o@ate, scalar observ@

e vector state, scalar observation

e vector state, vector observation

Scalar state, scalar observation Kalman

State model: s[n] = as[n — 1] + u[n|, u[n] ~N(0,02), WGN, WSS
Observation model: z[n] = s[n] + w[n|, w[n] ~ N(0,02), WGN, can depend on n

Minimum MSE: let M[n|m] be the minimum MSE incurred when s[n| is estimated
based on z[0] - - - x[m]

Additional assumptions:
e initial state if s[—1] ~ N (s, 02)
e u[n|,w[n], s[—1] are all independent
e for now, assume pgs =0

Goal: to recursively compute §[n|n] = E[s[n]|z[0], z[1], - - - z[n]]
To exploit:

e MMSE estimator for uncorrelated data z1,z, is additive, i.e. § = Elf|zy,zs] =
E[0]2z1] + E[0]2]

o If 0 = 0; + 0y then 0 = E[f|z] = E[0y|x] + E[0,]x]




Scalar state, scalar observation Kalman

State model: s[n| = as[n — 1] +u[n], u[n] ~ N(0,02), WGN, WSS

Observation model: z[n] = s[n] + w[n|, wln] ~ N(0,02), WGN, can depend on n
Initialization: §[—1| — 1] = E[s[-1]] = ps, M[-1] — 1] = o2

Prediction: s[njn — 1] = asjn — 1jn — 1]

Prediction MSE: M[n|n — 1] = a*M[n — 1jn — 1| + o2

Kalman gain: K[n] = %
Update: $[n|n| = $[n|n — 1] + K[n](z[n] — §[n|n — 1])

Estimation MSE: M[n|n| = (1 — K[n])M[n|n — 1]

Let’s derive this!!!

Some observations

e dynamical model provides update from estimate to prediction

¢ in the Kalman filter, prediction acts like the prior information about the state at
time n before we observe the data at time n

e must know noise and initial state distributions and dynamical and observation
model




Kalman Filter: Scalar State & Scalar Observation

State Model: slal=asln—1]+ulnl|  uln] WGN:; WSS; ~ N(0,0,)
Observation Model: |x[n] =s[n]+ w[n]| w[n] WGN; ~ N(O,an)
|
A . 2 2 2
Initialization: S[=11-1]= E{s[-1]} = g, Must Know: u, % ,a,6?,06°%,

M[=11-11= E{(s[-1]}=§[-11-1])*} = o>

Prediction: Slnin-1]=asln—-11n-1]]

Pred. MSE: Mnln—-1]=a’M[n-11n—1]+o;

Kalman Gain: K[n]= GEA;IE‘T[Z I_nl]— 5

Update: |§[n|n]=§[n|n—1]+K[n](x[n]—§[n|”_1])|

Est. MSE: [Mnin)=(-K[n)M[nIn-1]| 3

Kalman Filter: Vector State & Scalar Observation

State Model: |S[n] =As[n—1]+Buln] s px1;Apxp;Bpxriu~N(0,Q)rxI

Observation Model: |x[n] =h"[nls[n]+wn]; h'[n] px 1| w[n] WGN; ~ N(O,Uj)

I
Must Know: p,C, A, B, h,Q, 2,

Initialization: S-11-1]= E(s[-1]} =,

MI-11-1]= E{(s[-11}~8[-11 ~1)(s[- 1]} —8[~11-1])" }=C,
Prediction: s[n1n—11= A§[n—11n-1]]
Pred. MSE oxp):  (M[nln—1]= AM[n—1In—1]A” + BQB'

) Kln]= M|nln—1]h[n]
Kalman Gain (px1): 0_3 +h’ [2]M[n| n—1]h[n]

1x1

Update: S[nln]=8[nln—-1]+K[n](x[rn]-h [n]:[[nzll? —1])

X[n]: innovations

Est. MSE (pxp)::  |M[nln]=(1-K[nlh'[2]M[n|n—1]




Kalman Filter: Vector State & Vector Observation

State Model:  [s[n]= As[n—1]+Bu[n] s px1;Apx p;B pxriu~N(0,Q)rxI|

Observation: |x[n] =H[n]s[n]+w[n]; x M x1; H[n] M x p;w[n] ~ N(0,C[n]) M ><1|

Initialization: §[-11-1]=E{s[-1]}=p I Must Know: i, C, A, B, H, Q, C[n]}
M[-1I-1]= E{(S[—l]}—§[—1 [ 1] (s[-1]}—S[-1] —1])T }= C,

Prediction: 8[n1n—11= A3[n—11n-1]|

Pred. MSE (pxp):  M[nln—11=AM[n—11n—1]A" + BQB"

Kalman Gain (pxM): |K[n]=M][n|n—-1H" [n]| C[n]+H[n]M[n|n—-1]H" [n]

MxM
Update: s[nln]=8[nln-1]+K[n](x[n]—H[r]S[n|n-1])
%f—/
X[nln—1]
X[n]: innovations
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Est. MSE (pxp): : |M[n | n]=(1-K[n]H[n])M[n|n—1]

Overview of MMSE Estimation

Assume Gen. MMSE Force Linear
“Squared” Cost Function Any PDF

Gaussian

0= E{01x} Known 2" Moments|

Jointly
Gaussian

0= E{0}+ Cp, C1l (x - E{x})

Bayesian
Linear

Model

0=pg+CoH” (HC(,HT + CWTI(X —Hpyg)

Optimal N N N Linear
Seq. Filter 0,=0,+k, [x[n] - hﬁen_,] Seq. Filter
(No Dynamics) (No Dynamics)

Linear
alman Filten
(w/ Dynamics)

Optimal
Kalman Filter
(w/ Dynamics)

s[nin]=S8[nln—-1]+K[n](x[n]-H[n]AS[n—1In—-1])




Properties of the Kalman filter

¢ extension of sequential MMSE (fixed parameter) to time-varying parameter
with a known dynamical model

e Kalman filter is a time-varying filter (Kalman gain changes with n)
e Kalman filter computes and uses its performance measure M[n|n]

M[514]
M[6l5
. . . M[716]
» prediction increases error, update decreases error ‘MWW

® as n—oo Kalman filter reaches “steady-state” and becomes a linear time-
invariant filter (i.e. k[n] constant, M[n|n] constant)

e Kalman filter created uncorrelated sequence of “innovations”
e Kalman filter is optimal for Gaussian, if not Gaussian, optimal Linear MMSE

e M[n|n-1], M[n|n], K[n] can be computed off-line (ahead of time)

More observations

e Kalman vs Wiener?

¢ What about if don’t have linear observation and dynamical models?

* Much more to know about Kalman filter!!!




