
Advanced Textbooks in Control and Signal Processing

Series Editors

Professor Michael J. Grimble, Professor of Industrial Systems and Director
Professor Michael A. Johnson, Professor of Control Systems and Deputy Director

Industrial Control Centre, Department of Electronic and Electrical Engineering,
University of Strathclyde, Graham Hills Building, 50 George Street, Glasgow G1 1QE, UK

For further volumes:
www.springer.com/series/4045

http://www.springer.com/series/4045

Karel J. Keesman

System
Identification

An Introduction

Karel J. Keesman
Systems and Control Group
Wageningen University
Bornse Weilanden 9
6708 WG, Wageningen
Netherlands
karel.keesman@wur.nl

ISSN 1439-2232
ISBN 978-0-85729-521-7 e-ISBN 978-0-85729-522-4
DOI 10.1007/978-0-85729-522-4
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2011929048

Mathematics Subject Classification: 93E12, 93E24, 93E10, 93E11

© Springer-Verlag London Limited 2011
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: eStudio Calamar S.L.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:karel.keesman@wur.nl
http://www.springer.com
http://www.springer.com/mycopy

To Wil, Esther, Carlijn, and Rick
. . .

Series Editors’ Foreword

The topics of control engineering and signal processing continue to flourish and
develop. In common with general scientific investigation, new ideas, concepts and
interpretations emerge quite spontaneously, and these are then discussed, used, dis-
carded or subsumed into the prevailing subject paradigm. Sometimes these innova-
tive concepts coalesce into a new sub-discipline within the broad subject tapestry of
control and signal processing. This preliminary battle between old and new usually
takes place at conferences, through the Internet and in the journals of the discipline.
After a little more maturity has been acquired by the new concepts, then archival
publication as a scientific or engineering monograph may occur.

A new concept in control and signal processing is known to have arrived when
sufficient material has evolved for the topic to be taught as a specialised tutorial
workshop or as a course to undergraduate, graduate or industrial engineers. Ad-
vanced Textbooks in Control and Signal Processing are designed as a vehicle for the
systematic presentation of course material for both popular and innovative topics
in the discipline. It is hoped that prospective authors will welcome the opportunity
to publish a structured and systematic presentation of some of the newer emerging
control and signal processing technologies in the textbook series.

An aim of Advanced Textbooks in Control and Signal Processing is to create a
library that covers all the main subjects to be found in the control and signal pro-
cessing fields. It is a growing but select series of high-quality books that now covers
some fundamental topics and many more advanced topics in these areas. In trying to
achieve a balanced library of course books, the Editors have long wished to have a
text on system identification in the series. Although we often tend to think of system
identification as a still-maturing subject, it is quite surprising to realise that the first
International Federation of Automatic Control symposium on system identification
was held as long ago as 1967 and that some of the classic textbooks on this topic
were published during the 1970s and 1980s. Consequently, the existing literature
and diversity of theory and applications areas is now quite extensive and provide
a significant challenge to any prospective system identification course textbook au-
thor. The Series Editors were therefore pleased to discover that Associate Professor
Karel Keesman of Wageningen University in the Netherlands, was proposing to

vii

viii Series Editors’ Foreword

take on this task and produce such a course textbook for the series entitled System
Identification: An Introduction. We are now very pleased to welcome this finished
textbook to the library of Advanced Textbooks in Control and Signal Processing.

Although a wide literature exists for systems identification, there is a traditional
classification of techniques into non-parametric and parametric methods, and Pro-
fessor Keesman reflects this with Part I of his book focussed on the non-parametric
methods, and Parts II and III emphasizing the parametric methods. Since every iden-
tification practitioner wishes to know if the estimated model is a good model for the
process, a novel feature of the textbook is Part IV that systematically presents a
number of validation techniques for answering that very question.

As befits a course textbook, the material develops in increasing technical depth
as the reader progresses through the text, but there are starred sections to identify
material that is more advanced technically or presents more recent technical devel-
opments in the field. The presentational style is discursive with the integrated use
of examples to illustrate technical and practical issues as they arise along the way.
As part of this approach many different system examples have been used ranging
from mechanical systems to more complex biological systems. Each chapter has a
Problems section, and some solutions are available in the book. To support the math-
ematical content (system identification involves elements of systems theory, matri-
ces, statistics, transform methods (for example, Laplace and Fourier transforms),
Bode diagrams, and shift operators), there are five accessible, short, focussed math-
ematical appendices at the end of the book to aid the reader if necessary. This has
the advantage of making the textbook fully self-contained for most readers.

In terms of processes, Professor Keesman’s approach takes a broad view, and the
textbook should be readily appreciated by readers from either the engineering or the
scientific disciplines. Final-year undergraduate and graduate readers will find the
book provides a stimulating tutorial-style entry to the field of system identification.
For the established engineer or scientist, the mathematical level of the text and the
supporting mathematical appendices will allow a speedy and insightful appreciation
of the techniques of the field. This is an excellent addition to the Advanced Textbooks
in Control and Signal Processing series.

M.J. Grimble
M.A. Johnson

Industrial Control Centre
Glasgow, Scotland, UK

Preface

St. Augustine of Hippo in De Civitate Dei writes
‘Si [· · ·] fallor, sum’ (‘If I am mistaken, I am’)

(book XI, 26)

‘I can therefore gladly admit that falsificationists
like myself much prefer an attempt to solve
an interesting problem by a bold conjecture,

even (and especially) if it soon turns out
to be false, to any recital of a sequence

of irrelevant truisms. We prefer this
because we believe that in this way

we learn from our mistakes; and
that in finding that our

conjecture was false, we
shall have learnt much

about the truth, and
shall have got

nearer to the
truth.’

POPPER, K. 1962
Conjectures and Refutations,

New York: Basic Books, p. 231

ix

x Preface

Learning from mistakes, that according to Karl Popper brings us closer to the
truth and, if prediction errors are interpreted as “mistakes”, it is the basic princi-
ple underlying the majority of system identification methods. System identification
aims at the construction of mathematical models from prior knowledge of the sys-
tem under study and noisy time series data. Essentially, system identification is an
art of modeling, where appropriate choices have to be made concerning the level of
approximation given the final modeling objective and given noisy data. The scien-
tific methods described in this book and obtained from statistics and system theory
may help to solve the system identification problem in a systematic way. In gen-
eral, system identification consists of three basic steps: experiment design and data
acquisition, model structure selection and parameter estimation, and model vali-
dation. In the past, many methods have been developed to support each of these
steps. Initially, these methods were developed for each specific case. In the seven-
ties, a more systematic approach to system identification arose with the start of the
IFAC Symposia on Identification and System Parameter Estimation and the appear-
ance of the books of Box and Jenkins on Time Series Analysis (1970), of Schweppe
on Uncertain Dynamic Systems (1973) and Eykhoff’s book on System Identification
(1974). Since then some ten books and many, most technical, papers have appeared
on identification. Especially, the books of Norton entitled ‘An Introduction to Iden-
tification’ (1986) and Ljung’s ‘System Identification—Theory for the User’ (1987,
1999) became widely used introductory text books for students, at several levels.
However, still the problem of system identification has not been completely solved.
Consequently, nowadays new ideas and methods to solve the system identification
problem or parts of it are introduced.

This book is designed to help students and practitioners to understand the system
identification process, to read the identification literature and to make appropriate
choices in this process. As such the identified mathematical model will help to gain
insight into processes, to effectively design experiments, to make better predictions
or to improve the performance of a control system.

In this book the starting point for identification is the prior system knowledge,
preferably in terms of a set of algebraic or differential equations. This prior knowl-
edge can often be found in text books or articles related to the process phenomena
under study. In particular, one may think of constitutive laws from physics, chem-
istry, biology and economics together with conservation laws, like material and pop-
ulation balances. Hence, the focus of this book is basically on ‘semi-physical’ or
‘grey-box’ modeling approaches, although data-based modeling approaches using
transfer function descriptions of the system are treated at an introductory level, as
well. However, the reader will not find any data-based methods related to fuzzy
models, neural nets, support vector machines and the like, as these require detailed
specialist knowledge and as such can be seen as special nonlinear regression struc-
tures.

The methods described in this book are not treated at a thoroughly advanced
mathematical level, and thus no attention will be paid to asymptotic theory; the book
is essentially problem oriented using finite input–output data. As such, the contents
of the book range from classical (frequency domain) to modern (time domain) iden-
tification, from static to dynamic, from linear to nonlinear and from time-invariant

Preface xi

to time-varying systems. Hence, for reading this book, an elementary knowledge
of matrix algebra and statistics suffices. For more technical identification books,
which focus on, for instance, asymptotic theory, nonlinear regression, time series
analysis, frequency domain techniques, subspace identification, H∞-approaches,
infinite-dimensional systems and the increasing popularity of Bayesian estimation
methods, we refer to the literature, as indicated at the end of each chapter. In this
book these subjects are covered at an elementary level and basically illustrated by
simple examples, so that every reader is able to redo the estimation or identification
step. Some examples are more complex, but these have been introduced to demon-
strate the practical applicability of the methods. All the more complex examples
have been derived from ‘real-world’ physical/chemical applications with, in most
cases, a biological component. Moreover, in all these applications heat, mass (in
particular, water vapor, carbon, nitrogen and oxygen concentration) or momentum
transfer processes play a key role. A list of all examples can be found in the sub-
ject index. Some of the sections and subsections have been marked with an asterisk
(*) in the title, indicating useful background material related to special topics. This
material, presented at a more advanced level, can be easily skipped without losing
sight of the main stream of system identification methods for practical use.

The book is structured as follows. First, some introduction into system theory,
and in particular on model representations and model properties, is given. Then, in
Part I the focus is on data-based identification, also known as the non-parametric
methods. These methods are especially useful when the prior system knowledge is
very limited and only good data sets are available. Essentially, the basic assumptions
are that the dynamic system is linear and time-invariant, properties that are further
explained in the Introduction. Part II focuses on time-invariant system identification
methods, assuming constant parameters. We start with classical linear regression
related to static, time-invariant systems and end this part with the identification of
nonlinear dynamic systems. In Part III, the emphasis is on time-varying system iden-
tification methods, which basically rely on recursive estimation techniques. Again,
the approach is from linear to nonlinear and from static to dynamic. In Part IV,
model validation techniques are discussed using both the prior knowledge and the
noisy time series data. Finally, the book contains appendices with background mate-
rial on matrix algebra, statistics, integral transforms, Bode diagrams, shift operator
calculus and the derivation of the recursive least-squares method. In addition to this,
Appendix G contains hourly measurements of the dissolved oxygen (DO) concen-
tration in g/m3, the saturated dissolved oxygen concentration (CS) in g/m3 and the
radiation (I) in W/m2, from the lake ‘De Poel en ’t Zwet’, situated in the western
part of the Netherlands, for the period 21–30 April 1983.

Solutions to the first problems of each chapter are presented in a password-
protected online solutions manual, for the convenience of both the student and the
tutor. Each solution, as a supplement to the many examples, is extensively described
to give further insight into the problems that may appear in the identification of un-
certain static or dynamic systems. For those who are starting at a very elementary
level, it is recommended to study the many examples given in this book for a thor-
ough grounding in the subject.

xii Preface

Finally, I would like to end this preface with a suggestion to the reader. Try to
read the book as a road map for anybody who wants to wander through the diverse
system identification landscape. No cycle path, let alone bush tracks, only the main
roads are indicated with some nice, almost picturesque stops, which are the many
simple examples that brighten up the material. Enjoy your trip!

Karel J. KeesmanWageningen University
Wageningen, The Netherlands

Acknowledgements

Here I would like to acknowledge the contribution of some people who, maybe with-
out knowing, implicitly or explicitly stimulated me in writing this book. It was in the
early 1980s when Peter C. Young, at a workshop on real-time river flow forecasting,
got my full attention to what he then called a data-based modeling approach. His
“let the data speak” has been a starting point for writing this text. However, as many
others, I always felt that our a priori knowledge of the system’s behavior should
not be overlooked. This is especially true when we only have access to small data
sets. Identification of models from small data sets has been the subject of my Ph.D.
work, that was (partly) supervised by Gerrit van Straten, Arun Bagchi, John Ri-
jnsdorp and Huib Kwakernaak and that started in the early summer of 1985. From
this period, when the bounded-error or set-membership approach became mature,
I still remember the inspiring meetings at symposia with, in alphabetic order, Gus-
tavo Belforte, John Norton, Helene Piet-Lahanier, Luc Pronzato and Eric Walter.
Also, the contact with Jan van Schuppen on the connection between system theory
and system identification for applications on systems with a biological component,
in particular related to structural or theoretical identifiability and rational systems,
should be mentioned, although not much of it was directly processed into a pub-
lication. In addition to this, I would like to mention the on-going discussions with
Hans Stigter on identifiability and optimal input design (OID) and with Hans Zwart
on estimation problems related to infinite-dimensional systems. As this last subject
is far too advanced for this introductory text, it will not be covered by this book,
although some reference is made to the identification of large scale models. These
discussions helped me to make the final decisions with respect to the material that
should be included. Our approach to solve OID problems, although very relevant for
the identification of dynamic systems, is based on Pontryagin’s minimum principle
and uses singular optimal control theory. Because of the completely different angle
of attack, I considered this to be out of the scope of the book. The regular visits
to Tony Jakeman’s group at the Australian National University and with a focus on
identification of uncertain, time-varying environmental systems again allowed me
to bring the theory into practice.

With respect to the correction of the script at first I would like to mention the
students of the System Identification course at the Wageningen University. In ad-

xiii

xiv Acknowledgements

dition to this, and more in particular, I would like to thank Rachel van Ooteghem
for her calculations on the heating system example and Jimmy Omony, Dirk Vries,
Hans Stigter, John Norton and Mike Johnson for their detailed comments and sug-
gestions on the text. At last, I would like to mention Oliver Jackson and Charlotte
Cross (Springer, UK) who guided me through all the practical issues related to the
final publication of this book.

Contents1

1 Introduction . 1
1.1 System Theory . 1

1.1.1 Terminology . 1
1.1.2 Basic Problems . 3

1.2 Mathematical Models . 5
1.2.1 Model Properties . 6
1.2.2 Structural Model Representations 7

1.3 System Identification Procedure 10
1.4 Historical Notes and References 12
1.5 Problems . 13

Part I Data-based Identification

2 System Response Methods . 17
2.1 Impulse Response . 17

2.1.1 Impulse Response Model Representation 17
2.1.2 Transfer Function Model Representation 18
2.1.3 Direct Impulse Response Identification 20

2.2 Step Response . 22
2.2.1 Direct Step Response Identification 22
2.2.2 Impulse Response Identification Using Step Responses . . 23

2.3 Sine-wave Response . 24
2.3.1 Frequency Transfer Function 24
2.3.2 Sine-wave Response Identification 24

2.4 Historical Notes and References 26
2.5 Problems . 26

1Sections marked with an asterisk (*) contain material at a more advanced level and, if desired,
may be omitted by the reader, without loss of continuity of the main text.

xv

xvi Contents

3 Frequency Response Methods . 29
3.1 Empirical Transfer-function Identification 29

3.1.1 Sine Wave Testing . 29
3.1.2 Discrete Fourier Transform of Signals 30
3.1.3 Empirical Transfer-function Estimate 31
3.1.4 Critical Point Identification 34

3.2 Discrete-time Transfer Function 36
3.2.1 z-Transform . 36
3.2.2 Impulse Response Identification Using Input–output Data . 37
3.2.3 Discrete-time Delta Operator 39

3.3 Historical Notes and References 40
3.4 Problems . 40

4 Correlation Methods . 43
4.1 Correlation Functions . 43

4.1.1 Autocorrelation Function 43
4.1.2 White Noise Sequence . 45
4.1.3 Cross-correlation Function 45

4.2 Wiener–Hopf Relationship . 47
4.2.1 Wiener–Hopf Equation 47
4.2.2 Impulse Response Identification Using Wiener–Hopf

Equation . 47
4.2.3 Random Binary Sequences 49
4.2.4 Filter Properties of Wiener–Hopf Relationship 50

4.3 Frequency Analysis Using Correlation Techniques 51
4.3.1 Cross-correlation Between Input–output Sine Waves 51
4.3.2 Transfer-function Estimate Using Correlation Techniques . 52

4.4 Spectral Analysis . 52
4.4.1 Power Spectra . 52
4.4.2 Transfer-function Estimate Using Power Spectra 54
4.4.3 Bias-variance Tradeoff in Transfer-function Estimates . . . 55

4.5 Historical Notes and References 57
4.6 Problems . 57

Part II Time-invariant Systems Identification

5 Static Systems Identification . 61
5.1 Linear Static Systems . 61

5.1.1 Linear Regression . 61
5.1.2 Least-squares Estimation 62
5.1.3 Interpretation of Least-squares Method 66
5.1.4 Bias . 69
5.1.5 Accuracy . 72
5.1.6 Identifiability . 77
5.1.7 *Errors-in-variables Problem 85
5.1.8 *Bounded-noise Problem: Linear Case 88

Contents xvii

5.2 Nonlinear Static Systems . 92
5.2.1 Nonlinear Regression . 92
5.2.2 Nonlinear Least-squares Estimation 93
5.2.3 Iterative Solutions . 94
5.2.4 Accuracy . 97
5.2.5 Model Reparameterization: Static Case 99
5.2.6 *Maximum Likelihood Estimation 101
5.2.7 *Bounded-noise Problem: Nonlinear Case 105

5.3 Historical Notes and References 109
5.4 Problems . 110

6 Dynamic Systems Identification . 113
6.1 Linear Dynamic Systems . 113

6.1.1 Transfer Function Models 113
6.1.2 Equation Error Identification 117
6.1.3 Output Error Identification 121
6.1.4 Prediction Error Identification 127
6.1.5 Model Structure Identification 132
6.1.6 *Subspace Identification 135
6.1.7 *Linear Parameter-varying Model Identification 140
6.1.8 *Orthogonal Basis Functions 147
6.1.9 *Closed-loop Identification 148

6.2 Nonlinear Dynamic Systems . 152
6.2.1 Simulation Models . 152
6.2.2 *Parameter Sensitivity . 153
6.2.3 Nonlinear Regressions . 156
6.2.4 Iterative Solution . 156
6.2.5 Model Reparameterization: Dynamic Case 157

6.3 Historical Notes and References 163
6.4 Problems . 165

Part III Time-varying Systems Identification

7 Time-varying Static Systems Identification 169
7.1 Linear Regression Models . 169

7.1.1 Recursive Estimation . 169
7.1.2 Time-varying Parameters 174
7.1.3 Multioutput Case . 177
7.1.4 Resemblance with Kalman Filter 182
7.1.5 *Numerical Issues . 184

7.2 Nonlinear Static Systems . 187
7.2.1 State-space Representation 187
7.2.2 Extended Kalman Filter 189

7.3 Historical Notes and References 191
7.4 Problems . 192

xviii Contents

8 Time-varying Dynamic Systems Identification 195
8.1 Linear Dynamic Systems . 195

8.1.1 Recursive Least-squares Estimation 195
8.1.2 Recursive Prediction Error Estimation 199
8.1.3 Smoothing . 206

8.2 Nonlinear Dynamic Systems . 209
8.2.1 Extended Kalman Filtering 209
8.2.2 *Observer-based Methods 213

8.3 Historical Notes and References 215
8.4 Problem . 217

Part IV Model Validation

9 Model Validation Techniques . 225
9.1 Prior Knowledge . 225
9.2 Experience with Model . 226

9.2.1 Model Reduction . 226
9.2.2 Simulation . 227
9.2.3 Prediction . 230

9.3 Experimental Data . 231
9.3.1 Graphical Inspection . 231
9.3.2 Correlation Tests . 233

9.4 Historical Notes and References 245
9.5 Outlook . 246
9.6 Problems . 246

Appendix A Matrix Algebra . 249
A.1 Basic Definitions . 249
A.2 Important Operations . 250
A.3 Quadratic Matrix Forms . 252
A.4 Vector and Matrix Norms . 253
A.5 Differentiation of Vectors and Matrices 254
A.6 Eigenvalues and Eigenvectors . 256
A.7 Range and Kernel of a Matrix . 258
A.8 Exponential of a Matrix . 259
A.9 Square Root of a Matrix . 260
A.10 Choleski Decomposition . 261
A.11 Modified Choleski (UD) Decomposition 262
A.12 QR Decomposition . 262
A.13 Singular Value Decomposition 263
A.14 Projection Matrices . 264

Appendix B Statistics . 267
B.1 Random Entities . 267

B.1.1 Discrete/Continuous Random Variables 267
B.1.2 Random Vectors . 268
B.1.3 Stochastic Processes . 272

Contents xix

Appendix C Laplace, Fourier, and z-Transforms 275
C.1 Laplace Transform . 275
C.2 Fourier Transform . 277
C.3 z-Transform . 277

Appendix D Bode Diagrams . 281
D.1 The Bode Plot . 281
D.2 Four Basic Types . 282

D.2.1 Constant or K Factor . 282
D.2.2 (jω)±n Factor . 282
D.2.3 (1 + jωT)±m Factor . 282
D.2.4 e±jωτ Factor . 284

Appendix E Shift Operator Calculus . 287
E.1 Forward- and Backward-shift Operator 287
E.2 Pulse Transfer Operator . 289

Appendix F Recursive Least-squares Derivation 293
F.3 Least-squares Method . 293
F.4 Equivalent Recursive Form . 294

Appendix G Dissolved Oxygen Data . 297

References . 303

Index . 317

Notations

Variables and functions
ak k-th coefficient in polynomial A(q)
b bias
bk k-th coefficient in polynomial B(q)
ck k-th coefficient in polynomial C(q)
dk k-th coefficient in polynomial D(q)
dM dimension of parameter vector
e(t) white noise error
f (·) system function
fk k-th coefficient in polynomial F(q)
g(t) impulse response function
h amplitude relay output
h(·) output function
hij (·) derivative ith output w.r.t. j th parameter
j complex number, j = √−1
l time lag or lead
m center of set
n system dimension
na order of polynomial A(q)
nb order of polynomial B(q)
nc order of polynomial C(q)
nd order of polynomial D(q)
nf order of polynomial F(q)
nk number of time delays
p dimension parameter vector
p0 switching probability
p(ξ) probability density function (pdf) of ξ
ruu autocorrelation function of u
ruy cross-correlation function between u and y
rvv autocorrelation function of noise v
rvy cross-correlation function between v and y

xxi

xxii Notations

ryy autocorrelation function of y
rεε autocorrelation function of ε
ruε cross-correlation function between u and ε
rŷε cross-correlation function between ŷ and ε
s Laplace variable
s(i) search direction at the ith iteration
t time index/variable
u eigenvector
u(t) control input
v(t) output disturbance/noise
w(t) disturbance input
x(t) system state
y(t) system output
z complex number, z= ejω

Fx gradient system function w.r.t. state x
Fu gradient system function w.r.t. input u
Hs(t) Heaviside step function
Hu gradient output function w.r.t. input u
Hx gradient output function w.r.t. state x
J (ϑ) scalar objective function
JW(ϑ) weighted least-squares objective function
K static gain
L(·) real-valued expansion coefficient
N number of data points
N(α) describing function
T specific time instant
Ts sampling interval

α constant
α(i) step size at the ith iteration
β constant
β(t, k) tuning parameter function
δ(t) Dirac distribution
ε(t) (estimated) prediction error
φ phase of transfer function φ = arg(G(·))
γ (t) gain function
λ(t) forgetting factor
λ eigenvalue
ρ correlation coefficient
σε standard deviation of ε
σi ith singular value
τ time delay
ψ(t,ϑ) gradient of the prediction
ω frequency
ξ random variable
ξ(t, ϑ) noise-free model output

Notations xxiii

Vectors and matrices
(aij) matrix A
e noise vector, e := [e(1), . . . , e(N)]T
y output vector, y := [y(1), . . . , y(N)]T
A system matrix
B input matrix
C observation matrix
D feed-through matrix
D weighting matrix (TLS)
E observation noise matrix (TLS)
E(t) white noise vector (subspace)
F Jacobi matrix with elements fij
G disturbance input matrix
H Hankel matrix
H Jacobi matrix with elements hij
I identity matrix
K (Kalman) filter gain matrix
L lower triangular matrix
0 null matrix
P(Φ) (orthogonal) projection matrix
P covariance matrix recursive estimate
P∞ steady state covariance matrix
R covariance matrix measurement noise
R(i) approximation of J ′′ at ith iteration
Q covariance matrix system noise
S matrix with singular values
Sx state sensitivity matrix
Sy output sensitivity matrix
T weighting matrix (TLS)
U matrix with left-hand singular vector
U(t) system input vector (subspace)
V matrix with right-hand singular vector
W positive-definite weighting matrix
X sensitivity matrix
Y observation matrix (TLS)
Y(t) system output vector (subspace)
Z instrumental variables matrix
Z matrix containing errors in Φ (TLS)
Z(t) input error vector (subspace)

δ small positive scalar
ε vector with residuals
φ regressor vector
ϑ parameter vector, ϑ := [ϑ(1), . . . , ϑ(p)]T
χ regressor vector extended with its derivatives
Φ regressor matrix

xxiv Notations

Γ observability matrix
Π disturbance input matrix parameter model
Ω controllability matrix
Ξ system matrix parameter model

Polynomials and transfer functions
fk(q) kth basis function
A(q) denominator polynomial related to y
B(q) numerator polynomial related to u
C(q) numerator polynomial related to e
D(q) denominator polynomial related to e
F (q) denominator polynomial related to y
G(·) rational transfer function in ω, q , s or z related to u
H(q) rational transfer function related to e
H(q) pulse-transfer operator of LTI system (Appendix E)
L(q) stable linear filter
P(q) rational transfer function of plant P
Q(q) rational transfer function of controller Q
U(s) Laplace transform of u
Wl(q) l-steps ahead prediction weighting filter
Y(s) Laplace transform of y
U(z) z-transform of u
Y(z) z-transform of y
UN(ω) Fourier transform of u(t), t = 1, . . . ,N
YN(ω) Fourier transform of y(t), t = 1, . . . ,N

Sets and operators
adj(A) adjoint of matrix A
bi ith parameter interval
diag(φ) forms diagonal matrix from vector φ
diag(A) diagonal of matrix A
det(A) determinant of matrix A
q forward-shift operator
q−1 backward-shift operator
ran(A) range of matrix A
Tr(A) trace of matrix A
δ delta-operator
π differential operator d

dt
σ set of singular values

B orthotopic outer-bounding set
E ellipsoidal bounding set
F Fourier transform
L Laplace transform
Z z-transform

Notations xxv

N set of natural numbers
Q set of rational numbers
R set of real numbers
R
n n-dimensional column vector of real numbers

R
n×n n× n-dimensional matrix of real numbers

Z set of integers

Cov covariance
E(·) expectation operator
Lm(·) log magnitude
Var variance
Vec Vec operator stacking column vectors

Ωe error set
Ωy measurement uncertainty set
Ωŷ image set
Ωϑ feasible parameter set

Special characters
̂ estimate
′ first derivative
′′ second derivative
+ Moore–Penrose pseudo-inverse
∗ transformed variable or reference variable
(i) ith iteration
T transpose
| · | absolute value (or modulus or magnitude) of a complex number
|A| determinant of matrix A
‖ · ‖1 1-norm
‖ · ‖2 2-norm
‖ · ‖∞ ∞-norm
‖ · ‖F Frobenius-norm
‖ · ‖2

2,Q weighted Euclidean squared norm
∀ for all
〈·, ·〉 inner product of matrices (Sect. 6.1.7)
∠(·) phase shift

Acronyms
4SID Subspace State-Space System IDentification
AIC Akaike’s Information Criterion
AR Auto-Regressive
ARIMA Auto-Regressive Integrated Moving Average
ARMA Auto-Regressive Moving Average
ARMAX Auto-Regressive Moving Average eXogenous
ARX Auto-Regressive eXogenous
BJ Box–Jenkins
CLS Constrained Least-Squares

xxvi Notations

DGPS Differential Global Positioning System
DO Dissolved Oxygen
EKF Extended Kalman Filter
EnKF Ensemble Kalman Filter
ETFE Empirical Transfer Function Estimate
FFT Fast Fourier Transform
FIM Fisher Information Matrix
FIR Finite Impulse Response
FOPDT First-Order Plus Dead Time
FPE Final Prediction Error
FPS Feasible Parameter Set
GLS Generalized Least-Squares
IIR Infinite Impulse Response
IV Instrumental Variable
KF Kalman Filter
LPV Linear Parameter-Varying
LTI Linear Time-Invariant
MA Moving Average
ML Maximum Likelihood
MUS Measurement Uncertainty Set
NLS Nonlinear Least-Squares
OE Output-Error
OLS Ordinary Least-Squares
RBS Random Binary Signal
RLS Recursive Least-Squares
RPE Recursive Prediction Error
RRSQRT Reduced Rank SQuare RooT
SVD Singular Value Decomposition
tLS truncated Least-Squares
TLS Total Least-Squares
UKF Unscented Kalman Filter
ZOH Zero-Order Hold

Chapter 1
Introduction

The main topic of this textbook is how to obtain an appropriate mathematical model
of a dynamic system on the basis of observed time series and prior knowledge of
the system. Therefore first some background of dynamic systems and the modeling
of these systems is presented.

1.1 System Theory

1.1.1 Terminology

Many definitions of a system are available, ranging from loose descriptions to strict
mathematical formulations. In what follows, a system is considered to be an object
in which different variables interact at all kinds of time and space scales and that
produces observable signals. Systems of this type also called open systems. A graph-
ical representation of a general open system, suitable for the system identification
problem, is represented in Fig. 1.1. The system variables may be scalars or vectors
(see Appendix A for details on vector and matrix operations), continuous or discrete
functions of time. The sensor box, which will be considered as a static element, is
added to emphasize the need of monitoring the systems to produce observable sig-
nals. In what follows, the sensor is considered to be a part of the dynamic system.
In Fig. 1.1 the following system variables can be distinguished.

Input u: the input u is an exogenous, measurable signal. This signal can be ma-
nipulated directly by the user.

Disturbance w: the disturbance w is an exogenous, possibly measurable signal,
which cannot be manipulated. It originates from the environment and directly effects
the behavior of the system. If the disturbance is not measurable, it is considered as
possibly structured uncertainty in the input u or in the relationship between u and x,
and indicated as system noise.

State x: the system state x summarizes all the effects of the past inputs u and
disturbances w to the system. Generally the evolution of the states is described by

K.J. Keesman, System Identification,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-0-85729-522-4_1, © Springer-Verlag London Limited 2011

1

http://dx.doi.org/10.1007/978-0-85729-522-4_1

2 1 Introduction

Fig. 1.1 General system representation

Fig. 1.2 Speech/Image
system, w: unmeasured
disturbance, y: output

differential or difference equations. Hence, the dynamic behavior of the system is
affected by variations of the exogenous signals u and w and laws describing the
internal mechanism of the system. In what follows, static systems, which do not
show a dynamic behavior, are considered as special cases of dynamic systems and
are simply described by algebraic relationships between u, w, and x.

Disturbance v: as w, the output disturbance v is an exogenous signal, which can-
not be manipulated. It represents the uncertainty (noise) introduced by the sensor,
and is generally indicated as sensor noise.

Output y: the output y is the output of the sensors. It represents all the observable
signals that are of interest to the user. In general, y is modeled as a function of the
other signals. Since the sensor dynamics are ignored, the static relationship between
y and x, v is expressed in terms of algebraic equations.

Let us illustrate the system concept by a number of “real-world” examples.

Example 1.1 Signal processing: In many speech or image processing applications
there is only an output signal: time series of sound vibrations or a collection of
images. The aim is to find a compact description of this signal, which after trans-
mission or storage can be used to reconstruct the original signal. The problem here is
the presence of noise (unmeasurable disturbances) in the output signal. The system
can be depicted as in Fig. 1.2.

Example 1.2 Bioreactor: In the process industry bioreactors are commonly modeled
for design and operation. A fed-batch reactor system is one specific type of biore-
actor with no outflow. In the initial stage the reactor is filled with a small amount
of nutrient substrate and biomass. After that the fed-batch reactor is progressively
filled with the influent substrate. In this stage the influent flow rate is the input to

1.1 System Theory 3

Fig. 1.3 Fed-batch reactor
system, u: controlled input,
w: unmeasured disturbances,
y: output

Fig. 1.4 Greenhouse climate
system, u: input,
w: (un)measured
disturbances, y: output

the system, and substrate and biomass concentrations are the system states. Since
both substrate and biomass are difficult to measure directly, dissolved oxygen is
commonly used to reconstruct the Oxygen Uptake Rate (OUR), which can be con-
sidered as the output of the system. The signal w represents the uncertainties in the
influent flow rate and influent substrate concentrations, and also substantial model-
ing errors due to the limited knowledge of the biochemical process, see Fig. 1.3.

Example 1.3 Greenhouse climate: Greenhouse climate control is one of the chal-
lenging problems at the interface of agriculture and control theory. It is common
practice to restrict the modeling of the greenhouse climate to temperature and hu-
midity. A typical feature of these type of systems is the major effect of the distur-
bances, like wind, ambient temperature, solar radiation, etc., on the system states.
Heating and ventilation are the only manipulated variables that directly affect the
climate. Under constant window aperture conditions, the system can be depicted as
in Fig. 1.4.

1.1.2 Basic Problems

Basically four problem areas in system theory can be distinguished: modeling,
analysis, estimation, control. Between these areas several interrelationships can be
noted. From a system identification point of view, especially modeling and estima-
tion are important, as these are directly related to the system identification problem.
The following gives more details of this classification.

Modeling: A critical step in the application of system theory to a real process
is to find a mathematical model which adequately describes the physical situation.

4 1 Introduction

Several choices have to made. First, the system boundaries and the system variables
have to be specified. Then relations between these variables have to be specified on
the basis of prior knowledge, and assumptions about the uncertainties in the model
have to be made. This alltogether defines the model structure.

Still, the model may contain some unknown or incompletely known coefficients,
the model parameters, in the following denoted by ϑ , which define an additional
set of system variables. Much more can be said about the modeling step. However,
as yet, it suffices to say that in what follows it is explicitly assumed that a model
structure, albeit not the most appropriate one, is given.

Analysis: Usually, the first step after having obtained a model structure, with
corresponding parameter values, is to analyze the system output behavior by sim-
ulation. In addition to this, the stability of the system and the different time scales
governed by the system dynamics are important issues to be investigated. Since most
often not all the system parameters are known, a sensitivity analysis using statisti-
cal (see Appendix B for details on statistics) or unknown-but-bounded information
about the parameters can be very helpful to detect crucial system properties. A cen-
tral question in system identification, and the key issue of identifiability analysis,
is: “can the unknown model parameters ϑ be uniquely, albeit locally, identified?”
Other issues, important for the design of estimation schemes, are the observability
aspects of a system.

Estimation: A next step, after having obtained an appropriate (un)stable, iden-
tifiable, and observable model structure, is concerned with the estimation of the
unknown variables from a given data set of input–output variables. Basically, we
distinguish between state estimation and parameter estimation or identification.

