
Nonminimum-Phase 
Zeros

I
n the popular literature
there is a certain fascina-
tion with the concept of
zero [1]–[3]. While today
the inconspicuous 0 is taken

for granted, the situation was
different in the distant past. For
example, the Romans had no sym-
bol for 0, a fact memorialized by the
jump from 1 B.C. to 1 A.D., a convention
instituted in 531 A.D. [4, p. 91]. In contrast,
the Mayans had a symbol for zero, and the first
day of each Mayan month was day zero [3, p. 18]. The
modern zero of mathematics slowly earned its member-
ship in the club of numbers through Indian mathematics,
although this acceptance was
achieved only through a tortuous
process that spanned centuries [3].

A conceptual impediment to the
acceptance of zero is the difficulty in
understanding the ratio 1/0. Presumably, this ratio is
infinity or ∞, a much more challenging concept. That 0
and ∞ are close cousins casts suspicion on zero as a valid
number. Even in modern times, the zero appears begrudg-
ingly on your telephone keypad after the 9. In Europe, the
ground floor in a building is routinely labeled 0, and thus
the meaning of floor −1 is unambiguous, whereas, in the

United States, there is no floor
0, and negative floor numbers
are rarely used. Despite the
human reluctance to admit zero

as an authentic number, it is as
difficult to imagine mathematics

today without zero as it is to imag-
ine technology without the wheel

and axle.
Although the number zero is well

known, the system-theoretic concept of a
system zero is virtually unknown outside of

dynamics and control theory. The purpose of this article
is to illuminate the critical role of system zeros in con-
trol-system performance for the benefit of a wide audi-

ence both inside and outside the
control systems community.

POLES AND ZEROS
Setting aside the notion of zero for the

moment, the idea of a pole is one of the most fundamental
concepts in system theory. Consider the continuous-time
single-input, single-output (SISO) system

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
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with scalar-valued input u(t) and scalar-valued output
y(t). The n × n dynamics matrix A represents the dynam-
ics of this system, while the n × 1 column vector B repre-
sents the effect of the actuator, and the 1 × n row vector C
represents the response of the sensor. Together, (A, B, C)

defines the input-output dynamics of the system. Taking
Laplace transforms yields 

ŷ(s) �
∫ ∞

0
y(t)e−stdt = C(sI − A)−1x(0) + G(s)û(s),

where C(sI − A)−1x(0) is the initial condition response of the
system and the transfer function G is given by 

G(s) = C(sI − A)−1B.

To examine the poles and zeros of G, write G as 

G(s) = N(s)
D(s)

,

where the denominator polynomial is D(s) � det(sI − A),
and the numerator polynomial is 

N(s) � C adj(sI − A)B.

Here, adj(sI − A) is the adjugate of sI − A [5, p. 20], [6, p. 42].
The roots of N are the zeros of G, while the roots of D are
the poles of G. This discussion assumes that N and D have
no common roots, which is the case if and only if (A, B, C)

is a controllable and observable triple. In this case, the n
poles of G are precisely the eigenvalues of A.

The poles of G determine whether G is stable or unsta-
ble, as well as the decay rate and oscillation frequencies of
the initial condition response. The poles of G do not
depend on either the input matrix B or the output matrix
C. In contrast, the zeros of G are determined by the
dynamics matrix A as well as B and C. Hence, the zeros of
G depend on the physical placement of the sensors and
actuators relative to the underlying dynamics. The concept
of a zero distinguishes control theory from dynamical sys-
tems theory.

In this article, the term transfer function refers to a
proper ratio of polynomials. The transfer function G is
strictly proper if and only if G(∞) = 0, whereas G is exact-
ly proper if and only if G(∞) �= 0. For results that are
restricted to either strictly proper or exactly proper transfer
functions, the distinction is made explicitly.

THE BLOCKING EFFECT OF A ZERO
What exactly do zeros do, and how do zeros relate to the
number zero? A zero of a transfer function is a root of the
numerator polynomial of the transfer function, and thus is
a real or complex number. When the transfer function is
asymptotically stable, that is, when all of the roots of the
denominator polynomial are in the open left half plane,
each zero has a specific effect on the asymptotic response
of the transfer function for certain inputs.

To illustrate the effect of a zero on the response of an
asymptotically stable transfer function G, consider a step
input, so that the response of G approaches a steady state
value. If, moreover, the number 0 is a zero of the transfer
function G, that is, G(0) = 0, then the steady state response
of G is zero, that is, the dc gain of the system is zero.

Next, suppose that the input to G is sinusoidal, that is,
harmonic, with frequency ω . Then, the asymptotic
response is also harmonic with the same frequency of
oscillation; this response is the harmonic steady-state
response. If, moreover, the imaginary number ω is a zero
of the transfer function G, that is, G(ω) = 0, then the
amplitude of the harmonic steady-state response is zero,
and thus the response converges to zero.

FIGURE 1 Bounded response of a nonminimum-phase system to an
unbounded input. The response of the transfer function
G(s) = (s − 1)/(s + 1)2 to the unbounded input et is bounded and
converges to zero due to the open-right-half-plane zero z = 1.
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FIGURE 2 “Wrong” initial direction with direction reversal. For the
system G(s) = −(s − 1)/(s + 1)2 , which has one positive zero, the
step response initially moves in the “wrong” direction. Although
the operator might be tempted to abandon the control strategy,
the system eventually reverses course and reaches the desired
steady state. In this case, patience is a virtue.
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Finally, suppose that the input to G is the unbounded
signal et, in which case one expects the response of the sys-
tem to be unbounded as well. If, however, the number 1 is a
zero of G, that is, G(1) = 0, then the response of the system
is not only bounded but converges to zero (see Figure 1).

