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Cadzow’s basic algorithm, alternating projections
and singular spectrum analysis

Jonathan Gillard

After observing a noisy time series or signal, it is com-
mon practice to try to separate the noise from the observed
measurements. Singular value decomposition based methods
are often used to split the observed signal into a number of
components. Components associated with noise may be re-
moved from the signal, and subsequent analyses may be un-
dertaken. This paper will describe two methods commonly
used to remove noise from a signal; the so-called singular
spectrum analysis, and Cadzow’s basic algorithm. Connec-
tions between both methods will be drawn, and both will be
related to the method of alternating projections, and struc-
tured low rank approximation (finding a lower rank approx-
imation of a given matrix with specified structure). A sim-
ulation study and example based on real data will highlight
and explain the differences between both methods.

AMS 2000 subject classifications: Primary 62M10,
62M15; secondary 62P99.
Keywords and phrases: Alternating projections, Cad-
zow, SSA, Structured low rank approximation.

1. INTRODUCTION

Let YT = (y1, . . . , yT ) denote a noisy real-valued time
series or signal. A common requirement is to apply some
denoising methodology to YT in order to try to separate the
noise from the signal. Common approaches map the one-
dimensional YT to a multidimensional series of lagged vec-
tors to be contained within some L×K matrix. This permits
further analysis.

Such a mapping puts YT into a structured matrix (com-
monly Hankel) and singular value decomposition (SVD)
methods are regularly used to deconstruct the matrix into
a sum of rank-one components. Under certain conditions,
components which are associated with noise, and compo-
nents associated with the true signal may be separated. This
procedure may be run iteratively. An example of a SVD-
based method includes singular spectrum analysis (SSA)
which, under certain conditions and constraints, may be
viewed as one iteration of Cadzow’s basic algorithm. Cad-
zow’s iterations use SVD’s within an alternating projections
framework.

The aim of this paper is to draw connections between
SSA and Cadzow’s basic algorithm in relation to denoising
a time series or signal. The corresponding implications for
forecasting are discussed. Section 2 will describe the method
of alternating projections in general. Section 3 will outline
Cadzow’s basic algorithm and SSA. Both methods will be
related to the wider problem of finding a low-rank approxi-
mation of a structured matrix. Section 4 contains a simula-
tion and an example comparing SSA and Cadzow’s iterative
algorithm. Section 5 will conclude the paper.

2. ALTERNATING PROJECTIONS

Let α and β denote two sets, and let Pα and Pβ de-
note projections onto α and β respectively. The alternating
projections algorithm (also known as the lift and project al-
gorithm [4], pp. 254–257) begins with a point α0 in α, and
alternately projects onto α and β such that βi = Pβ(αi),
αi+1 = Pα(βi), for i = 0, 1, . . .. If α ∩ β �= ∅, then the
sequences {αi} and {βi} converge to some value (not nec-
essarily in a finite number of iterations). Further details are
provided in [4], page 256. The method of alternating pro-
jections is the main idea behind Cadzow’s iterative method
described in the next section.

Generally, the method of alternating projections is slow
and can be computationally intensive. The idea however is
simple, and is readily extended to sequential or cyclic pro-
jections onto many sets. If the sets α and β are closed
and convex, the method of alternating projections has a
well described theory (see for example, [2, 4, 3, 6, 11, 8]
and [14]) and has successful uses in many applications. In
many applications, one or both of the sets may not be
convex, or closed. The behaviour and reliability of the al-
ternating projections algorithm also suffers as a result of
having a non-convex set involved in the repeated projec-
tions [1].

3. CADZOW’S ALGORITHM AND SSA

This section will describe the two methods under discus-
sion in this paper: Cadzow’s basic algorithm [2], and SSA
[9]. Both rely heavily on the implementation of SVD’s.
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3.1 Cadzow’s basic algorithm

Let YT be mapped onto an L × K Hankel matrix X as
follows:

(1) X = [X1, . . . , XK ] =

⎛
⎜⎜⎜⎝

y1 y2 · · · yK

y2 y3 · · · yK+1

...
...

...
...

yL yL+1 · · · yT

⎞
⎟⎟⎟⎠ .

