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This paper presents a new method for computing the parameters which
determine the differential equations governing a linear time-invariant
system with mulliple inputs and outputs. Unlike earlier approaches the
method presented does not involve computation of the impulse response.
One of the main advantages of this method s its easy generalization to the
case when the given data is contaminated with noise.

The identification of multiple input-output linear systems has been
a problem of considerable interest because of its importance in circuit
and control system theory. In circuit theory the problem is that of
synthesizing a linear time invariant eircuit to exhibit a prescribed
input-output behavior. In control theory, however, the problem arises
out of a need to model a given linear system with a suitable set of
differential equations, given its input-output behavior. References 1,
2, and 3 deal with the problem of determining the parameters of the
differential equation model from the impulse response. To the best of
the author’s knowledge, there is no published method which deter-
mines the impulse response from a finite segment of input-output
data in the case of systems with more than one input and output.
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I. THE “STATE INVARIANT’ DESCRIPTION

In most applications of identification techniques, one is given only
a record of input sequences and a record of output sequences, rather
than the impulse response function. In these cases it seems best to
get an internal description of the system directly from these data;
that is, avoid the intermediate step of synthesizing the impulse re-
sponse. In many applications the structure of systems that are being
identified remains the same, while values of parameters change.
Therefore, it is convenient to work in a certain coordinate frame which
is fixed for the given system. Most important of all, a method of arriv-
ing at the values of parameters directly from input-output data is
easier to analyze than the method in which impulse response is syn-
thesized, since the sensitivity of intermediate computations re-
quired to obtain the impulse response matrix need not be analyzed.

The problem is therefore formulated as follows. Let = be a linear
system in discrete time modeled by equations (1) and (2):

z(s + 1) = Fa(s) + Gu(s) 1
y(s) = Hx(s). (2)

z(s) ¢ E* (the “n” dimensional Euclidean space) is the state of 3 at
time s; similarly w(s) and y(s) are the m-dimensional input and the
p-dimensional output of 3. F, G, H are real constant matrices of ap-
propriate dimensions. 3 is assumed to be completely reachable and
completely observable (for details about these terms see Ref. 4),
namely

rank of [G, FG, --- ,F"'G] = n (3)
and
rank of [H', F’'H', -+ , " 'H'] = n (4)

where prime () denotes the transpose. Given a sequence of inputs u(s)
and outputs y(s) fors = 1, 2, --- , N (where N is sufficiently large),
find a system £ of the same dimension as = namely n such that 2
simulates the input-output behavior of Z.

Remark 1: It is clear that there are some sequences u(s) which will
not be sufficient to uniquely specify £. Theorems, presented in Section
II, give sufficient conditions for %(s) and N which uniquely determine .
Remark 2: When £ is uniquely determined it will be shown that the
state of ¥ is uniquely related to the state of Z. In fact the F, G, and
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B of £ will be related to the F, G, and H of = by a nonsingular trans-
formation such that HF'G = HF'G which implies that the impulse
responses of 2 and £ are identical. Notice that for any nonsingular T

H=HT" F=TFT" G=1TG
implies that
HF'G = AF'G.
The main difficulty in obtaining a direct algorithm is in getting at the
state z(s) from output sequences when the parameters of the system
are not known. When, for example, I in the equation below is identity,
or equivalently the output itself is the state, it is easy to find an in-

ternal description from sequences of inputs and outputs. From writing
this equation as

s+ 1) = [F G]{m(ﬂ
u(s)

y(s) = Hx(s) = z(s),
it follows that given enough observations one can solve for F' and G
from the above equation for most nontrivial input sequences (see
Theorem 2). An easy way is to multiply both sides of this equation
by [2/(s) %/(s)] and sum from s = 1to s = N where N is the number
of observations:

N N

> fals + DR w@l) = F 61X {[x(ﬂ[m'(s) u*(s)]}-
a=1 =1 u(s)

Whenever the matrix multiplying [F G] in the above equation has

an inverse, there exists a unique solution for F and G.

In the case when y(s) is not the state itself but only a linear
function of the state, the problem is much more complex and one
has to select certain appropriate components of the output sequence
for an external description in terms of the observables, namely y (1)
and (7). The selection of the right components can be done by in-
troducing an operator to be called the selector matrix as defined below.

In describing the theory of the direct identification method, con-
siderable use is made of the input-output description to be detailed
below.