In general, each zero blocks a specific input signal
multiplied by an arbitrary constant. In the case of a non-
minimum-phase zero, that is, an open-right-half-plane zero,
the blocked signal is unbounded. The above observations
follow from the final value theorem (after all unstable
poles of the input are canceled by nonminimum-phase
zeros of the system), and, since the system is assumed to
be asymptotically stable, are also valid for all nonzero ini-
tial conditions of all stabilizable and detectable state-
space realizations.

INITIAL UNDERSHOOT DUE TO AN
ODD NUMBER OF POSITIVE ZEROS
The effect of positive (that is, real open-right-half-plane)
zeros is evident in the step response of a system. In partic-
ular, Figure 2 shows a step response that departs in the
nonasymptotic direction; this phenomenon, which is
equivalent to initial error growth, is called initial
undershoot. Note that initial undershoot is defined only for
a step response whose initial and asymptotic values are
different. A classical result, proved in [7]–[9], states that
the step response of an asymptotically stable, strictly prop-
er transfer function exhibits initial undershoot if and only
if the system has an odd number of positive zeros.

Undershoot can have significant implications in practice.
Suppose, for example, that an economic plan is implemented
to boost the economy. In particular, suppose that a central
bank implements a step decrease in short-term interest rates,
which produces the undesirable effect of initially decreasing
gross domestic product, as shown in Figure 2. Supporters of
the plan might decide to abandon the plan before its ultimate
effect is known, whereas critics of the plan might feel vindi-
cated in having opposed the plan. In reality, however, the
input-output dynamics of the economy might have an odd
number of positive zeros, in which case the appropriate
action is to wait for the system to reverse direction.

On the other hand, as illustrated in Figure 3, it might be
the case that the economy initially moves in the “correct”
direction, which would suggest that the plan is appropri-
ate. However, the system in Figure 3 eventually reverses
course and converges to a negative value, revealing that the
plan was inappropriate. To complicate matters even more,
the step response of a system with multiple positive zeros
can exhibit multiple direction reversals. For example, the
step response of a system with two positive zeros, as illus-
trated in Figure 4, initially moves in the “correct” direction,
reverses course to move in the “wrong” direction, and then
reverses course yet again to move in the “correct” direction.

An everyday example of positive zeros arises when dri-
ving a car backwards, a skill that every young driver must

master. The driver initially moves in one direction, for
example, to the right, and later reverses direction, moving
to the left. To see this, consider the four-wheeled car model

ẋ = v cos θ, (1)

ẏ = v sin θ, (2)

θ̇ = v
�

tan φ, (3)

given in [10] and [11], where (x, y) is the position of the
center of the rear wheels, θ is the angle between the car’s
longitudinal axis and the x-axis, v is the translational veloc-
ity of the rear wheels, � is the distance between the front
and rear wheels, and the control input φ is the steering

FIGURE 3 “Correct” initial direction with direction reversal. For the sys-
tem G(s) = (s − 1)/(s + 1)2 , which has one positive zero, the step
response initially moves in the “correct” direction. However, after
more time passes, the system reverses and moves in the “wrong”
direction. In this case, initial optimism proves to be unfounded.
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FIGURE 4 “Correct” initial direction with multiple direction reversals.
For the system G(s) = (s − 1)2/(s + 1)3 , which has two positive
zeros, the step response initially moves in the “correct” direction,
reverses course to move in the “wrong” direction and then reverses
course again to move in the “correct” direction. In this case,
patience and fortitude are called for.
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angle measured from the car’s longitudinal axis. The four-
wheeled car model contains the nonholonomic constraint

ẋ sin θ − ẏcos θ = 0

and thus has an uncontrollable linearization about the zero
equilibrium. However, if we control the translational accel-
eration of the rear wheels, that is, 

v̇ = u, (4)

where u is a control input, then linearizing (1)–(4) about
the equilibrium (x0, y0, θ0, v0) yields

δ̇x = cos(θ0)δv − v0 sin(θ0)δθ,

δ̇y = sin(θ0)δv + v0 cos(θ0)δθ,

δ̇θ = v0

�
φ,

δ̇v = u,

which is controllable for all constant nonzero v0.
Now assume that the car has a constant nonzero speed

v0 and φ = 0, and assume that the car’s longitudinal axis is
initially parallel to the x-axis, that is, θ0 = 0. Furthermore,
the output of the system is the y-axis position of the center
of the front wheels, given by yout = y + � sin θ , which has
the linearization yout = δy + �δθ . Then the transfer function
from the steering angle control input φ to the lateral posi-
tion yout is

G(s) = v0
s + v0/�

s2 .

If the car is driving in reverse, then G has exactly one
positive zero, namely, z = −v0/�. Thus, the lateral response
to a step input in the steering angle exhibits initial under-
shoot. A similar result appears in [12, p. 158]. The same
effect occurs in some aircraft as can be seen from the step

response of the elevator deflection to pitch angle [13, p. 494].
These examples suggest that one source of nonminimum
phase zeros is noncolocation, that is, physical separation, of
sensing and actuation [14]–[20].

ZERO CROSSINGS DUE TO POSITIVE ZEROS
The result of [7]–[9] implies that the step response for a
strictly proper transfer function having an even number of
positive zeros does not exhibit initial undershoot. Never-
theless, the step response shown in Figure 4 for a system
with two positive zeros exhibits two direction reversals
and two zero crossings, where the term zero crossing refers
to the situation in which a signal passes through the value
of zero. In fact, we now show that if an asymptotically sta-
ble transfer function possesses at least one positive zero,
then the step response of the system undergoes at least one
zero crossing.