Using the terminology of SSA (described in the next section)
L is a parameter known as the window length, an integer
such that 2 ≤ L ≤ T . The window length L is the sole
parameter in this mapping. Selection of L depends on the
problem in hand and on preliminarily information about
YT . Namely, if we know that YT has a periodic component
with an integer period, then for better separability of this
component it is advisable to take L proportional to that
period (see [13]). Theoretical results tell us that L should
be large enough but not greater than T

2 (see for example
[9]).

The SVD of X is given by X = UΣV T where Σ =
diag(σ1, . . . , σL), σ1 ≥ · · · ≥ σL. The singular values may
be adjusted by applying some function f (in order to ob-
tain a modified least squares estimate [21], a minimum vari-
ance estimate [5], a time-domain constraint estimate [7] or to
achieve some other estimate [18]) and the SVD of X is trun-
cated to rank r: Xr = U1f(Σ1)V T

1 where U = [ U1︸︷︷︸
r

; U2︸︷︷︸
L−r

],

V = [ V1︸︷︷︸
r

; V2︸︷︷︸
K−r

], and Σ1 = diag(σ1, . . . , σr). The recon-

structed signal component is estimated from Xr by aver-
aging across its anti-diagonals. This is equivalent to find-
ing a Hankel matrix approximation of Xr. These steps may
be applied iteratively, where the algorithm can recommence
with the estimated true signal. These steps aid in denoising
the signal (if any noise is present), prior to estimation of
any parameters. Typically, noise components are associated
with small singular values.

Inherent within this method is the assumption that the
pure signal lies in a low-dimensional subspace of R

T . A typ-
ical aim of many signal processing methods is to approxi-
mate this subspace, and estimate the signal within it. This
assumption may not hold exactly in all applications, but
is nevertheless a good model for some signals [12] and has
worked well in speech processing [16]. Denoising, in the con-
text described above, should at least take us some way in
approximating this low-dimensional subspace. It is difficult
to quantify by how much we are able to denoise; this is likely
to depend on the application, and the type of noise observed
in the signal (if any). Further details are included in [10].

Examples of the function f include f(Σ) = (Σ2 −
Lσ2

noiseI)
1
2 , with σ2

r > Lσ2
noise and σ2

noise is an estimate
of the variance of the noise within the signal. The minimum
variance method takes f(Σ) = (Σ2 − Lσ2

noiseI)Σ−1 [5].

Cadzow’s basic algorithm takes f(Σ) = Σ (see [2],
[5]), with fixed L and K, and iterates by taking the out-
putted cleaned data vector, ŶT say, and repeating the above
method. This can be repeated for a number of iterations,
or until the algorithm converges to some value within some
specified tolerance.

3.2 Basic SSA

One iteration of Cadzow’s basic algorithm under certain
constraints corresponds to the basic SSA. The main purpose
of SSA is to decompose the original series into a sum of se-
ries, so that each component in this sum can be identified
as either a trend, periodic or quasi-periodic component, or
noise (details of how to do this in practice are included in [9],
and more recently in [13]). This is followed by a reconstruc-
tion of the original series. The SSA technique consists of
two complementary stages: decomposition and reconstruc-
tion. Briefly, the basic SSA algorithm is as follows (for more
details see [9]).

As in equation 1, let X = [X1, . . . XK ] where Xi =
(yi, . . . , yi+L−1)T ∈ R

L. Again we map YT onto a Hankel
matrix consisting of L-lagged vectors {Xi, i = 1, . . . , K}
such that 2 ≤ L ≤ N . From the matrix XXT the eigenval-
ues and eigenvectors are found. Let XXT = PΛPT where
Λ = diag(λ1, . . . , λL) is a matrix of ordered eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λL ≥ 0 and P is the matrix containing
corresponding eigenvectors P = (P1, . . . , PL).

To obtain a rank r approximation of X, the first r eigen-
vectors corresponding to λ1, . . . , λr are chosen. The rank r
approximation to X is then given by

X̂ =
r∑

j=1

PjP
T
j X.

Averaging over the anti-diagonals of X̂ yields the estimate
ŶT of YT .

3.3 Comparison of Cadzow’s algorithm and
SSA

One iteration of Cadzow’s algorithm will yield identical
results to SSA if the parameters L and r are chosen to be
the same in both methods. Thus iterations of Cadzow’s al-
gorithm may be viewed as a form of iterated SSA. This is
known as sequential SSA [9]. In [22] and [23] sequential SSA
is described, and both papers offer reasons why it might be
advantageous to alter L between iterations.