In state estimation problems one tries to estimate the states x from the outputs y
under the assumption that the model is perfect and thus the parameters are exactly
known. Similarly, parameter identification focuses on the problem of estimating the
model parameters ϑ from u and y. In the early 1960s, when modern system concepts
were introduced, it has also been recognized that the state and parameter estimation
problems show a clear resemblance. Therefore, parameter identification problems
have also been treated as state estimation problems. If in state estimation problems
the condition of a perfect model is not fulfilled, one simultaneously tries to identify
the unknown model parameters; this is known as the adaptive estimation problem.
In addition to the state and parameter estimation problems, in some applications
there is also a need for estimating or recovering the system disturbance w. More-
over, for further analysis of the uncertainty in the estimates, there is a need to infer
the statistical properties of the disturbances v, w from the data. However, in this
book the focus is on parameter estimation, where parameters can be time-dependent
variables and thus can be considered as unobserved states.

Still, the term state or parameter estimation is not always specific enough. For
example, when time is considered as the independent variable, we can categorize
the state estimation problem as:

1. Filtering: estimation of x(T) from y(t), 0 ≤ t ≤ T .
2. Smoothing: estimation of x(τ), 0 ≤ τ ≤ T , from y(t), 0 ≤ t ≤ T .
3. Prediction: estimation of x(T + τ) from y(t), 0 ≤ t ≤ T , τ > 0.

1.2 Mathematical Models 5

Recall that in these specific problems the state x can be easily substituted by the
(time-varying) model parameter ϑ . Details will be discussed in subsequent chapters.

Control: The control problem focuses on the calculation (determination) of the
input u such that the controlled system shows the desired behavior. Basically, one
defines two types of control strategies, open-loop and closed-loop controls.

The main difference between open- and closed-loop controls is that, in contrast
to closed-loop control, open-loop control does not use the actual observations of
the output for the calculation of the control input. In open-loop control the control
input trajectory is precomputed, for instance, as a result of an optimization problem
or model inversion. Consequently, a very accurate mathematical model is needed.
In the situations where uncertainty is definitely present, however, closed-loop con-
trol is preferred, since it usually results in a better performance. In a number of
closed-loop control schemes, state estimation is included. When the system is not
completely specified, that is, it contains a number of unknown parameters, most
often an adaptive control scheme is applied. Hence, those schemes require the in-
corporation of a parameter estimation procedure.

Clearly, in the design procedure of these types of model-based controllers, the
previously stated problems of modeling, analysis, and estimation all play a role.
Moreover, in modern control theory, which also treats the robustness aspect explic-
itly, not only a mathematical model of the system but also a model including uncer-
tainty descriptions is a prerequisite. Hence, analysis of the uncertainties should not
be forgotten.

1.2 Mathematical Models

Mathematical models can take very different forms depending on the system under
study, which may range from social, economic, or environmental to mechanical or
electrical systems. Typically, the internal mechanisms of social, economic, or envi-
ronmental systems are not very well known or understood, and often only small data
sets are available, while the prior knowledge of mechanical and electrical systems
is at a high level, and experiments can be easily done. Apart from this, the model
form also strongly depends on the final objective of the modeling procedure. For
instance, a model for process design or operation should contain much more detail
than a model used for long-term prediction.

Generally, models are developed to:

• Obtain or enlarge insight in different phenomena, for example, recovering physi-
cal laws or economic relationships.

• Analyze process behavior using simulation tools for, for example, process train-
ing of operators or weather forecasts.

• Control processes, for example, process control of a chemical plant or control of
a robot.

• Estimate state variables that cannot be easily measured in real time on the basis
of available measurements for, for instance, online process information.

6 1 Introduction

Fig. 1.5 Basic structure of mathematical model

1.2.1 Model Properties

In this textbook, the following basic model structure, based on first (physical, chem-
ical, or biological) principles, is adopted (see also Fig. 1.5):

Discrete-time:

x(t + 1) = f
(

t, x(t), u(t),w(t);ϑ), x(0)= x0

y(t) = h
(

t, x(t), u(t);ϑ)+ v(t), t ∈ Z
+ (1.1)

Continuous-time:

dx(t)

dt
= f

(

t, x(t), u(t),w(t);ϑ), x(0)= x0

y(t) = h
(

t, x(t), u(t);ϑ)+ v(t), t ∈ R

(1.2)

where the variables and vector functions have appropriate dimensions.
In Fig. 1.5, v(·) is an additive sensor noise term, which basically represents the

errors originating from the measurement process. Modeling errors as a result of
model simplifications (the real system is too complicated) and input disturbances
are represented by w(·). In the following, it is often assumed that v(·), and also
w(·), is a white noise signal. Here it suffices to give a very general description of a
white noise signal as a signal that has no time structure. In other words, the value at
one instant of time is not related to any past or future value of this signal. A formal
description will be given later, and since white signals in continuous time are not
physically realizable, the focus will then be on discrete-time white signals.

Typically (1.1)–(1.2) present a general description of a finite-dimensional sys-
tem, represented by a set of ordinary difference/differential equations with additive
sensor noise. Hence, so-called infinite-dimensional systems, described by partial
differential equations (for an introductory text, see [CZ95]), will not be explicitly
treated in this text. One way to deal with these systems is by discretization of the
space or time variables, which will ultimately lead to a set of ordinary differential
or difference equations.

The continuous-time representation will only be used for demonstration. For
identification, usually the discrete-time form will be implemented due to the avail-
ability of sampled data and the ultimate transformation of a mathematical model into
a simulation code. In addition to these classifications, we also distinguish between

1.2 Mathematical Models 7

linear and nonlinear, time-invariant and time-varying, static and dynamic systems.
Let us further define these classification terms.

Linearity: Let, under zero initial conditions, u1(t) and u2(t) be inputs to a system
with corresponding outputs y1(t) and y2(t). Then, this system is called linear if its
response to αu1(t)+ βu2(t), with α and β constants, is αy1(t)+ βy2(t). In other
words, for linear systems, the properties of superposition or additivity and scaling
hold. Since f (·) and h(·) in (1.1) and (1.2) represent general functions, linearity will
not hold, and thus the basic model structure represents a nonlinear system.

Time-invariance: Let u1(t) be an input to a system with corresponding output
y1(t). Then, a system is called time-invariant if the response to u1(t + τ), with τ a
time shift, is y1(t + τ). In other words, the system equations do not vary in time.
The notation f (t, ·) and h(t, ·) indicates that both functions are explicit functions of
the time variable t and thus represent time-varying systems.

Causality: Let u1(t)= u2(t) ∀t < t1, that is, two signals with equivalent historic
behavior. Then, a system is called causal if y1(t1) = y2(t1) and is called strictly
causal if this equality holds for u1(t)= u2(t) ∀t ≤ t1. In other words, the output of a
strictly causal system depends on current and past inputs. Hence, as the output of a
causal system, it does not depend on future values of the input. In fact, this property
holds for all physical systems. Smoothers, for instance, do not have this causality
property.

Dynamics: If a system output at any time instant depends on its history, and not
just on the present input, it is called a dynamic system. In other words, a dynamic
system has a memory and is usually described in terms of a difference or differential
equation. A static system, on the other hand, has no memory and is usually described
by algebraic equations.

For what follows, this classification suffices.

1.2.2 Structural Model Representations

Notice that the system represented by (1.1) or (1.2) is very general and covers all the
special cases mentioned in the previous section. Let us be more specific and illus-
trate the mathematical modeling process by application to a simple system, a storage
tank with level controller.

Example 1.4 Storage tank: Consider the following storage tank (see Fig. 1.6).
Let us start with specifying our prior knowledge of the internal system mecha-

nisms. The following mass balance can be defined in terms of the continuous-time
state variable, the volume of the liquid in the storage tank (V), inflows u(t), and
outflows y(t):

dV (t)

dt
= u(t)− y(t)

and, in addition to this and as a result of a proportional level controller (L.C.),

y(t)=KV (t)

8 1 Introduction

Fig. 1.6 Graphical scheme
of storage tank

with K a real constant. Hence, the so-called state-space model representation of the
system with x(t)= V (t) is given by

dx(t)

dt
= −Kx(t)+ u(t)

y(t) = Kx(t)

which is a particular noise-free (deterministic) form of (1.2). Consequently, in this
case where w(t)= v(t)= 0,

f
(

t, x(t), u(t),w(t);ϑ) = −Kx(t)+ u(t)

h
(

t, x(t), u(t);ϑ) = Kx(t)

with system parameter ϑ =K .

The specific system properties will be analyzed in the next example, in which an
alternative representation is introduced.

Example 1.5 Storage tank: The so-called differential equation model representation
between u and y after eliminating x is given by

1

K

dy(t)

dt
+ y(t)= u(t)

which can be presented more explicitly after assuming that y(0) = 0 and u(t) =
0, t < 0. After first solving the homogenous equation, that is, with u(t) = 0 ∀t ,
and then applying the principle of variation of constants, we arrive at the following
result:

y(t)= y(0)e−Kt +
∫ t

0
Ke−K(t−τ)u(τ)dτ

with τ the variable of integration. Implementing the initial condition, that is,
y(0)= 0, leads to the input–output relationship

y(t)=
∫ t

0
Ke−K(t−τ)u(τ)dτ

1.2 Mathematical Models 9

which has the following properties:

1. linear, because integration is a linear operation
2. time-invariant, because

y(t + l) =
∫ t+l

0
Ke−K(t+l−τ)u(τ)dτ

= [v:=τ−l]
∫ t

−l
Ke−K(t−v)u(v + l)dv

= [u(t)=0 for t<l]
∫ t

0
Ke−K(t−v)u(v + l)dv

3. causal, because the output does not depend on future input values.

From this continuous-time example it is important to note that two specific model
representations became visible, the state-space and differential model representa-
tion. A general state-space model of a linear, time-invariant (LTI) dynamic systems
is

dx(t)

dt
= Ax(t)+Bu(t)

y(t) = Cx(t)+Du(t)
(1.3)

where the matrices A,B,C, and D have appropriate dimensions.1 Consequently,
in the storage tank example: A = −K , B = 1, C = K , and D = 0. Alternatively,
a general differential equation model is represented by

an
dny(t)

dtn
+ · · · + a1

dy(t)

dt
+ y(t)= b0u(t)+ b1

du(t)

dt
+ · · · + bm

dmu(t)

dtm
(1.4)

Hence, in Example 1.5 we obtain: an = an−1 = · · · = a2 = 0, a1 = 1/K and
b0 = 1, b1 = b2 = · · · = bm = 0. In addition to these two representations, other rep-
resentations will follow in subsequent sections and chapters.

Example 1.6 Moving average filter: A discrete-time example is provided by the
three-point moving average filter with input u and output y:

y(t)= 1

3

[

u(t)+ u(t − 1)+ u(t − 2)
]

, t ∈ Z
+

which is a difference equation model representation. It can be easily verified that
this is another example of a linear, time-invariant system. A discrete-time state-
space representation is obtained by defining, for example, x1(t) = u(t − 1) and

1The analytical solution of (1.3), for x(0) = x0 and u(t) = 0 for t < 0, is given by y(t) =
C[eAtx0 + ∫ t

0 eA(t−τ)Bu(τ)dτ] +Du(t) (see, for instance, [GGS01]). Commonly, this expression
is evaluated when simulating an LTI system.

10 1 Introduction

x2(t)= u(t − 2), so that

x1(t + 1) = u(t)

x2(t + 1) = u(t − 1)= x1(t)

y(t) = 1

3

[

u(t)+ x1(t)+ x2(t)
]

, t ∈ Z
+

or in matrix form:
(

x1(t + 1)
x2(t + 1)

)

=
(

0 0
1 0

)(

x1(t)

x2(t)

)

+
(

1
0

)

u(t)

y(t) = (

1
3

1
3

)

(

x1(t)

x2(t)

)

+ 1

3
u(t), t ∈ Z

+

so that A= (0 0
1 0

)

, B = (1
0

)

, C = (1
3

1
3

)

, and D = 1
3 .

It can be easily verified from this example that the state-space representation
is not unique. To see this, define, for example, x1(t) = u(t − 2) and x2(t) =
u(t − 1). Hence, the identification of state-space models needs extra care. On the
other hand, the transformation from state-space to differential/difference equation
models is unique.

The input–output relationships in the previous examples with single input and
single output (SISO) can be represented in the following general form:

y(t)=
∫ t

−∞
g(t − τ)u(τ)dτ, t ∈ R (1.5)

and

y(t)=
t
∑

k=−∞
g(t − k)u(k), t ∈ Z

+ (1.6)

which is also indicated as the impulse response model representation. The function
g(t) is called the continuous or discrete impulse response of a system; a name which
will become clear in the next chapter when dealing with impulse response methods.
In (1.5)–(1.6), the output y(·) is presented in terms of the convolution integral or
sum, respectively, of g(·) and u(·). Therefore these models are also called convolu-
tion models.

1.3 System Identification Procedure

In the previous section, mathematical models with their properties and different
ways of representation have been introduced. Excluding the theoretical studies on
exact modeling of a system, a mathematical model is always an approximation of

1.3 System Identification Procedure 11

Fig. 1.7 The system
identification loop (after
[Lju87])

the real system. In practice, the system complexity, the limited prior knowledge of
the system, and the incomplete availability of observed data prevent an exact math-
ematical description of the system. However, even if there is full knowledge of the
system and sufficient data available, an exact description is most often not desirable,
because the model would become too complex to be used in an application. Conse-
quently, system identification is considered as approximate modeling for a specific
application on the basis of observed data and prior system knowledge.

In what follows, the identification procedure, with the aim to arrive at an appro-
priate mathematical model of the system, is described in some detail (see Fig. 1.7).
As mentioned before, prior knowledge, objectives, and data are the main compo-
nents in the system identification procedure, where prior knowledge has a key role.
It should be realized that these entities are not independent. Most often, data is col-
lected on the basis of prior system knowledge and modeling objectives, leading to
an appropriate experiment design. At the same time observed data may also lead to
an adjustment of the prior knowledge or even to the objectives.

12 1 Introduction

Figure 1.7 shows that the choice of a model set is completely determined by our
prior knowledge of the system. This choice of a set of candidate models is without
doubt the most important and most difficult step in a system identification proce-
dure. For instance, in some simulator applications a very detailed model is required.
A natural choice is then to base the model on physical laws and additional relation-
ships with corresponding physical parameters, which leads to a so-called white-box
model structure. If, however, some of these parameters are uncertain or not well
known and, for instance, realistic predictions have to be obtained, the parameters
can be estimated from the data. Model sets with these adjustable parameters com-
prise so-called grey-box models. In other cases, as, for instance, in control applica-
tions, it usually suffices to use linear models which do not necessarily refer to the
underlying physical laws and relationships of the process. These models are gener-
ally called black-box models. In addition to a choice of the structure, we also have
to choose the model representation, for instance, state-space, impulse response or
differential equation model representation, and the model parameterization which
deals with the choice of the adjustable parameters.

In order to measure the fit between model output and observed data, a criterion
function has to be specified, and the identification method, which numerically solves
the parameter estimation problem, has to be chosen. After that, a model validation
step considers the question whether the model is good enough for its intended use.
If then the model is considered as appropriate, the model can be used, otherwise the
procedure must be repeated, which is most often the case in practice. However, it
is important to conclude that, due to the large number of significant choices to be
made by the user, the system identification procedure includes a loop in order to
obtain a validated model (see Fig. 1.7).

1.4 Historical Notes and References

The literature on the system identification problem is extensive. Many congress
papers on this subject can be found in, for instance, the Proceedings of the IFAC
Symposia on Identification and System Parameter Estimation, which since 1994 is
called System Identification and abbreviated as SYSID. The first IFAC Symposium
on Identification started in 1967, which more or less indicates the time that system
identification became a mature research area.

In addition to this, many books have appeared, for instance, [BJ70, Sch73,
Eyk74, KR76, GP77, Sor80, You84, Nor86],2 [Lju87, Lju99b, SS87, Joh93, LG94,
WP97, CG00, PS01, Gui03, Kat05, VV07, GP08]. The basic material of this chapter
is based on these books, especially [Sch73, Nor86], and [Lju87, Lju99b]. The sys-
tem theoretic concepts introduced here at an elementary level can be found in many
books on mathematical systems theory, for example, [PW98, HP05], and [HRvS07].

2An Introduction to Identification by J.P. Norton. Paperback: 320 pages; Publisher: Dover Publi-
cations (23 April 2009).

1.5 Problems 13

1.5 Problems

Problem 1.1 Consider again the storage tank example (1.4), but now with a slightly
modified effect of the input on the output, such that bu(t) flows into the system. On
the basis of this a priori knowledge of the tank system, different types of represen-
tation will be investigated.

(a) Give some physical conditions under which b �= 1.
(b) Give the differential equation describing this system in terms of the relationship

between u(t) and y(t) and provide the solution, under zero initial conditions,
for a unit input, such that u(t)= 1 for all t .

(c) Represent the system in terms of an impulse response or convolution model and
give the continuous-time impulse response.

(d) Represent the system in state-space form. Are there other state-space forms that
lead to the same input–output behavior? If there is, give an example. If not,
motivate your answer.

(e) Is this system linear, time-invariant, and causal? Justify your answer.

Problem 1.2 Consider the moving average filter example (1.6), but now as a four-
point moving average filter with input u and output y.

(a) Give the difference equation describing this system in terms of the relationship
between u(t) and y(t) and numerically evaluate the behavior of the filter for a
unit step input, such that u(t)= 1 for all t .

(b) Represent the system in terms of an impulse response or convolution model and
give the discrete-time pulse response, i.e., for u(t) = 1 for t = 0 and u(t) = 0
for t �= 0.

(c) Represent the system in state-space form. Give an alternative state-space form
and check the corresponding input–output behaviors.

(d) Is this system linear, time-invariant, and causal? Motivate your answer.

Part I
Data-based Identification

The basic model representation for the analyzes, in this part of the book, is given by
the convolution integral,

y(t)=
∫ t

−∞
g(t − τ)u(τ)dτ, t ∈ R

or its discrete-time counterpart, the convolution sum,

y(t)=
t
∑

k=−∞
g(t − k)u(k), t ∈ Z

+

This model representation is particularly suited for SISO LTI dynamic systems
and formed the basis of classical data-based or nonparametric identification meth-
ods. The adjectives “data-based” and “nonparametric” express the very limited prior
knowledge used in the identification procedure; the prior knowledge is limited to
assumptions with respect to linearity and time-invariance of the system under con-
sideration, as we will see in the next chapters.

In Chap. 2 the focus is on methods that directly utilize specific responses of the
system, in particular the impulse, step, and sine-wave response. The first two signals
directly provide estimates of g(t), while the sine-wave response forms the basis for
the methods described in the following chapter.

Chapter 3 describes methods which directly provide estimates of g(t) in the fre-
quency domain. These frequency domain descriptions are particularly suited for
controller design.

In many applications noise is clearly present. Under those circumstances, the re-
liability of the estimates can be significantly reduced. Therefore, in Chap. 4 methods
that are less sensitive to noise, and thus very useful under practical circumstances,
are presented.

Chapter 2
System Response Methods

2.1 Impulse Response

2.1.1 Impulse Response Model Representation

In order to motivate the general applicability of the convolution model to LTI sys-
tems, first the unit impulse function has to be introduced. The unit impulse function
or Dirac (δ) function at time zero is defined heuristically as

δ(t) := 0 for all t �= 0,
∫ ∞

−∞
δ(t)dt = 1 (2.1)

and can be viewed as a rectangular, unit-area pulse with infinitesimally small width.
Let the unit impulse function δ(t) be input to an LTI system and denote the impulse
response by g(t). Then, due to the time-invariant behavior of the system, a time-
shifted impulse δ(t − τ) will result in an output signal g(t − τ). Moreover, because
of the linearity, the impulse δ(t − τ)u(τ) will result in the output g(t − τ)u(τ), and
after integrating both the input and output impulses over the time interval [−∞,∞],
that is,

∫ ∞

−∞
δ(t − τ)u(τ)dτ = u(t)

due to the properties of the impulse function, and

∫ ∞

−∞
g(t − τ)u(τ)dτ = y(t)

we obtain a relationship between the input u(t) and output y(t). Since only causal
systems (see Sect. 1.2.2) are treated, the upper bound of the last convolution integral
is set equal to t . In the case where u(t) = 0 for t < 0 and zero initial condition
response, as a result of zero initial conditions or a stable system for which the initial
condition response has died to zero by t = 0, the lower bound can be set to zero.

K.J. Keesman, System Identification,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-0-85729-522-4_2, © Springer-Verlag London Limited 2011

17

http://dx.doi.org/10.1007/978-0-85729-522-4_2

18 2 System Response Methods

Hence, in the derivation of the practically applicable convolution model

y(t)=
∫ t

0
g(t − τ)u(τ)dτ (2.2)

only assumptions have been made with respect to the linearity and time-invariance
of the system. Thus the convolution model, fully characterized by the impulse re-
sponse function g(t), is able to describe the input–output relationship of the large
class of LTI systems. Consequently, if g(t) is known, then for a given input signal
u(t), the corresponding output signal can be easily computed. This feature explains
the interest in impulse response model representations, especially if there is limited
prior knowledge about the system behavior.

2.1.2 Transfer Function Model Representation

In the analysis of linear systems the Laplace transformation (see Appendix C for
details) forms one of the basic tools. Recall that the Laplace transform is defined as

L
[

f (t)
]≡ F(s) :=

∫ ∞

0
f (t)e−st dt (2.3)

Laplace transformation of the convolution model (2.2) gives

Y(s)=G(s)U(s) (2.4)

which defines an algebraic relationship between transformed output signal Y(s) and
transformed input signal U(s). The function G(s) is the Laplace transformed im-
pulse response function, that is, G(s)≡ L[g(t)], and is called the transfer function.
Consequently, representation (2.4) is called the transfer function model represen-
tation, which will be treated in more detail in the chapter on frequency response
methods. The various model representations with their connections, in terms of
transformations and back-transformations, are shown in Fig. 2.1, where the impulse
response model has a central place.

Let us further illustrate the application of the transfer function model representa-
tion to Example 1.4 and indicate the different connections with the other represen-
tations.

Example 2.1 Storage tank: Recall that the input–output relationship of the storage
tank, after solving a first-order linear differential equation, was given by

y(t)=
∫ t

0
Ke−K(t−τ)u(τ)dτ

Consequently, comparison with the convolution model (2.2) reveals that the im-
pulse response function g(t) is equal to Ke−Kt , and thus the transfer function is

2.1 Impulse Response 19

Fig. 2.1 Various model
representations for LTI
systems

given by G(s)= L[Ke−Kt] = K
s+K , so that

Y(s)=G(s)U(s)= K

s +K
U(s)

An alternative way to find the transfer function and the impulse response function
of the storage tank in Example 1.4 is via Laplace transformation of the differential
equation

1

K

dy(t)

dt
+ y(t)= u(t)

as given in Example 1.5. For zero initial conditions, y(0)= 0, and after applying the
rules of Laplace transformation (see Appendix C for details on the Laplace trans-
form), we find that

1

K
sY(s)+ Y(s)=U(s)

Hence, the transfer function, G(s), of this SISO system is found from

G(s)= Y(s)

U(s)
= K

s +K

which, as we have seen before, is the Laplace transform of g(t). Thus g(t) can be
directly found by inverse Laplace transformation of G(s). In the same way, g(t) and
G(s) can be found from the state-space model.1 Assuming the zero initial conditions

1The transfer function of a general LTI state-space model (1.3) with x(0) = 0, possibly obtained
after a state correction when x(0) = x0 �= 0, is given by G(s) = C[sI − A]−1B + D (see, for

20 2 System Response Methods

on y(t) and u(t) and on all their derivatives and after introducing the differential
operator π := d

dt , we can also write the input–output relationship as

y(t)=G(π)u(t)

with G(π) = K
π+K , which shows a clear resemblance with the transfer func-

tion G(s).

So far, no real data have been involved; the impulse response function and trans-
fer function have been evaluated on the basis of prior knowledge only. However,
in a system identification procedure, this could be the first step in the selection of a
proper sampling scheme if there is also some knowledge about the parameter values.

2.1.3 Direct Impulse Response Identification

In what follows, it is indicated how to obtain an estimate of the impulse response
function from real data. Since data acquisition is typically performed in discrete
time, in the remainder of this chapter and the next chapters, the focus will be on
discrete-time representations. In particular, for u(t)= 0, t < 0, and zero initial con-
dition response, the convolution sum is given by

y(t)=
t
∑

k=0

g(t − k)u(k)=
t
∑

k=0

g(k)u(t − k), t ∈ Z
+ (2.5)

where g(0) is usually equal to zero, because no real system responds instantly to
an input. Hence, if we are able to generate a unit pulse, the coefficients of g(t) can
be directly found from the measured output. Let, for instance, the pulse input be
specified as

u(t)=
{

α, t = 0

0, t �= 0
(2.6)

where α is chosen in accordance with the physical limitations on the input signal.
The corresponding output will be

y(t)= αg(t)+ v(t) (2.7)

instance, [GGS01] and, for infinite-dimensional systems, [Zwa04]). For the state correction, in-
troduce Δx(t) := x(t) − x̃(t), where x̃(t) obeys dx̃(t)

dt = Ax̃(t), x̃(0) = x0, and thus Δx(0) = 0,
while x and x̃ share the same dynamics. Hence, for this specific example with x(0)= 0, A= −K ,
B = 1, C =K , and D = 0, we obtain G(s)= K

s+K .

2.1 Impulse Response 21

Fig. 2.2 Heating system:
pulse input (dash-dotted line)
at t = 0.4 s and measured
output (solid line)

where v(t) represents the measurement noise of the output signal. Consequently, an
estimate of the impulse function, or better the unit-pulse response, is

ĝ(t)= y(t)

α
(2.8)

and the estimation errors are v(t)/α. The main advantage of the method is its sim-
plicity, but there are some severe restrictions. Commonly, the estimated unit-pulse
response describes the sampled behavior of the continuous-time system. Thus the
unit-pulse response may miss significant fast dynamics when the sampling inter-
val is chosen too large, or it may miss the slow dynamics when the duration of the
experiment is too small. If dead time (pure delay) is present, it can only be deter-
mined within one sampling period. However, its main weakness is that α is limited
in practice, which usually prevents a significant reduction of the measurement noise
in the estimates, since the estimation errors are inversely proportional with the value
of α.

Example 2.2 Heating system: The following pulse response has been measured at a
simple lab-scale heating system (see Fig. 2.2). The input of the system is the voltage
applied to the heating element. The output is measured with a thermistor. Hence, the
output is also in volts. The maximum allowable magnitude of the input is 10 V, and
the sampling interval is 0.08 s. To avoid unwanted effects of the initial condition of
the system, the pulse input has been applied at t = 0.4 s.

The smooth initial curvature in the impulse response indicates that the system is
approximately second-order with dead time. Notice from Fig. 2.2 that the dead time
is approximately 0.2 s, that is, two to three sampling intervals. After removing the
steady-state value, the impulse response coefficients can be directly computed from
(2.8).

Consequently, for the identification of LTI systems described by convolution
models, the following algorithm can be used.

22 2 System Response Methods

Fig. 2.3 Heating system:
step input (dash-dotted line)
starting at t = 0.4 s and
measured output (solid line)

Algorithm 2.1 Identification of g(t) from a pulse input

1. Generate a pulse with maximum allowable magnitude, α
2. Apply this pulse to the system
3. Use (2.8) to determine estimates of the components of the impulse response g(t)

2.2 Step Response

2.2.1 Direct Step Response Identification

A step can be considered as an indefinite succession of contiguous, equal, short,
rectangular pulses. Hence, in a similar way as the pulse input, the step input is
specified as

u(t)=
{

0, t < 0
α, t ≥ 0

(2.9)

Example 2.3 Heating system: The effect of applying a step input to the lab-scale
heating system can be seen in Fig. 2.3.

Analysis of the step response reveals again that the system is approximately
second-order with a dead time of about 0.2 s. For a further analysis of the sys-
tem, which can be easier obtained from the step response (Fig. 2.2) than from the
pulse response (Fig. 2.3), we neglect the second-order dynamics in the graph of the
step response. Hence, the dominant time constant, thus neglecting the smooth initial
curvature in the step response, can be found by extrapolating the initial slope to the
steady-state value. The time intercept is the time constant and is approximately equal
to 0.4 s. The static gain is found by dividing the difference between the steady-state
values of the output by the difference between the steady-state values of the input,
i.e., (4.8 − 1.0)/(5 − 0) = 0.76 V/V. Recall that this information about dead time,
dominant time constant, and static gain is sufficient for the tuning of PID controllers

2.3 Sine-wave Response 23

using the famous Ziegler–Nichols tuning rules (see, for instance, [GGS01]). How-
ever, in the design of some predictive controllers for linear systems, as the Dynamic
Matrix Controller (DMC), all the step response coefficients are used.

2.2.2 Impulse Response Identification Using Step Responses

Applying the step input of (2.9) to an LTI system described by (2.5) gives

y(t)= α

t
∑

k=0

g(k)+ v(t) (2.10)

Since y(t − 1)= α
∑t−1

k=0 g(k)+ v(t − 1), estimates of g(t) can be found by taking
differences in the step response

ĝ(t)= y(t)− y(t − 1)

α
(2.11)

with corresponding error equal to [v(t)−v(t−1)]/α. Since differentiation amounts
to filtering with a gain proportional to the frequency, differentiation of a noisy step
response will generally lead to unacceptable estimates of the impulse response co-
efficients. Hence, the suggestion is to make α as large as possible.

Summarizing, if for the identification of an LTI system, an impulse input cannot
be applied, a step input can be chosen using the following algorithm.

Algorithm 2.2 Identification of g(t) from a step input

1. Generate a step with maximum allowable magnitude, α
2. Apply this step to the system
3. From the step response the dead time, dominant time constant, and static gain

can be graphically determined
4. Use (2.11) to determine estimates of the components of the impulse re-

sponse g(t)

However, as stated before, if the goal is to obtain some basic response character-
istics, such as dead time, dominant time constant, and static gain, analysis of step
responses suffices.

Example 2.4 Heating system: The reconstruction of the impulse response from the
previously presented step response (Fig. 2.3), using Algorithm 2.2, shows the fol-
lowing result (see Fig. 2.4). For comparison, the measured impulse response (—) is
plotted in Fig. 2.4 as well.

24 2 System Response Methods

Fig. 2.4 Measured (solid
line) and reconstructed
(dash-dotted line) impulse
response

2.3 Sine-wave Response

2.3.1 Frequency Transfer Function

Another elementary signal that can identify LTI systems is the sine-wave, which is
specified as

u(t)= α sinωt (2.12)

Before analyzing the output, we must first introduce the frequency transfer function
or frequency function, G(jω) with j the complex number. This frequency function
is the Fourier transform (see Appendix C) of g(t), which can be found by simply
substituting jω for s in the transfer function G(s). For sampled systems, instead of
the Laplace or Fourier transform, the discrete Fourier transform (DFT) of g(t) has
to be used, that is,

G
(

ejω
)=

∞
∑

t=−∞
g(t)e−jωt (2.13)

The DFT can be interpreted as a discrete version of the Fourier transform.

2.3.2 Sine-wave Response Identification

Recall that sinωt = Im(ejωt). Since G(ejω) is a complex number, it can be written
as |G(ejω)|ejφ , where |G(·)| indicates the magnitude and φ = arg(G(·)). Hence,
using (2.5) with k = −∞, . . . ,∞, the sine-wave input gives an output

y(t) = α

∞
∑

k=−∞
g(k) Im

(

ejω(t−k)
)= α Im

∞
∑

k=−∞
g(k)e−jω(t−k)

2.3 Sine-wave Response 25

Fig. 2.5 Heating system:
sine-wave input (dash-dotted
line) and output (solid line)

Fig. 2.6 Heating system:
snapshot of sine-wave input
(dash-dotted line) and output
(solid line)

= α Im

{

ejωt
∞
∑

k=−∞
g(k)e−jωk

}

= α Im
{

ejωtG
(

ejω
)}

= α
∣

∣G
(

ejω
)∣

∣ sin(ωt + φ) (2.14)

Consequently, the output is a sine-wave of the same frequency of u(t), but multi-
plied in magnitude by |G(ejω)| and shifted in phase by φ. Notice that the result
implies that the input is an everlasting sine-wave, which can never be true in prac-
tice. Therefore, if it is assumed that u(t) = 0, t < 0, an initial transient must be
accepted in the response. In general, a convenient way to deal with this is neglecting
the first part of the response, which is also demonstrated by the following exam-
ple.

Example 2.5 Heating system: The effect of a sine-wave input signal with a fre-
quency of 5 rad/s on the system output is presented in the following figure (see
Fig. 2.5).

The magnitude and phase shift of the frequency function at 5 rad/s is determined
at the end of the signal (see Fig. 2.6 for the details). The gain |G(ejω)| for ω =
5 rad/s, is 0.256 V/V, and the phase shift φ = −ωΔt = −5 × 0.50 = −2.50 rad.

26 2 System Response Methods

Fig. 2.7 Schematic
presentation of closed-loop
system under P-control

Since from the signals individual points were taken, this result is very sensitive to
noise in both signals, especially at extreme values.

2.4 Historical Notes and References

The methods in this chapter have already a long history with applications on es-
pecially electrical and mechanical systems. A general overview of the class of non-
parametric identification methods have been given by [Rak80, Wel81]. In particular,
impulse response identification has attained a lot of attention in the past and also in
recent years [FBT96, SC97, YST97, GCH98, TOS98, SL03, DDk05]. The step re-
sponse is important in many industrial applications and especially in relation with
PID controller tuning. Step response identification methods have been covered by
[MR97, WC97]. Sine-wave response identification in the time domain has not re-
ceived too much attention. Its relevance is much higher in the frequency domain, as
we will see in the next chapter.

The more experienced readers, with a background in systems and control theory,
may miss the behavioral model representation of Willems [Wil86a, Wil86b, Wil87]
in Fig. 2.1. This model representation (see also [PW98]) is out of the scope of this
book, as it is too advanced for this introductory text. Nevertheless, the behavioral ap-
proach is of interest for further research and application in the system identification
field, see, for instance, [JVCR98, JR04].

2.5 Problems

Problem 2.1 In practice we often have to deal with feedback control systems. For
instance, in process industry it frequently occurs that a process is controlled by
feedback. A schematic example of a first-order system under simple proportional
feedback is presented in Fig. 2.7.

On the basis of a priori knowledge of the systems’ behavior (see Fig. 2.7), differ-
ent types of representation will be investigated.

(a) Give the transfer function from (reference) input r to output y.
(b) Give the (set of) differential equation(s) of this system on the basis of the trans-

fer functions presented in the figure.

2.5 Problems 27

(c) Derive from the overall transfer function the impulse response of this sys-
tem, analytically using the inverse Laplace transform (MATLAB: ilaplace). Ex-
plain/interpret your result.

(d) Represent the system in terms of its convolution or impulse response model.
(e) Plot the unit step response for K1 = 1, K2 = 2, and τ2 = 0.5 hours. Explain

your result.
(f) Represent this system in state-space form.

Problem 2.2 Consider the storage tank example (Example 1.4) with K = 0.8.