Let z denote a positive zero of the asymptotically stable
transfer function G. The Laplace transform ŷ(s) of the out-
put y(t) for a unit step input is given by

ŷ(s) = G(s)(1/s).

Setting s = z yields ŷ(z) = G(z)(1/z). Since G(z) = 0, it fol-
lows that ŷ(z) = 0, and thus

∫ ∞

0
e−zty(t)dt = 0. (5)

Since e−zt is positive on [0,∞), it follows that y(t) must
cross zero on (0,∞). In addition, (5) implies that the weight-
ed “negative area” and “positive area” associated with y(t)
are exactly equal. Note that (5) depends on z but does not
depend on either the poles or the remaining zeros of G.

Whereas it follows from [7]–[9] that the step response of
a strictly proper G with an odd number of positive zeros
has initial undershoot and thus at least one zero crossing, it
follows from (5) that at least one zero crossing occurs if G is
proper and has at least one positive zero. As shown in Fig-
ure 4, the step response must possess at least two direction
reversals if G has a nonzero even number of positive zeros.

Figures 3 and 4 suggest that the number of zero cross-
ings is equal to the number of positive zeros. In fact, a state-
ment that the number of zero crossings is equal to the
number of positive zeros is given in [21, p. 174] and attrib-
uted to [22], which in turn attributes the result to [23].
However, a statement of this result does not appear in [23].
Furthermore, in the second edition of [24, p. 184], the result
is attributed to [25] rather than [22]. However, the result
given in [25] is more restrictive than the statement in [24],
since [25] states that the number of zero crossings is equal
to the number of positive zeros for strictly proper transfer
functions with only real poles and zeros. In fact, the state-
ment in [24] is incorrect for transfer functions with complex
zeros. For example, the step response of a system with no
positive zeros but two complex nonminimum-phase zeros

FIGURE 5 Nonmonotonic step response. The step response to the
transfer function G(s) = (s2 − 10s + 27)/(s + 3)3, which has 
nonreal nonminimum-phase zeros but no positive zeros, has two
zero crossings.
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can exhibit two zero crossings, as shown in Figure 5.
Numerical testing suggests that the number of zero cross-
ings in the step response is greater than or equal to the
number of positive zeros. A proof of this conjecture is open.

For a different system with two nonreal nonminimum-
phase zeros, Figure 6 shows a nonmonotonic step response
with no zero crossings. Furthermore, for yet another sys-
tem with two nonreal nonminimum-phase zeros, Figure 7
shows a monotonic step response. Hence, the presence of
nonminimum-phase zeros does not guarantee the exis-
tence of either zero crossings or direction reversals. How-
ever, it is shown in [26] that, for asymptotically stable,
strictly proper systems with only real poles and real zeros,
the number of extrema in the step response (not including
t = 0) is greater than or equal to the number of zeros to the
right of the rightmost pole.

OVERSHOOT DUE TO POSITIVE ZEROS
In addition to initial undershoot and zero crossings, the
step response of an asymptotically stable transfer function
can exhibit overshoot, that is, assume values both greater
than and less than the asymptotic value of the step
response. In fact, the step response of an asymptotically
stable transfer function G exhibits overshoot if G(s) − G(0)

has at least one positive zero. To see this, let z be a positive
zero of G(s) − G(0) . Applying to G(s) − G(0) the same
steps used to derive (5), it follows that (see also [27, pp.
213–214])

∫ ∞

0
e−zt[y(t) − y(∞)]dt = 0. (6)

Consequently, y(t) − y(∞) must change sign on [0,∞),
and thus y(t) overshoots its steady-state value
y(∞) = limt→∞ y(t). This behavior depends on the posi-
tive zero z of G(s) − G(0) but does not depend on any other
details of G.

As a special case, consider a system whose step
response converges to zero, that is, y(∞) = 0, which arises
in control systems with integral action. In this case, G
exhibits overshoot if G has at least one positive zero.

Table 1 summarizes the results given above on initial
undershoot, zero crossings, and overshoot in the step
response of an asymptotically stable transfer function G.

UNDERSHOOT, OVERSHOOT, 
AND ZERO CROSSINGS IN SERVO SYSTEMS
We now specialize the results given thus far to servo sys-
tems. Feedback stabilization of an unstable plant unavoid-
ably gives rise to nonminimum-phase zeros. To see this,

FIGURE 6 Nonmonotonic step response. The step response to the
transfer function G(s) = (2s2 − s + 1)/(s + 1)3, which has two non-
real nonminimum-phase zeros, has two direction reversals, and
thus is not monotonic. However, the step response does not exhibit
any zero crossings.
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FIGURE 7 Monotonic step response. The step response to the trans-
fer function G(s) = (s2 − s + 4)/(s + 1)3, which has two nonreal
nonminimum-phase zeros, is monotonic.
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TABLE 1 Initial undershoot, zero crossing, and overshoot in the step response of an asymptotically stable transfer function G.
Results for exactly proper transfer functions are needed to analyze the sensitivity transfer function S, which arises in servo
systems and which is not addressed by the classical theory.