Definition: $ will denote the set of & X I matrices (k < ) with the
following properties:
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(7) 8 = {s;;} wheres;; = Oor 1. (5)
(74) V., 8:;; = 1 for one and only one j, say j; . (6)
(@) ) << <G, H=L P2k @)

Examples of matrices belonging to § are

[1][0 1 Ujl---[l 0 O}mdsoon.
0 0 1 0 0 1

Any matrix S ¢ § will be referred to as a selector matrix, because 8
operating on a linear space E® transforms it into a linear space E* by
mapping every vector z ¢ E to a vector y ¢ E* by selecting the com-
ponents j,, +++ ,juof z ¢ E'.

The deseription presented is an “external” deseription in the sense
that the dynamical equations are given in terms of quantities which
can be observed from outside, that is, values of input and values of
output.

Consider a completely reachable and completely observable discrete
time system 3 represented as follows

z(s + 1) = Fx(s) + Guls), ®
y(@) = Hx(s), H:p Xn; F:nXn; G:n X m. 9)
“Completely observable” implies*

p([F" : H']) = n. (10)

p(A) = rank of A. Therefore, 3 an S £ §, such that

H
S = T where T is nonsingular; (11)
HF™!

that is, T exists. Without loss of generality it can be assumed from
remark 2 that 7" = I so far as the external description is concerned.
Using equations (8) and (9) repeatedly, it follows that

y(s) = Ha(s),
y(s + 1) = Ha(s + 1) = HFz(s) + HGu(s) (12)
yls +n — 1) = HF" 'a(s) + HF"°Gu(s) + -+ - + HGu(s +n — 2).
Let

*(F':HN & [H, FFH', -+ , F'o—DH"].
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e

76 = W6 ye+1) -y +n— 1 (13)

a'(s) £ W) w'(s+1)---u(s+n— 1D (14)
Then, writing equation (12) in vector form, and also using equations
(13) and (14), it follows that

Il=

H 0
6 =| T o+ 7¢O Oa@. s
HF™! HF™*q¢ HF™'G --- 0
Lett
[0 0 0 O]
HG 0 0 0
HF(G HG 0 0 0
A .
HFG — HG 0o o o B (0
HF¢ HF™'G HFG .-+ HG 0 0
LHF“”G HF*G HF'G --- HFG HG 0]

then multiplying both sides of equation (15) by S, using the comments
given below equation (11), it follows that

Sg(s) = z(s) + SR.u(s). (17)
Once again, using equation (9),

z(s + 1) = Fxa(s) + Gu(s),
which because of equation (17), with s replaced by s + 1, reduces to

2(s + 1) = Sj(s + 1) — SRy(s + 1); (18)
substituting equation (9) for z(s) in equation (17) gives
[ H
836 + 1) = F(Sge) — SRa®) + 8| 77 |Guls) + SRuats + 1).
- (19)

t The last column of zeroes in R; is added so that 7 and @ may be consistently
defined.
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Since it has been shown that [see equation (11)]

H |
s| -1, (20)
LHF“"J
it follows that
Si(s + 1) = FS8i(s) + Ra(s), (21)
where}
[ HG 0 0 i
HFG HG 0 0
R % —FSR, + 8| HF'G  HFG 0 (22)
0
| HF*'G¢ HF™G - - HGJ

Equation (21) gives a relation between the input sequence w(z) and
the output sequence y(z) which does not involve the state. It is an
external description in the sense that the variables in equation (21),
namely w%(¢) and y(7), can be measured externally. From equation
(22) it follows that if R is partitioned as

[Ry R, ---R,4], Bi: nXm Vi, (23)
then

Rn—l =8 * (24)
HG

It is obvious how one obtains the columns of the second product
in equation (22). To obtain the contribution from —FSR;, notice from
equation (16) that S times the second column from the end of R,
is, from equation (24), merely R, ;. Therefore, the second column of
FSR, from the end is simply FE,; and therefore

1 In adding SRyi(s + 1) to the second term in equation (20), the last column
of R may be dropped because it is all zeroes.
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0

Rn-z = _FRn—l + S

HG

OFG
Now notice that R, » + FR, is S times the third column from the

end of Ry. Therefore the third column from the end of R is

o0 ]
R.y= —FR.,. — F"'R._, + 8| HG
HFG
| HF*@ |
Continuing in the same way,
o0
0
Rt = =Ry — IRy — PRy + 5| 11O
HFG
HF*G
ra)
and finally
HG
S H{?G =R,+FR, + --- + 'Ry .
LHF""G

Now, since it was possible to choose a basis such that

"

S -
HF"‘GJ

= 1@,

1107

(25)

(26)
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one has
G=R0+FR1+”°F“-IR1I—I' (27)
Equation (21) may be written in the form

Sils + 1) = [F RJ[Sy(S)}
(s)
and may in prineciple be solved for F and R. Thus from equations
(27) it is clear that if the values for u(¢) and y (i) were given and
S were known, one could also solve for one set of values for F; and
since in most cases H is full rank, H can be assumed to be [I 0].