Cadzow [2] showed that by truncating the SVD to r
terms, and iterating via his rank-reduction and averaging
process does lead to a rank r Hankel matrix. De Moor [5]
however demonstrated that this may not be the desired ma-
trix. It is claimed however that averaging across the anti-
diagonals works well in practice [12]. As SSA is just one
iteration of Cadzow’s algorithm, a reconstructed series ob-
tained via SSA will not necessarily be of rank r.
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Cadzow’s algorithm is therefore a heuristic solution
method, which is suboptimal in terms of the L2 optimal-
ity criterion [5]. It is nevertheless a simple method that is
readily implemented. The example used by De Moor [5] to
demonstrate the sub-optimality of Cadzow’s algorithm is
simplistic however. Further details concerning the perfor-
mance of Cadzow’s algorithm are included in [19].

3.4 Structured low rank approximation

Both SSA, and Cadzow’s iterative methods are closely as-
sociated with the structured low-rank approximation prob-
lem defined as follows (for further details see [15]). Given
a structured matrix X and an integer r < min(L, K), the
structured matrix low-rank approximation (SLRA) problem
is as follows:

min
X̂

‖X−X̂‖ subject to
{

rank(X̂) ≤ r;
X̂ has the same structure as X.

In our context X is a Hankel matrix formed from some signal
or time series. The idea is to perturb the matrix X by a small
error ΔX such that X +ΔX becomes rank deficient (and at
most r). The distance ‖X̂ − (X + ΔX)‖ should be ‘small’.
Examples of alternative structures for the matrix X include
Toeplitz, block-Hankel, block-Toeplitz and circulant.

Finding the nearest matrix, of rank r, to X that pos-
sesses the same structure as X is linked to the problem of
structured total least squares. Total least squares aims to
find an approximate solution of the overdetermined linear
system Ax ≈ b where both A and b are perturbed by error.
There are obvious analogies with this problem, and that of
finding a lower rank approximation of the matrix X = [A b].
There are many papers describing the methodology and ap-
plications of total least squares. A review of the problem
is conducted in the book [20]. If A and b are also required
to have structure, this is known as structured total least
squares.

Structured total least squares aims to estimate the pa-
rameter x in the Ax ≈ b. SSA is viewed as a non-parametric
method, and so the estimation of the parameter x is not of
primary importance. The SVD is the main tool used for total
least squares and SSA, with both methods finding the clos-
est subspace (in terms of Frobenius norm) to the observed
data.

3.5 Conditions for separability

Given that the method of alternating projections used in
the algorithms discussed in this paper depend heavily on the
use of SVD, it is useful to identify the conditions in which
the SVD can separate the noise from the signal. For the
signal YT , it often follows that YT = Ytrue + Ynoise, and so
X = Xtrue + Xnoise. This is an assumption, and might not
always hold true [12]. Derivations of the conditions which
allow for Xtrue to be reconstructed via an SVD are included

in [21]. Assume that the SVD of Xtrue is given by

Xtrue = [ U1︸︷︷︸
r

; U2︸︷︷︸
L−r

]
[

Σ1 0
0 0

]
[ V1︸︷︷︸

r

; V2︸︷︷︸
K−r

]T

where Σ1 = diag(σ1, . . . , σr).
The conditions which allow for the separability of Xtrue

from X are:

1. XT
trueXnoise = 0;

2. V1 and V2 must be orthogonal in the inner product
XT

noiseXnoise;
3. The singular value σr must be bigger than σr+1 in the

SVD of X.