Initial Undershoot Zero Crossing Overshoot 
Strictly Proper If and only if G has an If G has at least If G(s ) − G(0) has at 

odd number of positive zeros one positive zero least one positive zero

Exactly Proper If and only if G(s ) − G(∞) has an If G has at least If G(s ) − G(0) has at 
odd number of positive zeros one positive zero least one positive zero
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consider the servo problem in Figure 8, where
L(s) = C(s)G(s) = N(s)/D(s) represents the loop transfer
function, that is, the plant G cascaded with a proper feed-
back controller C under the assumption that L(s) is strictly
proper. Then the asymptotically stable closed-loop transfer
function from the reference signal r to the error signal e is
given by the sensitivity transfer function S(s) = 1/(1 + L(s)),
that is, ê(s) = S(s)r̂(s). Since

S(s) = D(s)
N(s) + D(s)

, (7)

it follows that the zeros of S are precisely the poles of L.
Therefore, if either the plant or the controller is unsta-
ble and no unstable pole/zero cancellation occurs (see
the discussion below), so that L is also unstable, then
the corresponding sensitivity transfer function S has
nonminimum-phase zeros. These nonminimum-phase
zeros tend to enhance performance by decreasing the
magnitude of the sensitivity function (relative to the
sensitivity transfer function that would be obtained if
these zeros were not present) thereby reducing the
transmission of specific signals.

Initial Undershoot
To analyze initial undershoot in the step response of a
servo system, one might be tempted to apply the result of
[7]–[9] to the sensitivity transfer function S and conclude
that the step response of S exhibits initial undershoot if
and only if S has an odd number of positive zeros (or
equivalently, L has an odd number of positive poles).
However, the result of [7]–[9] does not apply because the
sensitivity transfer function S is not strictly proper. Never-
theless, “Initial Undershoot Revisited” extends the result
of [7]–[9] to include exactly proper transfer functions.

FIGURE 8 Standard servo problem with loop transfer function
L(s) = C(s)G(s). The zeros of the sensitivity transfer function
S= 1/(1 + L) from command r to error e = r − y are the poles of
L(s).
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I nitial undershoot describes the qualitative behavior of the step

response of a transfer function. A single-input, single-output

asymptotically stable transfer function G(s) exhibits initial under-

shoot if its step response initially moves in the direction that is

opposite to the direction of the asymptotic value. Initial undershoot

is thus equivalent to initial error growth. In [7]–[9], it is shown that a

strictly proper transfer function exhibits initial undershoot if and only

if the transfer function has an odd number of positive zeros.

To analyze the step response of a servo system, however, it is

necessary to extend the definition and classification of initial

undershoot to include exactly proper transfer functions, that is,

transfer functions whose numerator and denominator polynomials

have the same degree.

Let G be an asymptotically stable transfer function with relative

degree d ≥ 0, where d = 0 denotes the exactly proper case. Let

y(t ) be the step response of G. The step response has the initial

value y(0+) = G(∞) = lims→∞ G(s) and the asymptotic value

y(∞) = limt→∞ y(t ) = G(0). Then y(t ) exhibits initial undershoot if

y (ρ)(0+)[y(∞) − y(0+)] < 0, (s1)

where ρ � min(d, 1) and, by the initial value theorem, y(ρ)(0+) �
lims→∞ sρ [G(s) − G(∞)]. Note that y(t ) can exhibit initial under-

shoot only if the initial value differs from the final value, that is,

y(0+) �= y(∞). In the strictly proper case, d ≥ 1, and thus ρ = d

and y(0+) = 0. Hence (S1) becomes

y (d)(0+)y(∞) < 0,

which is the condition given in [7]–[9].

For example, consider the step response of the exactly proper

transfer function

G1(s) = (s − 2)2(s + 2)

(s + 1)3
,

FIGURE S1 The step response of G1(s) = (s − 2)2(s + 2)/(s + 1)3 ,
which exhibits initial undershoot due to an odd number of positive
zeros in G1(s) − G1(∞). In particular, G1(s) − G1(∞) has one
negative zero at −2.0748 and one positive zero at 0.6748. Note that
G1 exhibits initial undershoot even though G1 itself has an even
number of positive zeros.
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Specifically, it is shown (with G replaced by S) that the
step response of S with L strictly proper exhibits initial
undershoot if and only if S(s) − S(∞) = S(s) − 1 has an
odd number of positive zeros. In terms of the error signal,
initial undershoot means that, after a step servo command
is introduced, the error initially grows and thus attains a
larger value than the step difference due to the servo com-
mand.

Now, define the complementary sensitivity transfer func-
tion T(s) = 1 − S(s) = L(s)/(1 + L(s)) from r to y of the
closed-loop system, that is, ŷ(s) = T(s)r̂(s), given by

T(s) = N(s)
N(s) + D(s)

. (8)

Thus, the step response of S exhibits initial undershoot if
and only if T has an odd number of positive zeros. Fur-
thermore, since L and T have the same zeros, the step
response of S exhibits initial undershoot if and only if L
has an odd number of positive zeros.

Note that T is strictly proper since C and thus L are
strictly proper. Therefore, the step response of T exhibits
initial undershoot if and only if T (and thus L) has an odd
number of positive zeros.

Zero Crossings
A similar result can be used to show that the error e (t)
changes sign and thus has at least one zero crossing when
L has at least one positive pole p. To see this, note that p is
also a zero of S. Since S(p) = 0, applying to S the same
steps used to derive (5), which is a valid procedure despite
the fact that S is not strictly proper, yields

∫ ∞

0
e−pte(t) = 0.

Thus, e(t) must cross zero.
On the other hand, y(t) has at least one zero crossing

if L has at least one positive zero z. To see this, note that,
since z is a zero of L, it follows that z is also a zero of T,
and thus (5) is satisfied, which implies that y(t) must
cross zero.