II. THE MINIMAL REPRESENTATION AND THE DIRECT ALGORITHM.

It was shown in Section I that, corresponding to every internal
description of ¥ which is completely controllable and completely ob-
servable, there is a deseription in the form of equation (21). In this
section we show that from the knowledge of the values of u(7), ¢ = 1,
-+~ N,and y(z),7 =1, --- , N, one can get the internal description
of 3 under very general conditions on %(i). Central to the discussion
are a few results which are presented in the form of theorems for the
sake of clarity and precision.

Given u(#),1 = 1, -+ , N, the inputs to a system ¥ of dimension n
which is completely observable and completely reachable, and the
corresponding outputs y(¢),7 = 1, - ++ , N, the following propositions
hold true:

Note 1. Tt will be assumed in the following that the column dimension
k of the selector matrix is always a multiple of p; further if k = rp,
then

(r—1Dp =i =1
It is obvious that there is no loss of generality involved in this assump-
tion. (Iis the row dimension of S.)
Note 2: In the definition of 7(s) and @ (s) in equations (13) and (14),
the n should be replaced by r defined in Note 1 above.
Theorem 1: Let Sbel X k (=1rp); then

H

ols BF Loy (28)

HFI‘—I
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implies that

N-r+1 [ao
D [by (S)} 7S @) is a singular matriz 29)
s=1 ﬁ(S)P
for every sequence u(i),i=1,2, --- , N.

Proof: Multiplying equation (10) on the left by S and replacing n by
r we have,

H

856 = 8 BT o) + SRa@. (30)

HF:‘—I

Because of equation (28) 3 a vector, z # 0, and in I ! such that

2'8 = 0. (31)

HF?
Therefore, multiplying equation (30) on the left by 2" gives

2 Si(s) = 2/ SRu(s). (32)
Therefore,
i —z'SRL][Sﬂ(S)] =0 VssN-—r+1 (33)
(s)
which implies that
5 [Sg(s)}[g’(s)S’ #(s)] is singular. QED
= Law

Theorem 2: If T is complelely observable and completely reachable, the
matrices F, G, and H are n X n, n X m, and p X n respectively; then
J an S:n X np such that

T = MXH:,E {Sﬂs)jlﬁ’(s)S’ u(s)] > 0 almost surely (39
=t Law)
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where u(i) are random variables having a joint nonlattice distribu-

tion.*
Proof: The first step in the proof consists of establishing Lemma 1.

Lemma 1: T > 0f and only if

> ["(S)}[x'@ @1 > 0. (35)
! La@)
Proof of Lemma 1: If T 3 0, 3 2’ such that 2’ = [2{ 2] > 0, and
2!85(s) + zla(s) = 0 Vs (36)
Since 3 is completely observable, multiplying equation (17)
Si(s) = z(s) + SR.u(s) (37)
on the left by z!/ one obtains
2{8§(s) = zlx(s) + 2{SR.u(s). (38)
Combining equations (36) and (38),
2x(s) + (ISR, — z)ua(s) =0 Vs, (39)

and
[l ,2{SR, — z3] # 0;
for if [z , SR, — 2] = 0, then [2{ z§] = 0, which contradicts z ¢ 0.
Therefore,
> [Z‘ﬂ[w'(s) #@] 0. (40)
=t La(s)
Now suppose T' > 0. Let
> F(ﬂ[x'(s) 2] » 0.
= Lug
Then 3 a2 = [z! 2] # 0 such that
2lz(s) + #z4a(s) = 0 Vs (41)

Again multiplying equation (37) by z{ and using equation (41), it
follows that

2{8§(s) = —zia(s) + 21SR(s) (42)

* A nonlattice distribution is one in which no nonzero probability mass is
concentrated on a surface less than the dimension of the random variable,
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218S7(s) + (4 — 2{SR,) u(s) = 0 Vs. (43)

Once again [z}, (2 — 2/SR,)] # 0 since z # 0, which contradicts
T > 0. The proof of L.emma 2 will now complete the proof of Theorem 2.