(a) Define the system (sys1) in state-space form using the MATLAB command ss.
(b) Define the system (sys2) in transfer function form using the MATLAB com-

mand tf.
(c) Check both representations with the commands ss2tf and tf2ss.
(d) For this system, determine the impulse response g(t) using the MATLAB com-

mand impulse.
(e) Determine the step response (y) as well, using the MATLAB command step.
(f) Differentiate the step response using the command diff. Note: perform a scaling

of the differentiated response (yd) by multiplying it with g(1)/yd(1) and add a
zero (why?). Plot both impulse responses.

(g) Generate a step input using zeros and ones. Use the command lsim to calculate
the corresponding output. Plot the result and explain the result.

Problem 2.3 Let us evaluate the sine-wave response in some more detail. Consider,
for this purpose, the system with transfer function

G(s)= 2

10s + 1

(a) Define the system in MATLAB
(b) Generate and plot a sine-wave signal with a user-defined frequency.
(c) Determine the sine-wave response using lsim and plot it together with the input

in one figure. Interpret the result.

Problem 2.4 Investigate the effects of a nonideal input in an impulse response test
by plotting the response of the system with impulse response

g(t)= exp(−t)− exp(−5t)

to a rectangular pulse input of unit area and duration (i) 0.1, (ii) 0.2, and (iii) 0.5.
Compare each response with g(t) (after [Nor86]).

Chapter 3
Frequency Response Methods

3.1 Empirical Transfer-function Identification

3.1.1 Sine Wave Testing

From Sect. 2.3.2 the following algorithm for the identification of the frequency func-
tion can be deduced.

Algorithm 3.1 Identification of G(ejω) from sine waves

1. Generate for a specific frequency a sine-wave with maximum allowable magni-
tude.

2. Apply this sine wave to the system.
3. Record the resulting sine-wave response.
4. Determine magnitude and phase shift of G(ejω) for the specific frequency from

the two signals.
5. Repeat this for a number of interesting frequencies ω ∈ {ω1,ω2, . . . ,ωN }.

As mentioned in the previous chapter, the complex-valued function G(ejω),
−π ≤ ω ≤ π , is called the frequency transfer function, or in short the frequency
function , of a discrete-time LTI system. The frequency function is used in many fre-
quency domain methods for controller design. Consequently, there has always been
much interest in the direct identification of the frequency function from the data.
The previously described procedure for the identification of the frequency function
using a single frequency sine-wave at a time, also called sine-wave testing, is one of
the simplest methods. However, this procedure may be time-consuming. As we will
see in what follows, the frequency function can also be reconstructed on the basis
of multifrequency inputs. Therefore, we first have to introduce the Discrete Fourier
transform of signals.

K.J. Keesman, System Identification,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-0-85729-522-4_3, © Springer-Verlag London Limited 2011

29

http://dx.doi.org/10.1007/978-0-85729-522-4_3

30 3 Frequency Response Methods

3.1.2 Discrete Fourier Transform of Signals

The Discrete Fourier Transform (DFT) of the signal y(t), sampled at t = 1,2, . . . ,N ,
is given by

YN(ω)= 1√
N

N
∑

t=1

y(t)e−jωt (3.1)

where ω = 2πk/N, k = 1,2, . . . ,N . Notice that for a specific k, N/k is the period
associated with the specific frequency ωk . Similarly, the DFT of u(t) can be found.
The absolute square value of Y(ωk), |Y(2πk/N)|2, is a measure of the energy con-
tribution of this frequency to the energy of the signal. The plot of values of |Y(ω)|2
as a function of ω is called the periodogram of the signal y(t).

Example 3.1 Sine-wave signal: Consider the signal

y(t)=A cosω0t

where A ∈ R and ω0 = 2π/N0 for some integer N0 > 1. Let N be a multiple of N0

such that N =mN0, and let us consider the time instants t = 1,2, . . . ,N . Since

cosω0t = 1

2

[

ejω0t + e−jω0t
]

after substitution of the expression into (3.1) we find

YN(ω)= 1√
N

N
∑

t=1

A

2

[

ej (ω0−ω)t + e−j (ω0+ω)t]

This expression can be simplified using the following relationship:

1

N

N
∑

k=1

ej2π(nk/N) =
{

1, n= 0
0, 1 ≤ n <N

so that

∣

∣YN(ω)
∣

∣

2 =
{

N A2

4 if ω = ±ω0 = 2π
N0

= 2πm
N

0 if ω = 2πk
N
, k �=m

Hence, the periodogram has two spikes, at frequencies ω = −ω0 and ω = ω0, on the
interval [−π,π]. Figure 3.1 presents the periodogram of the signal y(t)= cos(ω0t)

with ω0 = 2, t = 1, . . . ,N and N = 629.

3.1 Empirical Transfer-function Identification 31

Fig. 3.1 Periodogram of the
signal y(t)= cos(2t)

3.1.3 Empirical Transfer-function Estimate

Recall from (2.4) that Y(s) = G(s)U(s), so that after substitution of s = jω we
obtain the relationship

Y(jω)=G(jω)U(jω) (3.2)

which can also be derived after Fourier transforming the convolution model (2.2).
This type of algebraic relationship also holds for sampled systems. Hence, for a
given input u(t) and an output signal y(t), t = 1,2, . . . ,N , and after taking the DFT
of both u(t) and y(t), the following estimate of the transfer function can be found:

̂G
(

ejω
)= YN(ω)

UN(ω)
(3.3)

This estimate is indicated as the Empirical Transfer-Function Estimate (ETFE), and
the expression also holds for the case where the input is not a single sine-wave. In
fact, both UN and YN are series expansions of the input and output signals in terms
of sines and cosines. Thus, roughly speaking, for each of the frequencies contained
in u(t) and y(t), the relationship of (2.14) holds, which allows the reconstruction
of both the magnitude and phase shift of the frequency function for a number of
frequencies. In order to avoid the effect of the initial conditions, in practice one often
removes the first numbers of the input and output data vectors. The DFT of these
modified data vectors again provides vectors that after component-wise division give
the estimates of G(ejω) for ω = 2π

N
, . . . , π rad/s, as in (3.3). Let us demonstrate the

application of the MATLAB function etfe by the following example.

Example 3.2 ETFE: Let a binary input signal u(t) with expanding pulses, to facil-
itate the estimation of the static gain via visual inspection, produce the following
output data; see Table 3.1.

From a first visual inspection of Fig. 3.2 we notice that the system is approxi-
mately first-order with unit time delay, since the output follows the input after one

32 3 Frequency Response Methods

Table 3.1 Input–output data

u(t) 0 1 0 0 1 1 0 0 0 1 1 1 0 0 0 0

y(t) · 102 4.50 0 87.53 11.56 5.50 89.30 97.76 8.47 5.01 0 87.65 101.09 103.97 15.88 0 0

Fig. 3.2 Graphical
presentation of input
(dash-dotted line) and output
(solid line) signals

Fig. 3.3 Periodogram of
output signal

sampling interval. Furthermore, the dominant time constant is approximately 0.5 s,
and the static gain is close to one.

The periodogram of the output signal, using the MATLAB function etfe which
evaluates the output vector at 128 equally spaced frequencies between 0 (excluded)
and π , is presented in Fig. 3.3.

The Bode plot (see Appendix D), presenting magnitudes (log-scale) and phase
shifts (linear scale) as a function of the frequency (log-scale), is a useful tool for
graphical evaluation of the frequency function. Again etfe is used but now for the
estimation of the empirical transfer function (3.3). The results are plotted in a Bode
plot (see Figs. 3.4 and 3.5).

It can be easily verified from the magnitude plot that the static gain is approxi-
mately equal to 1 and that at high frequencies no useful information about the system
dynamics can be obtained due to the significant presence of high-frequency noise

3.1 Empirical Transfer-function Identification 33

Fig. 3.4 Magnitude plot of
empirical transfer function
estimate

Fig. 3.5 Phase plot of
empirical transfer function
estimate

components in the output data. Again this result is very sensitive to noise, especially
at those frequencies which coincide with the dominant noise frequencies.

Recall that ̂G(ejω) for −π ≤ ω ≤ π is an estimate of the discrete Fourier trans-
form of the impulse function. Hence, an estimate of the impulse response can be
recovered in theory from ̂G(ejω), by an inverse Fourier transformation. In prac-
tice, however, the Bode plot is analyzed in terms of some well-defined, elementary
frequency responses, such as first- or second-order and pure time delays, see Ap-
pendix D for details.

Hence, we can deduce the following algorithm for the identification of G(ejω)
from input–output data.

Algorithm 3.2 Identification of G(ejω) from input–output data

1. Generate an arbitrary input signal u(t), t = 1,2, . . . ,N .
2. Apply this input signal to the system, assuming a zero-order hold (ZOH) on the

inputs.
3. Record the input u(t) and corresponding output signal y(t).

34 3 Frequency Response Methods

Fig. 3.6 Conventional relay
feedback system

4. Take the DFT of both u(t) and y(t), resulting in UN(ω) and YN(ω), respectively.
5. Divide component-wise YN(ω) by UN(ω) for ω = 2π

N
, . . . , π rad/s to obtain an

estimate of G(ejω).
6. Optionally, use elementary frequency responses to get an estimate of the transfer

function G(s) (see Appendix D).

Notice that for a given (disturbance) input signal, we can directly start from step 3.

3.1.4 Critical Point Identification

For the automatic tuning of PID controllers for simple systems, however, it often
suffices to have an estimate of the critical point on the Nyquist curve. As opposed
to the Bode plot, the Nyquist plot is a single graph in polar coordinates in which the
gain and phase of a frequency response are plotted. This plot shows the phase as the
angle and the magnitude as the distance from the origin, and thus it combines the
two types of Bode plot on a single graph with frequency as a parameter along the
curve. Hence, the critical point consists of a critical frequency and a critical gain.

Nowadays, the relay identification experiment for the estimating the critical point
is one of the most popular methods in process control. The key idea behind this
identification experiment is that many industrial processes exhibit stable limit cycle
oscillations for a relay feedback system. A conventional relay feedback system for
a process with transfer function G(s) is presented in Fig. 3.6.

For the estimation of the critical point, most often the so-called describing func-
tion method is applied. In the describing function method the relay is replaced by
an “equivalent” LTI system, which will be derived in the following. Let in the self-
oscillation mode of the overall feedback system the system oscillate with the pe-
riod Tosc. For the derivation of the describing function, a sinusoidal relay input e(t)
is considered. Let this input be given by

e(t)= α sinωt (3.4)

Consequently, the relay output u(t) is a square wave with frequency ω and an am-
plitude h, which is equal to the relay output level. Using a Fourier series expansion
in terms of sines and cosines, u(t) can be written as

u(t)= 4h

π

∞
∑

n=0

sin(2n+ 1)ωt

2n+ 1
(3.5)

3.1 Empirical Transfer-function Identification 35

The describing function of the relay, denoted by N(α), is simply the complex ratio
of the fundamental component of u(t), for n= 0, to the sinusoidal relay input, that
is,

N(α)= 4h

πα
(3.6)

Hence, the describing function ignores the harmonics beyond the fundamental com-
ponent

ωosc = 2π

Tosc
(3.7)

Let G(s) denote the transfer function of the process, as in Fig. 3.6. Then, for r = 0
and with the system in the self-oscillating mode, we have

e = −y (3.8)

u = N(α)e (3.9)

y = G(jωosc)u (3.10)

and thus,

G(jωosc)= − 1

N(α)
(3.11)

The critical point of a linear system is found from the intersection of the Nyquist
curve of G(jω) and − 1

N(α)
in the complex plane. Hence, the critical point is given

by (ωosc,
4h
πα
). The critical point can be identified using the following algorithm.

Algorithm 3.3 Identification of the critical point using a relay experiment

1. Implement a relay feedback loop with amplitude of the relay element h around
the process (see Fig. 3.6).

2. Start the feedback system and wait until it is in its self-oscillation mode.
3. Measure the output signal y(t).
4. Derive from y(t) the oscillating frequency ωosc and the amplitude α.
5. Evaluate (4h

πα
) to obtain the critical point (ωosc,

4h
πα
).

The fundamental assumption of the describing function method, also known as
the filtering hypothesis, is that the amplitudes of the third, fifth, and higher harmon-
ics are much smaller than that of the fundamental component. In addition to this, the
conventional relay method is not directly applicable to certain classes of processes,
as those with a large dead time or nonminimum phase (NMP) processes. Moreover,
it is not able to extract other points of the process frequency response.

Let us demonstrate the critical point identification method by an FOPDT (first-
order plus dead time) example.

36 3 Frequency Response Methods

Fig. 3.7 Nyquist plot of
FOPDT process with τ = 1

Table 3.2 Critical point
identification τ Real process Relay experiment

Kc ωc Kc ωc

0.5 1.903 3.673 1.640 3.740

1 1.131 2.029 1.012 2.114

5 0.566 0.531 0.551 0.641

10 0.520 0.286 0.637 0.293

Example 3.3 FOPDT process: Let the transfer function of an FOPDT process be
given by

G(s)= 2

s + 1
e−τs (3.12)

For τ = 1, the corresponding Nyquist plot is presented in Fig. 3.7.
The critical points (ωc,Kc), related to the “real” process and found from the

relay experiment, are presented in Table 3.2. Hence, reasonable estimates are found
from a relay experiment.

3.2 Discrete-time Transfer Function

3.2.1 z-Transform

Recall that G(ejω) is the discrete Fourier transform (DFT) of g(t). In other words,
the complex number G(ejω) is the transfer function of a sampled system evaluated
at the point z = ejω. As can be seen in the previous chapter, this number gives full
information as to what will happen under stationary conditions, when the input is a
sine-wave of frequency ω. In general, the transfer function for discrete-time systems

3.2 Discrete-time Transfer Function 37

is defined as

G(z) :=
∞
∑

k=0

g(k)z−k (3.13)

which is the z-transform (see Appendix C) of the impulse response g(t). Sim-
ilarly, the z-transform of the sampled data vectors u(t) and y(t) is defined as
U(z) := ∑∞

k=0 u(k)z
−k and Y(z) := ∑∞

k=0 y(k)z
−k , respectively. Substitution of

the convolution sum (2.5) in Y(z) leads to

Y(z) =
∞
∑

k=0

k
∑

l=0

g(k − l)u(l)z−k

=
∞
∑

l=0

(∞
∑

k=l
g(k − l)z−(k−l)

)

u(l)z−l

= G(z)U(z) (3.14)

Clearly, (3.14) is the discrete-time counterpart of (2.4).

3.2.2 Impulse Response Identification Using Input–output Data

Writing (3.14) as

Y(z)= y(0)+ y(1)z−1 + y(2)z−2 + · · · (3.15)

and

Y(z) = g(0)u(0)+ [

g(1)u(0)+ g(0)u(1)
]

z−1

+ [

g(2)u(0)+ g(1)u(1)+ g(0)u(2)
]

z−2 + · · · (3.16)

and collecting all corresponding terms, we directly find that

y(0)= g(0)u(0), y(1)= g(1)u(0)+ g(0)u(1), . . .

so that g(0), g(1), g(2), . . . can be solved successively from the input–output data.
The algorithm for the direct estimation of g(t) from input–output data is given

by the following:

Algorithm 3.4 Identification of g(t) from input–output data

1. Generate an arbitrary input signal u(t), t = 1,2, . . . ,N .
2. Measure the input u(t) and corresponding output signal y(t).
3. Solve successively g(0), g(1), g(2), . . . from y(0)= g(0)u(0), y(1)= g(1)u(0)

+ g(0)u(1), . . . using (3.16).

Recall that we can also start directly from step 3 if the input–output data is given.

38 3 Frequency Response Methods

Example 3.4 Impulse response identification: In contrast to the preceding proce-
dure, we are also able to reconstruct the unit-pulse response g(t) directly from any
observed input–output data set using the expression for the convolution sum (2.5).
Recall from (2.5) that

y(t)=
t
∑

k=0

g(k)u(t − k), t ∈ Z
+ (3.17)

Let furthermore both the inputs u(0), u(1), . . . , u(N) and corresponding outputs
y(0), y(1), . . . , y(N) be recorded. Substituting the input values into the convolu-
tion sum (3.17) and assuming that the input is zero before time zero gives

y(t)= g(0)u(t)+ g(1)u(t − 1)+ g(2)u(t − 2)+ · · ·
so that

for t = 0: y(0)= g(0)u(0)

for t = 1: y(1)= g(0)u(1)+ g(1)u(0)

for t = 2: y(2)= g(0)u(2)+ g(1)u(1)+ g(2)u(0)

...

Consequently, in matrix form we obtain
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y(0)
y(1)
y(2)
.

.

y(N)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u(0) 0 . . . 0
u(1) u(0) 0 . . 0
u(2) u(1) u(0) 0 . 0
. . . .

. . . 0
u(N) u(N − 1) . u(2) u(1) u(0)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

g(0)
g(1)
g(2)
.

.

g(N)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

from which the elements g(0), g(1), . . . , g(N) can be solved successfully if the ma-
trix with the inputs is invertible. Usually, for asymptotically stable systems and if N
has been chosen large enough, it suffices to determine only the first s < N elements
of the unit-pulse response, as g(t) for t > s is close to zero. Hence, if s � N , this
choice may decrease the dimensions of vectors and matrix significantly. Notice here
that by setting u(t) equal to a unit pulse, that is, u(0) = 1 and u(t) = 0 for t �= 0,
we directly find the unit-pulse response coefficients g(t). However, in this special
case and also in a more general case, the presence of noise may spoil the idea, since
output noise directly affects the unit-pulse response coefficients.

At this point it should be noted that z−1 in discrete-time cases can be interpreted
as a compressed notation for e−sTs , where Ts is the sampling interval. Recall that
e−sTs is the Laplace transform of a unit time delay, and thus z−1 can be interpreted
as the delay operator. For simplicity and from an operational point of view, under the

3.2 Discrete-time Transfer Function 39

assumption of zero initial conditions on y(t) and u(t), in what follows the forward
shift operator q (see Appendix E) with

qu(t)= u(t + 1)

and the backward shift operator q−1: q−1u(t) = u(t − 1) will be used instead of
the complex variable z. Consequently, similar to the introduction of the differential
operator in system descriptions (2.1), the convolution sum (2.5) can be written as

y(t)=G(q)u(t) (3.18)

where G(q) = ∑∞
k=0 g(k)q

−k , an infinite polynomial in q−1, which in the sequel
will be called the transfer function of a discrete-time LTI system.

3.2.3 Discrete-time Delta Operator

Given the interpretation of z and the introduction of the forward shift operator q in
the previous subsection, it is a small step to approximate a derivative in terms of q .
Thus,

dy

dt
≈ y(t + 1)− y(t)

T

= (q − 1)

T
y(t)

= δy(t)

where δ := (q−1)
T

is the so-called delta operator, also indicated as the δ-operator. The
δ-operator allows a unified treatment of continuous-time and discrete-time systems,
since, as T → 0, a discrete-time system in the δ-operator form smoothly converges
to a system in continuous-time. Let us illustrate this by Example 1.4.

Example 3.5 Storage tank: Recall that the system in input–output form is given by

1

K

dy(t)

dt
+ y(t)= u(t)

A discrete-time approximation in q , using the Euler backward method, leads to

1

K

(q − 1)

T
y(t)+ y(t)= u(t)

=⇒ (q − 1 +KT)y(t)=KT u(t)

=⇒ y(t)= KT

q − 1 +KT
u(t)

40 3 Frequency Response Methods

With δ := (q−1)
T

, we obtain

1

K
δy(t)+ y(t)= u(t)

=⇒ y(t)= K

δ +K
u(t)

which shows a transfer function in δ with a similar structure as the transfer function
of the continuous-time transfer function G(s).

The main advantage of using the δ-operator formulation is that it shows better
numerical properties and causes fewer conditioning problems than the conventional
shift-operator form. Consequently, it may be worthwhile to investigate alternative
discrete-time operators, for instance, based on the Euler forward method or central
difference approximations.

3.3 Historical Notes and References

In addition to step response identification methods, sine-wave testing on SISO LTI
systems [BMS+04, Har91, Fre80], as presented in Sect. 3.1.1, is also very popular
in industry. In the process industry, and in particular for the auto-tuning of PID
controllers, the identification of the critical point of the frequency response using
relay feedback [ÅH84, ÅH88, JM05] is very popular. To handle processes with large
time delays, noisy data, underdamping, or NMP behavior, several modifications of
the conventional relay feedback system, as prefiltered relay, preload relay, and relay
with hysteresis, have been suggested [TLH+06, MCS08, LG09]. For an overview of
frequency response methods and Fourier techniques for system identification, see
[Rak80]. Nowadays, frequency response methods are still frequently applied in, for
instance, chemical and hydraulic engineering studies.

As an alternative to the z-transform of discrete-time models, the δ-operator form
has been introduced by Middleton and Goodwin, see [MG86, MG90].

3.4 Problems

Problem 3.1 Given experimental data {u(0), y(0), u(1), y(1), . . . , u(N)y(N)}.
Show that for an LTI system, the following holds:

⎡

⎢

⎢

⎢

⎣

y(N)
...

y(1)
y(0)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

u(N) · · · u(1) u(0)
... u(0) 0

u(1)
. . .

. . .
...

u(0) 0 · · · 0

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

g(0)
g(1)
...

g(N)

⎤

⎥

⎥

⎥

⎦

with g(0), g(1), . . . , g(N) the impulse response coefficients.

3.4 Problems 41

Problem 3.2 For an LTI system, the following holds:

y(t)=
t
∑

k=0

g(k)u(t − k), t ∈ Z
+

with impulse response coefficients g(0), g(1), . . . , g(N). Given this input–output
relationship, show that in matrix form the following holds:

y = gU

with g = [g(0), g(1), . . . , g(N)] and y, U of appropriate dimensions.

Problem 3.3 Show that for an LTI system, the following holds:

y(t)=
t
∑

k=0

g(k)u(t − k)=
t
∑

k=0

g(t − k)u(k), t ∈ Z
+

Chapter 4
Correlation Methods

4.1 Correlation Functions

4.1.1 Autocorrelation Function

From the previous chapters the conclusion can be drawn that the system response
and the frequency response methods are all more or less simple to use. However,
the main disadvantage is that the results are sensitive to noise as raw input–output
data sets are used. Therefore, in the past, so-called correlation methods have been
developed to overcome this noise sensitivity.

In order to arrive at these correlation methods, let us first introduce the autocor-
relation function ruu(τ, t) of a signal u(t) (see also Appendix B),

ruu(τ, t)=E
[

u(t)u(t + τ)
]

(4.1)

where τ is the lag time. The notation E[·] stands for the expectation operator, or in
other words, it signifies the mean value of the particular function. In what follows,
this expectation will always be interpreted as the time average, and with abuse of
notation,

ruu(τ)= lim
T→∞

1

2T

∫ T

−T
u(t)u(t + τ)dt (4.2)

Notice that this function is now only a function of lag τ and not of t . Hence, it
includes some time-invariance or stationarity property. The integral is taken over
the interval [−T ,T] with T → ∞, because at this stage transient responses will be
excluded. The discrete-time counterpart, applicable to sampled data, is given by

ruu(l)= lim
N→∞

1

2N + 1

N
∑

i=−N
u(i)u(i + l) (4.3)

Notice that for a finite sampled sequence u(t) with N elements, the sample auto-
correlation function ruu(l) can be calculated as ruu(l) = E[u(i)u(i + l)T], where

K.J. Keesman, System Identification,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-0-85729-522-4_4, © Springer-Verlag London Limited 2011

43

http://dx.doi.org/10.1007/978-0-85729-522-4_4

44 4 Correlation Methods

u(i) is the subsequence from −N to N − l, and u(i + l) is the subsequence from
−N + l to N . In order to obtain a reliable estimate of the autocorrelation function
values, the lag l is mostly chosen to be smaller than N/4. It can be easily verified
that the autocorrelation function includes both negative and positive lags and that it
is an even (i.e., symmetric around 0) function. Notice hereto that

ruu(−l) = lim
N→∞

1

2N + 1

N
∑

i=−N
u(i)u(i − l)

= [j :=i−l] lim
N→∞

1

2N + 1

N−l
∑

j=−N−l
u(j + l)u(j)

= [l�N] lim
N→∞

1

2N + 1

N
∑

j=−N
u(j)u(j + l) (4.4)

which, for l �N , is equivalent to (4.3). Furthermore, |ruu(l)| ≤ ruu(0) ∀l ∈ Z, and
if u(t) has a periodic component, then ruu(l) has a periodic component as well, as
is demonstrated in the following example.

Example 4.1 Sine-wave signal: Consider the sine-wave signal u(t) = sin(ωt) with
t ∈ R. Then, after substituting this specific function in (4.2) and applying the gonio-
metric rules,

sinα sinβ = 1

2
cos(α − β)− 1

2
cos(α + β)

sin(α + β) = sinα cosβ + sinβ cosα

we arrive at the following result:

ruu(τ) = lim
T→∞

cosωτ ∗ (T − 1
2 sin 2ωT)

2T

= 1

2
cosωτ

which is again a sine function with frequency ω. Let us generate the sampled sig-
nal u(t) = sin(2π

32 t) on the finite interval t = 0,1, . . . ,128. Using the MATLAB
function xcorr, the corresponding sample autocorrelation function is calculated. See
Fig. 4.1 with original sine-wave signal and normalized autocorrelation function for
a graphical representation of the result. The attenuation of the autocorrelation func-
tion with increasing lag is caused by the fact that a finite signal is considered. A finite
signal on the interval [0,N] can be considered as the multiplication of the infinite
signal and a block function with amplitude 1 and with its basis on [0,N]. Since a
block function has a triangular autocorrelation function and the superposition prin-
ciple holds, the amplitude of every autocorrelation function of a finite sequence will
decrease with increasing lag.

4.1 Correlation Functions 45

Fig. 4.1 Sine-wave signal
(dash-dotted line) with its
autocorrelation function
(solid line)

4.1.2 White Noise Sequence

A signal that needs further attention is the so-called white noise sequence. White
noise is one of the most significant signals when identifying LTI systems. A se-
quence with zero mean, finite variance, and serially uncorrelated terms is called a
white noise sequence. In other words: a white noise sequence has no time struc-
ture. However, a continuous-time white noise signal does not exist in any physical
sense, as it would require an infinite amount of power to generate it. Therefore, only
discrete-time white noise signals are considered. A formal definition of discrete-
time white noise w(t) is given by

E
[

w(t)
] = 0 (4.5)

E
[

w(t)wT (t + l)
] =

{

Q, l = 0
0, l �= 0

(4.6)

In the next example a computer-generated white noise sequence will be further ex-
amined.

Example 4.2 White noise: A uniformly distributed white noise sequence, generated
with the MATLAB function rand, is presented in Fig. 4.2.

The associated normalized autocorrelation function, that is, ruu(l)/ruu(0) for
l = 0,1,2, . . . is also presented (see Fig. 4.3), indicating that only at zero lag the
autocorrelation is significant. The dotted lines indicated the 99% confidence limits,
as calculated by the MATLAB function xcorr.

4.1.3 Cross-correlation Function

In addition to the autocorrelation function, the cross-correlation function ruy(τ, t)

between two different signals u(t) and y(t) is introduced and is defined as

ruy(τ, t) :=E
[

u(t)y(t + τ)
]

(4.7)

46 4 Correlation Methods

Fig. 4.2 Generated white
noise sequence

Fig. 4.3 Sample
autocorrelation function
(solid line) and corresponding
99% confidence limits (dotted
lines) of the white noise
sequence

Similarly,

ruy(τ)= lim
T→∞

1

2T

∫ T

−T
u(t)y(t + τ)dt (4.8)

and in discrete-time,

ruy(l)= lim
N→∞

1

2N + 1

N
∑

i=−N
u(i)y(i + l) (4.9)

In practice, with sampled data and thus N finite, we call ruy(l) the sample cross-
correlation function. Although the cross-correlation function also exists for negative
lags, it is not an even function. Notice that for negative lags, the correlation between
inputs at time instant i and outputs at i + l, with l < 0, is calculated. These correla-
tions are seldom of interest, because in causal systems the output does not depend
on future inputs. Hence, for practical interpretation, only the function values for
positive lags are of interest.

It is also important to note here that both the auto- and cross-correlation func-
tions are important in the data-based identification of LTI systems, because they are

4.2 Wiener–Hopf Relationship 47

closely related to the unit-pulse response of the system as will be seen in the next
section.

4.2 Wiener–Hopf Relationship

4.2.1 Wiener–Hopf Equation

Recall that the output y(t)=∑∞
k=0 g(k)u(t − k), as a result of the input u(t) which

started an indefinitely long time ago, at time instant i + l is given by

y(i + l)=
∞
∑

k=0

g(k)u(i + l − k) (4.10)

Consequently, the cross-correlation between the sequences {u} and {y} is

ruy(l) = lim
N→∞

1

2N + 1

N
∑

i=−N
u(i)

∞
∑

k=0

g(k)u(i + l − k)

=
∞
∑

k=0

g(k) lim
N→∞

1

2N + 1

N
∑

i=−N
u(i)u(i + l − k)

=
∞
∑

k=0

g(k)ruu(l − k) (4.11)

This relationship is called the Wiener–Hopf equation. Notice here the similarity with
the convolution sum (2.5), where ruy(·) is substituted by y(·) and ruu(·) by u(·).

4.2.2 Impulse Response Identification Using Wiener–Hopf
Equation

In the following example an alternative method for the reconstruction of the unit-
pulse response g(t) from an observed input–output data set by using auto- and cross-
correlation estimates is presented.

Example 4.3 Impulse response identification: For asymptotically stable systems, it
suffices to determine only the first s elements of g(t), so that

ruy(l)=
s
∑

k=0

g(k)ruu(l − k)

48 4 Correlation Methods

Let both the inputs u(0), . . . , u(N) and corresponding outputs y(0), . . . , y(N) be
recorded. After removal of the initial conditions effect, the following sequences
remain: u(M),u(M+1), . . . , u(N) and y(M),y(M+1), . . . , y(N). The correlation
functions can then be calculated as

ruu(l)� 1

N −M + 1 − l

N−l
∑

i=M
u(i)u(i + l)

and

ruy(l)� 1

N −M + 1 − l

N−l
∑

i=M
u(i)y(i + l)

Substituting the correlation function values into the Wiener–Hopf equation gives,
for l = 0,1, . . . , s,

ruy(0) = g(0)ruu(0)+ g(1)ruu(−1)+ g(2)ruu(−2)+ · · · + g(s)ruu(−s)
ruy(1) = g(0)ruu(1)+ g(1)ruu(0)+ g(2)ruu(−1)+ · · · + g(s)ruu(1 − s)

ruy(2) = g(0)ruu(2)+ g(1)ruu(1)+ g(2)ruu(0)+ · · · + g(s)ruu(2 − s)

...

ruy(s) = g(0)ruu(s)+ g(1)ruu(s − 1)+ g(2)ruu(s − 2)+ · · · + g(s)ruu(0)

Rewriting this result in matrix form
⎡

⎢

⎢

⎢

⎢

⎢

⎣

ruy(0)
ruy(1)
ruy(2)
...

ruy(s)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ruu(0) ruu(−1) ruu(−2) . ruu(−s)
ruu(1) ruu(0) ruu(−1) . ruu(1 − s)

ruu(2) ruu(1) ruu(0) . ruu(2 − s)
...

...
...

...

ruu(s) ruu(s − 1) ruu(s − 2) . ruu(0)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

g(0)
g(1)
g(2)
...

g(s)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

clearly suggests that the elements g(0), g(1), . . . , g(s) can be solved by matrix in-
version, if the matrix is invertible, noting that ruu(−l) = ruu(l). Notice again that
by setting u(t) equal to a unit pulse, that is, ruu(0)= 1 and ruu(l)= 0 for l �= 0, we
directly find the unit-pulse response coefficients g(t).

This example reveals another property of the Wiener–Hopf equation, that is, if
we are able to find signals for which ruu(l − k) = 0 for l �= k, the computation of
the impulse response coefficients will become much easier. From this example we
can also derive the following algorithm.

Algorithm 4.1 Identification of g(t) from input–output data using the Wiener–
Hopf relationship

1. Generate an arbitrary input signal u(t), t = 1,2, . . . ,N .

4.2 Wiener–Hopf Relationship 49

2. Measure the input u(t) and corresponding output signal y(t).
3. Calculate both the sample autocorrelation function

ruu(l)� 1

N − l

N−l
∑

i=1

u(i)u(i + l)

and sample cross-correlation function

ruy(l)� 1

N − l

N−l
∑

i=1

u(i)y(i + l)

4. For l = 0,1, . . . , s, form the vector ruy = [ruy(0), ruy(1), ruy(2), . . . , ruy(s)] and
the corresponding (s+1)× (s+1) matrix Ruu filled with sample autocorrelation
function values, as in the previous example.

5. Find g = [g(0), g(1), g(2), . . . , s]T from g =R−1
uu ruy .

Again, we may start directly at step 3 if the input–output data is given.

4.2.3 Random Binary Sequences

Recall that the condition: ruu(l − k)= 0 for l �= k, in addition to unit-pulse signals,
also holds for white noise sequences. Under this condition, the Wiener–Hopf rela-
tionship reduces to ruy(l) = g(l)ruu(0). In practice, however, using a white noise
input {u}, which is known as white-noise testing, still has some restrictions. For in-
stance, when using a Gaussian distribution (see Appendix B), very large input values
may occur, which cannot be implemented due to physical restrictions. In addition to
this, a signal from a genuinely random noise source is not reproducible. Therefore,
amplitude constrained signals are preferred in practice as, for instance, a uniformly
distributed signal. A good choice for practical applications is a binary input so long
as the autocorrelation function shows the desired characteristics. Random Binary
Signals (RBS), generated by

u(t)= u(t − 1) ∗ sign
(

w(t)− p0
)

(4.12)

where w(t) is a computer-generated white-noise process for t = 1,2, . . . ,N (MAT-
LAB: rand) and 0 ≤ p0 ≤ 1 the switching probability, have these properties.

Example 4.4 RBS: Let us generate an RBS for p0 = 0.5 and with N = 128 (see
Fig. 4.4).

As already indicated, the associated autocorrelation function shows the desired
property (see Fig. 4.5), albeit that for lag three, the autocorrelation coefficient is
equal to the lower 99% confidence limit.

50 4 Correlation Methods

Fig. 4.4 Random Binary
Signal (p0 = 0.5 and
N = 128)

Fig. 4.5 Autocorrelation
function of RBS (p0 = 0.5
and N = 128, solid line) and
corresponding 99%
confidence limits (dotted
lines)

4.2.4 Filter Properties of Wiener–Hopf Relationship

However, the question may arise why to go to the trouble of computing the se-
quences {ruy} and {ruu}, even if it can be made simpler by choosing appropriate
input signals, if the elements of g(t) can also be determined directly from the ob-
served data. The answer to this question is presented in what follows.

Assume that the observed output is composed of a noise-free part {y} and a noise
part {v}, so that

y(t)= y(t)+ v(t) (4.13)

Computation of the cross-correlation function gives

ruy(l) � 1

N −M + 1 − l

N−l
∑

i=M
u(i)

[

y(i + l)+ v(i + l)
]

(4.14)

� ruy(l)+ ruv(l) (4.15)

so that as long as {v} is unrelated to {u} and has zero mean, the long-term average
of u(i)v(i+ l) is very likely to be close to zero. Hence, using the Wiener–Hopf rela-

4.3 Frequency Analysis Using Correlation Techniques 51

tionship filters out the effect of the noise on the estimates of the unit-pulse response,
unlike the direct methods of the previous chapter.