Overshoot
The step response of a servo system can exhibit overshoot,
that is, assume values both greater than and less than the
asymptotic value. It follows from (6) that the output y(t) of
a servo system with a step command r(t) exhibits overshoot
if T(s) − T(0) has at least one positive zero. Furthermore,

which exhibits initial undershoot, as shown in Figure S1, even

though G1 has an even number of positive zeros. On the other

hand, the step response of the exactly proper transfer function

G2(s) = (s − 2)(s + 2)2

(s + 1)3
,

does not exhibit initial undershoot, as shown in Figure S2, even

though G2 has an odd number of positive zeros. Thus, the result of

[7]–[9] is not valid for exactly proper transfer functions.

PROPOSITION

The step response y(t ) exhibits initial undershoot if and only if

G(s) − G(∞) has an odd number of positive zeros.

PROOF

Let  H(s) = G(s) − G(∞) = βN(s)/D(s) ,  where N and D are

monic polynomials, β is a real number, and H has relative

degree ρ. Thus, y (ρ)(0+) = lims→∞ s ρH(s) = β . Next, note that

y(∞) − y(0+) = G(0) − G(∞) = H(0) = βN(0)/D(0) . Thus, (S1)

is satisfied, that is, y(t ) exhibits initial undershoot, if and only if

β2N(0)/D(0) < 0. Since D is Hurwitz, it follows that D(0) is posi-

tive, and thus y(t ) exhibits initial undershoot if and only if N(0) is

negative. Note that N(0) is the product of the negatives of the roots

of N, and thus y(t ) exhibits initial undershoot if and only if N has an

odd number of positive roots.                                                              �
Now, it follows immediately from the proposition that the step

response of G1(s) = (s − 2)2(s + 2)/(s + 1)3 exhibits initial

undershoot because G1(s) − G1(∞) = (−5s2 − 7s + 7)/(s + 1)3

has exactly one positive zero, whereas the step response of

G2(s) = (s − 2)(s + 2)2/(s + 1)3 does not exhibit initial under-

shoot because G2(s) − G2(∞) = (−s2 − 7s − 9)/(s + 1)3 has no

positive zeros.

Note that if G is strictly proper, then G(∞) = 0, and the propo-

sition specializes to the result presented in [7]–[9].

FIGURE S2 The step response of
G2(s) = (s − 2)(s + 2)2/(s + 1)3 , which does not exhibit initial
undershoot because G2(s) − G2(∞) has an even number of pos-
itive zeros. In particular, G2(s) − G2(∞) has two negative zeros
at −5.3028 and −1.6972 and no positive zeros. Note that G2

does not exhibit initial undershoot even though G2 itself has an
odd number of positive zeros.
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applying to S the same steps used to derive (6), which again
is a valid procedure despite the fact that S is not strictly
proper, it follows that the error e(t) to a step command r(t)
exhibits overshoot if S(s) − S(0) has at least one positive
zero. Note that e(t) = r(t) − y(t) , and thus e(t) exhibits
overshoot if and only if y(t) exhibits overshoot. Therefore,
S(s) − S(0) has at least one positive zero if and only if
T(s) − T(0) has at least one positive zero.

As a special case, consider a system whose error e(t)
converges to zero, that is, S(0) = 0. In particular, e(t) con-
verges to zero if the controller C has integral action. In this
case, e(t) exhibits overshoot if L has at least one positive
pole. To see this, note that it follows from (7) that a posi-
tive pole p of L is also a positive zero of the sensitivity
S(s) = S(s) − S(0), which implies that e(t) overshoots its
steady-state value, namely, zero. Consequently, y(t) also
overshoots its steady-state value, namely, the value of the
step command.

Table 2 summarizes the results on initial undershoot,
zero crossings, and overshoot for the servo system shown
in Figure 8, where u(t) is the unit step input, y(t) is the
output, and e(t) is the error.

INVERTED PENDULUM ON A CART
To demonstrate the above results, try balancing a long
stick in the palm of your hand, so that you (that is, your
eye, brain, and arm) are stabilizing an unstable system.
You can think of your arm as the force actuator and your
arm as the “cart,” which provides a base for the stick. It
turns out that the linearized transfer function from the
force applied by your hand to the position of your hand
has both a positive zero and a positive pole. Specifically,
this transfer function is given by [28, p. 86]

G(s) = 1
M

(s − z)(s + z)
s2(s − p)(s + p)

,

where p and z are the positive pole and positive zero,
respectively, given by

p =
√

g
�

+ mg
M�

, z =
√

g
�
,

where m is the mass of the stick, � is the length of the stick,
M is the mass of the cart, and g is the acceleration due to
gravity. The servo control system that your eye, brain, and
arm implement is shown in Figure 8. Note that p > z, that
is, the pole is to the right of the zero.

Although the controller implemented by the brain is
unknown, we can draw some conclusions about properties
that any stabilizing linear time-invariant controller must
possess. Since the plant has an odd number of real poles
(specifically, one pole at p) to the right of the positive zero
z, it follows from the parity interlacing principle [28, p. 80],
[29], [30] that the plant cannot be stabilized by a stable con-
troller. In fact, the controller must have an odd number of
positive poles to the right of the zero z in order to prevent a
closed-loop pole from being attracted to z. Although it is a
challenging exercise to use root locus to construct a stabiliz-
ing controller, LQG can easily be used.