The success of SVD-type algorithms depend on these as-
sumptions, as then the rank of Xtrue and the subspaces
generated by V1 and V2 may be estimated consistently. The
SVD is however robust to mild violations of these assump-
tions. These assumptions can be summarised by the follow-
ing orthogonalities: let Sl (Sr) be the linear spaces spanned
by the left (right) singular vectors of Xtrue. Analogously let
Nl and Nr be the linear spaces spanned by the left (right)
singular vectors of Xnoise. Let the sets of singular values
of Xtrue and Xnoise be ΣS and ΣN respectively. The con-
ditions needed to reconstruct Xtrue from X are: Sl ⊥Nl,
Sr ⊥Nr and ΣS ∩ΣN = ∅. The condition ΣS ∩ΣN = ∅ can
be made simpler by making the sets ΣS and ΣN distinct.
Smaller singular values are usually associated with noise,
and so in general all singular values of ΣS are bigger than
those in ΣN . However, as stated in [20], the conditions de-
scribed above are never satisfied exactly. The final condition
is the one most likely to hold. The SVD is however robust
to mild violations of these conditions. If ‖XT

trueXnoise‖ is
small (for any norm ‖ · ‖) the SVD will deliver satisfactory
approximations to Sl and Sr (see [20], for example).

Cadzow’s composite property algorithm and SSA decom-
pose the SLRA into two smaller problems; namely that of

1. finding a low-rank matrix approximation of X where
rank (X) ≤ r,

2. finding a structured Hankel matrix.

In terms of the alternating projections described in Section
2, let α be the set of all matrices of size L × K with rank
≤ r, and let β be the set of all Hankel structured matri-
ces. For SSA and Cadzow’s basic algorithm, Pα corresponds
to the truncation of the SVD of X to r terms by setting
the smallest K − r singular values to 0. Pβ corresponds to
the averaging of the anti-diagonals of this new rank-reduced
matrix, in order to obtain a Hankel approximation.

4. EXAMPLE AND DISCUSSIONS

4.1 Comparison of Cadzow’s algorithm with
SSA

This simulation example will use the signal originally
used by Cadzow (in [2]) to illustrate his alternating projec-
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Figure 1. RMSE against number of Cadzow iterations for varying rank.

tions algorithm. The signal used by Cadzow had the func-
tional form

ft = 15 cos(0.25πt) + 10 cos(0.71πt), t = 1, . . . , 50.

In this section, the performance of Cadzow’s basic algo-
rithm in denoising a signal is described via root mean square
error (RMSE). This is defined as√√√√ T∑

t=1

(yt − ŷt)2

T

where T is the number of observed points. Figure 2 contains
plots of RMSE (averaged over 1,000 simulations) against the
number of Cadzow iterations, with different truncations of
the SVD (r = 2, 3, 4, 5), applied to the signal yt = ft + εt

where each εt is a i.i.d. normally distributed random variable
with zero mean, and variance 10. The rank of the noise-free
signal is 4, and so the optimal truncation of the SVD is at
the first 4 singular values (r = 4). For an observed signal in
practise however, the rank of the true signal is unlikely to be
known a priori. One iteration of Cadzow’s basic algorithm
corresponds to the basic SSA, and so this allows comparison
of SSA with each additional Cadzow iteration. The param-
eter L was chosen to be half of the number of observations
taken from the signal, and this is common practise (see [9]).

Figure 1 demonstrates that if the rank selected is smaller
than the rank of the true signal (namely if the SVD is trun-
cated to 1, 2 or 3 terms respectively) additional iterations of
Cadzow’s basic algorithm increase the RMSE, and then re-
main relatively stable after 10 iterations. If the SVD is trun-
cated to too few terms, then the signal is over-smoothed and
the approximation does not reflect the intricacies of the sig-
nal. The smallest RMSE is achieved after one Cadzow iter-
ation, which corresponds to basic SSA. The smallest RMSE
is achieved when the signals’ true rank is selected, and the

RMSE is stable regardless of how many Cadzow iterations
are performed. If too many terms are included in the trun-
cation of the SVD (r > 4), the approximation is absorbing
some of the error εt, t = 1, . . . , 50. Analogously, the RMSE
is stable regardless of how many Cadzow iterations are per-
formed.

It is well documented however (see [17]) that performing
an SVD on a given large matrix is computationally expen-
sive. Given that each iteration of Cadzow’s basic algorithm
involves such an operation, it is computationally beneficial
to avoid computing many SVD’s. Figure 1 demonstrates
that for the signal used in this example, there is little to
be gained by repeating Cadzow iterations. For our example,
it is optimal both computationally, and in terms of RMSE,
to only apply one iteration of Cadzow’s basic algorithm.
That is, in this instance, the use of basic SSA is more ben-
eficial than the use of Cadzow’s basic algorithm. This is of
particular importance if the rank of the true signal is un-
derestimated.