4.3 Frequency Analysis Using Correlation Techniques

4.3.1 Cross-correlation Between Input–output Sine Waves

In Sect. 3.1.3 on frequency response methods, the empirical transfer-function es-
timate (ETFE) has been introduced. Noticed that, since the methods introduced in
Chap. 3 are based on raw input–output data sets, both the ETFE and the estimates of
|G(ejω)| and arg(G(ejω)) obtained from graphic methods cannot be estimated very
accurately under the presence of noise. Since for a given input u(t) = α sinωt , the
output y(t) of an LTI system is dominated by a sine function of known frequency ω,
it is possible to correlate it out from the noise in the following way. Compute

Is(N)= 1

NT

NT
∑

t=0

y(t) sinωt, Ic(N)= 1

NT

NT
∑

t=0

y(t) cosωt (4.16)

that are the averages of the transformed output of N cycles of the output with sample
time T . Inserting (2.14) plus an additional noise term v(t) into (4.16) gives

Is(N) = 1

NT

NT
∑

t=0

α
∣

∣G
(

ejω
)∣

∣ sin(ωt + φ) sinωt

+ 1

NT

NT
∑

t=0

v(t) sinωt

= α
∣

∣G
(

ejω
)∣

∣

1

NT

NT
∑

t=0

1

2

[

cosφ − cos(2ωt + φ)
]

+ 1

NT

NT
∑

t=0

v(t) sinωt

= α|G(ejω)|
2

cosφ − α|G(ejω)|
2

1

NT

NT
∑

t=0

cos(2ωt + φ)

+ 1

NT

NT
∑

t=0

v(t) sinωt (4.17)

Notice that in general the second term will diminish as N tends to infinity. The
last term, containing the noise v(t), will disappear if v(t) does not contain a pure

52 4 Correlation Methods

periodic component of the input frequency. Even for random noise, the last term
tends to zero as N tends to infinity. Similarly, Ic(N) can be approximated by the
term 1

2α|G(ejω)| sinφ.

4.3.2 Transfer-function Estimate Using Correlation Techniques

From the previous results it can be easily verified that both |G(ejω)| and φ can be
estimated from Is(N) and Ic(N), that is,

∣

∣̂G
(

ejω
)∣

∣ = 2
√

I 2
c (N)+ I 2

s (N)/α (4.18)

̂φ = arg ̂G
(

ejω
)= − arctan

(

Is(N)/Ic(N)
)

(4.19)

Frequency transfer function analyzers that work on this principle of frequency anal-
ysis by correlation methods are commercially available.

Algorithm 4.2 Identification of G(ejω) using correlation techniques

1. Generate for a specific frequency a sine wave with maximum allowable magni-
tude.

2. Apply this sine wave to the system.
3. Measure the resulting sine-wave response.
4. Determine, from N cycles of the output, Is(N) and Ic(N), according to (4.16).
5. Calculate magnitude and phase shift of G(ejω) for the specific frequency from

(4.18)–(4.19).
6. Repeat this for a number of interesting frequencies ω ∈ {ω1,ω2, . . . ,ωN }.

Application of this method to the sine-wave response of the heating system is
illustrated in the following example.

Example 4.5 Heating system: Recall that, using the graphic method, it has been
found that for ω = 5 rad/s, |̂G(ejω)| = 0.256 V/V and ̂φ = −2.50 rad. Application
of (4.18) for N = 12, that is, when averaging occurs only over the last 12 periods,
gives |̂G(ejω)| = 0.266 V/V and ̂φ = −2.76 rad. According to the analysis pre-
sented in Sect. 4.2.4, these estimates are expected to be more reliable than those
obtained from the graphic method.

4.4 Spectral Analysis

4.4.1 Power Spectra

As an alternative to the time domain approach using auto- and cross-correlation
functions, frequency domain methods based on spectral analysis have been de-

4.4 Spectral Analysis 53

Fig. 4.6 Power spectrum
white noise sequence
(N = 128)

veloped as well. These spectral analysis methods for the determination of fre-
quency functions of LTI systems have been initiated in the statistical literature. For
given auto- and cross-correlation functions, the so-called power (auto-)spectrum
and cross-spectrum are defined as

Φuu(ω) :=
∞
∑

l=−∞
ruu(l)e

−jωl (4.20)

Φuy(ω) =
∞
∑

l=−∞
ruy(l)e

−jωl (4.21)

Since the autocorrelation function is always an even function, the Fourier transform
of this function only contains cosine functions, and thus Φuu(ω) is always real,
while Φuy(ω) is in general a complex-valued function of ω. Consequently, Φuy(ω)

has a real part, called the cospectrum, and an imaginary part, called the quadrature
spectrum. In terms of magnitude and argument, one distinguishes between ampli-
tude spectrum |Φuy(ω)| and phase spectrum argΦuy(ω). By definition,

Eu2(t)= ruu(0)= 1

2π

∫ π

−π
Φuu(ω)dω (4.22)

which is a measure for the energy in the signal u(t). Let us demonstrate the spectral
analysis to a white noise sequence.

Example 4.6 White noise: Recall that white noise w(t) has the following autocor-
relation function: rww(0) = E[w(t)w(t)] = σ 2

w and rww(l − k) = 0 for l �= k, so
that the spectrum is given by Φww(ω) = σ 2

w , which is a flat spectrum. However, a
white noise sequence generated in practice will always deviate from this theoretical
spectrum. For instance, the RBS generated in Example 4.4 has the following spec-
trum (see Fig. 4.6), which especially deviates from the desired flat spectrum at high
frequencies.

54 4 Correlation Methods

The RBS with p0 = 0.5 and N = 128 shows a similar spectrum. By selecting a
lower value of p0 we are able to shape the spectrum so that this deviation from the
theoretical flat spectrum especially occurs at lower frequencies.

4.4.2 Transfer-function Estimate Using Power Spectra

The relationship between Φuy(ω) and Φuu(ω) can be derived as follows:

Φuy(ω) =
∞
∑

l=−∞
ruy(l)e

−jωl

=
∞
∑

l=−∞

∞
∑

k=0

g(k)ruu(l − k)e−jωl

=
∞
∑

l=−∞

∞
∑

k=0

g(k)e−jωkruu(l − k)e−jω(l−k)

=
∞
∑

k=0

g(k)e−jωk
∞
∑

l=−∞
ruu(l − k)e−jω(l−k)

= [λ:=l−k]
∞
∑

k=0

g(k)e−jωk
∞
∑

λ=−∞
ruu(λ)e

−jωλ

= G
(

ejω
)

Φuu(ω) (4.23)

From this it can be easily derived that for finite input–output data sets, an alternative
to the ETFE is given by

̂G
(

ejω
)= Φuy(ω)

Φuu(ω)
(4.24)

Algorithm 4.3 Identification of G(ejω) using spectral analysis

1. Generate for a specific frequency a sine wave with maximum allowable magni-
tude.

2. Apply this sine wave to the system.
3. Measure the resulting sine-wave response.
4. Determine, for l = 0,1, . . . , s, the power spectrum and cross-spectrum, accord-

ing to (4.20)–(4.21).
5. Calculate G(ejω) for the specific frequency from (4.24).
6. Repeat this for a number of interesting frequencies ω ∈ {ω1,ω2, . . . ,ωN }.

The application of frequency analysis by correlation methods and spectral anal-
ysis is presented in the following example.

4.4 Spectral Analysis 55

Table 4.1 Heating system
data Frequency ω (rad/s) Gain (V/V) Phase shift (rad)

0.25 0.55 −0.43

0.5 0.54 −0.46

0.75 0.51 −0.65

1.0 0.52 −0.79

2.5 0.42 −1.46

5.0 0.27 −2.76

7.5 0.13 −2.71

10.0 0.07 −3.23

12.5 0.02 −3.49

Fig. 4.7 RBS input
(dash-dotted line) and output
(solid line)

Example 4.7 Heating system: For the reconstruction of the frequency transfer func-
tion using sine-wave testing with correlation techniques, nine sweeps have been
made. The results are presented in Table 4.1.

The spectral estimate is based on an RBS input with p0 = 0.2 and N = 1000
with corresponding output. The input and output are presented in Fig. 4.7 for the
first 10 s only.

The Bode plot of the estimated frequency transfer function as a result of spec-
tral analysis and the individual estimates from the sine-wave testing (see Figs. 4.8
and 4.9) reveals that the estimates do not deviate too much, except for higher fre-
quencies, where a significant difference is observed. However, it should be then re-
alized that the effect of measurement noise is most apparent in the higher-frequency
region, so that in this region the estimates are not fully reliable.

4.4.3 Bias-variance Tradeoff in Transfer-function Estimates

Given the power spectrum Φvv of the noise v, we are able to investigate the mean
and variance (Appendix B) of the ETFE, as presented in Sect. 3.1.3. It has been

56 4 Correlation Methods

Fig. 4.8 Magnitude plot of
transfer function estimates
from spectral analysis (solid
line) and from sine-wave
testing (*)

Fig. 4.9 Phase plot of
transfer function estimates
from spectral analysis (solid
line) and from sine-wave
testing (*)

shown in [Lju99b] that the ETFE approximately satisfies

E
[

̂G
(

ejω
)] = G

(

ejω
)+R

(1)
N (4.25)

Var ̂G
(

ejω
) = 1

|U(ω)|2
(

Φvv(ω)+R
(2)
N

)

(4.26)

where R(i)
N → 0 as N → ∞ for i = 1,2. Consequently, the ETFE is an asymptot-

ically unbiased estimate of G(ejω), where in this statistical context bias is defined
as the difference between the estimator’s expected value (E[̂G(ejω)]) and the true
value of the ETFE for a specific frequency (G(ejω)). However, the variance will not
tend to zero for N large. It approaches the noise-to-input signal ratio at the specific
frequency ω. A common approach to improve the variance properties of the ETFE
is to apply a local averaging procedure,

̂Gw

(

ejω
)= 1

∑

k wk(ω)

∑

k

wk(ω)̂G
(

eω
)

(4.27)

4.5 Historical Notes and References 57

where the frequency weights wk(ω) follow from a good trade-off between bias
and variance. Typically, the weights are selected according to a frequency window.
Within this context, the so-called Hamming window is very popular (for further
information, see, for instance, [EO68]).

The determination of the ETFE from finite data is not straightforward; problems
of aliasing, leakage, and windowing always occur. Therefore, the time domain al-
ternative from Sect. 4.3, which does not have these problems, in general prevails for
practical application.

4.5 Historical Notes and References

A survey of correlation techniques for identification can be found in [God80]. The
application of correlation methods in identification studies is described in, for in-
stance, [ES81, CC94].

For background material on spectral analysis, we refer to the books [JW68,
Bri81, Mar87, Kay88, SM97]. An overview of different frequency domain tech-
niques for time series analysis is given in [BE83].

There is an extensive literature on frequency domain identification; for details,
see [PS01] and the references therein. However, we would like to mention here a few
to stress the development in this field, starting in the 1970s; see [KKZ77, Kol93,
PS97, RSP97, SVPG99, SGR+00, Bai03b, Bai03a, GL09b]. The frequency do-
main techniques have mostly been applied to mechatronic systems, see [TY90,
HvdMS02, AMLL02, CHY02]. During the last decade, much emphasis has also
been put on control-oriented identification methods that focus on a direct deter-
mination of the frequency function and the associated uncertainty in the estimates
from open- and closed-loop data; see, for instance, [LL96, SOS00, WZG01, Wel77,
WG04].

4.6 Problems

Problem 4.1 Let us evaluate the Random Binary Signal (RBS) response in some
more detail. Consider the continuous-time system with transfer function:

G(s)= 2

10s + 1

and generate a random binary input signal (MATLAB command: idinput) of
length N , preferably N = 2n with n an integer as MATLAB uses FFT for frequency
domain calculations, and a relative frequency band of [0,0.5].

58 4 Correlation Methods

Table 4.2 Normalized data chemical reactor

Time 1 2 3 4 5 6 7 8 9 10 11

u(t) (m3/s) 1 1 1 1 1 −1 −1 −1 −1 −1 −1

y(t) (kg/m3) 0 0.13 0.09 0.10 0.10 0.10 −0.17 −0.08 −0.11 −0.10 −0.10

(a) Calculate the system output, using, for example, the MATLAB command lsim,1

and plot both input and output in one figure. Interpret the result.
(b) For the next analyzes, it is necessary to remove the mean from both discrete-

time signals!! First, determine the frequency function G(jω) using etfe.
(c) Plot the frequency function using bodeplot. Interpret the result.
(d) Determine the frequency function G(jω) again but now by using spa.
(e) Plot the resulting frequency function using bodeplot. Interpret the result.

Problem 4.2

(a) Generate a white noise signal with zero mean and unity variance using the MAT-
LAB function rand. Check whether this signal is serially uncorrelated (using
xcorr) and plot the results of this analysis.

(b) Add a constant to the white noise signal and evaluate the auto-correlation func-
tion. Explain the result.

Problem 4.3 Let the following (normalized) data from an experiment investigating
the effect of the feed rate on the substrate concentration in a reactor (see Table 4.2)
be given:

(a) Plot both input and output data (MATLAB: stairs). Give a first interpretation of
the result.

(b) Determine the impulse response function g(t) from this data. For easy ma-
nipulation of the input data matrix you may use the MATLAB command
yreverse = y(length(x) : −1 : 1) and the MATLAB function hankel.

(c) Determine again the impulse response function, but now using the Wiener–Hopf
equation and thus using cross- and autocorrelation functions (MATLAB: xcorr)
to cope with the noise. Explain your result.

1There are several routes for obtaining a solution to the simulation problem of an LTI system
in transfer function form. Most often, a so-called state-space realization is first determined, and
subsequently the general analytical solution, as in footnote 1 in Chap. 1, is applied.

Part II
Time-invariant Systems Identification

In Part I the impulse response model had a central place in the identification of LTI
systems on the basis of data only. In the modeling of the storage tank (Example 1.4)
it appeared that the impulse response had the following form: g(t) = Ke−Kt . In
a discrete-time model representation this would result in a number, depending on
the value of K , of impulse response coefficients. However, at the cost of impos-
ing a specific model structure in the description of the system behavior in terms of
differential and algebraic relationships, in the state-space model there is only one
unknown model parameter, the proportional gain K . Hence, the parameter estima-
tion procedure will become much easier for the same type of system. Moreover,
starting from prior system’s knowledge allows a wider area of application, since
static, nonlinear, and time-varying systems can be covered as well.

In particular for the identification of nonlinear systems, as is quite common in
applications with biological or chemical components, we must use other techniques
than the ones introduced in Part I. These techniques will be introduced in this Part II
and the next part. For applications with a biological component that show a time-
varying system’s behavior due to adaptation of the organisms, however, the time-
varying system identification techniques in Part III are of most interest.

In this and the next part, we will always start with the postulation of a model
structure followed by a model parameter estimation procedure. This approach,
which is also indicated as a parameterized identification method, will then be ap-
plied to the identification of static and dynamic systems.

In Chap. 5 we will start with the identification of static linear systems, that is, no
dynamics are involved. The output of a static system depends only on the input at
the same instant and thus shows instantaneous responses. In particular, the so-called
least-squares method will be introduced. As will be seen in following sections, the
least-squares method for the static linear case forms the basis for solving nonlin-
ear and dynamic estimation problems. For the analysis of the resulting estimates,
properties like bias and accuracy will be treated. Special attention will be paid to
errors-in-variables problems, which allow noise in both input and output variables,
to maximum likelihood estimation as a unified approach to estimation, in particular
well defined in the case of normal distributions, and to bounded-noise problems for
cases with small data sets.

Chapter 6 focuses on the identification of dynamic systems, both linear and non-
linear. The selected model structure of linear dynamic systems, in particular the

60

structure of the noise model, appears to be of crucial importance for specific appli-
cations and the estimation methods to be used. It will be stressed that both the linear
and the nonlinear model structures in this chapter can be formulated in terms of
(nonlinear) regression equations, which allows a unification of the estimation prob-
lems. In this chapter, special attention will be paid to subspace identification for the
direct estimation of the entries of A, B, C, and D in a discrete-time, linear state-
space model formulation, to the identification of discrete-time linear parameter-
varying models of nonlinear or time-varying systems, to the use of orthogonal basis
functions for efficient calculation, and to closed-loop identification in LTI control
system configurations.

Chapter 5
Static Systems Identification

5.1 Linear Static Systems

5.1.1 Linear Regression

Essentially, in what follows the model used in parameterized or model-based identi-
fication methods relates an observable variable y(t) to p explanatory variables, also
called the regressors, φ1(t), . . . , φp(t). The independent variable t need not neces-
sarily represent time; it may be any index variable. Furthermore, it is assumed that
the model has one unknown parameter ϑi per explanatory variable, which may be
known in advance, or which has been measured. Any linear relationship can thus be
modeled as

y(t)= φ1(t)ϑ1 + · · · + φp(t)ϑp + e(t) (5.1)

The interpretation of this so-called linear regression model is that the variable y is
explained in terms of the variables (φ1, . . . , φp) plus an unobserved error term e.
Let t = 1, . . . ,N , and define y := [y(1), . . . , y(N)]T , e = [e(1), . . . , e(N)]T , ϑ :=
[ϑ1, . . . , ϑp]T , which are column vectors of appropriate dimensions. Let further-
more, Φ be an N × p matrix with elements Φtj := φj (t), j = 1, . . . , p. Then, the
model (5.1) can be written in matrix notation (see Appendix A) as

y =Φϑ + e (5.2)

Notice, however, that (5.2) can be equally interpreted in terms of a static system
description with unknown static states ϑ and an observation matrix Φ with known
elements relating the states to the observations. Let us illustrate this fact by a simple
example.

Example 5.1 Constant process state: Consider the case where we have two mea-
surements y(1) and y(2) of a process state x, which is assumed to be constant during
the experiment. The model becomes

y(1) = x + e(1)

K.J. Keesman, System Identification,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-0-85729-522-4_5, © Springer-Verlag London Limited 2011

61

http://dx.doi.org/10.1007/978-0-85729-522-4_5

62 5 Static Systems Identification

y(2) = x + e(2)

so that, in matrix notation, y = [y(1) y(2)]T , ϑ = x, Φ = [1 1]T , e = [e(1) e(2)]T .

The following example illustrates a parameter estimation problem, which is lin-
ear in the unknown parameters.

Example 5.2 Moving object: Let x be the position of an object moving in a straight
line with constant acceleration a. Using the kinematic law, x(t)= x0 + v0t + 1

2at
2,

we are able to predict the position at time instant t if the initial position x0, the
initial velocity v0, and the acceleration a are known. However, if these variables are
unknown or not exactly known, we can estimate these from given observations of y
and t . Hence, in terms of a linear regression model, we define ϑ := [x0 v0 a]T and
φ(t) := [1 t t2/2]T , so that

y(t)= φ(t)T ϑ + e(t)

which is not linear in t , but linear in the unknown parameters. Notice that the kine-
matic model, albeit explicitly dependent on time t , leads to a static relationship, as
no differential or difference equation is used to describe the process. Notice also
that the explanatory variable associated with x0 is 1 for all samples, and thus it can
be assumed with good reason that e has zero-mean.

It is important to note from these two examples that the terms states and parame-
ters in these particular cases can be interchanged. The problem of static system state
estimation can thus be regarded as a linear parameter estimation problem and vice
versa. However, in the following sections, we mainly focus on parameter estimation
problems.

5.1.2 Least-squares Estimation

A reasonable way to estimate the unknowns from given data is by demanding that
the prediction errors or residuals ε(t) := y(t)− φ(t)T ϑ are small. Formally stated,
we will choose the parameter vector ϑ such that the sum of squared prediction errors

J (ϑ) :=
N
∑

t=1

ε2(t)=
N
∑

t=1

(

y(t)− φ(t)T ϑ
)2 (5.3)

is minimal. The scalar function J (ϑ) is also known as the least-squares objective
function. In matrix notation, (5.3) can be written as

J (ϑ) := εT ε = (

yT − ϑT ΦT
)

(y −Φϑ) (5.4)

using the fact from matrix theory that (Φϑ)T = ϑT ΦT (see Appendix A for de-
tails on matrix properties and operations). As in the scalar case, J is minimal if and

5.1 Linear Static Systems 63

only if the gradient of J with respect to ϑ is zero, in general a p-dimensional vec-
tor, and the second derivative is positive. In the following, two standard results for
derivatives of vector-matrix expressions are used, that is,

∂aT ϑ

∂ϑ
= a (5.5)

and

∂ϑT Aϑ

∂ϑ
= (

A+AT
)

ϑ (5.6)

which can be easily verified by writing out all the elements and taking the deriva-
tives. Hence, since J is a scalar function, the individual terms are scalars so that,
with y, Φϑ ∈ R

N , yT Φϑ = ϑT ΦT y and thus

J (ϑ) = yT y − yT Φϑ − ϑT ΦT y + ϑT ΦT Φϑ

= yT y − 2ϑT ΦT y + ϑT ΦT Φϑ (5.7)

Consequently, taking the derivative with respect to ϑ gives a zero for the first term,
−2ΦT y for the second term, and (A + AT)ϑ with symmetric matrix A := ΦTΦ

(AT =A) for the last term, so that

∂J (ϑ)

∂ϑ
= −2ΦT y + 2ΦTΦϑ (5.8)

(see Appendix A for details). The gradient of J (ϑ) is zero if and only if

ΦTΦ̂ϑ =ΦT y (5.9)

which are called the normal equations. From (5.9) we can deduce the ordinary least-
squares estimate by multiplying both sides with (ΦT Φ)−1:

̂ϑ = (

ΦTΦ
)−1

ΦT y (5.10)

under the assumption that the p × p matrix ΦTΦ is invertible. It remains to show
that this estimate gives a minimum of J . Let ϑ =̂ϑ +Δϑ ; then substitution of this
expression into (5.7) ultimately leads to

J
(

̂ϑ
)= J (ϑ)− (Δϑ)T ΦT Φ(Δϑ) (5.11)

Hence, if (Δϑ)T ΦT Φ(Δϑ) > 0, then J (ϑ) has a minimum at ̂ϑ .
Let us illustrate the least-squares method to the estimation of the unknown pa-

rameters in Example 5.2.

Example 5.3 Moving object: Let the following observations on the moving object,
for which x0, v0, and a are unknown, be available (see [Nor86], p. 62, and Table 5.1)
and thus p = 3 and N = 6.

64 5 Static Systems Identification

Table 5.1 Moving object
data t (s) 0.0 0.2 0.4 0.6 0.8 1.0

y (m) 3 59 98 151 218 264

Given the moving object data,

Φ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0.0 0
1 0.2 0.02
1 0.4 0.08
1 0.6 0.18
1 0.8 0.32
1 1.0 0.50

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

an N × p matrix, and

ΦT y =
⎡

⎣

793
580
238

⎤

⎦ , ΦT Φ =
⎡

⎣

6 3 1.1
3 2.2 0.9

1.1 0.9 0.3916

⎤

⎦

=⇒ (

ΦTΦ
)−1 =

⎡

⎣

0.821 −2.95 4.46
−2.95 18.2 −33.5
4.46 −33.5 67.0

⎤

⎦

Consequently, using (5.10),

̂ϑ = [4.79 234 55.4]T

In MATLAB the estimate can also be found by using the expression th = PHI\y,
where PHI and y are properly defined. The backslash (‘\’) defines the so-called left
matrix division. The prediction errors can be calculated from ε(t)= y(t)− φ(t)T̂ϑ

for t = 1, . . . ,6, so that

ε = [−1.8 6.2 −5.0 −4.4 7.9 −2.9]T

Notice that the mean value of ε is equal to zero and the root of the mean-square

error (MSE) (
√

εT ε
N−p) is equal to 7.3 m. Analysis of ε further shows that there is no

clear evidence that unreliable measurements of y, so-called outliers, are present in
the data.

From this example it can be seen that the dimension of ΦTΦ does not de-
pend on the number of observations; it only depends on the number of parame-
ters. Furthermore, ΦTΦ is symmetrical and positive definite, which implies that
all the eigenvalues (λi), in this case 0.01, 0.67, and 7.9, are positive. Hence,
det(ΦT Φ) = ∏n

i=1 λi > 0 with n = 3, and thus the matrix ΦTΦ is invertible (see
Appendix A).

So far, all the prediction errors have been weighted equally. However, under cer-
tain circumstances, for instance, in the case of outliers or if recently measured data

5.1 Linear Static Systems 65

has to be weighted more heavily, there is a need to weight the errors individually.
Then, for a positive definite matrix W , the criterion is modified to

JW (ϑ) := εT Wε = (

yT − ϑT ΦT
)

W(y −Φϑ) (5.12)

Following the previous derivation of the ordinary least-squares estimate, it can be
easily verified that the so-called weighted least-squares estimate is given by

̂ϑW = (

ΦTWΦ
)−1

ΦTWy (5.13)

Under the condition that ΦTΦ is invertible and with W positive definite, to ensure
that JW is positive, ΦTWΦ is also positive definite and thus invertible (see Ap-
pendix A). For a specific weighting of the individual data points, W is a diagonal
matrix, which does not increase the computational complexity too much. However,
in general, W is a nondiagonal matrix, as is illustrated in later sections.

Hence, for given experimental data, the (weighted) least-squares estimation al-
gorithm can be summarized by the following.

Algorithm 5.1 (Weighted) Least-squares estimation of ϑ in linear static systems

1. Given y(t) and φj (t) for t = 1, . . . ,N and j = 1, . . . , p, define the N -
dimensional vector y := [y(1), . . . , y(N)]T .

2. Form the N × p matrix Φ with elements Φtj := φj (t), where φj is the j th re-
gressor.

3. Calculate from (5.10) or (5.13), respectively, the ordinary or weighted least-
squares estimate of the unknown p-dimensional parameter vector ϑ .

Example 5.4 Moving object: Analysis of the prediction errors or residuals may sug-
gest a specific weighting. Given the residuals in Example 5.3, let us weight the first,
fourth, and sixth measurements more heavily, because the values of these predic-
tion errors are somewhat smaller than the other ones. For instance, we may choose
w1 = 4, w2 = 1, w3 = 1, w4 = 4, w5 = 1, w6 = 4. Then,

ΦTW =
⎡

⎣

4 1 1 4 1 4
0 0.2 0.4 2.4 0.8 4
0 0.02 0.08 0.72 0.32 2

⎤

⎦

and

ΦTWy =
⎡

⎣

2047
1644
715.5

⎤

⎦ , ΦTWΦ =
⎡

⎣

15.0 7.8 3.14
7.8 6.28 2.724
3.14 2.724 1.2388

⎤

⎦

=⇒ (

ΦTWΦ
)−1 =

⎡

⎣

0.234 −0.721 0.994
−0.721 5.672 −10.64
0.994 −10.64 21.69

⎤

⎦

66 5 Static Systems Identification

leading to

̂ϑ = [3.72 231 59.3]T
with prediction errors

ε = [−0.7 7.8 −3.0 −2.2 10.2 −0.8]T

Notice here that in particular the initial velocity and the acceleration are affected
by the weighting. Clearly, the prediction errors associated with the first, fourth, and
sixth measurements have been reduced significantly, because extra weights have
been put on these.

Apart from an increase in the computational effort, the specific choice of the
weighting factors is another problem associated with the weighted least-squares
method, which will be solved in later sections. As we will see later, unlike the more
or less arbitrary way of choosing weights as we did so far, a weighting that is re-
lated to the accuracy of a specific sensor or chosen to whiten prediction errors is
more well founded.

5.1.3 Interpretation of Least-squares Method

In this section the properties of the ordinary least-squares estimation method, which
originated from astronomical studies of Gauss in the early 19th century, are further
analyzed. Let us first consider the dependence between the ordinary least-squares
estimate and the number of output samples. In case the number of output measure-
ments equals the number of unknown parameters, that is, N = p,

̂ϑ =Φ−1y (5.14)

if Φ is invertible, which only holds if the columns of the square matrix Φ are in-
dependent. Notice that in this specific case with N = p, the noise in y is directly
reflected in the estimates. Hence, from this point of view, in practice, N is prefer-
ably chosen much larger than p. As a rule of thumb, N is chosen at least five times
larger than p. If N > p, there are more equations than unknowns, and the estimate
is found from (5.10), where (ΦT Φ)−1ΦT is called the pseudo or generalized in-
verse of Φ . If, however, N < p, then the number of unknowns exceeds the number
of equations, and thus no unique solution exists.

The next property of orthogonal projection is illustrated by a very simple exam-
ple.

Example 5.5 Orthogonal projection: The length or magnitude or norm of a column
vector a = [a1, . . . , ap]T ∈ R

p , commonly denoted as ‖a‖ (see Appendix A), is
defined as

‖a‖ :=
√

a2
1 + a2

2 + · · · + a2
p =

√

aT a

5.1 Linear Static Systems 67

Fig. 5.1 Orthogonal
projection in R2

Let further η be the orthogonal projection of vector a on vector b in R
2 (see Fig. 5.1)

and define ζ := a − η.
Then,

aT a = (η+ ζ)T (η+ ζ)= ηT η+ ζ T ζ

because ηT ζ = 0 due to the orthogonality between these two vectors. Notice that
this result could also have been obtained after direct application of Pythagoras’ the-
orem. Let furthermore η := γ b; then

bT a = ηT (η+ ζ)/γ =[ηT ζ=0] ηT η/γ =[η:=γ b] γ bT b

Consequently, the scalar γ is found from

γ = bT a

bT b

and the two-dimensional vector η is given by

η = bT a

bT b
b

The results of this example will now be applied to the least-squares method.
In case ϑ is a scalar which has to be estimated from a number of measure-
ments collected in the vector y for a given explanatory variable whose values have
been put into the vector φ, the least-squares estimate (5.10) is simply given by
̂ϑ = φT y/φT φ. The similarity between this expression and the expression for γ
in the example is evident. Let us further introduce the predicted model output

ŷ =Φ̂ϑ (5.15)

and define the prediction error in terms of this model output,

ε = y − ŷ (5.16)

Then, for the scalar case, ŷ = (φT y/φT φ)φ, which resembles the expression for η.
Recall that the expressions have been derived under different conditions: the first one
has been derived by minimizing the sum of squares of the errors, and the second
by orthogonal projection of the output vector onto the explanatory vector. Hence,
ordinary least-squares estimation can be viewed as orthogonal projection. This result

68 5 Static Systems Identification

can be further stressed by looking at the sum of the products of corresponding model
output and error samples for the general case,

ŷT ε =̂ϑT ΦT
(

y −Φ̂ϑ
)

=̂ϑT
(

ΦT y − (

ΦTΦ
)

̂ϑ
)=[(5.9)] 0 (5.17)

and thus,

‖y‖2 = yT y = ŷT ŷ + 2ŷT ε+ εT ε

= ∥

∥ŷ
∥

∥

2 + ‖ε‖2 (5.18)

Hence, since the inner product is zero, ŷ and ε are two orthogonal vectors, and ε

spans the shortest distance between y and ŷ, which is a linear combination of the
explanatory variables.

From matrix theory (see Appendix A), where it is stated that a matrix P is said
to be an orthogonal projection matrix if and only if P 2 = P and PT = P , a similar
result is obtained. After substitution of the least-squares estimate (5.10) into (5.15)
we obtain

ŷ =Φ
(

ΦTΦ
)−1

ΦT y = P(Φ)y (5.19)

Since P(Φ)2 = P(Φ) and P(Φ)T = P(Φ), it becomes immediately clear that
P(Φ) is an orthogonal projection matrix (see also Appendix A for details on pro-
jection matrices). Similarly,

ε = y −Φ
(

ΦTΦ
)−1

ΦT y = (

I − P(Φ)
)

y (5.20)

and again the N × N matrix I − P(Φ) is an orthogonal projection matrix. Hence
ŷ, which is situated in the hyperplane spanned by the column vectors of Φ , i.e.,
φ1, . . . , φp , and ε are found such that the two vectors are perpendicular to each
other. However, this result no longer holds for the weighted least-squares method,
where

ŷW =Φ
(

ΦTWΦ
)−1

ΦTWy = PW(Φ)y (5.21)

and PW(Φ)
2 = PW(Φ), but PW(Φ)T �= PW(Φ). In this case, PW(Φ) is a general

(oblique) projection matrix.
A last property of the least-squares method is found from analyzing the cross-

correlation between ŷ and ε. Recall that for given bounded sequences of ŷ and ε,

rŷε(l)� 1

N

N
∑

k=1

ŷ(k)ε(k + l) (5.22)

so that

rŷε(0)� 1

N

N
∑

k=1

ŷ(k)ε(k)= 1

N
ŷT ε =[(5.17)] 0 (5.23)

5.1 Linear Static Systems 69

In other words, the predicted model output is uncorrelated with the associated pre-
diction error; there is no correlation between the explained part of the output and
the unexplained part.

5.1.4 Bias

Since empirical data always contain some measurement uncertainty, with either
stochastic or deterministic properties, each estimate of an unknown variable from
given empirical data will thus contain some uncertainty. A first question is whether
the resulting estimate is unbiased, that is, will the estimates cluster around the true
value. Bias, denoted by b, is defined as the difference between the expected value
of the estimate ̂ϑ and the true value ϑ . In mathematical notation,

b :=E
[

̂ϑ
]− ϑ (5.24)

where E[·] denotes the expectation operator (see Appendix B). In the following,
the expectation will always be interpreted as the average. The following examples
illustrate how bias can be evaluated for different estimators.

Example 5.6 Single parameter problem: Consider the model with single input and
single output,

y(t)= αu(t)+ e(t)

in which the unknown α has to be estimated from a number of measurements at
times t = 1, . . . ,N . At each time instant, α can be estimated from y(t)/u(t). Aver-
aging these instantaneous estimates gives

α̂ = 1

N

N
∑

t=1

y(t)

u(t)

Substituting y(t) by αu(t)+ e(t) gives

α̂ = 1

N

N
∑

t=1

αu(t)+ e(t)

u(t)

= 1

N

N
∑

t=1

α + 1

N

N
∑

t=1

e(t)

u(t)

so that the bias for estimator α̂ is given by

b = E
[

α̂
]− α

= E

[

1

N

N
∑

t=1

α + 1

N

N
∑

t=1

e(t)

u(t)

]

− α

70 5 Static Systems Identification

= E

[

1

N

N
∑

t=1

e(t)

u(t)

]

= 1

N

N
∑

t=1

E[e(t)]
u(t)

Hence, b = 0 if E[e(t)] = 0, that is, e(t) has zero mean. Furthermore, b becomes
small if u(t) is large or if N is chosen large enough.

Example 5.7 Constant process state: Consider again the case with the constant
process state, which has to be estimated from a number of data. Given

y(t)= x + e(t)

a reasonable estimate is given by

x̂ = (ymax + ymin)/2

where ymin and ymax are the minimum and maximum values of the output sequence,
respectively. These extreme values are associated with emin and emax. Consequently,

b = E
[

(x + emax + x + emin)/2
]− x

= E
[

(emax + emin)/2
]

and thus b = 0 if emax = −emin. In other words, the residuals must have a symmetri-
cal distribution with finite support, and the output must touch the boundaries during
the experiment.