For a rough test of these conditions, command yourself
to move the “cart” several inches to the left. You readily
observe that a typical controller implemented by your
brain causes your hand to move first to the right before
moving to the left. This kind of response is also manifested
by bicycle countersteering as discussed in “Bicycle Coun-
tersteering Revisited.” The cart position y(t) and the error
e(t) both exhibit initial undershoot, in both cases due to
the positive zero z in T, which arises from the positive
plant zero z = √

g/ l, assuming that your brain does not
introduce an odd number of additional positive zeros
through C. However, with regard to initial undershoot,
LQG behaves differently from the typical human brain. In

TABLE 2 Initial undershoot, zero crossing, and overshoot in the servo system shown in Figure 8, where u (t ) is the unit step
input, y (t ) is the output, and e (t ) is the error. As shown in the text,the conditions for overshoot of y (t ) and e (t )
are equivalent.

Initial Undershoot Zero Crossing Overshoot 
y (t ) If and only if L has an odd If L has at least If T(s) − T(0) has at

number of positive zeros one positive zero least one positive zero

e (t ) If and only if L has an odd If L has at least If S(s) − S(0) has at 
number of positive zeros one positive pole least one positive zero

A conceptual impediment to the acceptance of zero is the

difficulty in understanding the ratio 1/0.
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particular, LQG can be used to design a controller with
exactly one positive zero. Thus, L (and T) has two positive
zeros, and the cart position y(t) does not exhibit initial
undershoot. For example, let M = m = 0.1 kg, l = 1 m,
g = 9.8 m/s2, and consider the LQG controller

C(s) = −5085s3 − 21355s2 + 5820s + 3099
s4 + 45.84s3 + 981.1s2 − 39678s − 132520

, (9)

which has two negative zeros at −4.4273 and −0.2744 and
one positive zero at 0.5018. Consequently, the step
response of the cart position y(t) does not exhibit initial
undershoot, as shown in Figure 9. In fact, numerical exper-
iments suggest that LQG always yields cart controllers
with an odd number of positive zeros.

In addition to initial undershoot, the positive zero z of
L implies that the cart position y(t) has at least one zero
crossing, whereas the positive pole p of L implies that the
step response error e(t) has at least one zero crossing.
Furthermore, in bringing the “cart” to its new position,
we observe overshoot, which is due to the positive plant
pole p. This example is discussed extensively in [31].

ROBUSTNESS AND PERFORMANCE LIMITATIONS 
OF NONMINIMUM-PHASE ZEROS
In addition to initial undershoot and direction reversals in
the step response of a system, nonminimum-phase zeros
limit closed-loop performance. This effect can be seen by
noting that the poles of the closed-loop system are a “mix-
ture” of the plant poles and zeros; the classical root locus
method tells us how this mixture plays itself out as the
loop gain increases. In particular, as the loop gain is
increased, poles move toward zeros, and thus destabiliza-

tion inevitably occurs when the loop transfer function has
nonminimum-phase zeros. Hence, feedback control sys-
tems have limited gain margin when the loop transfer
function has nonminimum-phase zeros, and thus limited
gain margin implies a limitation on the robustness of the
closed-loop system. A similar limitation on gain margin
occurs when proportional feedback is used and the loop
transfer function has relative degree greater than 2 [14].
However, controllers can be constructed to have infinite
upward gain margin when the loop transfer function is
minimum phase [32], [33].

Nonminimum-phase zeros in the loop transfer function
also limit bandwidth. To see this, it follows from asymp-
totic LQG theory [34, p. 369], [35] that nonminimum-phase
zeros in the transfer functions from the plant disturbance

Bicycle Countersteering Revisited

The countersteering response in riding a bicycle is an exam-

ple of initial undershoot. The constant-speed linearization of

an open-loop bicycle is unstable with a positive pole, and the

positive open-loop pole becomes a positive zero of the sensitivi-

ty transfer function. Thus, the step response of the sensitivity

transfer function has at least one zero crossing and exhibits

overshoot. In addition, the typical rider’s controller results in a

loop transfer function with an odd number of positive zeros, and

thus the rider-stabilized bicycle exhibits a nonminimum-phase

countersteering response, which limits maneuverability. Specifi-

cally, in turning the bicycle to the left, the rider commands a left-

hand step; however, in response to this step command, the

bicycle typically first turns to the right before turning to the left.

This initial undershoot behavior is discussed in [S1] and [S2].

A bicycle rider might, however, be able to use an alternative

controller that results in a nonzero even number of positive

zeros in the loop transfer function. In this case, in response to a

left-turn step command, the bicycle turns to the left, quickly

turns back to the right, and turns to the left again to complete

the left turn without initial undershoot. Figure 9 illustrates this

type of response for an LQG-controlled inverted pendulum on a

cart. However, as in Figure 9, the rider experiences delayed

countersteering since the bike must eventually turn back toward

the right and cross zero (see Table 2) before completing the

left-hand turn. As long as the relevant transfer function possess-

es at least one positive zero, a zero crossing cannot be avoid-

ed. Numerical demonstration of these properties can be based

on models given in [S3].

[S1] K.J. Astrom, R.E. Klein, and A. Lennartsson, “Bicycle dynamics and

control,” IEEE Control Syst. Mag., vol. 25, pp. 26–47, Aug. 2005.

[S2] D.G. Wilson, Bicycling Science, 3rd ed. Cambridge, MA: MIT Press,

2004.

[S3] D.L.M. Limebeer and R.S. Sharp, “Bicycles, Motorcycles, and Mod-

els,” IEEE Control Syst. Mag., vol. 26, pp. 34–61, Oct. 2006.

FIGURE 9 The step response of the cart position with an LQG
controller. Beginning at 0, the step response initially moves in
the correct direction, overshoots the asymptotic value 1, moves
in the wrong direction past 0, and finally reverses to reach the
desired position.
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to measurement and from the control to performance vari-
able limit bandwidth in the sense that their mirror images
are the asymptotic locations of the closed-loop poles under
high gain. A related phenomenon is the waterbed effect,
which concerns the effect of nonminimum phase zeros on
the peak of the sensitivity transfer function [28, p. 98].