4.2 Tracking projections – example

Figure 2 contains a plot of the yearly average tempera-
ture of Central England, measured between 1659 and 2009.
The series is used regularly by scientists as the trends in
temperatures since the mid-17th century can be followed.
Temperatures fell during the period between 1659–1700 (ap-
proximately) and then rose in the early 1700s. During the
18th and 19th centuries, a cool period which coincided with
snowy winters and generally cool summers, the tempera-
tures fluctuated widely but with little trend. From 1910,
temperatures increased slightly until about 1950 when they
flattened before a sharp rising trend began in about 1975.
Temperatures so far in the current decade appear different
from the long-term average.

There is noise inherent in the data, and it is important
to separate this noise from the trend. Figure 3 contains ap-
proximations found by running Cadzow’s basic algorithm
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Figure 2. Yearly average temperature, Central England: 1659–2009.

Figure 3. Yearly average temperature, Central England: 1659–2009 with r = 2 and r = 5 (Cadzow and SSA) approximations
respectively.

Cadzow’s basic algorithm, alternating projections and singular spectrum analysis 339



Table 1. RMSE of retrospective forecast of various lengths (in brackets), obtained by truncating the time series to 300 terms

Rank Cadzow (2) SSA (2) Cadzow (5) SSA (5) Cadzow (10) SSA (10)

r = 5 0.6963 0.5857 0.6147 0.6061 0.6218 0.5904
r = 10 0.7770 0.5871 0.6894 0.6195 0.6386 0.5881
r = 15 1.2802 0.6674 1.0185 0.6958 0.8535 0.6190
r = 20 1.3422 0.8367 1.0530 0.7382 0.8565 0.6467

Figure 4. Yearly average temperature, Central England: 1659–2009. The difference between the Cadzow and SSA
approximations for r = 10 is plotted for each year.

until convergence, for different truncations of the SVD of the
original signal. As more components are taken in the trun-
cated SVD, the reconstructed signal will tend towards the
observed signal. The higher rank approximations (r = 10,
r = 15 and r = 20) demonstrate the elevated temperature
experienced over the past decade, but the r = 5 approxima-
tion remains fairly constant across the range of the signal.
The higher rank approximations are more able to pick on
the seasonality and periodicity usually present within such
data, and are more able to reflect some of the sharp peaks
and troughs in the series. It is worth noting however that
the amount of Cadzow iterations needed for the algorithm to
finally converge to a low-rank approximation were 36, 103,
112 and 127 for the rank 5, 10, 15 and 20 approximations
respectively.

Figure 3 contains approximations to the data in figure
2 found by using SSA and Cadzow’s basic algorithm, for
r = 2 and r = 5. As more components are taken in the trun-
cated SVD, the reconstructed signal will tend towards the
observed signal. Figure 4 contains the difference between the
Cadzow and SSA approximations for r = 10, for each year.
As r is increased, the approximations become indistinguish-
able. The only noticeable differences are at the beginning
and the end of the series.

It is worth noting that the computational time taken to
run SSA is much smaller than repeating Cadzow iterations.
The output trajectory matrix as a result of running SSA
will not however possess the rank-deficiency property that

would have been obtained by running Cadzow’s algorithm
until convergence.

The r = 5 SSA approximation demonstrates a more ac-
celerated upward trend towards the end of the series than
its Cadzow equivalent. The higher rank Cadzow approxima-
tions of the series demonstrate an inflated predicted temper-
ature for the first year, 1659 (see figure 5). The SSA equiv-
alents do not demonstrate this inflation as severely. It is
worth noting that the SSA approximations across the range
of the series seem less turbulent, and so the Cadzow approx-
imations appear a closer fit to the original data.

Once the signal has been de-noised, the reconstructed sig-
nal may be used for forecasting. Figures 5 and 6 use the rank
5, 10, 15 and 20 (r = 5, 10, 15, 20) reconstructions (of the ini-
tial trajectory matrix) to forecast 20 points into the future
using Cadzow’s basic algorithm (until convergence) and ba-
sic SSA respectively. The forecast based on SSA seems less
erratic than the corresponding Cadzow forecasts. Both the
rank 5 approximations obtained via Cadzow’s algorithm and
SSA are stable, and do not demonstrate any severe predicted
increase in temperature for the next 20 years. The forecasts
using Cadzow’s algorithm are more volatile than the SSA
forecasts. The higher rank approximations, for both meth-
ods, do imply an increase in temperature over the next 20
years.