Since the least-squares methods plays such an important role both in estimation
theory and in practice, the bias of the least-squares estimate will be of special inter-
est. Substituting (5.10) and (5.2) into (5.24) gives

b = E
[(

ΦTΦ
)−1

ΦT y
]− ϑ

= E
[(

ΦTΦ
)−1

ΦT (Φϑ + e)
]− ϑ

= E
[(

ΦTΦ
)−1

ΦT e
]

(5.25)

which in general is not equal to zero if Φ and e are statistically dependent. Notice
here that Φ may be a matrix with stochastic or random elements (see Appendix B)
due to measurement errors in the explanatory variables. In the case where Φ and e

are statistically independent, b = E[(ΦT Φ)−1ΦT]E[e]. Hence, from this we con-
clude that the bias of the least-squares estimate is zero if Φ and e are statistically
independent and E[e] = 0, a null vector in R

N . A similar result can be obtained for
the weighted least-squares estimator. Consequently, in what follows, the application

5.1 Linear Static Systems 71

of the (weighted) least-squares estimator should include these tests on possibly ran-
dom regressors and residuals to guarantee unbiased estimates. Let us evaluate this
for the moving object example.

Example 5.8 Moving object: If we assume that the data can be explained by the
following model with zero x0:

x(t)= v0t + 1

2
at2 + e(t)

so that ϑ = [v0 a]T and φ(t) = [t 1
2 t

2]T , the resulting least-squares estimate be-
comes

̂ϑ = [252 29.3]T
with prediction error sequence ε = [3.0 8.1 −5.0 −5.3 7.3 −2.3]T . The mean value
of ε is 1 m, and thus biased estimates could have been expected if Φ and e are
statistically independent.

For further analysis, let us assume that time t was measured exactly and thus Φ
contains deterministic regressors. Then, given the residual vector ε as a realization
of e and using the normal equations (5.9), we obtain

ΦT ε = ΦT
(

y −Φ̂θ
)

= ΦT y −ΦTΦ̂θ = 0

Hence, for deterministic and thus exactly known Φ , least-squares estimation always
leads to unbiased estimates.

In addition to the conclusion from Example 5.8 that, for deterministic regressors,
the least-squares estimates are unbiased, we conclude that the prediction error vec-
tor ε is in the null space or kernel of ΦT , that is, in abstract mathematical terms,
ε ∈ ker(ΦT). Let us now focus on a third example. Unlike the previous two exam-
ples, in this example we allow noise in the explanatory variables.

Example 5.9 Single parameter problem: Consider again the least-squares estima-
tion problem of a single parameter (i.e., ϑ is a scalar) in the linear regression model
with modeling error w(t),

yo(t)= αuo(t)+w(t)

from noisy measurements of the input u(t) = uo(t) + z(t) and the output y(t) =
yo(t) + v(t). In this so-called errors-in-variables problem, both uo(t) and yo(t)

indicate the noise-free input and output, respectively. It is further assumed that the
noises z(t), v(t), and w(t) have zero mean and are mutually uncorrelated. Hence,
the regression model can be written as

y(t)= αu(t)+ e(t)

72 5 Static Systems Identification

with e(t)= v(t)+w(t)− αz(t). The least-squares estimate is given by

α̂ =
N
∑

t=1

u(t)y(t)
/

N
∑

t=1

u2(t)

so that the bias can be computed from

b = E

[

N
∑

t=1

u(t)
{

αu(t)+ e(t)
}

/
N
∑

t=1

u2(t)

]

− α

= E

[

N
∑

t=1

u(t)e(t)
/

N
∑

t=1

u2(t)

]

= E

[

N
∑

t=1

{

uo(t)+ z(t)
}{

v(t)+w(t)− αz(t)
}

/
N
∑

t=1

u2(t)

]

= −E
[

N
∑

t=1

{

uo(t)+ z(t)
}

z(t)
/

N
∑

t=1

{

uo(t)+ z(t)
}2

]

α

The last step in this derivation follows from the assumed uncorrelatedness be-
tween the noise terms and the assumed zero means. In general, the resulting bias
is not equal to zero. This result could also have been seen directly by noting that
u(t)= uo(t)+ z(t) and e(t)= v(t)+w(t)−αz(t) are not statistically independent.
Consequently, in these cases the least-squares estimates are biased.

Generalizing the result of this last example for the vector case leads to the fol-
lowing expression for the bias of the least-squares estimate:

b = E
[(

ΦTΦ
)−1

ΦT e
]

= −E[((Φo +Z
)T (

Φo +Z
))−1(

Φo +Z
)T
Z
]

ϑ (5.26)

where Z is an N × p matrix containing the errors in the explanatory variables. It is
important to realize that bias in the estimates will directly lead to a systematic error
in model predictions, which should be avoided if possible. Therefore in this section
not only the expressions for bias have been evaluated, but also the conditions under
which bias will occur.

5.1.5 Accuracy

In addition to bias, another important property of the estimates is the accuracy, also
indicated as the estimation uncertainty. Usually, the dispersion of a random variable

5.1 Linear Static Systems 73

y is expressed in terms of the variance (see Appendix B for details)

Vary :=E
[(

y −E[y])2]
(5.27)

denoted by σ 2
y , or its square root, the standard deviation σy . Generalization to the

vector case gives the so-called covariance matrix, which is defined as

Covy :=E
[(

y −E[y])(y −E[y])T] (5.28)

which also allows covariances between the different elements in vector y. It is im-
portant to note here that this definition holds for any vector with finite variance and
is thus applicable to observed data sequences and estimated parameter vectors. The
covariance matrix can be further evaluated as

Covy = E
[

yT y − yE[y]T −E[y]yT +E[y]E[y]T]

= E
[

yyT
]−E[y]E[y]T (5.29)

If E[y] = 0, then Covy = E[yyT]. Let us explore this special case in some more
detail and let y = [y(1) y(2) · · · y(N)]T be a zero-mean sequence; then

Covy = E

⎡

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎣

y(1)
y(2)
...

y(N)

⎤

⎥

⎥

⎥

⎦

[

y(1) y(2) · · · y(N)
]

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

E[y(1)y(1)] E[y(1)y(2)] · · · E[y(1)y(N)]
E[y(2)y(1)] E[y(2)y(2)] E[y(2)y(N)]

...
...

E[y(N)y(1)] · · · · · · E[y(N)y(N)]

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

ryy(0) ryy(1) · · · ryy(N − 1)
ryy(1) ryy(0) ryy(N − 2)
...

...

ryy(N − 1) · · · · · · ryy(0)

⎤

⎥

⎥

⎥

⎦

=Ryy (5.30)

Recall from Sect. 4.1.1 that ryy(l) :=E[y(k)y(k + l)], which allows the last step in
(5.30) from covariance matrix Covy to equal the autocorrelation matrix Ryy .

Example 5.10 White noise: Consider a unit variance white noise sequence {e}Nt=1,
which implies that ree(0)= 1 and ree(l)= 0 for l �= 0. Then, it can be easily verified
that Cov e =Ree = IN , where IN denotes the N ×N identity matrix.

In addition to the previous case of a random data sequence, in the following the
covariance matrix associated with (weighted) least-squares estimates is investigated.
The basic idea is that since the estimate includes a real-data vector (see, for instance,

74 5 Static Systems Identification

(5.10)), which in general is corrupted with noise, the estimate will also be affected
by this noise. If the data matrix Φ is statistically independent of the error e and
if e has zero mean, then the covariance matrix associated with the unbiased least-
squares estimate ̂ϑ such that E[̂ϑ] = ϑ is given by

Cov̂ϑ = E
[(

̂ϑ −E
[

̂ϑ
])(

̂ϑ −E
[

̂ϑ
])T]

= E
[([

ΦTΦ
]−1

ΦT y − ϑ
)([

ΦTΦ
]−1

ΦT y − ϑ
)T]

= E
[([

ΦTΦ
]−1

ΦT (Φϑ + e)− ϑ
)([

ΦTΦ
]−1

ΦT (Φϑ + e)− ϑ
)T]

= E
[[

ΦTΦ
]−1

ΦT Cov eΦ
[

ΦTΦ
]−1] (5.31)

If {e}Nt=1 is a white noise sequence with constant variance σ 2, then Cov e = σ 2IN .
Consequently, (5.31) reduces to

Cov̂ϑ = σ 2E
[[

ΦTΦ
]−1] (5.32)

which in the case of deterministicΦ even further simplifies to Cov̂ϑ = σ 2[ΦTΦ]−1.
However, the expressions cannot be directly used, since in practice σ 2 is unknown.
Noting that σ 2

ε = E[ε2(t)] − (E[ε(t)])2 =[Eε(t)=0] E[ε2(t)], an unbiased estimate
of σ 2 can be obtained from the prediction error sequence and is given by

σ̂ 2
ε = 1

N − p

N
∑

t=1

ε2(t) (5.33)

Hence, in practice, σ 2 in (5.32) is replaced by (5.33).

Example 5.11 Moving object: Recall that the prediction errors are

ε = [−1.8 6.2 −5.0 −4.4 7.9 −2.9]T

and we have

(

ΦTΦ
)−1 =

⎡

⎣

0.821 −2.95 4.46
−2.95 18.2 −33.5
4.46 −33.5 67.0

⎤

⎦

Then, with N = 6 and p = 3 an estimate of the prediction error variance is 52.62 m2.
Hence, the covariance matrix of the estimates is given by

Cov̂ϑ =
⎡

⎣

43.20 −155.0 234.9
−155.0 956.1 −1762
234.9 −1762 3524

⎤

⎦

where the diagonal elements are the variances of the corresponding estimates.
Hence, by taking the square root of the diagonal elements the standard deviations are
obtained, that is, 6.57 m, 30.92 m/s, and 59.36 m/s2. Analysis of this result reveals

5.1 Linear Static Systems 75

that only v0 can be accurately estimated; the other deviations are approximately
equal to the estimated values indicating low accuracy.

Example 5.12 Constant process state: Consider again the case where at sampling
instant t we have two measurements from two different sensors y(1) and y(2) of
a process state x, which is considered to be constant during the experiment. Recall
that the model becomes

y(1) = x + e(1)

y(2) = x + e(2)

Notice that this is in fact a multioutput case. If then at t + 1 another two measure-
ments y(3) and y(4) become available, we can simply add the equations

y(3) = x + e(3)

y(4) = x + e(4)

to the two regression equations given for time instant t . Assume further that

E
[

e(k)
] = 0, k = 1, . . . ,4

E
[

e(k)e(k + l)
] = 0, l > 0

E
[

e(1)2
] = E

[

e(3)2
]= 1, E

[

e(2)2
]=E

[

e(4)2
]= 4

Hence, the error covariance matrix is given by the diagonal matrix Ree with diagonal
elements 1, 4, 1, and 4.

Given the measurements y(1), . . . , y(4), a “reasonable” estimate is given by

x̂ = 1

4
y(1)+ 1

4
y(2)+ 1

4
y(3)+ 1

4
y(4)

In this case

x − x̂ =[y(k)=x+e(k)] −1

4

4
∑

k=1

e(k)

so that the bias and estimation variance are given by

E
[

x − x̂
] = −1

4

4
∑

k=1

E
[

e(k)
]=[E[e(.)]=0]= 0

E
[(

x − x̂
)2] = 1

16
(1 + 4 + 1 + 4)= 10

16

76 5 Static Systems Identification

Hence, the estimate is unbiased, and the variance of the estimate is equal to 10/16.
However, the “best” estimate is found from weighted least-squares estimation with

Φ = [1 1 1 1]T , W =R−1
ee , and Ree =

⎡

⎢

⎢

⎣

1 0 0 0
0 4 0 0
0 0 1 0
0 0 0 4

⎤

⎥

⎥

⎦

so that

ΦTW = [

1 1
4 1 1

4

]

, ΦTWΦ = 5

2

=⇒ (

ΦTWΦ
)−1

ΦTW = [

2
5

1
10

2
5

1
10

]

and thus,

x̂ = 4

10
y(1)+ 1

10
y(2)+ 4

10
y(3)+ 1

10
y(4)

In this case

x − x̂ = x −
(

4

10
y(1)+ 1

10
y(2)+ 4

10
y(3)+ 1

10
y(4)

)

= x −
(

4

10

(

x + e(1)
)+ 1

10

(

x + e(2)
)+ 4

10

(

x + e(3)
)+ 1

10

(

x + e(4)
)

)

= −
(

4

10
e(1)+ 1

10
e(2)+ 4

10
e(3)+ 1

10
e(4)

)

Consequently, given the independence of the errors, so that E[e(k)e(k + l)] = 0,
l > 0, we have

E
[

x − x̂
] = E

[

−
(

4

10
e(1)+ 1

10
e(2)+ 4

10
e(3)+ 1

10
e(4)

)]

= 0

E
[(

x − x̂
)2] = (0.4)2E

[

e(1)2
]+ (0.1)2E

[

e(2)2
]+ (0.4)2E

[

e(3)2
]

+ (0.1)2E
[

e(1)2
]= 4

10

which yields, although not proven here, the minimum estimation error variance for
all unbiased estimates.

From this last example we see that multiple outputs can be easily handled by just
adding extra regression equations and subsequently performing a weighted least-
squares estimation with a weighting matrix equal to the inverse of the error covari-
ance matrix.

We conclude here with the statement, found in many textbooks on least-squares
estimation and known as the Gauss–Markov theorem, that for the linear regres-

5.1 Linear Static Systems 77

sion model (5.2) with mutually uncorrelated errors and constant variance the least-
squares estimate given by (5.10) provides the smallest covariance of all unbiased
linear estimators of the form ̂ϑA = Ay. This property, in addition to its simplicity,
makes the least-squares estimate very popular. However, in general, least-squares
estimation does not guarantee a minimum mean-square error (MSE) in the esti-
mates. To see this, let us first present an expression of the MSE matrix for estimate
̂ϑ , where E[̂ϑ] = ϑ . Using (5.24) and (5.28),

MSÊϑ = E
[(

̂ϑ − ϑ
)(

̂ϑ − ϑ
)T]

= E
[(

̂ϑ − ϑ + ϑ − ϑ
)(

̂ϑ − ϑ + ϑ − ϑ
)T]

= E
[(

̂ϑ − ϑ
)(

̂ϑ − ϑ
)T]+ (

ϑ − ϑ
)(

ϑ − ϑ
)T

= Cov̂ϑ + bbT (5.34)

This matrix clearly emphasizes the trade-off between bias and covariance. Hence,
finite bias may be worth exchanging for a reduction of the covariance matrix. The
class of the so-called minimum mean-square estimators will not be described here
in any detail. It suffices to say that reduction of the MSE of the estimate can be
obtained by the constrained least-squares (CLS) estimate

̂ϑR = (

ΦTΦ +K
)−1

ΦT y (5.35)

which is also known as a regularization or smoothing algorithm. The symmetric
matrix K can take different forms, but the simplest is K = kI with k a positive
scalar. It can also been shown that this specific choice of K reduces ill-conditioning
in least-squares problems.

Algorithm 5.2 Constrained least-squares estimation of ϑ in linear static systems

1. Given y(t) and φj (t) for t = 1, . . . ,N and j = 1, . . . , p, define the N -
dimensional vector y := [y(1), . . . , y(N)]T .

2. Form the N × p matrix Φ with elements Φtj := φj (t), where φj is the j th re-
gressor.

3. For a specific choice of the symmetric matrix K , calculate from (5.35) the con-
strained least-squares estimate of the unknown p-dimensional parameter vec-
tor ϑ .

5.1.6 Identifiability

An essential question prior to the parameter estimation procedure is whether the
unknown model parameters can be uniquely, albeit locally, estimated from the data.
Let us demonstrate this issue by a simple example.

78 5 Static Systems Identification

Example 5.13 Identifiability: Let a static system be described by

y(t)= (α1 + α2)u(t)

Notice then that, given measurements of u(t) and y(t), we can only estimate the
sum α1 +α2. Consequently, we cannot uniquely estimate each individual parameter
from the data. Both α1 and α2 are what we call unidentifiable parameters.

This question about the uniqueness of the estimates is the main issue in identifia-
bility analysis and has received much attention in the literature. When the question
only focuses on the case where the experiment and model structure, in principle,
lead to unique parameter values and thus without regard to uncertainties, the anal-
ysis is indicated as theoretical or structural or deterministic identifiability analysis.
Most of the tools for this type of analysis are restricted to rather simple problems
with only a few unknowns and thus not further explored here.

An exception is given by the following numerical procedure. Recall that for the
(weighted) least-squares case, the identification criterion is given by (5.12). On the
basis of this criterion and in analogy with the definition of an identifiable structure
given by [BK70], the following definition is given:

Definition 5.1 Assume that the measured output is generated by a system with pa-
rameter vector ϑ∗. The model structure is called locally identifiable if the criterion
function JW (ϑ) has a local minimum at ϑ = ϑ∗.

Notice that in this definition it is implicitly assumed that the model structure is
a valid representation of the system under consideration. To study the theoretical
identifiability properties of the model, data can be generated from a thought experi-
ment. Assume therefore that the data has been generated by a regression model with
parameter vector ϑ∗ ∈ R

p , so that

y(t)= ŷ
(

t;ϑ∗), t = 1, . . . ,N (5.36)

The model is called locally identifiable in ϑ∗ if JW (ϑ) in the neighborhood of ϑ∗
has a unique minimum which occurs at ϑ∗. Obviously the main disadvantage of this
definition is that it only holds in the neighborhood of ϑ∗ which must be specified
by the user on the basis of prior knowledge of the parameter values. Therefore, in
practice, often a number of points are evaluated to obtain some regional insight in the
identifiability properties. From the conditions for a local minimum it can be easily
derived that a sufficient condition for a model structure to be locally identifiable
in ϑ∗ is that the gradient (∂JW (ϑ)/∂ϑi) for i = 1, . . . , p is zero and the Hessian
(∂2JW (ϑ)/∂ϑi∂ϑj), the p×p matrix containing the second derivatives, is positive
definite for ϑ = ϑ∗.

This condition for positive definiteness is equal to the condition of full column
rankness of the matrix Φ , which implies that the columns of Φ are independent.
The test on full rankness can be easily performed by calculating the singular val-
ues of a matrix. The so-called singular value decomposition (SVD) technique (see

5.1 Linear Static Systems 79

Appendix A) is based on decomposing the N × p regressor matrix Φ as follows:

Φ =USV T (5.37)

In (5.37), U and V are orthogonal matrices of dimensions N × N and p × p, re-
spectively, such that UT U = IN and V T V = Ip . The N × p singular value matrix
S has the following structure:

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

σ1 0 · · · 0
0 σ2 · · · 0
...

...
...

0 0 · · · σp
.........................

0(N−p)×p

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5.38)

where 0(N−p)×p denotes an (N − p)× p zero (or null) matrix. If the SVD of Φ is
calculated (for details, see Appendix A) and σ1 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0,
then the rank of Φ is equal to r . Hence, there exists a clear link between the rank of
a matrix and its singular values. Instead of demanding that σr+1 = 0, in practice, the
numerical rank is introduced where σr+1 < ε to account for numerical errors during
the computation of the SVD. Let us illustrate this technique to the moving object
example.

Example 5.14 Moving object: SVD of the regressor matrix Φ associated with a
specific experiment, using MATLAB’s function svd, gives

Φ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0.0 0
1 0.2 0.02
1 0.4 0.08
1 0.6 0.18
1 0.8 0.32
1 1.0 0.50

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= USV T

with

U =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.3051 −0.6230 0.5833 0.0332 −0.0913 −0.4112
0.3405 −0.4289 −0.0851 0.1568 0.4209 0.7008
0.3785 −0.2143 −0.4269 −0.6582 −0.4397 0.0445
0.4191 0.0208 −0.4420 0.7013 −0.2930 −0.2256
0.4623 0.2764 −0.1304 −0.2214 0.6781 −0.4290
0.5082 0.5525 0.5079 −0.0117 −0.2750 0.3207

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

80 5 Static Systems Identification

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2.8127 0 0
0 0.8177 0
0 0 0.1089
0 0 0
0 0 0
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

V =
⎡

⎣

0.8582 −0.5094 0.0635
0.4796 0.7516 −0.4529
0.1829 0.4191 0.8893

⎤

⎦

Usually, U is called the left singular vector matrix, and V the right singular vector
matrix. From these results it can be concluded that, for ε = 10−6, Φ has full rank,
since the smallest singular value is significantly larger than 10−6. Consequently, it
is expected that the unknowns can be uniquely estimated from experimental data,
because this full-rank condition implies that (ΦT Φ)−1 exists.

The effect of changing the time coordinates in the moving object example is
illustrated in the next example.

Example 5.15 Moving object: Let the time start at 10 s rather than at time zero.
Then,

Φ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 10.0 50
1 10.2 50.02
1 10.4 54.08
1 10.6 56.18
1 10.8 58.32
1 11.0 60.50

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

with singular values

σ = {137.8981, 0.8336, 0.0022 }

and right singular vector matrix

V =
⎡

⎣

0.0177 −0.1872 0.9822
0.1865 −0.9645 −0.1872
0.9823 0.1865 0.0178

⎤

⎦

The resulting estimates are

̂ϑ = [428.0 −319.1 55.4]T

which substantially deviate from previous estimation results. Especially, x0 and v0

are badly estimated.

5.1 Linear Static Systems 81

Let us analyze this result in some more detail. First, the smallest singular value
is very small, indicating that some of the regressors are close to being linearly de-
pendent. This result can also be directly seen from Φ in Example 5.14 by inspection
of the first two columns. Notice that the second column is approximately 10 times
column one. Consequently, bad estimates of x0 and v0 result. Secondly, let us pre-
multiply the linear regression equation by UT , so that

y∗ = UT y =UTΦϑ +UT e

= UT USV T ϑ +UT e

= Sϑ∗ + e∗ (5.39)

where ϑ∗ = V T ϑ and e∗ =UT e.
Notice from the orthogonality of U with UT U = IN that UT = U−1 and thus

UUT = IN . Then, given the transformed prediction error ε∗ = y∗ − Sϑ∗ =UT ε, it
follows that J ∗ := (ε∗)T ε∗ = εT UUT ε =[UUT =IN] J . Thus, it can be easily verified
that the sum of squares is not altered by this transformation. The first term on the
right-hand side of the linear regression model is transformed into

Sϑ∗ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

σ1ϑ
∗
1

σ2ϑ
∗
2

...

σpϑ
∗
p

0
0
...

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5.40)

so that J (ϑ) = (y∗ − Sϑ∗)T (y∗ − Sϑ∗) is minimized when ̂ϑ∗
i = y∗

i /σi setting
ε∗
i = 0 for i = 1, . . . , p. Consequently, the parameter estimates can be readily ob-

tained from ̂ϑ = V̂ϑ∗, because V is an orthogonal matrix for which V T V = I and
thus (V T)−1 = V . In case σi ≈ 0, the associated parameter ϑ∗

i can be chosen arbi-
trarily, because the complete term σiϑ

∗
i does not contribute too much to the sum of

squares. Hence, a better choice is to reparameterize the model by setting the linear
parameter combination ϑ∗

i = vTi ϑ equal to zero, so that it does not affect the origi-
nal parameters too much. This method is also known as the truncated least-squares
method.

Algorithm 5.3 Truncated least-squares estimation of ϑ in linear static systems

1. Given y(t) and φj (t) for t = 1, . . . ,N and j = 1, . . . , p, define the N -
dimensional vector y := [y(1), . . . , y(N)]T .

2. Form the N × p matrix Φ with elements Φtj := φj (t), where φj is the j th re-
gressor.

3. Calculate the SVD of Φ , using for example MATLAB’s svd, which gives U , S,
and V .

82 5 Static Systems Identification

4. Premultiply y with UT , leading to y∗.
5. For i = 1, . . . , p calculate the transformed estimates ̂ϑ∗

i = y∗
i /σi .

6. Calculate from ̂ϑ = V̂ϑ∗ the truncated least-squares parameter estimate of the
unknown p-dimensional parameter vector ϑ .

Again, let us apply this to the moving object example with shifted time axis.

Example 5.16 Moving object: Recall that an SVD of Φ with time starting at 10 s
gives

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

137.8981 0 0
0 0.8336 0
0 0 0.0022
0 0 0
0 0 0
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and

V =
⎡

⎣

0.0177 −0.1872 0.9822
0.1865 −0.9645 −0.1872
0.9823 0.1865 0.0178

⎤

⎦

so that the following estimates ̂ϑ∗
i = y∗

i /σi for i = 1,2,3 are obtained:

̂ϑ∗ = [−2.44 −237.96 481.09]T

with y∗ = [−337.1 −198.4 1.0 −0.5 12.5 1.4]T . By setting ̂ϑ∗
3 = 0, since σ3 ≈ 0,

the sum of squares are increased from 157.86 to 158.96, and the following estimates
are obtained from V̂ϑ∗:

̂ϑ = [−44.51 −229.05 46.78]
which give reasonable predictions but are still unrealistic. Clearly, in this case the
best solution is to shift the time coordinates 10 s to the left.

So far, the analysis has only been focussed on Φ , and as yet no output data has
been incorporated. Identifiability analysis which includes measurement uncertainty
in the output and numerical inaccuracy is called practical identifiability analysis. In
practical identifiability analysis the analysis is completely focussed on the covari-
ance matrix of the estimates. Let us illustrate this by an example.

Example 5.17 Moving object: Recall that the covariance matrix of the estimates in
the original linear regression model was given by

Cov̂ϑ =
⎡

⎣

43.20 −155.0 234.9
−155.0 956.1 −1762
234.9 −1762 3524

⎤

⎦

5.1 Linear Static Systems 83

An SVD of this matrix gives:

σ = {4438, 78.70, 6.651 }

U = V =
⎡

⎣

0.0635 −0.5094 0.8582
−0.4529 0.7516 0.4796
0.8893 0.4191 0.1829

⎤

⎦

where U is equal to V , because the covariance matrix is symmetric, and thus
Cov̂ϑ = V SV T . Consequently, with V T = V −1 because of the orthogonality of V ,
i.e., V T V = Ip , Cov̂ϑV = V S defines an eigenvalue decomposition of Cov̂ϑ .
Hence, singular value or eigenvalue decomposition of a covariance matrix will
give the same result. For further analysis of this result, it should be mentioned
that each of the singular values or eigenvalues is associated with a corresponding
column in V . Each column in V defines a direction in the parameter space (see
also Appendix B). Furthermore, a small singular value indicates a well-defined di-
rection. Hence, since the third singular value is small, the parameter combination
0.8582x0 + 0.4796v0 + 0.1829a can be accurately estimated from the experimen-
tal data. This conclusion further implies that a specific combination of x0 and v0,
due to their large contribution to this well-defined direction, can be estimated rather
accurately. A similar conclusion can be drawn from our previous analysis of the
estimates uncertainty.

Let us visualize the result in R
2 for the parameters v0 and a, neglecting the effect

of x0 on the output. Recall that, using (5.10),

̂ϑ = [252 29.3]T

The corresponding covariance matrix is given by

Cov̂ϑ =
[

352.9 −811.2
−811.2 1983

]

An SVD of this matrix gives:

σ = {18.1, 2318 }

U = V =
[−0.9243 −0.3816

−0.3816 0.9243

]

The uncertainty ellipse (see Appendix B), which in this case is an isoline connecting
points of equal objective function values (sum of squares), is presented in Fig. 5.2.

Notice from Fig. 5.2 that the uncertainty ellipse is rather thin in one direction.
However, for a correct geometrical interpretation of the result, we must plot the
ellipse with equally scaled axes, as in Fig. 5.3. Notice from this figure that the main
axis of the uncertainty ellipse is more or less aligned with the y-axis. To be more
specific, this main axis is described by the second column vector of V . In other
words, the estimate of the acceleration a is most uncertain, as we concluded before.
Consequently, the parameter combination 0.9243v0 + 0.3816a, with a large weight
on v0, can be most accurately estimated from the experimental data.

84 5 Static Systems Identification

Fig. 5.2 Uncertainty ellipse
of the estimates of the
velocity (v0) and the
acceleration (a)

Fig. 5.3 Uncertainty ellipse
of the estimates of the
velocity (v0) and the
acceleration (a); equal scale
plot

Notice that the identifiability analysis in the previous example does not evalu-
ate the uncertainty with respect to the estimated value, indicating that x0 is roughly
equal to the standard deviation of its estimate, which is an indication of an inappro-
priate model structure for the given output data. Notice also the similarity between
V and the right singular value matrix obtained from an SVD of the original regressor
matrix Φ . This similarity can be verified using (5.32), which expresses the covari-
ance matrix as a function of Φ and the property (ΦT Φ)V = V ST S (see Appendix A
for details).

In conclusion, for both practical and theoretical local identifiability studies using
thought experiments, it suffices to evaluate the SVD of the regressor matrix Φ .

5.1 Linear Static Systems 85

5.1.7 *Errors-in-variables Problem

Recall that in Example 5.9 the so-called errors-in-variables (EIV) problem has al-
ready been introduced as a result of noise in the explanatory variables. Applying
ordinary least-squares estimation will in general lead to bias (see (5.26)). In this
subsection, we will now introduce the so-called Total Least-Squares (TLS) method,
which is able to properly solve this type of problems using SVD.

Before focusing on the TLS method, let us first introduce the norm of a vector
x ∈ R

n, denoted by ‖x‖. A vector norm on R
n for x, y ∈ R

n satisfies the following
properties:

‖x‖ ≥ 0
(‖x‖ = 0 ⇐⇒ x = 0

)

(5.41)

‖x + y‖ ≤ ‖x‖ + ‖y‖ (5.42)

‖αx‖ = |α|‖x‖ (5.43)

where |α| denotes the absolute value of the scalar α ∈ R. Many vector norms satisfy
the properties of (5.41)–(5.43). Some frequently used norms, such as the 1-, 2-, and
∞-norm, are given by

‖x‖1 = |x1| + · · · + |xn| (5.44)

‖x‖2 = (

x2
1 + · · · + x2

n

) 1
2 (5.45)

‖x‖∞ = max
1≤i≤n

|xi | (5.46)

where the subscripts on the double bar are used to denote a specific norm. Conse-
quently, so far we have used the 2-norm or Euclidean norm to define the length
of a vector. However, this idea of norms can be further extended to matrices
A,B ∈ R

m×n with the same kind of properties as presented above ((5.41)–(5.43)).
In particular, in what follows, we will use the so-called Frobenius norm ‖ · ‖F ,

‖A‖F =
√

√

√

√

m
∑

i=1

n
∑

j=1

|aij |2 (5.47)

Given the norms of a vector and a matrix, the weighted least-squares problem could
also be formulated as

min
y+e∈ran(Φ)

∥

∥W(y −Φϑ)
∥

∥

2, y ∈ R
N (5.48)

where ran(Φ) = {ŷ ∈ R
N : ŷ = Φϑ for some ϑ ∈ R

p}, the range of the matrix Φ

(see Appendix A for details). If, however, errors are also present in the data ma-
trix Φ , then it would be more natural to formulate the estimation problem as

min
y+e∈ran(Φ+Z)

∥

∥D[Z,e]T ∥∥
F

(5.49)

86 5 Static Systems Identification

with Z ∈ R
N×p , a matrix containing the errors in Φ , and e ∈ R

N . Furthermore,
the nonsingular matrices D = diag(D11, . . . ,DNN) and T = diag(T11, . . . , Tpp,

Tp+1,p+1) are added to weight the different errors. This estimation problem is re-
ferred to as the total least-squares (TLS) problem. For the multioutput case with
observation matrix Y ∈ R

N×k and observation noise matrix E ∈ R
N×k , (5.49) can

be written as

min
ran(Y+E)⊆ran(Φ+Z)

∥

∥D[Z,E]T ∥∥
F

(5.50)

If [Z0,E0] solves (5.50), then any Θ ∈ R
p×k that satisfies (Φ+Z0)Θ = (Y +E0) is

said to be a TLS solution. The next question is: “how do we compute Θ , preferably
in a direct (noniterative) way?” In what follows, we will only focus on the single
output case, i.e., k = 1. Assume that N ≥ p + 1 and let U , V , and S be obtained
from an SVD of [Φ,y] with

U = [U1 U2], V =
[

V11 V12
V21 V22

]

S =
[

S1 0
0 S2

]

with U1 ∈ R
N×(N−1), U2 ∈ R

N×1, V11, S1 ∈ R
p×p, V12 ∈ R

p×1, V21 ∈ R
1×p , and

V22, S2 ∈ R. If σp([Φ,y]) > σp+1([Φ,y]), then the matrix D[Z0 e0]T defined by

D[Z0, e0]T := −U2S2
[

V T
12,V

T
22

]

(5.51)

solves (5.49). If T1 = diag(T11, . . . , Tpp) and T2 = Tp+1,p+1, then the unique TLS
solution is given by

ϑTLS = −T1V12V
−1
22 T −1

2 (5.52)

Algorithm 5.4 Total least-squares estimation of ϑ in linear static systems

1. Given y(t) and φj (t) for t = 1, . . . ,N and j = 1, . . . , p, define the N -
dimensional vector y := [y(1), . . . , y(N)]T .

2. Form the N × p matrix Φ with elements Φtj := φj (t), where φj is the j th re-
gressor.

3. Define the weighting matrices D, T .
4. Calculate the SVD of [Φ,y], using, for example, MATLAB’s svd, which gives

U , S, and V .
5. Calculate from (5.52) the total least-squares estimate of the unknown p-

dimensional parameter vector ϑ .
6. Calculate the noise-free regressors and residual vectors from (5.51).

Let us illustrate the TLS method to Example 5.3, but now without the estimation
of the initial distance, which cannot be estimated accurately.

5.1 Linear Static Systems 87

Example 5.18 Moving object: Without the estimation of the initial distance, the
data matrices become

Φ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.0 0
0.2 0.02
0.4 0.08
0.6 0.18
0.8 0.32
1.0 0.50

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, y =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3
59
98
151
218
264

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Let D = IN and T = Ip+1. Then, the TLS algorithm computes the vector ϑ = [v
a

] ∈
R

2 such that (Φ +Z0)̂ϑ = (y + e0) and ‖[Z0, e0]‖F minimal.
The SVD of [Φ,y] gives σ1 = 391.3024 > σ2 = 0.1479 > σ3 = 0.0534 with

U =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−0.0077 −0.0258 −0.2185 −0.1916 −0.6406 −0.7103
−0.1508 −0.4717 −0.5369 −0.0172 −0.4025 0.5516
−0.2504 −0.5017 0.4377 −0.6951 0.1023 −0.0185
−0.3859 −0.3825 0.4476 0.6709 −0.1990 −0.1211
−0.5571 −0.1139 −0.5070 0.0535 0.5475 −0.3421
−0.6747 0.6048 0.1226 −0.1638 −0.2790 0.2434

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

V =
⎡

⎣

−0.0038 −0.0734 0.9973
−0.0016 0.9973 0.0734
−1.0000 −0.0013 −0.0039

⎤

⎦

so that

̂ϑTLS =
[

0.9973/0.0039
0.0734/0.0039

]

=
[

256.2520
18.8637

]

The ordinary least-squares estimate is given by
[251.6304

29.3478

]

. Furthermore,

[Z0, e0] = −U2σ3
[

V T
12,V

T
22

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.0379 0.0028 −0.0001
−0.0294 −0.0022 0.0001
0.0010 0.0001 −0.0000
0.0065 0.0005 −0.0000
0.0182 0.0013 −0.0001

−0.0130 −0.0010 0.0001

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The model outputs related to ̂ϑLS and ̂ϑTLS can be seen in Fig. 5.4.
Notice that inclusion of the initial distance as an unknown parameter will add a

noise-free column with ones in Φ .