Because poles are attracted to zeros, nonminimum-
phase zeros limit the use of high-gain feedback. Conse-
quently, open-right-half-plane zeros limit the achievable
performance of fixed-gain controllers [36]–[42] as well as
adaptive controllers [43].

ZERO CANCELLATION
AND HIDDEN UNSTABLE POLES
Mathematically, a zero can cancel a pole when a pair of
transfer functions are cascaded. This property corresponds
to nothing more than the fact that the stable transfer func-
tion G(s) = (s + 1)/(s + 1) is mathematically indistinguish-
able from the constant transfer function G(s) = 1. Likewise,
the unstable transfer function G(s) = (s − 1)/(s − 1) is also
mathematically indistinguishable from G(s) = 1. However,
unstable pole-zero cancellation is not an allowable opera-
tion in practical plant/controller cascade for the simple
reason that an arbitrarily small discrepancy between the
zero at 1 and the pole at 1 results in instability.

However, even if there is no discrepancy between an
unstable pole and an unstable zero so that mathematical
cancellation occurs, the cascaded system generally has an
unbounded internal signal. To see why, consider the
closed-loop system in Figure 10, whose loop transfer func-
tion involves an unstable pole-zero cancellation. For the
servo control system shown in Figure 10, the error is given
by ê = ((s + 1)/(s + 2))r̂, which seems to indicate stability.
However, the transfer function from r to u is given by
û = ((s + 1)/((s − 1)(s + 2)))r̂, which is unstable. In fact,
this transfer function exposes an otherwise hidden instabil-
ity in the system. To determine the stability of a system
represented in terms of transfer functions, it is thus neces-

sary to examine all transfer functions as discussed in [44, p.
123] and [45].

To demonstrate the effect of a hidden instability, we
again consider Figure 10. If we assume that r is the
nonzero initial condition response of a linear time-
invariant system, then the control signal u is unbounded.
Alternatively, if r(t) ≡ 0 but the time-domain realization of
the transfer function 1/(s − 1) has a nonzero initial condi-
tion, then the control signal u is still unbounded. Exposing
the hidden instability due to unstable pole-zero cancella-
tion is equivalent to recognizing the presence of this
unbounded response. Hence, even when the cancellation is
perfect, a nonminimum-phase controller zero cannot be
used to cancel an unstable plant pole, and an unstable con-
troller pole cannot be used to cancel a nonminimum-phase
plant zero.

BLOCKING AND TRANSMISSION
ZEROS IN MIMO SYSTEMS
While everything we have said so far applies to SISO sys-
tems, the effect of zeros on system behavior and achievable
performance is analogous but more complex in MIMO
(multiple-input, multiple-output) systems. For treatments
of MIMO zeros, see [46]–[57].

For a nonzero l × m transfer function G, two types of
zeros are of interest. A blocking zero z ∈ C of G has the
property that G(z) = 0. Hence, z ∈ C is a blocking zero of
G if and only if z ∈ C is a zero of every scalar entry of G.
Hence, the blocking zeros of a MIMO transfer function can
easily be determined.

The second type of zeros for a MIMO transfer function
G are the transmission zeros. To characterize transmission
zeros, it is useful to consider the Smith-McMillan form of a
MIMO transfer function [6, p. 140], [42, p. 80]. This result
states that every square or rectangular transfer function
can be transformed by means of unimodular matrices U1
and U2 to a transfer function with nonzero entries appear-
ing only on its main diagonal. (A unimodular matrix has
polynomial entries and a constant, nonzero determinant.)
The Smith-McMillan form is given by

U1GU2 =




p1
q1

. . .
pr
qr

0(l−r)×(m−r)


 ,

where p1, . . . , pr and q1, . . . , qr are monic polynomials (that
is, their leading coefficients are unity), pi and qi have no
common roots, pi is a factor of pi+1, and qi+1 is a factor of qi.

Consequently, the roots of pr include all of the roots of
p1, . . . , pr−1, while the roots of q1 include all of the roots of
q2, . . . , qr . The normal rank of G(s) is r. If p1(z) = 0 then
G(z) = 0, and thus the roots of p1 are the blocking zeros of
G. Furthermore, note that at least one entry of the Smith-

FIGURE 10 Servo feedback system. With a bounded reference signal
r , the error e = [(s + 1)/(s + 2)]r is bounded. However, the control
input u is generally unbounded due to the instability of the controller.
This system possesses a hidden unstable pole-zero cancellation.
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An everyday example of positive zeros

arises when driving a car backwards.
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McMillan form of G(z) is zero for every complex number z
that is a root of one of the polynomials pi. Thus, the roots of
pr are the transmission zeros of G. The analysis of transmis-
sion zeros is slightly complicated due to the fact that, as
shown by the second example below, a transmission zero
can also be a pole.

For example, consider the 2 × 2 transfer function

G(s) =
[ 1

s+1
1

s+2
1

s+3
1

s+1

]
,

which has no blocking zeros and normal rank 2. To deter-
mine the transmission zeros of G, consider the factorization

G(s) =
[ 1

2 (3s2 + 13s + 12) 3
1
2 (3s2 + 13s + 14) 3

][ 1
(s+1)(s+2)(s+3)

0

0 s+5/3
s+1

]

×
[−2s − 4 s + 3

1 − 1
2

]
.

Note that the first and third matrices are unimodular,
while the second matrix is in Smith-McMillan form. Thus,
z = −5/3 is a transmission zero of G.