Table 1 contains the RMSE for various retrospective fore-
cast of the series. That is, the initial series was truncated
to 300 values, and future values (2, 5, and 10) were pre-
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Figure 5. Yearly average temperature, Central England, with
r = 5, r = 10, r = 15 and r = 20 (Cadzow) approximations.

Forecast ahead for 20 years is included.

Figure 6. Yearly average temperature, Central England, with
r = 5, r = 10, r = 15 and r = 20 (SSA) approximations.

Forecast ahead for 20 years is included.
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Figure 7. Frobenius distances within and between Cadzow iterations, for r = 5, 10, 15, 20.

Figure 8. Frobenius distances from the original trajectory matrix, to the output matrices at each Cadzow iteration, for for
r = 5, 10, 15, 20.

dicted and compared with the observed values. Both basic
SSA and Cadzow’s basic algorithm were used to forecast
the remaining values at different truncations of the SVD
(r = 5, 10, 15, 20). For more information on forecasting using
Cadzow’s algorithm, and SSA, see [21] and [9] respectively.
The RMSE for both methods are similar, but are smaller
(for each value of r) via basic SSA.

The main stages within Cadzow’s basic algorithm are

a Finding a low-rank approximation of the trajectory ma-
trix;

b The Hankelisation of the low-rank approximation by
averaging over the anti-diagonals.

Figure 7 contains the Frobenius distances between the ma-
trices at each of these stages within 5 iterations of Cad-
zow’s basic algorithm. For example, ‘1a’ and ‘1b’ denote the
low-rank approximation (of the original trajectory matrix),
and Hankelisation of this low-rank approximation within the

first Cadzow iteration, respectively. The biggest difference
between Frobenius distances is within the first iteration.
Across the remaining iterations the distances get smaller,
and convergence to a solution is slow. It seems then that
the most benefit in taking the initially observed trajectory
matrix onto a lower dimension subspace appears after the
first iteration.

Figure 8 contains the Frobenius distances between the
matrix obtained at each of these stages within 5 iterations
of Cadzow’s basic algorithm, and the original trajectory ma-
trix formed by the initial data. Recall that one iteration of
Cadzow’s basic algorithm corresponds to basic SSA. The
SSA approximations to the data remain closest to the orig-
inal data. Each Cadzow iteration takes the approximation
further away (in terms of Frobenius norm) from the original
trajectory matrix. However, Cadzow’s basic algorithm upon
convergence gives a rank-r Hankel matrix as its output. SSA
does not have this property.
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5. CONCLUSION

This paper has discussed the connections between Cad-
zow’s basic algorithm, SSA, and put both in the wider con-
text of alternating projection methods, and structured low
rank approximation. The algebraic connections are clear,
with the SVD the main mathematical construct behind both
Cadzow’s basic algorithm and SSA.

In the simulation study within this paper, it has been
demonstrated that repeated iterations of Cadzow’s basic al-
gorithm (in an attempt to separate the noise from the signal)
may result in an increased RMSE from the true signal. This
is particularly the case if the number of terms selected in
the truncated SVD is smaller than the rank of the true sig-
nal. Indeed, if the number of terms in the truncated SVD
is chosen to correspond (or is larger than) the rank of the
true signal, the RMSE remains fairly constant. Thus there
is no perceived benefit in running more than one iteration
of Cadzow’s basic algorithm. As stated earlier, one iteration
of Cadzow’s basic algorithm corresponds to the basic SSA.

In terms of forecasting, there are some subtle differences
between Cadzow’s basic algorithm and that of SSA. For the
example considered within this paper, the forecast based
upon SSA appears less volatile than the corresponding fore-
cast made by using Cadzow’s basic algorithm. By truncating
the series, a retrospective forecast demonstrated that the
RMSE obtained using Cadzow’s basic algorithm was larger
than the corresponding value obtained using basic SSA.

As a result the Cadzow’s methodology seems to have no
major superiority over SSA, but Cadzow’s methodology in-
volves the computation of many more SVD’s. It is therefore
suggested that SSA may be a viable alternative in approxi-
mating and forecasting a signal.
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