Lemma 2: If (i) 3 is completely controllable, (ii) u(i) are random
variables with a joint nonlattice distribution, then the (n + nm) X
(n 4+ nm) matriz
)
|:x(1) x(n + nm)J (44)
(1) --- i(n_+ nm)

s almost surely nonsingular.
Proof: From Lemma A2 in Appendix A of Ref. 5 it follows that if

Z(S + 1) = Flz(s) + Glu(s)l (45)
with Fy(n + nm) X (n + nm),
then [z(1), --- , z(n + nm)] is nonsingular with probability one, if

Fy, Gy is completely controllable. Further, from equations (8) and the
definition of u, it is clear that

z(s + 1) F G0 - - -0 x(s) 0
u(s + 1) o 0o I - - -0 u(s)
; =. . < . . . . . +
o0 - - -« - T .
u(s + n) 0 0 0jlu(s +n — 1) I

u(s+n) (46
Therefore, identilying F, and G as

[FGo---o 0
R
00....0 I

respectively, equation (44) follows since it can easily be shown that
[F @] controllable implies that [F; G.] is completely controllable.
Lemma 2 implies that the matrix in equation (40) is positive definite
since in general A nonsingular = ATA > 0, which implies equation
(34) by (3).
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III. THE COMPUTATIONAL METHOD

The main part of the algorithm, as would be expected from the dis-
cussion in Section II, is to determine the right selector matrix. Once
this has been done it is easy to solve for the parameters. In order to
utilize certain properties of the matrix [F" : H], a class of matrices
S C 8 is detailed below since § C 8, the number of different selector
matrices one has to try, is smaller than 8.

Definition: 3 is the set of matrices S ¢ § such that S is I X k; then

(7) & is an integral multiple of p and further, if & = rp, then

(r—1p <ji=p
where 7; is as defined in equation (5).
(":7;) j-‘ - ji—l = 2})-

Observe that by (i) there always cxists an S e § such that equation (11)
holds, since as can easily be proved, if

o(H', FH', -- , F'H')) = p((H', F'H', --- , F"""PH']) = ¢
then
P([H” F H‘J F’(.+“HI]) =4q .7 = 0: 1: 2: Tttty

so that in spite of condition (ii) in the above definition, there exist
an S & § such that equation (11) holds.

(435) The formulas (21) and (27) are still valid for any S e § satisfying
equation (11), with n replaced everywhere by r defined in eondition (i)
in the definition of § above.

Now from Theorems 1 and 2 and the above discussion, the direct
algorithm can be summarized as follows.

It can be assumed without loss of generality that: ) N = n +
(m + 1)n; that is, there is a sufficient number of observations to deter-
mine the internal description uniquely. n is the minimal dimension of
the system to be identified. (77) H has full rank. (#77) n = p.

Step 1: Since n < N/(m + 2), let N be the largest integer
=N/(m + 2). Thenn = N. In order to arrive at the right S, one starts
with an S ¢ § of row dimension NV and tests the nonsingularity of

re 3 {Sg(s’}[g%sw @)

= Law

for all S ¢ 8 and having row dimension N. If T is nonsingular, N = n.
If T is singular, then reduce the row dimension of S by 1 and repeat the
test. Repeat the procedure until T becomes nonsingular. The row di-
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mension of S will then be 7; let r be as defined in condition (7) in the
definition of §; that is, Sisn X rp.
Step 2. Solve for I, R as follows.

(m+1) N

(F E] = { 2. SyGs + DiFES’ 11’(8)]}7‘"'

a=1

Step 3: Solve for G from the following formula.

G = R0+FR1 + - +Fr_er—1;
where S:n X rp and Ry are the partitions of R such that

E = [Ro R, --- Rr—!]

and R, =nXmi=0, -, — 1. H can be assumed to be [I 0] where
the identity has dimension p.

In the case when Z is a continuous-time system, the algorithm
presented above applies with appropriate modifications. In the defi-
nitions of §(s) and #(s), s now assumes values in ® and y(s + ¢) should
be replaced by " (s) evaluated at s. The summation signs should be re-
placed by integration over an interval. The formulas for the parameters
become

w R = [ S0es do)dT

tve[ &
= | [Sy(s):l[g’(s)S’ @(s)] ds.
b La@

G can be obtained from R exactly as in the above algorithm for the
discrete time case.

In the case when observations are contaminated with noise, this
method can be generalized to yield consistent estimates for the param-
eters (see Ref. 5).
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