As another example, consider

G(s) =
[ 1

(s+1)2
1

(s+1)(s+2)
1

(s+1)(s+2)
s+3

(s+2)2

]
.

Then,

G(s) = U1(s)
[ 1

(s+1)2(s+2)2 0
0 s + 2

]
U2(s),

where U1, U2 are the unimodular matrices

U1(s) =
[

(s + 2)(s3 + 4s2 + 5s + 1) 1
(s + 1)(s3 + 5s2 + 8s + 3) 1

]

and

U2(s) =
[−(s + 2) (s + 1)(s2 + 3s + 1)

1 −s(s + 2)

]
.

Hence, the McMillan degree of G is 2, the poles of G are −1
and −2, the transmission zero of G is −2, and G has no
blocking zeros. Note that −2 is both a pole and a transmis-
sion zero of G. Note also that, although G is strictly proper,
the Smith-McMillan form of G is improper.

Transmission zeros are usually computed by using a
state-space method that involves a minimal realization of
G(s). For the SISO transfer function G(s), it is useful to note
the identity [6, p. 520]

C adj(sI − A)B = − det R(s),

where R(s) is the Rosenbrock system matrix defined by 

R(s) �
[

sI − A B
C 0

]
.

Consequently, the complex number z is a zero of the SISO
transfer function G(s) = C(sI − A)−1B if and only if
det R(z) = 0.

Now, suppose that G is an l × m transfer function, with
a minimal realization (A, B, C), where B is an n × m matrix
and C is a l × n matrix. Then, the Rosenbrock system
matrix R has size (n + l) × (n + m) and thus is not neces-
sarily square. Now, z ∈ C is an invariant zero of (A, B, C) if
the rank of R(z) is less than the normal rank of R. Further-
more, it is shown in [23, p. 111] that the transmission zeros
of G are exactly the invariant zeros of (A, B, C). Note that
in the case of full-state measurement, that is, C = I, the
rank of R(s) is n + rank B for all values of s. Hence, in this
case, G has no transmission zeros.

By writing R(s) as

R(s) =
[−A B

C 0

]
− s

[−I 0
0 0

]
,

it can be seen that the invariant zeros of (A, B, C) are the
generalized eigenvalues of the matrix pencil [58] 

([−A B
C 0

]
,

[−I 0
0 0

])
.

Consequently, while the computation of poles is an eigen-
value problem, the computation of zeros is a generalized
eigenvalue problem, which is more difficult [59], [60]. Note
that there is no assumption that R(s) is square. We also
note that the first n rows of R(s) are C(s) � [sI − A B ],
which is the  controllability pencil, while the first n columns
of R(s) are O(s) �

[
sI − A

C

]
, which is the observability pencil.

The PBH tests for controllability and observability are
based on C(s) and O(s), respectively.

NONMINIMUM-PHASE ZEROS IN 
DISCRETE-TIME SYSTEMS
The above discussion is confined to continuous-time sys-
tems. For discrete-time systems, nonminimum-phase
zeros are zeros that lie outside the unit disk. Such zeros
may or may not cause initial undershoot in the step
response [61]. In addition, the root-locus rules for discrete-
time systems are identical to the rules for continuous-time
systems. However, unlike continuous-time systems,

Mathematically, a zero can cancel

a pole when a pair of transfer

functions are cascaded.

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 10,2010 at 05:58:04 UTC from IEEE Xplore.  Restrictions apply. 



which can have infinite gain margin for a loop transfer
function with relative degree less than or equal to two,
discrete-time systems with relative degree one or greater
have finite gain margins.

Most discrete-time systems arise as sampled continuous-
time systems. In this regard it is important to note that sam-
pled minimum-phase transfer functions are often
nonminimum phase [62], [63], [64, p. 65]. In particular, suf-
ficiently fast sampling of a continuous-time system with
relative degree greater than two gives rise to nonminimum-
phase zeros [65]. Techniques for addressing nonminimum-
phase sampled-data systems are given in [61] and [66]–[70].

It is clear from root locus that nonminimum-phase
zeros in discrete time impose limitations on robustness
and performance [71], [72]. Furthermore, as in continuous
time, discrete-time nonminimum-phase zeros prevent the
use of plant-inversion-based controllers. This limitation is
apparent in adaptive control, where many methods are
restricted to minimum-phase plants [73]–[76].

CONCLUSIONS
Zeros are a fundamental aspect of systems and control the-
ory; however, the causes and effects of zeros are more sub-
tle than those of poles. In particular, positive zeros can
cause initial undershoot (initial error growth), zero cross-
ings, and overshoot in the step response of a system,
whereas nonminimum-phase zeros limit bandwidth. Both
of these aspects have real-world implications in many
applications. Nonminimum-phase zeros exacerbate the
tradeoff between the robustness and achievable perfor-
mance of a feedback control system.

From a control-theoretic point of view, a nonminimum-
phase zero in the loop transfer function L is arguably the
worst feature a system can possess. Every feedback synthe-
sis methodology must accept limitations due to the pres-
ence of open-right-half-plane zeros, and the mark of a
good analysis tool is the ability to capture the performance
limitations arising from nonminimum-phase zeros.

While the effects of open-right-half-plane poles are evi-
dent to every student of control, the lurking dangers and
limitations of open-right-half-plane zeros are more subtle
and thus more insidious. As control practitioners, we may
despise open-right-half-plane zeros because of the difficul-
ties they entail. However, those of us who develop control
techniques relish the challenge that open-right-half-plane
zeros present in our unique field of endeavor.
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