So far, only the basic TLS method has been introduced. To close this section,
it should be emphasized that in the last decade many modifications to handle, for
instance, noise-free columns in Φ (as in the Moving object example), correlation

88 5 Static Systems Identification

Fig. 5.4 TLS results (solid
line) with measurements (+)
(top), and residuals related to
TLS (bold line) and OLS
(thin line) results (bottom)

between rows or columns, and presence of bias due to nonlinearities in the data,
have been proposed as well.

5.1.8 *Bounded-noise Problem: Linear Case

During the last two decades a growing amount of papers on so-called set-
membership identification or parameter-bounding approaches has become available.
The key problem in this bounded-noise identification is not to find a single vector
of optimal parameter estimates, but a set of feasible parameter vectors that are con-
sistent with a given model structure and data with bounded uncertainty. A bounded
error characterization, as opposed to a statistical characterization in terms of mean,
variances, or probability distributions, is favored when the central limit theorem (see
Appendix B) is inapplicable, for example, in situations with small data sets or with
heavily structured (modeling) errors. Typically, the set-membership approach has
been applied for estimation of economic, ecological, and environmental systems,
which were all characterized by small data sets. However, it has also been used in
signal classification and fault detection in industrial applications.

Recall from Sect. 5.1.1 that a linear regression type of model can be represented
as

y =Φϑ + e (5.53)

In the set-membership context, the error or information uncertainty vector e is com-
monly assumed to be point-wise bounded, that is,

‖e‖∞ ≤ ε (5.54)

with constant error bound ε, a fixed positive number. Define the error set as

Ωe := {

e ∈ R
N : ‖e‖∞ ≤ ε

}

(5.55)

5.1 Linear Static Systems 89

Hence, a measurement uncertainty set (MUS), containing all possible output vectors
consistent with the observed output data and uncertainty characterization, is defined
as

Ωy := {

ỹ ∈ R
N : ∥∥y − ỹ

∥

∥∞ ≤ ε
}

(5.56)

This set is a hypercube in R
N . Let the set

Ωϑ := {

ϑ ∈ R
p : ‖y −Φϑ‖∞ ≤ ε

}

(5.57)

define the feasible parameter set (FPS). Then, the set-membership estimation prob-
lem is to characterize this feasible parameter set, which is consistent with the model
(5.53), the data (y), and uncertainty characterization (5.54).

For further analysis, the image set, which is a p-dimensional variety in the N -
dimensional measurement space, is defined as follows:

Ωỹ := {

ỹ ∈ R
N : ỹ =Φϑ;ϑ ∈ R

p
}

(5.58)

The image set related to the FPS, also called the feasible model output set, is then
defined as

Ωŷ := {

ŷ ∈ R
N : ŷ =Φϑ;ϑ ∈Ωϑ

}

(5.59)

= Ωỹ ∩Ωy (5.60)

Let us illustrate the introduced sets by a simple example with two measurements
and two unknown parameters. Furthermore, the example will also show some of the
specific estimation problems in linear bounded-noise identification.

Example 5.19 Moving object (constant velocity): Consider an object moving in a
straight line with constant velocity, so that y(t) = ϑ1 + ϑ2t . The first three mea-
surements are: t (1) = 1, y(1) = 9; t (2) = 2, y(2) = 15; and t (3) = 3, y(3) = 19
([You84], p. 18). Assume that the error bound is given by ε = 2. Hence, when only
one measurement at t (1) is available, Ωy is an interval, in this case [7,11]. The pa-
rameter set Ωϑ is unbounded, that is, only bounded by a pair of bounds: ϑ1 +ϑ2 = 7
and ϑ1 +ϑ2 = 11 (see bold lines for t = 1 in Fig. 5.5). Consequently, the image set is
equal to the real axis, and the feasible model output set is equal to the measurement
uncertainty set Ωỹ = [7,11].

When the second measurement at t (2) becomes available, Ωy becomes a square
with center [9 15]T and edges with length 2ε in the measurement space. Conse-
quently, in the parameter space another pair of bounds (bold lines for t = 2) is
added, which, together with the bounds related to the first measurement, defines an
exact solution to the parameter bounding estimation problem. Notice from Fig. 5.5
that after processing two measurements, Ωϑ becomes a convex set, in this case a
parallelogram. The vertex set of Ωϑ , after two measurements, is given by

{[

1
6

]

,

[

9
2

]

,

[−3
10

]

,

[

5
6

]}

90 5 Static Systems Identification

Fig. 5.5 Bounded-noise
parameter estimation results

The image set is equal to R
2, and again the feasible model output set is equal to the

MUS. Furthermore, if prior knowledge requires ϑ1 ≥ 0, a so-called polytope results.
The vertex set of this polytope becomes

{[

0
7

]

,

[

0
8.5

]

,

[

1
6

]

,

[

9
2

]

,

[

5
6

]}

However, when the third measurement at t (3) = 3 becomes available, the feasi-
ble model output set will no longer be equal to the MUS, a box in R

3 with center
[9 15 19]T , and the image set becomes a two-dimensional variety in R

3. The mea-
surements (*), error bounds on the measurements (−), and the possible feasible
model outputs (shaded region) as functions of time are presented in Fig. 5.6. It can
be seen from Fig. 5.6 that the feasible model outputs do not span the full region
described by the bounded measurements.

The vertex set of Ωϑ , after three measurements, is given by
{[

0
7

]

,

[

1
6

]

,

[

5
4

]

,

[

8
3

]

,

[

6
5

]}

(see also the colored region in Fig. 5.5).

As shown in the example, it appears that at sample instant t , each measurement
with its associated noise bounds defines two bounding surfaces in the parameter
space, which bound a feasible parameter region (Ωϑ(t)). Hence, each parameter
vector situated within this region is consistent with the uncertain measurement. Con-
sequently, the intersection of these individual regions will provide an exact charac-
terization of Ωϑ , that is,

Ωϑ :=
N
⋂

t=1

Ωϑ(t) (5.61)

5.1 Linear Static Systems 91

Fig. 5.6 Bounded-noise
model output results

When the model is linear in the parameters, the feasible set becomes a polytope. The
complexity of the resulting polytope depends on the number of data and especially
on the parameter dimensionality. Efficient algorithms have been developed to solve
the problem for models with limited number of parameters.

Instead of trying to find an exact characterization, we could also try to encapsu-
late the solution set by a set with lower complexity, as orthotopes (hypercubes), par-
allelotopes, or ellipsoids. In fact, for orthotopic bounding, supporting hyperplanes
are found by solving a couple of LP problems. Define therefore the individual pa-
rameter uncertainty interval

bi :=
[

min
ϑ∈Ωϑ

ϑi, max
ϑ∈Ωϑ

ϑi

]

for i = 1, . . . , p (5.62)

The resulting orthotopic outer-bounding set, which can thus be found by solving 2p
LP problems with 2N constraints, becomes

B = b1 × b2 × · · · × bp (5.63)

In spite of the fact that the resulting orthotope aligned with the coordinate axes
provides minimum uncertainty intervals, the approximation can be very rough if the
exact solution set shows parameter interactions. Therefore, for the linear case, it has
been suggested to solve the resulting LP problems on a rotated basis. Alternatively,
Ωϑ(t) can also be approximated by an ellipsoid, that is,

E (t)= {

ϑ ∈ R
p : (ϑ −m(t)

)T
P (t)−1(ϑ −m(t)

)≤ 1
}

(5.64)

where m is the center of the ellipsoid, and the p×p matrix P defines the orientation
and size of the ellipsoid. However, the intersection of the individual ellipsoids, as in
(5.61), will in general not lead to an ellipsoid. Consequently, an ellipsoidal outer-
bounding step is needed, which in a sequential version of the algorithm is performed
after each update.

92 5 Static Systems Identification

Finally, also projection set algorithms have been proposed for solving the set-
membership estimation problem approximately. Essentially, in these algorithms the
measurement uncertainty set (5.56) is projected onto the subspace ran(Φ), the range
of regressor matrix Φ . In particular, the specific case of so-called �2-projection
(least-squares) under ∞-norm bounded noise has been analyzed. Here, the projec-
tion set is found by orthogonal projection of the vertices of Ωy onto the image
set Ωỹ . A particular result is obtained when a weighting is introduced. Under a
specific choice of the weights a minimum-volume weighted least-squares set, a par-
allelotope in R

p , can be found. This set can be computed rather efficiently when the
data is processed sequentially.

5.2 Nonlinear Static Systems

5.2.1 Nonlinear Regression

The linear regression case associated with linear static system estimation problems
can be easily extended to the nonlinear case. Consider therefore the following non-
linear regression model:

y = f (Φ,ϑ)+ e (5.65)

where y = [y(1), y(2), . . . , y(N)]T is the measured output vector, e = [e(1), e(2),
. . . , e(N)]T is the prediction error vector, and f (Φ,ϑ) is a vector function relating
the explanatory variables to the output. Again, ϑ denotes the unknown parameter
vector. Essentially, ϑ contains all the unknowns that have to be estimated from the
data. As in previous sections, we will mainly focus on parameter estimation. On the
basis of this nonlinear regression model, predicted values, with t as an explanatory
variable, can be obtained from the following predictor:

ŷ(t, ϑ)= f (Φ,ϑ; t) (5.66)

Let us illustrate this by an example.

Example 5.20 Nitrification experiment: The maximal oxygen demand rate rSmax(t)

in a nitrification experiment can be expressed as

rSmax(t)= rSmax(0)e
−bt +μmaxB

[

1 − e−bt]/b

with nitrogen load B = 0.281 kg N/m3day. The unknown parameters are: b, the
death rate of the nitrifying biomass, and μmax, the maximal growth rate of the nitri-
fying biomass. Hence, given N measurements of rSmax, we define

y := [

rSmax(0) rSmax(1) · · · rSmax(N)
]T

5.2 Nonlinear Static Systems 93

and

f (Φ,ϑ) := rSmax(0)e
−bt +μmaxB

[

1 − e−bt]/b

with ϑ := [b μmax]T and explanatory variables t and B (fixed in this experiment).

For application in further analyzes, the sensitivity matrix X(ϑ) ∈ R
N×p is intro-

duced. This sensitivity matrix is given by

X(ϑ)=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∂ŷ(1;ϑ)
∂ϑ1

∂ŷ(1;ϑ)
∂ϑ2

· · · ∂ŷ(1;ϑ)
∂ϑp

∂ŷ(2;ϑ)
∂ϑ1

∂ŷ(2;ϑ)
∂ϑ2

∂ŷ(2;ϑ)
∂ϑp

...
...

∂ŷ(N;ϑ)
∂ϑ1

∂ŷ(N;ϑ)
∂ϑ2

· · · ∂ŷ(N;ϑ)
∂ϑp

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(5.67)

which contains partial differential coefficients of the model output with respect to
the unknown parameters. This N × p matrix, which expresses the sensitivities of
ŷ(t;ϑ) with respect to ϑ , is also indicated as the Jacobi matrix of f with respect
to ϑ . Notice that in the linear case where f (Φ,ϑ) = Φϑ , the sensitivity matrix is
equal to Φ . Hence, the sensitivity matrix can also be considered as a local regressor
matrix at the point ϑ .

Example 5.21 Nitrification experiment: The sensitivity vectors at a specific time
instant for the previous nonlinear regression model, denoted asψ(t,ϑ), with explicit
reference to the explanatory variable t , is given by

ψ(t,ϑ) = [

∂f (Φ,ϑ;t)
∂ϑ1

∂f (Φ,ϑ;t)
∂ϑ2

]T

=
[−rSmax(0)te−bt − μmaxB

b2 + tμmaxB
b

e−bt + μmaxB

b2 e−bt
B
b

− B
b
e−bt

]

Hence, for a given experiment, including initial guesses of μmax and b, the sensitiv-
ity matrixX(ϑ)= [ψ(1, ϑ), . . . ,ψ(N,ϑ)]T can be easily evaluated for the different
sample instants.

5.2.2 Nonlinear Least-squares Estimation

As in the linear case, we can try to minimize the sum of squares of the prediction
errors, that is, for the nonlinear regression model (5.65)

J (ϑ) = εT ε

= (

y − f (Φ,ϑ)
)T (

y − f (Φ,ϑ)
)

(5.68)

94 5 Static Systems Identification

Again, ϑ is chosen such that the gradient of J with respect to ϑ is zero, that is,

∂J (ϑ)

∂ϑ
= −2

(

∂f (Φ,ϑ)

∂ϑ

)T
(

y − f (Φ,ϑ)
)= 0 (5.69)

where ∂f (Φ,ϑ)
∂ϑ

=X(ϑ, t) is the sensitivity matrix. Hence,

(

∂f (Φ,ϑ)

∂ϑ

)T

f (Φ,ϑ)=
(

∂f (Φ,ϑ)

∂ϑ

)T

y (5.70)

which represents the generalized normal equations. Substituting Φϑ = f (Φ,ϑ) and
Φ = ∂f (Φ,ϑ)

∂ϑ
into (5.70), which holds for the linear case, gives (5.9). Due to the

dependence of the sensitivity matrix with respect to ϑ , the solution to (5.70) has to
be found iteratively by numerical procedures.

5.2.3 Iterative Solutions

In essence, numerical minimization of the nonlinear function J (ϑ) is based on iter-
ative updates of the estimates according to

̂ϑ(i+1) =̂ϑ(i) + α(i)s(i) (5.71)

where i is the iteration index, α(i) the step size, and s(i) the search direction at the
ith iteration. In the literature many minimization methods have been proposed, but
essentially they can be classified as:

• zeroth-order methods that only use function values,
• first-order methods that use function values and gradients,
• second-order methods that use function values, gradients, and second derivatives.

Typical examples of zeroth- to second-order search methods are the simplex
method, the steepest-descent method, and the Gauss–Newton method. The class of
well-known Newton methods, belonging to the third class, uses

s(i) = −[J ′′(
̂ϑ(i)

)]−1
J ′(

̂ϑ(i)
)

(5.72)

which originates from the Newton–Raphson formula for finding a root of the func-
tion J ′(ϑ)= ∂J (ϑ)

∂ϑ
. The problem here is how to determine the Hessian J ′′(·), a ma-

trix of second derivatives. Methods that, in each ith iteration, use an approximation
of J ′′(·), which in what follows is denoted by the matrix R(i), are called quasi-
Newton methods.

A general family of search routines is thus given by

̂ϑ(i+1) =̂ϑ(i) − α(i)
[

R(i)
]−1

J ′(
̂ϑ(i)

)

(5.73)

5.2 Nonlinear Static Systems 95

where R(i) is a p×p matrix that modifies the gradient J ′(·) and α(i) is chosen such
that at each iteration step the function value decreases. The choice of α(i) generally
results from a line search procedure. Sometimes it is chosen as a constant or as a
prespecified decreasing function of i.

The simplest choice of R(i) is

R(i) = I (5.74)

which is the case in the so-called gradient or steepest-descent methods. It appears
that this method is not very effective near the optimum. From (5.72) it can be directly
verified that

R(i) = [

J ′′(
̂ϑ(i)

)]

(5.75)

leads to the Newton methods. A reasonable approximation of J ′′(·) is given by

J ′′(
̂ϑ(i)

)� 2X
(

̂ϑ(i)
)T
X
(

̂ϑ(i)
)

(5.76)

which for

R(i) = 2X
(

̂ϑ(i)
)T
X
(

̂ϑ(i)
)

(5.77)

gives the so-called Gauss–Newton methods. Substituting (5.69) and (5.76) into
(5.73) gives

̂ϑ(i+1) =̂ϑ(i) + α(i)
[

X
(

̂ϑ(i)
)T
X
(

̂ϑ(i)
)]−1

X
(

̂ϑ(i)
)T (

y − f
(

Φ,̂ϑ(i)
))

(5.78)

This Gauss–Newton algorithm has been a starting point for many search routines.
For instance, in the widely applied Levenberg–Marquardt procedure, the following
approximation is chosen:

R(i) = 2X
(

̂ϑ(i)
)T
X
(

̂ϑ(i)
)+ δI (5.79)

where δ is a small positive scalar. This procedure basically incorporates a regular-
ization technique. In (5.79), the extension δI is introduced to prevent singularities
of R(i).

However, in addition to the choice of a specific search routine, and because of its
iterative character, we also have to specify a stopping criterion. Typically, choices of
a stopping criterion, with δ, ε ∈ R small, are: (i) ‖ϑ(i) − ϑ(i−1)‖ ≤ δ, (ii) J (ϑ(i))−
J (ϑ(i−1))| ≤ ε, or (iii) the maximum number of iterations.

To summarize, the nonlinear least-squares estimation algorithm, for a fixed num-
ber of iterations M , is given in the following.

Algorithm 5.5 Nonlinear least-squares estimation of ϑ in linear static systems

1. Given y(t) and f (Φ,ϑ) for t = 1, . . . ,N , define the N -dimensional vector y :=
[y(1), . . . , y(N)]T .

2. Choose the estimation method and related tuning parameters, as, for example,
step size (α) and regularization parameter (δ).

96 5 Static Systems Identification

Table 5.2 Data nitrification
experiment Time t (d) rSmax (kg/m3 d)

0 0.268

2 0.305

4 0.347

7 0.399

8 0.499

10 0.504

14 0.431

23 0.735

27 0.809

35 0.930

3. Specify the initial guess ̂ϑ(0).
4. In the case of the Gauss–Newton method:

for i = 0 :M
calculate X

(

̂ϑ(i)
)

from (5.67)

̂ϑ(i+1) =̂ϑ(i) + α(i)
[

X
(

̂ϑ(i)
)T
X
(

̂ϑ(i)
)]−1

X
(

̂ϑ(i)
)T (

y − f
(

Φ,̂ϑ(i)
))

end.

The main bottle-neck in all the numerical minimization procedures is that in gen-
eral no global optimum can be guaranteed. Furthermore, these iterative procedures
can be very time-consuming if the problem is not well posed. In the next section,
when applicable, model reparameterization is suggested as an alternative. Let us
first apply the Gauss–Newton method to the parameter estimation problem related
to the nitrification experiment.

Example 5.22 Nitrification experiment: From the nitrification experiment the fol-
lowing data, as presented in Table 5.2, became available.

We suggest the following initial parameter guesses: b(0) = 0.01 and μ(0)
max = 0.1.

Let us then investigate the first iteration in the estimation of ϑ = [b μmax]T using
the Gauss–Newton method with α(i) = 1, so that

̂ϑ(i+1) =̂ϑ(i) + [

X
(

̂ϑ(i)
)T
X
(

̂ϑ(i)
)]−1

X
(

̂ϑ(i)
)T (

y − f
(

Φ,̂ϑ(i)
))

Recall that, given the initial guesses and the N-load B = 0.281 kg N/m3 d, the sen-
sitivity vectors at each time instant can be calculated from

ψ
(

t,̂ϑ(0))=
⎡

⎣

−rSmax(0)te−b(0)t − μ
(0)
maxB

(b(0))2
+ tμ

(0)
maxB

b(0)
e−b(0)t + μ

(0)
maxB

(b(0))2
e−b(0)t

B

b(0)
− B

b(0)
e−b(0)t

⎤

⎦

5.2 Nonlinear Static Systems 97

Hence,

X
(

̂ϑ(0))=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
−0.581 0.556
−1.249 1.102
−2.406 1.900
−2.832 2.160
−3.740 2.674
−5.772 3.671
−11.283 5.774
−14.097 6.649
−20.287 8.298

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and

(

y − f
(

Φ,̂ϑ(0)))=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
−0.013
−0.021
−0.041
0.036

−0.006
−0.169
−0.055
−0.061
−0.089

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Consequently,

[

X
(

̂ϑ(0))T X
(

̂ϑ(0))]=
[

800.5639 −370.7911
−370.7911 176.8326

]

=⇒ [

X
(

̂ϑ(0))T X
(

̂ϑ(0))]−1 =
[

0.0433 0.0909
0.0909 0.1962

]

and

X
(

̂ϑ(0))T (y − f
(

Φ,̂ϑ(0)))=
[

4.3048
−2.1249

]

Thus, after one iteration we obtain the following estimates:

̂ϑ(1) =
[

0.0035
0.0743

]

5.2.4 Accuracy

In the analysis of the estimation uncertainty for the nonlinear case, mainly two ap-
proaches prevail: the Monte Carlo approach and first-order variance propagation

98 5 Static Systems Identification

analysis. The Monte Carlo approach essentially evaluates the nonlinear mapping
from random samples of output vector y(k) to the parameter estimates ̂ϑ(k), where
k = 1, . . . ,M is the sample number. Hence, the probability distributions of y(t) for
t = 1, . . . ,N have to be specified, and an appropriate sampling scheme has to be se-
lected. Usually one probability distribution is chosen, so that for one run, N samples
from this distribution have to be drawn using, for instance, a Monte Carlo (random)
sampling scheme. The resulting estimates are then evaluated with respect to mean
value and variance, and sometimes the complete distribution of the estimates is re-
covered. Clearly, this approach is rather computationally consuming and thus not
well suited for practical cases with complex models.

Therefore, in practice and for deterministic regressors, one usually applies the
following expression:

Cov̂ϑ∗ = σ̂ 2
ε

[

X
(

̂ϑ∗)T X
(

̂ϑ∗)]−1 (5.80)

which results from first-order variance propagation analysis by linearization of the
vector function f (·, ·) in the optimum ̂ϑ∗. Clearly the covariance matrix is a func-
tion of the estimatêϑ∗ and thus represents only local properties. Notice the similar-
ity between (5.32) and (5.80), where the deterministic matrix Φ has been substituted
by the sensitivity matrix X(̂ϑ∗).

Example 5.23 Nitrification experiment: On the basis of previous estimation results,
with

̂ϑ(1) =
[

0.0035
0.0743

]

we obtain

X
(

̂ϑ(1))=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
−0.574 0.560
−1.223 1.116
−2.334 1.943
−2.741 2.217
−3.609 2.762
−5.555 3.840
−10.928 6.212
−13.739 7.243
−20.105 9.262

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=⇒ [

X
(

̂ϑ(1))T X
(

̂ϑ(1))]−1 =
[

0.0561 0.1064
0.1064 0.2065

]

We find σ̂ 2
ε = 0.0026 and thus

Cov̂ϑ(1) = 10−3 ·
[

0.1438 0.2727
0.2727 0.5293

]

5.2 Nonlinear Static Systems 99

From this covariance matrix the standard deviations are calculated as: σb =
0.012 d−1 and σμmax = 0.023 d−1, indicating that no reliable estimate of b can be
found from this experiment, since the standard deviation is larger than the estimated
value.

5.2.5 Model Reparameterization: Static Case

Model reparameterization is useful in those cases where, for instance, the effect of
numerical errors in the optimization step becomes an important issue. It has been
shown in Sect. 5.1.6 that for linear relationships, SVD is a useful tool for analysis
of model structures. For nonlinear static relationships as presented in this section,
however, no general tool is available. Nevertheless, we can try to reparameterize
the nonlinear model structure such that numerical errors, as well as local minima
in numerical minimization studies, can be avoided to a large extent. However, the
question is: “how should we reparameterize?” Some feasible solutions to the model
reparameterization problem will be illustrated by the next examples.

Example 5.24 Pendulum experiment: The pendulum experiment is a simple exper-
iment to estimate the local gravitational constant g, since

T = 2π

√

l

g

Herein, T is the period of the pendulum, which is the time needed for a complete
cycle, and l is the length of the pendulum. However, the unknown parameter g is
nonlinearly related to T , which is measured. Thus, a general approach would be to
use the Gauss–Newton algorithm (5.78), with all its drawbacks. Several approaches

exist to reparameterize the nonlinear relationship. For instance, define g̃ := g− 1
2 ,

so that the linear regression T = 2π
√
lg̃ results. Another approach is to square

both sides of the equation, T 2 = 4π2l/g, and take the inverses, so that 1/T 2 =
1 4π2lg. This result is again a linear regression. We could also directly evaluate
the rational relationship such that 2π

√
l = T

√
g =[g̃:=√

g]= T g̃. Finally, taking the

natural logarithm of both sides will result in lnT = ln 2π + 1
2 ln l − 1

2 lng. Thus,
with g̃ := lng, lnT − ln 2π − 1

2 ln l = 1
2 g̃.

Consequently, as illustrated above, a model reparameterization step from a static
nonlinear relationship to a linear regression is not unique. Moreover, going from a
nonlinear relationship to a linear regression will, in general lead to error distortion,
that is, the initially assumed probability density function of the measurement error
may significantly change. The effect of error distortion on the estimates, in terms of
bias, will not be further evaluated here. For details on bias in nonlinear estimation,
see [Box71].

100 5 Static Systems Identification

Example 5.25 Membrane bioreactor fouling: As suggested by [OWG04], the fol-
lowing relationship represents the changes in transmembrane pressure (TMP) during
the first period of filtration operation in a membrane bioreactor.

ΔP = ΔP0

1 − αΔP0t2/2

where ΔP and ΔP0 are the TMP and initial TMP, respectively, t is the time after
the start of a new filtration operation, and α is an unknown parameter that combines
a couple of physically interpretable parameters. The underlying hypothesis of this
relationship is that the open surface of a membrane after, for instance, a cleaning
step, is reduced due to a successive blocking of membrane pores. Notice that α is in
a nonlinear way related to the measured TMP (ΔP). Reparameterization leads to

ΔP −ΔPαΔP0t
2/2 =ΔP0

=⇒ ΔP −ΔP0 =ΔPΔP0t
2/2α

which is a linear regression. As ΔP is measured and thus corrupted with noise, an
errors-in-variables (EIV) problem results. For possible solutions to EIV problems,
see Sect. 5.1.7.

Example 5.26 Respiration rate experiment: For the estimation of the maximum
degradation rate of a substrate (μ) and the corresponding half saturation constant
(KS), a respiration rate experiment using a respirometer can be conducted. The fol-
lowing relationship between the respiration rate and the unknown parameters holds:

r = μ
S

KS + S

where r is the respiration rate, and S is the substrate concentration. This nonlin-
ear relationship between ϑ := [μ KS]T and the measured respiration rate r can be
reparameterized to

rKS + rS = μS

=⇒ rS = [S − r]
[

μ

KS

]

Hence, we obtain a linear regression. Since typically both r and S contain measure-
ment errors, as in the previous example, an EIV problem results.

In the next example, experimental data will be used in the model reparameteri-
zation procedure.

Example 5.27 Nitrification experiment: Recall that from the nitrification experiment
the following estimates after one iteration have been obtained:

̂b = 0.0035 ± 0.012; μ̂max = 0.0743 ± 0.023

5.2 Nonlinear Static Systems 101

As mentioned before, the estimate of the death rate b is unreliable, and therefore
this parameter can be set to zero. In other words, there is no clear evidence that
the data supports the prior idea of incorporating the death process in the model.
Consequently, the model is modified to

rSmax(t) = lim
b→0

rSmax(0)e
−bt +μmaxB

[

1 − e−bt]/b

= rSmax(0)+ lim
b→0

μmaxB
[

1 − e−bt]/b

= [L’Hôpital] rSmax(0)+μmaxBt

which appears to be linear in the parameter μmax. Hence, μmax can be easily found
by applying the ordinary least-squares algorithm, which gives μ̂max = 0.0688 d−1.
Notice then that for t → ∞, this linear relationship does not give a reliable predic-
tion unlike the nonlinear model with the limit given by μmaxB

b
. From this we con-

clude that due to the reparameterization, b → 0, a much simpler estimation problem
results, but the applicability region of the resulting linear model is limited and in
fact has been dictated by the finite experimental data.

Generally, parameters that appear nonlinearly in the model output are estimated
by nonlinear least-squares (NLS) optimization algorithms. As an alternative, for
nonlinear static models with a so-called rational structure in inputs and parameters,
in this section a method has been illustrated to re-parameterize the model such that
the model becomes linear in its new parameters (see [DK09, KD09] for details). In
addition to this, on the basis of an evaluation of prior estimation results, physically
based model reduction techniques may also be applied, which in the last example
again led to a reparameterized model that is linear in the parameters. Consequently,
in all these cases of nonlinear-in-the-parameter models, the new parameters can be
estimated by direct least-squares methods.

5.2.6 *Maximum Likelihood Estimation

Let p(ϑ) and p(e) denote the probability density functions (pdf) of ϑ and e, re-
spectively. The conditional pdf of the parameter vector ϑ , given the observation
vector y, is denoted by p(ϑ |y) and also called the a posteriori pdf , while p(ϑ) is
called the a priori pdf of ϑ . The well-known Bayes’ rule is given by

p(ϑ |y)= p(y|ϑ)p(ϑ)
p(y)

(5.81)

relating a posteriori pdf’s to a priori pdf’s.
Let us assume that a given set of experimental single-output data can be modeled

as the nonlinear regression

y(t)= ŷ(t, ϑ)+ e(t), t = 1, . . . ,N (5.82)

102 5 Static Systems Identification

as in (5.65)–(5.66). Then, given (5.82),

p(y|ϑ)= p(e)|e=y−ŷ(t,ϑ) (5.83)

Consequently, if the pdf’s p(ϑ) and p(e) are known, it is possible to calculate
p(ϑ |y), where p(y) is just a number once the measurements y have been taken.
Since by definition

∫

p(ϑ |y)dϑ = 1, it is not necessary to calculate p(y); it simply
becomes a scaling factor. Hence, given the observation vector y, p(ϑ |y) provides
complete information about ϑ and can thus be used to define an estimate of ϑ . For
instance, taking the maximum of p(ϑ |y) results in the well-known maximum a pos-
teriori (MAP) estimator. In general, analytical solutions to this specific problem are
not available, except for some very simple cases. Hence, we have to rely on demand-
ing numerical solutions associated to these so-called Bayesian estimation problems.
The problem becomes much simpler when we assume that ϑ is completely un-
known and thus ϑ ∈ [−∞,∞]. Since this assumption on ϑ does not affect p(ϑ |y),
the so-called maximum likelihood (ML) estimation theory focuses on the likelihood
function p(y|ϑ), where y is a vector with realized measurements. Hence, formally
speaking, a likelihood function is a conditional probability function considered as a
function of its second argument, with its first argument fixed. In that sense, a likeli-
hood function can be thought a “reversed” version of conditional probability density
function. Consequently, a likelihood function allows us to estimate unknown param-
eters based on known outcomes.

If (5.82) holds and if we assume that the measurement errors e(t), t = 1, . . . ,N ,
are independent, homoscedastic (also known as homogeneous in variance, i.e., all
e(t) have the same variance), zero-mean, and Gaussian distributed, in short, e(t)∼
N(0,Ree) with Ree = Cov e and in what follows denoted by R, then

p(y|ϑ)= 1

(2π)N/2|R|1/2
exp

(

−1

2

[

y − ŷ(t, ϑ)
]T
R−1[y − ŷ(t, ϑ)

]

)

(5.84)

with |R| the determinant of the covariance matrix R. The parameter vector ϑ is
found by maximizing (5.84). In practice, and especially when Gaussian noise is
considered, it is always more convenient to work with the logarithm of the likelihood
function, called the log-likelihood, L(ϑ,R)= − lnp(y|ϑ,R) given by

L(ϑ,R)= N

2
ln 2π |R| + 1

2

[

y − ŷ(t, ϑ)
]T
R−1[y − ŷ(t, ϑ)

]

(5.85)

Hence, under our assumptions, the ML estimator is given by
(

̂ϑ, ̂R
)= arg min

ϑ,R

L(ϑ,R) (5.86)

However, the objective function derived from (5.85) depends on the assumptions
made on the covariance matrix R.

1. If R is known and thus the first term on the righthand-side of (5.85) is constant,
the ML estimator corresponds to the so-called Gauss–Markov estimator, which

5.2 Nonlinear Static Systems 103

Table 5.3 Process data
t 1 2

y1(t) 1 2

y2(t) 3 1

minimizes the objective function

J (ϑ)= [

y − ŷ(t, ϑ)
]T
R−1[y − ŷ(t, ϑ)

]

(5.87)

2. If R = aIp with a positive real number a and the (p× p) identity matrix Ip , the
ML estimator corresponds to the ordinary least-squares estimator, which mini-
mizes

J (ϑ)= [

y − ŷ(t, ϑ)
]T [

y − ŷ(t, ϑ)
]

(5.88)

The ML estimate of R is given by

̂R = J (̂ϑ)

N
Ip (5.89)

3. If R is completely unknown, the ML estimator minimizes

J (ϑ)= ln
[

det
[

y − ŷ(t, ϑ)
]T [

y − ŷ(t, ϑ)
]]

(5.90)

In this case, the ML estimate of R is given by

̂R = 1

N

[

y − ŷ(t, ϑ)
][

y − ŷ(t, ϑ)
]T

(5.91)

Let us illustrate the ML estimation theory by an example.

Example 5.28 Constant process state: Let for the system of Example 5.7 with

[

y1(t)

y2(t)

]

=
[

1
1

]

x +
[

e1(t)

e2(t)

]

and thus ϑ = x, the following measurements be given in Table 5.3.
In the case that R = [1 0

0 4

]

is known, the Gauss–Markov estimate is given by
̂ϑ = 1.90.

Assuming that R is proportional to the identity matrix, the ML estimates are
̂ϑ = 1.75 and ̂R = 0.6875.

If we consider R to be completely unknown,̂ϑ = arg minϑ ln(4x2 −14x+15)=
1.75, where we have expressed the determinant of (5.90) directly in terms of the

104 5 Static Systems Identification

Fig. 5.7 Objective function
values as a function of x

unknown x. Thus,

det
[

y − ŷ(t, ϑ)
]T [

y − ŷ(t, ϑ)
]

=
∣

∣

∣

∣

[1 − x 2 − x]
[

1 − x

2 − x

]

+ [3 − x 1 − x]
[

3 − x

1 − x

]∣

∣

∣

∣

= 4x2 − 14x + 15

The unknown process state can also be found graphically, as in Fig. 5.7.
The ML estimate of R is given by ̂R = [1.0625 −0.5625

−0.5625 0.3125

]

. Consequently, knowl-
edge of the covariance matrix significantly affects the estimates of ϑ and R.

Typically, the uncertainty in the ML parameter estimates is evaluated via the
computation of the Fisher information matrix (FIM). The FIM is given by

F
(

ϑ∗)= −E
[

∂2

∂ϑ∂ϑT
lnp(y|ϑ)

]

ϑ=ϑ∗
(5.92)

with ϑ∗ the true, but usually unknown, parameter vector. Under a number of tech-
nical assumptions, the covariance matrix of the parameter estimates Cov̂ϑ satisfies
the following inequality:

Cov̂ϑ ≥ F−1(ϑ∗) (5.93)

which is known as the Cramér–Rao inequality. In practice, most often F−1(ϑ∗) is
approximated by F−1(̂ϑ). However, notice from (5.92) that the likelihood function
must be known or at least partially known. If, for instance, the measurement errors
obey the rather strict assumptions presented in the beginning of this subsection,
relatively simple analytical expressions for F(ϑ∗) can be obtained. In general, the
likelihood function is unknown, especially for limited data sets, and thus in practice
we most often rely on expressions like (5.80).

5.2 Nonlinear Static Systems 105

Recall that, given a set of experimental data and a nonlinear regression model,
the maximum likelihood method leads to model parameter estimates that maximize
the likelihood function. The merit of maximum likelihood estimation is that it pro-
vides a unified framework to estimation, which is well defined in the case of normal
distributions. However, in practice, often complex problems with nonnormal or with
unknown distributions occur. In such cases the maximum-likelihood estimators may
be unsuitable or may not even exist. Hence, the application of maximum likelihood
estimators is rather limited in practice.

5.2.7 *Bounded-noise Problem: Nonlinear Case

Let us extend the ideas given in Sect. 5.1.8 to the nonlinear set-membership identifi-
cation problem, which frequently occurs in practice. Recall that the set-membership
approach is in particular useful in the case of small data sets. Instead of the linear re-
gression model (5.53), in this section we consider the following nonlinear regression
type of model, as given by (5.65). Thus,

y = f (Φ,ϑ)+ e (5.94)

where f (Φ,ϑ) is a nonlinear vector function mapping the unknown parameter vec-
tor ϑ ∈ R

p into a noise-free model output ŷ(ϑ). Again, the error vector e is as-
sumed to be point-wise bounded with constant error bound ε and similar sets, as
in Sect. 5.1.8, can be defined. However, in what follows, we use f (Φ,ϑ), in short
f (ϑ), instead of Φϑ . Let us illustrate this by a simple example with two measure-
ments and two unknown parameters. Furthermore, the example will also show some
of the specific estimation problems in nonlinear bound-based identification.

Example 5.29 Sinusoidal model: Suppose that f (ϑ) is given by f (ϑ)= sin(ϑ1t)+
ϑ2 and the measurements are: t (1) = 1, y(1) = 1.0 and t (2) = 3, y(2) = 0.5 with
error bound ε = 0.5. Hence, when only one measurement at t (1) is available, Ωy is
an interval, in this case [0.5, 1.5], and Ωϑ is an unbounded set that is only bounded
by a pair of bounds, sin(ϑ1) + ϑ2 = 0.5 and sin(ϑ1) + ϑ2 = 1.5 (see Fig. 5.8).
Consequently, the image set is equal to the real axis, and the feasible model output
set is equal to the measurement uncertainty set.

When the second measurement at t (2) becomes available, Ωy becomes a square
with center [1 0.5]T and edges with unit length in the measurement space. Con-
sequently, in the parameter space another pair of bounds is added, which, to-
gether with the bounds related to the first measurement, define an exact solution
to the parameter bounding estimation problem. Notice from Fig. 5.8 that Ωϑ (dot-
ted regions) becomes a nonconnected set with nonconvex subsets. Furthermore,
prior knowledge restricts ϑ1 to the interval [0,2π]. The image set is equal to
{ỹ ∈ R

2 : ỹ = [ϑ11 + ϑ2ϑ12 + ϑ2]T ;ϑ11, ϑ12 ∈ [−1,1], ϑ2 ∈ R}, a strip in R
2, and

again the feasible model output set is equal to the MUS (see Fig. 5.9). However,

106 5 Static Systems Identification

Fig. 5.8 Bounded-noise
results of sinusoidal model in
the parameter space after two
measurements, for t (1) (bold
lines) and t (2) (thin lines)

Fig. 5.9 Bounded-noise
results of sinusoidal model in
the measurement space after
two measurements

when a third measurement becomes available, the feasible model output set gen-
erally is not be equal to the MUS, and the image set becomes a two-dimensional
variety in R

3.

In addition to intersection, encapsulation, and projection approaches, as pre-
sented in Sect. 5.1.8, but now slightly modified for the nonlinear case, a fourth
class of algorithms can be introduced. This class of algorithms suitable for approx-
imately solving the nonlinear set-membership estimation problem consists of algo-
rithms that in a discrete way approximate the bounding surfaces (either by random
or deterministic search) of the FPS and algorithms which provide inner/outer ap-
proximations of the FPS. Two important algorithms from this class will be briefly
introduced.

5.2 Nonlinear Static Systems 107

Table 5.4 Exponential
model data t 0.0 0.2 0.4 0.6 0.8

y(t) 3.4 2.3 1.7 1.2 0.9

Especially for lower dimensional problems where f (ϑ) is an explicit function
of the model parameters, the so-called SIVIA (set inversion via interval analysis)
algorithm is superior, because it can inner and outer bound the solution set FPS by
a pavement of boxes. Theoretically, the set enclosure can be made as accurate as we
wish, but, as expected, the number of boxes (which is proportional to the computing
time) increases quickly when more accuracy is required.

The second algorithm point-wise approximates the FPS by proper sampling of
the parameter space and thus a finite solution set results. Especially for model pre-
diction, the inner approximation, using a parameter space sampling method, is well
suited. In this algorithm each feasible and unfalsified parameter vector that obeys the
definition of the FPS can be directly used in the model prediction step. Furthermore,
in this indirect type of algorithm, f (ϑ) can have a very general structure; it can be
simply the result of a dynamic simulation. It can also deal with nonconnected sets.
Thus, estimation problems related to nonlinear state-space models can also be han-
dled. However, the main disadvantage is its computational inefficiency, which be-
comes clearly visible in higher-dimensional parameter estimation problems. In the
literature this problem is partially compensated by using adaptively rotated bases, as
in the Monte Carlo Set-Membership algorithm, or by step-wise decreasing the error
bound. A rotation based on the eigenvalue decomposition of the dispersion matrix
related to the finite feasible parameter vector set found in a previous iteration ap-
pears to be rather effective (see [Kee90] for details). The application of adaptively
rotated bases will be illustrated in the following example. Another disadvantage of
this algorithm, in addition to its computational inefficiency, is that we cannot easily
give an idea of the accuracy of the finite solution set.

Example 5.30 Exponential model: Consider the following exponential model,
which, for instance, can be interpreted as the impulse response of the first-order
LTI system

y(t)= μ1e
−ν1t + e(t) (5.95)

Let the measurements presented in Table 5.4 be available. The time variable error
bound ε(t) is assumed to be equal to 0.1|y(t)| + 0.5 (see also Fig. 5.10).

For this two-parameter case, the feasible parameter or exact solution set can be
represented graphically (see Fig. 5.11). In this figure, each line fulfills the constraint

μ1e
−ν1t = y(t)± ε(t) for t = 0,0.2, . . . ,0.8 (5.96)

From 5000 randomly chosen parameter vectors within the region with vertex set,

{[

2.56
−0.84

]

,

[

4.24
1.68

]

,

[

4.24
4.97

]

,

[

2.56
2.44

]}

108 5 Static Systems Identification

Fig. 5.10 Measured data
with bounded uncertainty

Fig. 5.11 Exact solution set
using intersection and
discrete approximation set (·)
after 5000 trials

as a result of the intersection of Ωϑ(t (1)) and Ωϑ(t (2)), 1692 (i.e., the efficiency
of 34%) parameter vectors appear to be feasible (presented as dots in Fig. 5.11).
The efficiency of feasible hits can be significantly increased (up to 70%) when, for
instance, after 1000 samples, the orientation and size of the approximate feasible
parameter set are analyzed, and subsequently a new sampling strategy based on a
rotated basis with projected intervals is applied. A typical example of the point-wise
discrete approximation, including the rotation step, is presented in Fig. 5.12.

Solving (5.62) and (5.63) for this specific case leads to the box

B = [2.56, 4.24] × [0.68, 3.27] (5.97)

5.3 Historical Notes and References 109

Fig. 5.12 Discrete
approximation set (·) and
unfeasible parameter set (*)
after 5 × 1000 trials

For general nonlinear static estimation problems under bounded noise, an
interval-based algorithm, like SIVIA, could be a good choice, even for a relatively
large number of parameters, if the required accuracy is not too high. For particular
polynomial problems, however, a specific signomial programming method may be a
good alternative. As illustrated by Example 5.29, a point-wise discrete approxima-
tion algorithm, using an appropriate sampling and updating strategy, can be applied
for the estimation of general nonlinear (dynamic) simulation models.

5.3 Historical Notes and References

The material in this chapter originates from the work of Gauss on least-squares
estimation, which, as he claims, started in 1795. The book of Sorenson [Sor80],
Chap. 1, gives a nice historical perspective of estimation theory in general. Since the
work of Gauss, many articles and books have appeared on linear regression and the
least-squares method, see, for instance, [DS98, MPV06] for linear regression issues
and [Bar74, GVL89, Bjo96, Ips09] for solving linear and nonlinear least-squares
problems.

Identifiability of model structures has been a subject in many articles, using the
Laplace transform, Taylor series expansion, and the exhaustive modeling or similar-
ity transformation approach, for linear and nonlinear systems. For the class of lin-
ear models, we refer, for instance, to [BK70, GW74, NW82, Wal82, vS94, vdH98,
ADSC98, PC07] and for nonlinear model structures to [VGR89, WP90, DvdH96,
MRCW01, ECCG02, CGCE03, SAD03, PH05].

Errors-in-variables (EIV) estimation problems are covered in many books and ar-
ticles. The first solutions of the dynamic EIV identification problem have been pro-
posed by Koopmans [Koo37] and Levin [Lev64]. For other references to the identifi-
cation of dynamic systems using Maximum Likelihood techniques, Frisch scheme-
based algorithms, Instrumental Variable (IV) methods or Total Least Squares

110 5 Static Systems Identification

(TLS), and other least-squares methods, see [Lev64, GVL80, You84, And85, SD98,
MWDM02, SSM02, KMVH03, VHMVS07, HSZ07, Söd07, Söd08, HS09], to men-
tion a few.

The bounded-noise problem, which is in literature also referred to as unknown-
but-bounded or set-membership identification, has initially been tackled by
Schweppe [Sch73], Kurzhanski [Kur77], Chernousko and Melikyan [CM78] and,
in particular for parameter estimation problems, by Milanese and Belforte [MB82]
and Fogel and Huang [FH82]. Since then, many papers and books have appeared on
this subject. For overviews, we refer to [Nor87, MV91a, MNPLE96, Wal03, Nor03,
Kee03]. The use of least-squares techniques to solve the set-membership estima-
tion problem has been emphasized by [Mil95, Kee97]. The first link between sup-
port vector machines, popular in statistical learning, and nonlinear set-membership
identification has been published by [KS04].

5.4 Problems

Problem 5.1 For the determination of the unknown parameters in the linear growth
model

y(t)= y0 +μt

where y(t) is the crop height, y0 the initial crop height, and μ the growth rate, a
number of experiments are performed.

(a) Using least-squares estimation, determine the coefficients y0 and μ, and the
associated estimation errors, when for t = 1, the measured output is equal to 3.
Explain your result.

(b) As (a), but now including a second measurement which for t = 2 gives a mea-
sured output of 5. Explain your result.

(c) Idem, if the next experimental results are t = 3, y(t)= 7; t = 4, y(t)= 13; and
t = 10, y(t)= 21. Explain your result.

Problem 5.2 Consider the moving object example (Example 5.2).

(a) Repeat the steps that lead to the residuals (e).
(b) Calculate the bias (b) in the estimates of the three unknown parameters (see

(5.26)). What do you conclude from this?
(c) Calculate the variance of the residuals and use this estimate of the variance for

the calculation of the accuracy in the estimates of x0, v, and a. What do you
conclude with respect to the accuracy in the estimates?

Problem 5.3 Let the following (normalized) data from an experiment investigating
the effect of the feed rate on the substrate concentration in a reactor be given (see
Problem 4.3 and Table 5.5):

5.4 Problems 111

Table 5.5 Normalized data chemical reactor

Time 1 2 3 4 5 6 7 8 9 10 11

u(t) (m3/s) 1 1 1 1 1 −1 −1 −1 −1 −1 −1

y(t) (kg/m3) 0 0.13 0.09 0.10 0.10 0.10 −0.17 −0.08 −0.11 −0.10 −0.10

Table 5.6 Compartmental
model data t (s) 0 0.5 0.75 1.25 1.75 2.25

y (m) 0 90 115 85 55 40

(a) Assume furthermore that this process can be described by the following linear
regression model:

y(t)= g(0)u(t)+ g(1)u(t − 1)+ g(2)u(t − 2)

Determine the least-squares estimates of the impulse response coefficients g(0),
g(1), and g(2) from this data using all information available.

(b) Calculate the residuals and plot them. Interpret your result.
(c) To evaluate the uncertainty in the estimates, calculate the covariance matrix and

give the estimation variances for each of the coefficients. Interpret your result in
terms of accuracy and reliability of the estimates.

Problem 5.4 For the estimation of unknown parameters in nonlinear relationships
from given experimental data, the MATLAB function lsqnonlin can be used. In
the modeling of biological systems, so-called compartmental models are frequently
used. For the linear case and as a result of an impulsive input, a multiexponential
response model will appear. An example of such a model is

y(t)= c
(

eλ1t + eλ2t
)

The unknown parameters are c, λ1, and λ2. These can be estimated from the follow-
ing measurements in Table 5.6,

(a) Plot the measurements and interpret the result.
(b) Examine the MATLAB function lsqnonlin and try the given examples.
(c) Estimate the three unknown parameters (c, λ1, and λ2) in the given model (NB:

use the function myfun to calculate the residuals on the basis of the given model
and data).

(d) Estimate the Jacobi matrix (J , see help lsqnonlin) as well and determine the
covariance matrix related to the parameter estimation errors.

(e) Perform an eigenvalue decomposition of the covariance matrix and evaluate the
result in terms of parameter sensitivities.

Problem 5.5 Step responses are frequently used to obtain a first indication of the
process dynamics of low-order processes. In the following we will investigate the

112 5 Static Systems Identification

estimation uncertainty properties as a function of the sampling strategy (frequency).
Consider, for simplicity, the step response of a first-order system without time delay,

y(t)=K
(

1 − e−αt)

Calculate y(t) for K = 2, α = 0.1, and t = 0,0.1,0.2, . . . ,100 and add normally
distributed noise with a variance of 0.1 to it (store this data set).

(a) Given the generated data set, estimate the parameters K and α using a nonlinear
least-squares method (MATLAB: lsqnonlin). Store these results together with
the associated covariance matrix, its determinant, and the norm of the residuals
in a table.

(b) Repeat (a), but now for t = 0,1,2, . . . ,100, i.e., resample your stored data set,
and add the results to the table.

(c) Repeat (a), but now for t = 0,10,20, . . . ,100, i.e., resample your data set at an
even lower sampling frequency, and again add the results to the table. Explain
your results.

(d) Let us now focus on the effect of nonequidistant sampling. Determine from the
model equation the parameter sensitivities ∂y/∂K and ∂y/∂α and plot these as
a function of time. Interpret the results.

(e) Suppose that we are mainly interested in the estimation of the time constant α.
Considering the parameter sensitivities obtained in (d), select 11 “optimal” sam-
pling instants and motivate your choice.

(f) Repeat (a), but now for the 11 sampling instants of (e), and add the results to the
table. Explain your results.

Chapter 6
Dynamic Systems Identification

6.1 Linear Dynamic Systems

6.1.1 Transfer Function Models

In Part I the transfer function model representation for linear time-invariant systems
has already been introduced. In what follows, however, as in Chap. 5, the model
structure will include a noise term to account for the misfit between output measure-
ments and model output. In this chapter we will consider several parameterizations
of transfer function-noise model structures describing the dynamic system behavior
in discrete time.

Let us start with the simplest structure, the convolution model structure where
G(q) is replaced by B(q) for reasons that will become clear later and extended with
a noise term, represented by

y(t) = b1u(t − 1)+ b2u(t − 2)+ · · · + e(t)

= B(q)u(t)+ e(t) (6.1)

with B(q) = ∑∞
k=1 bkq

−k = b1q
−1 + b2q

−2 + · · · , a polynomial in the backward
shift operator q−1 (see Appendix E), and a white noise error term e(t). In what
follows, it is assumed that a real system is not strictly causal, which means that
the actual input u(t) cannot have a direct effect on the output y(t). Therefore, the
polynomial starts with k = 1. This structure is also called an IIR (Infinite Impulse
Response) model structure. In practice, however, it mostly suffices to take just nb
terms, so that B(q)=∑nb

k=1 bkq
−k = b1q

−1 +b2q
−2 +· · ·+bnbq

−nb . This structure
is then called a FIR (Finite Impulse Response) model structure.

Another simple input–output relationship, introduced in Chap. 1 and extended
with a noise term, is given by the linear difference equation

y(t)+ a1y(t − 1)+ · · · + anay(t − na) = b1u(t − 1)

+ · · · + bnbu(t − nb)+ e(t) (6.2)

K.J. Keesman, System Identification,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-0-85729-522-4_6, © Springer-Verlag London Limited 2011

113

http://dx.doi.org/10.1007/978-0-85729-522-4_6

114 6 Dynamic Systems Identification

Fig. 6.1 ARX model
structure

Since e(t) enters as a direct error in the difference equation, (6.2) is also called an
equation error model structure. Rewriting (6.2) in transfer-function form gives

A(q)y(t)= B(q)u(t)+ e(t) (6.3)

where A(q) = ∑na
k=0 akq

−k = a0 + a1q
−1 + a2q

−2 + · · · + anaq
−na with a0 = 1,

and again B(q)=∑nb
k=1 bkq

−k = b1q
−1 +b2q

−2 +· · ·+bnbq
−nb . Notice that (6.3)

has an AutoRegressive part A(q)y(t) and an eXogenous part B(q)u(t). Therefore,
this model structure is also indicated as an ARX model, which can be rewritten in
explicit form as

y(t)= B(q)

A(q)
u(t)+ 1

A(q)
e(t) (6.4)

(see also Fig. 6.1 for the signal flows). More specifically, ARX model structures are
also denoted as ARX(na,nb, nk), where nk indicates the number of sampling inter-
vals related to dead time. Consequently, in case of dead time b1 = · · · = bnk = 0.

A special case is obtained when na = 0, which reduces the ARX to an FIR model
structure.

A further extension is obtained when the error term is modeled as a moving
average of white noise, that is,

y(t)+ a1y(t − 1)+ · · · + anay(t − na) = b1u(t − 1)

+ · · · + bnbu(t − nb)

+ e(t)+ c1e(t − 1)+ · · ·
+ cnce(t − nc) (6.5)

Due to the moving average part, (6.6) will be called an ARMAX model structure .
Rewriting (6.5) in transfer-function form gives

y(t)= B(q)

A(q)
u(t)+ C(q)

A(q)
e(t) (6.6)

6.1 Linear Dynamic Systems 115

Fig. 6.2 Equation error model family

with A(q) and B(q) as defined before, and with C(q) := ∑nc
k=0 ckq

−k = c0 +
c1q

−1 + c2q
−2 + · · · + cncq

−nc , c0 = 1. This ARMAX model structure is very
popular in controller design procedures. In the case of systems with slow distur-
bances, the so-called ARIMA(X) is often used, where I stands for integrated. In
model structures of this type, the output y(t) is replaced by Δy(t)= y(t)−y(t−1);
this extension will not be further discussed here.

So far the equation-error has played an important role, leading to transfer func-
tion models with a common polynomial A in the denominators (see Fig. 6.2).

However, if it is imposed that the linear difference equation is error-free, but that
the noise consists of white measurement noise only, then we obtain the following
description:

ξ(t)+ f1ξ(t − 1)+ · · · + fnf ξ(t − nf)

= b1u(t − 1)+ · · · + bnbu(t − nb) (6.7)

y(t)= ξ(t)+ e(t) (6.8)

where ξ(t) is the noise-free output of the dynamic system, and F(q) is defined as
F(q) :=∑nf

k=0 fkq
−k = 1 + f1q

−1 + f2q
−2 + · · · + fnf q

−nf . We can rewrite this
so-called output-error model structure as

y(t)= B(q)

F (q)
u(t)+ e(t) (6.9)

(see Fig. 6.3).
The last model structure we will discuss in this subsection is the so-called Box–

Jenkins model structure. This model structure is a natural extension of the output-
error model structure. In this structure the output error is modeled as an ARMA
model, so that

y(t)= B(q)

F (q)
u(t)+ C(q)

D(q)
e(t) (6.10)

116 6 Dynamic Systems Identification

Fig. 6.3 Output error model
structure

Fig. 6.4 Box–Jenkins model
structure

with polynomial D(q) = ∑nd
k=0 dkq

−k = d0 + d1q
−1 + d2q

−2 + · · · + dnd q
−nd ,

d0 = 1. The signals flows in the Box–Jenkins model structure are presented in
Fig. 6.4.

From these results the following generalized model structure can be derived:

A(q)y(t)= q−nkB(q)
F (q)

u(t)+ C(q)

D(q)
e(t) (6.11)

with appropriate polynomials and where nk ≥ 0 is the number of time delay inter-
vals, plus one default delay in the definition of B(q). It should be mentioned here
that, to avoid over-parameterization, in applications either A(q) or F(q) is set equal
to one. In what follows, we will represent the whole class of transfer function mod-
els as

y(t)=G(q)u(t)+H(q)e(t) (6.12)

where G(q) = ∑∞
k=1 g(k)q

−k and H(q) = 1 + ∑∞
k=1 h(k)q

−k . Notice here that
both G and H are not only simple polynomials, but in general a ratio of poly-
nomials, more commonly referred to as rational transfer functions. It can be easily
verified by long division that, in general, the rational transfer functions G(q)= B(q)

F (q)

and H(q)= C(q)
D(q)

lead to infinite impulse response functions. Furthermore, for sub-
sequent analyzes, we introduce the filtered white noise term v(t)=H(q)e(t).

It should be mentioned here that in practical situations, the input–output data is
usually pretreated by removing off-sets, drifts, trends, etc., since the class of trans-
fer function models, represented by (6.12), does not describe nonstationary effects.
A natural way to remove off-set, for instance, is to subtract sample means from both

6.1 Linear Dynamic Systems 117

the input and output data. Drifts and trends can be removed by high-pass filtering of
the data, a subject which will not be further treated here.

6.1.2 Equation Error Identification

In the previous subsection several transfer function model structures have been in-
troduced. However, as yet, no attention has been paid to the estimation of the model
parameters in these structures from input–output data. In this and the next two sec-
tions, therefore, the focus will be on estimation algorithms for the different model
structures.

Notice that for the estimation of the unknown coefficients b1, b2, . . . , bnb in the
FIR model structure from input–output data, the model output can be rewritten as
the linear regression

ŷ(t, ϑ)= φ(t)T ϑ (6.13)

with φ(t)T = [u(t − 1), u(t − 2), . . . , u(t − nb)] and ϑ = [b1, b2, . . . , bnb]T . Let
the inputs u(0), u(1), . . . , u(N) and corresponding outputs y(0), y(1), . . . , y(N) be
recorded with N � nb . Then, in vector-matrix notation the output vector is defined
as y := [y(nb), . . . , y(N)]T , and the regressor matrix is

Φ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u(nb − 1) u(nb − 2) · · · u(0)
u(nb) u(nb − 1) · · · u(1)

u(nb + 1)
...

...
...

u(N − 1) u(N − 2) · · · u(N − nb)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.14)

Hence, unlike the methods presented in Part I, the impulse response coefficients can
also be estimated from the data by using the ordinary least-squares method. It can
then be shown that for the same observations, the Wiener–Hopf equation approach
(see Sect. 4.2.2) gives the same estimates as those obtained from the least-squares
method.

The model output of an ARX model structure can also be rewritten as a linear
regression,

ŷ(t, ϑ)= φ(t)T ϑ (6.15)

with φ(t)T = [−y(t − 1),−y(t − 2), . . . ,−y(t − na),u(t − 1), u(t − 2), . . . ,
u(t − nb)] and ϑ = [a1, a2, . . . , ana , b1, b2, . . . , bnb]T . Let again the inputs u(0),
u(1), . . . , u(N) and corresponding outputs y(0), y(1), . . . , y(N) be recorded with
N � max(na, nb). In vector-matrix notation the output vector is defined as y :=

118 6 Dynamic Systems Identification

[y(max(na, nb)), . . . , y(N)]T , and the regressor matrix, for na ≥ nb, is

Φ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−y(na − 1) · · · −y(0) u(na − 1) · · · u(na − nb)

−y(na) −y(1) u(na) · · · u(na − nb + 1)

−y(na + 1)
...

...
...

−y(N − 1) · · · −y(N − na) u(N − 1) · · · u(N − nb)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.16)

Similarly, the regressor matrix for nb > na can be formed. Consequently, the un-
known parameters a1, a2, . . . , ana , b1, b2, . . . , bnb can be directly found from input–
output data using ordinary least-squares estimation. In order to avoid unwanted
side-effects in the estimates due to off-sets and trends in the data, it is advisable
to remove the mean from both the input and output data and to detrend the data to
remove nonstationary behavior. In the following algorithms, it is always assumed
that preprocessed input–output data for t = 1, . . . ,N , with N large enough to avoid
practical identifiability problems, is available.

Algorithm 6.1 Identification of ARX model parameters from input–output data

1. Specify an ARX model structure in terms of na and nb .
2. Define the vector y := [y(na), . . . , y(N)]T and the matrix Φ , as in (6.16), for

na ≥ nb .
3. Calculate from (5.10) the least-squares estimate of the unknown (na + nb)-

dimensional parameter vector ϑ .

Example 6.1 Heating system: In an identification experiment of the heating system
the following inputs and outputs are measured (see Fig. 6.5). The input signal is a
Random Binary Signal (RBS) around zero with p0 = 0.2, N = 1000, and sampling
interval Ts = 0.08 s. The output signal is pretreated by subtracting its mean value
and discarding the first 100 output samples to eliminate the start-up effects.

Let us suppose that the system can be described by an ARX(1, 1, 1) model, where
the arguments indicate the number of autoregressive and exogenous terms, and the
number of sampling intervals related to the dead-time. Hence, the model is

y(t)= −a1y(t − 1)+ b1u(t − 2)+ e(t)

which can be written in vector-matrix form with y = [y(2), y(3), . . . , y(902)]T , ϑ =
[a1, b1]T , and

Φ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−y(1) u(0)
−y(2) u(1)
−y(3)

...

−y(901) u(900)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

6.1 Linear Dynamic Systems 119

Fig. 6.5 Input–output data from identification experiment

Fig. 6.6 Measured (dotted line) and predicted (solid line) output

The estimates can be simply found by applying MATLAB’s function arx, which
gives ̂ϑ = [−0.9558 0.0467]T and associated standard deviations 0.0066 and
0.0029. Comparison between the predicted model output and the measured output
reveals that the model predictions are inaccurate (see Fig. 6.6). Hence, other model
structures must be tried and evaluated.

120 6 Dynamic Systems Identification

Let us now try to obtain a linear regression for the ARMAX model out-
put. However, a problem directly appears, since the past error terms e(t − 1),
e(t − 2), . . . , e(t − nc) are unknown. As a solution to this, it is common practice
to substitute the error terms by the prediction errors ε(t − 1, ϑ), ε(t − 2, ϑ), . . . ,
ε(t − nc,ϑ), where ε(t,ϑ) = y(t) − ŷ(t, ϑ) and ϑ = [a1, . . . , ana , b1, . . . , bnb ,

c1, . . . , cnc]T . The prediction errors, however, depend on the parameter values
of ϑ , so that no true linear regression can be obtained. If we introduce the vec-
tor φ(t,ϑ)T = [−y(t − 1),−y(t − 2), . . . ,−y(t − na),u(t − 1), u(t − 2), . . . ,
u(t − nb), ε(t − 1, ϑ), ε(t − 2, ϑ), . . . , ε(t − nc,ϑ)]. Then, the model output can
be written as

ŷ(t, ϑ)= φ(t,ϑ)T ϑ (6.17)

which is sometimes called a pseudo-linear regression because of the nonlinear ef-
fect of ϑ on the model output. Clearly, no direct methods exist, and thus an iterative
solution method has to be used. Let again the inputs u(0), u(1), . . . , u(N) and cor-
responding outputs y(0), y(1), . . . , y(N) be recorded with N � max(na, nb, nc). In
vector-matrix notation the output vector is defined as y := [y(max(na, nb, nc)), . . . ,
y(N)]T , and the regressor matrix at iteration i, for na ≥ nb,nc, is

Φ(i) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y(na − 1) · · · y(0) u(na − 1) · · · u(na − nb)

y(na) y(1) u(na) · · · u(na − nb + 1)

y(na + 1)
...

...
...

...

y(N − 1) · · · y(N − na) u(N − 1) · · · u(N − nb)

ε(na − 1,̂ϑ(i−1)) · · · ε(na − nc,̂ϑ
(i−1))

ε(na,̂ϑ
(i−1)) ε(na − nc + 1,̂ϑ(i−1))
...

...
...

...

ε(N − 1,̂ϑ(i−1)) · · · ε(N − nc,̂ϑ
(i−1))

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.18)

Usually, for i = 0, an ordinary least-squares solution is used. Subsequently, this so-
lution provides prediction errors, which are used in the next step. In the successive
steps, new estimates and including c1, . . . , cnc are found. These estimates determine
new prediction errors. This procedure is repeated a number of times until the es-
timates converge or the maximum number of iterations is reached. This iterative
method is called the extended least-squares method.

Algorithm 6.2 Identification of ARMAX model parameters from input–output
data

1. Specify an ARMAX model structure in terms of na , nb, and nc.
2. Define the vector y := [y(na), . . . , y(N)]T and the matrix Φ(i) with i = 0, as in

(6.16), for na ≥ nb , nc.

6.1 Linear Dynamic Systems 121

3. Calculate from (5.10) the least-squares estimate of the unknown (na + nb)-
dimensional parameter vector ϑ(0).

4. Calculate the prediction errors ε(t − 1, ϑ(0)), ε(t − 2, ϑ(0)), . . . , ε(t − na,ϑ
(0)),

where ε(t,ϑ(0))= y(t)− ŷ(t, ϑ(0)) and ϑ(0) = [a1, . . . , ana , b1, . . . , bnb]T
5. Given the prediction errors from an ordinary least-squares estimation of the

ARX-parameters, execute subsequently the following loop, with a fixed num-
ber M of iterations:

for i = 1 :M
define Φ(i), as in (6.18)

calculate from (5.10) the least-squares estimate of the unknown

(na + nb + nc)-dimensional parameter vector ϑ(i)

calculate ε
(

t − 1, ϑ(i)
)

, ε
(

t − 2, ϑ(i)
)

, . . . , ε
(

t − nc,ϑ
(i)
)

end.

6.1.3 Output Error Identification

As for an ARMAX model structure , the estimation of the output error (OE) model
parameters b1, b2, . . . , bnb , f1, f2, . . . , fnf cannot be performed directly, since the
noise-free output ξ(t, ϑ) is not observed and is a function of the unknown parame-
ters. However, using the predicted values,

ŷ(t, ϑ)= B(q)

F (q)
u(t)= ξ(t, ϑ) (6.19)

the regressor vector can be defined as φ(t,ϑ)T := (u(t − 1), u(t − 2), . . . ,
u(t−nb),−ξ(t−1, ϑ),−ξ(t−2, ϑ), . . . ,−ξ(t−nf ,ϑ))with ϑ = (b1, b2, . . . , bnb ,

f1, f2, . . . , fnf)
T . Consequently,

ŷ(t, ϑ)= φ(t,ϑ)T ϑ (6.20)

which again is a pseudo-linear regression, and which again requires an iterative
solution.

However, let us first investigate the effect of substituting (6.8) in (6.7) so that

y(t)+ f1y(t − 1)+ · · · = b1u(t − 1)+ · · · + e(t)+ f1e(t − 1)+ · · · (6.21)

and, by (6.9),

F(q)y(t)= B(q)u(t)+ v(t) (6.22)

where the noise term v(t) = F(q)e(t) is a moving average of nf + 1 successive
samples of the original white noise sequence {e}. Hence, as can be seen from the
next example, the sequence {v} is generally autocorrelated even if {e} is not.

122 6 Dynamic Systems Identification

Example 6.2 Output error model: Suppose that a system is described by the first-
order discrete-time model with a time delay of one sample interval, that is, nk = 1:

y(t)= b1q
−2

1 + f1q−1
u(t)+ e(t)

so that

y(t)= −f1y(t − 1)+ b1u(t − 2)+ v(t)

where v(t)= e(t)+ f1e(t − 1). Suppose further that {e} is a zero-mean white noise
sequence with constant variance σ 2. Then,

rvv(0) = E
[{

e(t)+ f1e(t − 1)
}2]

= E
[

e2(t)
]+ f 2

1 E
[

e2(t − 1)
]

= (

1 + f 2
1

)

σ 2

rvv(1) = E
[{

e(t)+ f1e(t − 1)
}{

e(t + 1)+ f1e(t)
}]

= E
[

f1e
2(t)

]

= f1σ
2

= rvv(−1)

rvv(l) = E
[{

e(t)+ f1e(t − 1)
}{

e(t + l)+ f1e(t − 1 + l)
}]

= 0

= rvv(−l) ∀l ≥ 2

and thus {v} is autocorrelated. Similarly,

rvy(0) = E
[{

e(t)+ f1e(t − 1)
}

× {−f1y(t − 1)+ b1u(t − 2)+ e(t)+ f1e(t − 1)
}]

= E
[

e2(t)
]+ f 2

1 E
[

e2(t − 1)
]

= (

1 + f 2
1

)

σ 2

rvy(1) = f1σ
2

rvy(l) = 0 ∀l ≥ 2

The consequence of writing the output error model as in (6.22) is that {v} is auto-
correlated and that this leads to correlation between v(t) and one or more regressors
y(t − 1), . . . , y(t − nf). Thus ordinary least-squares estimation for models of this
type leads to bias, since b = E[(ΦT Φ)−1ΦT v] is in general not equal to zero due
to the dependence between Φ and v.

6.1 Linear Dynamic Systems 123

Substitution of ŷ(t, ϑ)= ξ(t, ϑ) for y(t), which avoids this correlation between
error and regressors but requires an iterative solution, leads to the so-called In-
strumental Variable (IV) methods. Let the inputs u(0), u(1), . . . , u(N) and cor-
responding outputs y(0), y(1), . . . , y(N) be recorded with N � max(nf ,nb). In
vector-matrix notation the output vector for the case nk = 0 is defined as y :=
[y(max(nf ,nb)), . . . , y(N)]T , and for nf ≥ nb, the instrumental variable matrix
at iteration i is given by

Z(i) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ξ(nf − 1,̂ϑ(i−1)) · · · ξ(0,̂ϑ(i−1))

ξ(nf),̂ϑ
(i−1) ξ(1,̂ϑ(i−1))

ξ(nf + 1,̂ϑ(i−1))
...

...
...

ξ(N − 1,̂ϑ(i−1)) · · · ξ(N − nf ,̂ϑ
(i−1))

u(nf − 1) · · · u(nf − nb)

u(nf) · · · u(nf − nb + 1)
...

...

u(N − 1) · · · u(N − nb)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(6.23)

where the error-correlated regressors have been replaced by so-called instrumen-
tal variables not correlated with the error, but with a large correlation with respect
to the original regressors. The instrumental variable estimate, which in general is
unbiased, is found from

̂ϑIV = [

ZTΦ
]−1

ZT y (6.24)

where Z has to be evaluated at each iteration. The constant regressor matrix Φ is
defined as

Φ :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y(nf − 1) · · · y(0) u(nf − 1) · · · u(nf − nb)

y(nf) y(1) u(nf) · · · u(nf − nb + 1)

y(nf + 1)
...

...
...

...

y(N − 1) · · · y(N − nf) u(N − 1) · · · u(N − nb)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.25)

As in the case of an ARMAX model structure, usually for i = 0, an ordinary least-
squares method is applied, so that Z(0) = Φ . The resulting least-squares estimate
̂ϑ(0) is then used to generate ξ(t,̂ϑ(0)), which will appear in the matrix Z(1) (see
(6.23)). These steps are repeated until convergence of the estimates occurs. In gen-
eral, only a limited number of iterations is needed.

124 6 Dynamic Systems Identification

Algorithm 6.3 Identification of OE model parameters from input–output data

1. Specify an OE model structure in terms of nb and nf .
2. Define the vector y := [y(nf), . . . , y(N)]T and the matrix Φ , as in (6.25), for

nf ≥ nb.
3. Calculate from (5.10) the biased least-squares estimate of the unknown

(nf + nb)-dimensional parameter vector ϑ(0).
4. Calculate the instrumental variables ξ(0, ϑ(0)), ξ(1, ϑ(0)), . . . , ξ(N − 1, ϑ(0)),

where ξ(t, ϑ(0))= ŷ(t, ϑ(0)) and ϑ(0) = [f1, . . . , fnf , b1, . . . , bnb]T .
5. Given the biased least-squares estimates of the OE model parameters, execute

subsequently the following loop, with a fixed number M of iterations:

for i = 1 :M
define Z(i),Φ(i), as in (6.23)–(6.25)

calculate from (5.10) the least-squares estimate of the unknown

(nf + nb)-dimensional parameter vector ϑ(i)

calculate ξ
(

0, ϑ(i)
)

, ξ
(

1, ϑ(i)
)

, . . . , ξ
(

N − 1, ϑ(i)
)

end.

Example 6.3 Output error model: Consider again the first-order output error model
with time delay,

y(t)= −f1y(t − 1)+ b1u(t − 2)+ v(t)

Then, for given inputs, u(0), u(1), . . . , u(N), and corresponding outputs y(0), y(1),
. . . , y(N), the output vector is defined as y := [y(2), . . . , y(N)]T , and

Φ =

⎡

⎢

⎢

⎢

⎣

y(1) u(0)
y(2) u(1)
...

...

y(N − 1) u(N − 2)

⎤

⎥

⎥

⎥

⎦

From this the least-squares estimate ̂ϑ(0)
(1) = (f

(1)
1 , b

(1)
1)T = [ΦTΦ]−1ΦT y can be

simply found. In the next iteration, the matrix Z(1) is defined as

Z(1) :=

⎡

⎢

⎢

⎢

⎣

ŷ(1,̂ϑ(0)) u(0)
ŷ(2,̂ϑ(0)) u(1)

...
...

ŷ(N − 1,̂ϑ(0)) u(N − 2)

⎤

⎥

⎥

⎥

⎦

where ŷ(t,̂ϑ(0))= −f (1)
1 ŷ(t−1,̂ϑ(0))+b

(1)
1 u(t −2) and ŷ(0,̂ϑ(0))= y(0). Notice

that for the case nk = 0, the row dimension of Φ(0) would be equal to N . However,
the row dimension of Φ(i), with i > 0, would be equal to N − 1, since ŷ(0,̂ϑ(i)) in
the matrix Z(i) cannot be evaluated for the given model structure.

6.1 Linear Dynamic Systems 125

As an alternative to the introduction of instrumental variables, as in (6.24), we
can also try to whiten the error term v(t) with covariance matrix Rvv , such that the
covariance matrix of the whitened equation error becomes of the form σ 2I . One
way to do this is by premultiplication of the terms in the regression equation (5.2)
by an N ×N matrix Q, so that

y′ = Qy =Q(Φϑ + v)

= Φ ′ϑ + v′ (6.26)

where Φ ′ =QΦ and v′ =Qv. It can be easily verified that E[v′] = 0 and, by (5.28),
that Covv′ =E[QvvTQT] =QRvvQ

T . Recall that a covariance matrix is positive
definite and symmetric. Then, the Choleski decomposition of Rvv gives Rvv = LLT

with L a lower triangular matrix, which can be considered as the matrix square root
of Rvv . Notice that Q is unspecified so far. If Q is then chosen to be equal to L−1

so that

Q−1Q−T =Rvv (6.27)

the covariance matrix of the N -dimensional vector v′ becomes equal to
QQ−1Q−T QT = I . Hence, {v′} is a mutually uncorrelated sequence with constant
variance and zero mean. The ordinary least-squares estimate of the filtered equation
(6.26), which is unbiased, is given by

̂ϑ = [

Φ ′T Φ ′]−1
Φ ′T y′

= [

ΦTQTQΦ
]−1

ΦTQTQy

= [

ΦTR−1
vv Φ

]−1
ΦTR−1

vv y (6.28)

since (Q−1Q−T)−1 = QTQ = R−1
vv . This estimate is called the Markov estimate

or generalized least-squares estimate. The corresponding covariance matrix of the
estimates is given by

Cov̂ϑ =E
[[

Φ ′T Φ ′]−1]=E
[[

ΦTR−1
vv Φ

]−1] (6.29)

In practice, however, Rvv is never known in advance, and thus it has to be estimated
from the data, as is illustrated by the following example. But let us first present the
algorithm.

Algorithm 6.4 Identification of OE model parameters from input–output data using
the generalized least-squares method

1. Specify an OE model structure in terms of nb and nf .
2. Given the OE model structure, derive the autocorrelation function rvv(l) for l =

0,1, . . . analytically, as in Example 6.2.
3. Given the autocorrelation function of v, form the corresponding autocorrelation

matrix Rvv .

126 6 Dynamic Systems Identification

4. Define the vector y := [y(nf), . . . , y(N)]T and the matrix Φ , as in (6.16) with
na = nf , for nf ≥ nb.

5. Calculate from (5.10) the biased least-squares estimate of the unknown
(nf + nb)-dimensional parameter vector ϑ(0).

6. Given the biased least-squares estimates of the OE model parameters f (0)
1 , . . . ,

f
(0)
nf , execute subsequently the following loop, with a fixed number M of itera-

tions:

for i = 1 :M
calculate Rvv(i), as a function of f (i−1)

1 , . . . , f (i−1)
nf

calculate from (6.28) the weighted least-squares estimate of the

unknown (nf + nb)-dimensional parameter vector ϑ(i)

end.

Example 6.4 Output error model: Recall that for the given output error model struc-
ture

y(t)= −f1y(t − 1)+ b1u(t − 2)+ v(t)

the autocorrelation function of v is given by

rvv(0) = (

1 + f 2
1

)

σ 2

rvv(±1) = f1σ
2

rvv(±l) = 0, ∀l > 1

Hence,

Cov v̂ = σ̂ 2
ε

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(1 + ̂f1
2
) ̂f1 0 · · · 0

̂f1 (1 + ̂f1
2
) ̂f1

...

0 ̂f1 0
... ̂f1

0 · · · 0 ̂f1 (1 + ̂f1
2
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�Rvv

and thus Rvv can be approximated at each iteration on the basis of estimates of the
autoregressive parameters and of the error variance.

For large data sets, this implementation is unattractive, since at each iteration an
N × N matrix has to be inverted. In the following section, a more convenient im-
plementation using low-order linear filters is introduced. In conclusion, for output
error model structures, nonlinear regressions between model predictions and param-
eters result, which asks for iterative estimation procedures as Markov estimation or
Instrumental Variable methods.

6.1 Linear Dynamic Systems 127

6.1.4 Prediction Error Identification

The results of the previous section can be generalized by considering the equation
and output errors as prediction errors, more specifically as l-steps-ahead prediction
errors with l = 1 and ∞, respectively. Using the generalized transfer function model
(6.12), the following expression of the error e(t) is found:

e(t)= −H−1(q)G(q)u(t)+H−1(q)y(t) (6.30)

where H−1(q)= 1/H(q). Let us evaluate this expression for some common model
structures.

Example 6.5 MA process: Suppose that

v(t)= e(t)+ ce(t − 1)

that is, G(q) = 0 and H(q) = 1 + cq−1, and that v(t) is observed. Then, by long
division we find

H−1(q) = 1

1 + cq−1

= 1 − cq−1 + c2q−2 − c3q−3 + · · ·

=
∞
∑

k=0

(−c)kq−k

and thus,

e(t)=
∞
∑

k=0

(−c)kv(t − k)

Example 6.6 AR process: Suppose that

v(t)+ av(t − 1)= e(t)

that is, G(q)= 0 and H(q)= 1/(1 + aq−1), and that v(t) is observed. Then,

H−1(q)= 1 + aq−1

and thus,

e(t)= v(t)+ av(t − 1)

For further analysis of the prediction error, let us consider a one-step-ahead pre-
diction of the noise term v(t) = H(q)e(t) = ∑∞

k=0 h(k)e(t − k) given measure-
ments of v(s) for s ≤ t − 1. Then, under the assumption that H(q) is monic, i.e.,

128 6 Dynamic Systems Identification

h0 = 1, and {e} is a mutually uncorrelated sequence with zero-mean,

v̂(t |t − 1) = E
[

v(t |t − 1)
]

= E
[

e(t)
]+E

[∞
∑

k=1

h(k)e(t − k)

]

=
∞
∑

k=1

h(k)e(t − k) (6.31)

In terms of the rational transfer function H , we obtain

v̂(t |t − 1) = [

H(q)− 1
]

e(t)

= H(q)− 1

H(q)
v(t)= [

1 −H−1(q)
]

v(t) (6.32)

Example 6.7 MA process: Suppose that

v(t)= e(t)+ ce(t − 1)

Then, with H(q)= 1 + cq−1 and after long division,

v̂(t |t − 1)= cq−1

1 + cq−1
v(t)= −

∞
∑

k=1

(−c)kv(t − k)

Example 6.8 AR process: Suppose that

v(t)+ av(t − 1)= e(t)

Then, with H(q)= 1/(1 + aq−1),

v̂(t |t − 1)= [

1 − (

1 + aq−1)]v(t)= av(t − 1)

The one-step-ahead prediction of the model output y(t)=G(q)u(t)+v(t), given
measurements of u(s) and y(s), and thus of v(s) as well, for s ≤ t − 1, is found
from

ŷ(t |t − 1) = G(q)u(t)+ v̂(t |t − 1)

= G(q)u(t)+ [

1 −H−1(q)
]

v(t)

= G(q)u(t)+ [

1 −H−1(q)
][

y(t)−G(q)u(t)
]

= H−1(q)G(q)u(t)+ [

1 −H−1(q)
]

y(t) (6.33)

6.1 Linear Dynamic Systems 129

From this we find

y(t)− ŷ(t |t − 1) = −H−1(q)G(q)u(t)+H−1(q)y(t)

= H−1(q)
[

y(t)−G(q)u(t)
]

= H−1(q)v(t)

= e(t) (6.34)

so that e(t) is the one-step-ahead prediction error that represents that part of the
output y(t) that cannot be predicted from past data. Hence, a realization of the error
sequence {e} is found from an evaluation of past prediction errors.

Suppose now that v(s) has been observed for s ≤ t , so that e(t) is known. In
order to derive the l-steps-ahead prediction of v(t + l), we need to write the rational
polynomial H(q) as

H(q)=Hl(q)+ q−l
˜Hl(q) (6.35)

where Hl(q) = ∑l−1
k=0 h(k)q

−k and ˜Hl(q) = ∑∞
k=l h(k)q−k+l . Consequently,

v(t + l) is split up in an unknown part including the error terms e(t + l),

e(t + l − 1), . . . , e(t + 1) and a known part, that is,

v(t + l) =
∞
∑

k=0

h(k)e(t + l − k)

=
l−1
∑

k=0

h(k)e(t + l − k)+
∞
∑

k=l
h(k)e(t + l − k) (6.36)

The l-steps-ahead prediction of v(t + l) is then given by

v̂(t + l|t) =
∞
∑

k=l
h(k)e(t + l − k)= ˜Hl(q)e(t)

= ˜Hl(q)H
−1(q)v(t) (6.37)

Let y(−∞), . . . , y(t) and u(−∞), . . . , u(t) be measured. Then

ŷ(t + l|t) = G(q)u(t + l)+ v̂(t + l|t)
= G(q)u(t + l)+ ˜Hl(q)H

−1(q)v(t)

= G(q)u(t + l)+ ˜Hl(q)H
−1(q)

[

y(t)−G(q)u(t)
]

(6.38)

If we defineWl(q) := 1−q−l
˜Hl(q)H

−1(q), then by (6.35),Wl(q)=Hl(q)H
−1(q),

and after some manipulation we find

ŷ(t + l|t)=Wl(q)G(q)u(t + l)+ ˜Hl(q)H
−1(q)y(t) (6.39)

130 6 Dynamic Systems Identification

or, after setting t := t + l, i.e., ŷ(t |t − l)= q−l ŷ(t + l|t),
ŷ(t |t − l)=Wl(q)G(q)u(t)+ [

1 −Wl(q)
]

y(t) (6.40)

The prediction errors associated with (6.38) are then given by

e(t + l|t) = y(t + l)− ŷ(t + l|t)
= −Wl(q)G(q)u(t + l)+ [

ql − ˜Hl(q)H
−1(q)

]

y(t)

= Wl(q)
[

y(t + l)−G(q)u(t + l)
]

= Wl(q)H(q)e(t + l)

= Hl(q)e(t + l) (6.41)

Recall from (6.35) that Hl(q) is a polynomial of order k − 1, so that el(t + l) is
a moving average of e(t + l), . . . , e(t + 1). Hence, even if e(t) is a white noise
sequence, the more-steps-ahead prediction el(t + l) is in general not.

For the following, it is important to notice from (6.33) that the predictor (6.40) is
the one-step-ahead predictor of the model

y(t)=G(q)u(t)+W−1
l (q)e(t) (6.42)

where the last term represents some filtered noise.
In order to allow a large class of identification problems to be cast in the

prediction-error framework, the prediction-error sequence {ε(t,ϑ)} is filtered by
a stable linear filter L(q) such that

εF (t,ϑ)= L(q)ε(t,ϑ), t = 1, . . . ,N (6.43)

where it is emphasized that ε is a function of both t and ϑ , which is especially
important to realize when applying iterative solution procedures. A large class of
prediction-error identification methods will try to minimize the following objective
function:

J (ϑ) :=
N
∑

t=1

ε2
F (t,ϑ) (6.44)

The high- or low-frequency disturbances, which are thought to be unimportant for
the identification results, can thus be removed from the error sequence by the fil-
ter L. From this point of view, the filter acts like frequency weighting. Notice, fur-
thermore that

εF (t,ϑ)= [

L−1(q)H(q,ϑ)
]−1[

y(t)−G(q,ϑ)u(t)
]

(6.45)

In [Lju87], p. 200, Ljung noticed then that “the effect of pre-filtering is thus
identical to changing the noise model from H(q,ϑ) to L−1(q)H(q,ϑ).” From
these results it can be deduced that for l-steps-ahead prediction-error identifica-
tion, the filter L(q) must be chosen identical to Hl(q) to minimize the sum of

6.1 Linear Dynamic Systems 131

squares of the l-steps-ahead prediction-errors. Hence, using (6.41), we arrive at
the following result for l = 1: εF (t,ϑ) = εl(t |t − l, ϑ) = ε(t,ϑ) because H(q)

is considered to be monic, which implies that Hl=1(q) = 1 and thus L(q) = 1.
Since H(q) in general is a low-pass filter, the one-step-ahead prediction error
method implies high-pass filtering of the error sequence {y(t)−G(q,ϑ)u(t)}. No-
tice furthermore that, since for an ARX model structure G(q) = B(q)/A(q) and
H(q)= 1/A(q), we have εF (t,ϑ)= L(q)[A(q,ϑ)y(t)− B(q,ϑ)u(t)]. Hence, an
equation-error method, which thus minimizes the sum of squares of the sequence
{A(q)y(t)−B(q)u(t)} with L(q)= 1, minimizes the one-step-ahead prediction er-
rors. On the other hand, for l = ∞, εF (t,ϑ) = εl=∞(t |t − l, ϑ) = H(q)ε(t,ϑ),
since Hl=∞(q) = H(q), and thus εF (t,ϑ) = y(t) − G(q,ϑ)u(t), which is the
output-error. Consequently, an output-error method tends to minimize the ∞-steps-
ahead prediction errors.

If the predictor is linear and time-invariant, the filtering of the prediction er-
ror ε(t,ϑ) is identical to first filter the input–output data and then apply the
predictor. Let us apply this to an output-error estimation problem. If we rewrite
the output-error model structure (6.9) as F(q)e(t) = F(q)y(t) − B(q)u(t), then
from this we obtain the following nonlinear expression of the prediction error
in ϑ :

F(q,ϑ)ε(t,ϑ)= F(q,ϑ)y(t)−B(q,ϑ)u(t) (6.46)

An iterative solution of the estimate ̂ϑ is then found via the prediction error evalu-
ation

ε
(

t,̂ϑ(i)
) = F

(

q,̂ϑ(i)
)[

F
(

q,̂ϑ(i−1))]−1
y(t)

−B
(

q,̂ϑ(i)
)[

F
(

q,̂ϑ(i−1))]−1
u(t)

= F
(

q,̂ϑ(i)
)

ỹ(t)−B
(

q,̂ϑ(i)
)

ũ(t) (6.47)

which allows at each iteration an unbiased least-squares estimation. In fact, this
approach is an effective alternative, based on “noise whitening,” to the previously
described Markov estimation method. Clearly, this idea of repeated prefiltering of
the input–output data to obtain a white error sequence can also be applied to other
prediction-error identification problems.

Algorithm 6.5 Identification of OE model parameters from input–output data using
prefiltering

1. Specify an OE model structure in terms of nb and nf .
2. Define the vector y := [y(nf), . . . , y(N)]T and the matrix Φ , as in (6.16) with

na = nf , for nf ≥ nb.
3. Calculate from (5.10) the biased least-squares estimate of the unknown

(nf + nb)-dimensional parameter vector ϑ(0).

132 6 Dynamic Systems Identification

Table 6.1 Random process
data x(t) 1 2 3 4 5

y(t) 5.2 5.3 5.1 4.5 5.0

4. Given the biased least-squares estimates of the OE model parameters f (0)
1 , . . . ,

f
(0)
nf , execute subsequently the following loop, with a fixed number M of itera-

tions:

for i = 1 :M
evaluate F

(

q,̂ϑ(i−1)), as a function of f (i−1)
1 , . . . , f (i−1)

nf

prefilter both y(t) and u(t) with
[

F
(

q,̂ϑ(i−1))]−1

calculate the ordinary least-squares estimate of the

unknown (nf + nb)-dimensional parameter vector ϑ(i)

end.

6.1.5 Model Structure Identification

So far, it has been assumed that the model structure is a priori given. However, in
practice this is never fully the case; the input–output data may suggest an other
structure than that obtained from prior system knowledge. A most natural way is
to suggest a number of structures and evaluate its performance. At first instance, it
appears to be a good idea to use the objective function value to discriminate between
structures. Let us illustrate the consequence of this in the next example.

Example 6.9 Random process: Consider the following measurements, shown in Ta-
ble 6.1, which originate from a random process.

A very simple model that approximately describes the data in Table 6.1 is given
by

y(t)= ϑ0 + e(t)

with ϑ0 = 5.02 and the sum of squared prediction errors (see (5.4)) εT ε = 0.388. It
can be easily verified that the alternative model

y(t)= ϑ0 + ϑ1x(t)+ ϑ2x
2(t)+ ϑ3x

3(t)+ ϑ4x
4(t)+ e(t)

with ϑ0 = 6.4997, ϑ1 = −2.9661, ϑ2 = 2.2830, ϑ3 = −0.68325, and ϑ4 = 0.06666
exactly describes the data. Hence, the objective function value (sum of squares)
is equal to zero. However, model predictions outside the range, unlike the predic-
tions from the first model ŷ(t)= 5.02, become unstable. For instance, for x(t)= 6,
ŷ(t)= 9.7, and for x(t)= 10, ŷ(t)= 188, so that for large values of x, the predicted
output tends to infinity.

6.1 Linear Dynamic Systems 133

From this example it becomes clear that evaluation of the objective function val-
ues only is not a good idea, because despite the perfect fit, bad prediction models
may result. We call these models overparameterized, since they fit the noise rather
than the underlying process dynamics.

However, there is a more fundamental problem: given some data, there will al-
ways be an infinite number of models that fit the data equally well. Thus, without
making additional assumptions, there is no reason to prefer one model over another.
The additional assumptions may be expressed in terms of probabilities, evidential
support, falsifiability, or minimum description length. Within a system identifica-
tion context, model selection aims at choosing a model of optimal complexity for
the given (finite) data. Many model selection procedures employ some form of par-
simony. If a set of models fit the data equally well, the simplest model is preferred.
Therefore, in addition to a measure of the misfit, a measure of model complexity has
been introduced. The Akaike information criterion (AIC), for instance, provides a
trade-off between the model complexity and the goodness of fit to the experimental
data. The AIC is given by

AIC = −2 logL+ 2dM (6.48)

where logL is the maximum log-likelihood, and dM is the number of parameters in
the model. The model with the lowest AIC should be preferred. The AIC is grounded
in the concept of entropy. In fact, it quantifies a relative measure of the information
loss when a model is used to describe a data set. It should be noted that the AIC is
not a test of the model in the sense of hypothesis testing. It provides a test between
models and is thus one of the tools for model selection.

Akaike’s Final Prediction Error criterion (FPE) provides a measure of model
quality for the case where the model is tested on a different data set. Hence, the
model prediction quality is explicitly tested, as in our previous example. According
to Akaike’s theory, the most accurate model has the smallest FPE, where the Final
Prediction Error is defined as

JFPE(M) := 1 + dM /N

1 − dM /N

1

N

N
∑

t=1

1

2
ε2(t,̂ϑ

)

(6.49)

As before, it combines the model complexity and goodness of fit for a specific model
M (̂ϑ). In this criterion the model complexity is represented by the dimension of the
model parameter vector (dM). The factor 1+dM /N

1−dM /N
1
N

= 1+dM /N
N−dM

can be interpreted
as a corrected inverse of the degrees of freedom, N − dM , see also (5.33) for a
comparison. The term 1

N

∑N
t=1

1
2ε

2(t,̂ϑ), used in MATLAB’s System Identification
Toolbox, will be further indicated as the loss function and is clearly related to the
least-squares objective function (5.3).

Example 6.10 Heating system: In Example 6.1 it appeared that an ARX(1, 1, 1)
model structure was not appropriate to describe the data. Let us therefore evaluate
a number of candidate ARX models. Define, with the help of MATLAB’s function

134 6 Dynamic Systems Identification

Table 6.2 Model structure
identification results na nb nk Loss function (×10−4) JFPE (×10−4) dM

1 1 4 54.074 54.314 2

2 1 3 24.157 24.318 3

2 2 3 13.886 14.010 4

3 2 3 12.788 12.931 5

3 3 3 11.809 11.967 6

4 3 3 11.628 11.810 7

Fig. 6.7 FPE function values
(stars) with corresponding
number of parameters in
ARX model

struc, a matrix of candidate structures ARX(1:5, 1:5, 0:5). Then, using arxstruc and
selstruc for a given input–output data set, Fig. 6.7 will result.

From Fig. 6.7 it can be concluded that the FPE function value decreases with
the number of model parameters or, in other words, with the model complexity.
This decrease is caused by an increase in the degrees of freedom. A next step is to
find the optimal combination of autoregressive and exogenous parameters and time
delays. A natural way to find this is to look for the “knee” in the curve and then to
evaluate all possible combinations for a specific number of parameters. The result
of this for dM ranging from two to seven is presented in Table 6.2.

On the basis of these results, a good choice would be an ARX(2, 2, 3) model
structure, because more complex model structures will not significantly increase the
model performance as measured by the values of the loss function and JFPE. This
result is further confirmed from an analysis using the unexplained output variance
(in %), which is the variance of the ARX model prediction error. In other words,
the unexplained output variance represents the portion of the model output not ex-
plained by the model. The results, based on the unexplained output variance and
also leading to an ARX(2, 2, 3) model structure, are presented in Fig. 6.8.

It is important to mention here that the model performance is evaluated on the
same data set that has been used for parameter estimation. Hence, so far no inde-
pendent measure of model performance has been used.

6.1 Linear Dynamic Systems 135

Fig. 6.8 Unexplained output
variance with corresponding
number of parameters in
ARX model

Consequently, from these examples it appears that the comparison of model
structures should essentially be based on cross-validation, where the identified
model structures are confronted with fresh data, which has not been used for pa-
rameter estimation. This cross-validation prevents overparameterized models to a
large extent, because the noise in the cross-validation data set will be different from
the noise in the identification data set. Therefore, in practice, most often the data set
is split up into an identification/calibration and a validation set. A further treatment
of the model validation step will be found in Part IV.

6.1.6 *Subspace Identification

Subspace identification methods aim at directly estimating the system matrices A,
B , C, D in a state-space model structure from noisy input–output data. It should be
emphasized that these methods do not need an a priori specification of the structure
of the system matrices. Hence, all the entries in the matrices follow from the input–
output data.

In the following, it will be shown that subspace identification is a direct (nonit-
erative) estimation method, which is also indicated in short as 4SID, i.e., Subspace
State-Space System IDentification. The basic idea behind subspace identification
starts from a given noisy unit impulse response realization of an LTI system and re-
sults in a minimal (data-based) state-space realization. Let us illustrate this in some
more detail for the noise-free case.

Recall that for a discrete-time dynamic system, the output can be expressed by
the convolution sum

y(t) =
t
∑

k=0

g(t − k)u(k)

=
t
∑

k=0

g(t)u(t − k), t ∈ Z
+ (6.50)

136 6 Dynamic Systems Identification

Alternatively, the system can also be described by the discrete-time state-space
model (see Sect. 1.2.2)

x(t + 1) = Ax(t)+Bu(t)

y(t) = Cx(t)+Du(t)
(6.51)

with x ∈ R
n. The goal is now to determine the matrices A, B , C, D (taking into

account that these matrices are equivalent up to a linear transformation, that is, Ã=
SAS−1, B̃ = SB , C̃ = CS−1, D̃ = D). The following relationship between (6.50)
and (6.51) exists:

g(t) =
⎧

⎨

⎩

0, t < 0
D, t = 0
CAt−1B, t > 0

(6.52)

This relationship allows us to construct the so-called Hankel matrix H on the basis
of the given impulse response, where this matrix can be factorized as follows:

H = Γn+1Ωn+1 (6.53)

with

H =

⎡

⎢

⎢

⎢

⎣

g(1) g(2) · · · g(n+ 1)
g(2) g(3) · · · g(n+ 2)
...

...
...

g(n+ 1) g(n+ 2) · · · g(2n+ 1)

⎤

⎥

⎥

⎥

⎦

In fact (see (6.53)), the Hankel matrix can be factorized so that

Γn =

⎡

⎢

⎢

⎢

⎣

C

CA
...

CAn−1

⎤

⎥

⎥

⎥

⎦

(6.54)

which is known as the observability matrix, and

Ωn = [

B AB · · · An−1B
]

(6.55)

the controllability matrix.
As the ranks of the observability and controllability matrix are equal to n, the

rank of H is also n. This fact forms the basis for the estimation of the system ma-
trices A, B , C, and D. In particular, separation of the Hankel matrix H in terms of
an observability and controllability matrix (6.53) such that the upmost rows and the
leftmost columns of the factors result in C (see (6.54)) and B (see (6.55)), seems
to be an appropriate choice. Furthermore, from the observability matrix we can use
the following relationship:

Γ2:n+1 = Γ1:nA (6.56)

6.1 Linear Dynamic Systems 137

where the matrices Γ2:n+1 and Γ1:n have been derived by deleting the first and last
row of Γn+1, respectively. The matrix A can then be simply found from

A= Γ +
1:nΓ2:n+1 (6.57)

where Γ +
1:n = (Γ T

1:nΓ1:n)−1Γ T
1:n, and is called the Moore–Penrose pseudo-inverse of

Γ1:n. The Moore–Penrose pseudo-inverse has also been used in the derivation of the
ordinary least-squares estimator via the normal equations (see (5.9)–(5.10)). Finally,
the matrix D is equal to g(0). Consequently, given a unit impulse response, the
system matrices A, B , C, and D can be found. Let us illustrate this by an example
of a second-order process.

Example 6.11 Second-order process: Let a process be described in discrete-time by

x1(t + 1) = x2(t)

x2(t + 1) = −α1x1(t)− α2x2(t)+ β1u(t)

y(t) = x1(t), t ∈ Z
+

with α1 = α2 = β1 = 1 and sampling interval of 1. Consequently, the system matri-
ces are given by

A=
[

0 1
−1 −1

]

, B =
[

0
1

]

, C = [1 0], D = 0

The first eight elements of the unit impulse response, starting at t = 0, are

[0 0 1 −1 0 1 −1 0]

The Hankel matrix H is then given by

H =
⎡

⎣

0 1 −1
1 −1 0

−1 0 1

⎤

⎦ =
⎡

⎣

1 0
0 1

−1 −1

⎤

⎦

[

0 1 −1
1 −1 0

]

where the upmost row of the first matrix on the right-hand side (Γn+1) is C, and the
leftmost column of the second matrix (Ωn+1) is B . Furthermore, given

Γn+1 =
⎡

⎣

1 0
0 1

−1 −1

⎤

⎦

A can be found from

A=
[

1 0
0 1

]+ [0 1
−1 −1

]

=
[

0 1
−1 −1

]

138 6 Dynamic Systems Identification

Clearly, the key problem now is how to factorize H appropriately for some noisy
input–output data set. Consider, therefore, the following state-space model of an LTI
discrete-time system:

x(t + 1) = Ax(t)+Buo(t)+w(t)

yo(t) = Cx(t)+Duo(t)
(6.58)

where uo and yo are noise-free input and output signals. The state vector x is cor-
rupted with an additional system noise term w(t). Let

u(t) = uo(t)+ z(t)

y(t) = yo(t)+ v(t)
(6.59)

where all the errors are assumed to be white. Substituting (6.59) into (6.58) gives

x(t + 1) = Ax(t)+Buo(t)+Bz(t)+w(t)

y(t) = Cx(t)+Duo(t)+Dz(t)+ v(t)
(6.60)

Let Ke(t)= Bz(t)+w(t) and e(t)=Dz(t)+ v(t) with e(t) white. Compose then
the following column vectors of length m− 1 and filled with future values from t to
t +m− 1:

Y(t) = [

y(t) y(t + 1) · · · y(t +m− 1)
]

(6.61)

U(t) = [

u(t) u(t + 1) · · · u(t +m− 1)
]

(6.62)

E(t) = [

e(t) e(t + 1) · · · e(t +m− 1)
]

(6.63)

Z(t) = [

z(t) z(t + 1) · · · z(t +m− 1)
]

(6.64)

Consequently,

Y(t)= Γmx(t)+Hu
mU(t)−Hu

mZ(t)+He
mE(t) (6.65)

with

Γm =

⎡

⎢

⎢

⎢

⎣

C

CA
...

CAm−1

⎤

⎥

⎥

⎥

⎦

Hu
m =

⎡

⎢

⎢

⎢

⎢

⎣

D 0 · · · 0

CB D
...

... · · · . . .

CAm−2B CAm−3B · · · D

⎤

⎥

⎥

⎥

⎥

⎦

6.1 Linear Dynamic Systems 139

He
m =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 · · · 0

CK 1
...

... · · · . . .

CAm−2K CAm−3K · · · 1

⎤

⎥

⎥

⎥

⎥

⎦

This relationship can be even further expanded. Let therefore,

Y = [

Y(1) Y (2) · · · Y(N)
]

(6.66)

U = [

U(1) U(2) · · · U(N)
]

(6.67)

E = [

E(1) E(2) · · · E(N)
]

(6.68)

Z = [

Z(1) Z(2) · · · Z(N)
]

(6.69)

X = [

x(1) x(2) · · · x(N)
]

(6.70)

so that

Y = ΓmX +Hu
mU −Hu

mZ +He
mE (6.71)

with Y ∈ R
(m−1)×N , Γm ∈ R

(m−1)×n, X ∈ R
n×N , etc.

As mentioned before, subspace identification methods aim at estimating the ob-
servability matrix Γm from which the system matrices A, B , C, and D can be esti-
mated. Basically, three subspace identification approaches can be distinguished, that
is,

• output error approach, where Z = 0 and K = 0
• simultaneous output/state error approach, where Z = 0 and K �= 0
• simultaneous output/state/input error approach

In what follows, we will only focus on the simplest case, that is, the output error
approach. The basic output error 4SID method calculates the RQ factorization of
the matrix 1√

N
[UT YT]T , that is,

1√
N

[

U

Y

]

=
[

R11 0
R21 R22

][

Q1
Q2

]

(6.72)

where R is a lower triangular matrix, and Q an orthogonal matrix with QTQ= I .
Notice that the RQ factorization can be easily found from the well-known QR fac-
torization by taking the transpose of both sides of (6.72), so that 1√

N
[U Y] = QR

with R an upper triangular matrix. The system order is determined via the SVD of
R22, namely

R22 = USV T

= [

Us Un

]

[

Ss 0
0 Sn

][

V T
s

V T
n

]

≈ UsSsV
T
s (6.73)

140 6 Dynamic Systems Identification

Table 6.3 Second-order process data

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

u 1 1 −1 −1 1 1 1 −1 −1 −1 −1 −1 −1 −1 1 1

y 0 0 1 0 −2 1 2 −2 1 0 −2 1 0 −2 1 0

Via the separation of S into Ss and Sn, where Ss contains the dominant singular
values, a separation between signal and noise is made. The observation matrix is
now calculated from

̂Γm =UsS
1
2
s (6.74)

from which A, B , C, and D can be found after a least-squares step and by inspec-
tion. The next example will further illustrate the output error 4SID procedure.

Example 6.12 Second-order process: Let the following noise-free input–output
data, as presented in Table 6.3, be given. Using MATLAB’s N4SID, we obtain

A =
[−0.5 0.866

0.866 −0.5

]

, B =
[−1.411

0.095373

]

C = [

0.055064 0.81464
]

, D = 0

K =
[

0
0

]

, x(0)=
[−6.2009

−6.313

]

× 10−16

with JFPE = 3.99 × 10−31 and loss function value of 1.81 × 10−31. Notice the small
error in x̂(0). Furthermore, the estimated transfer function is given by

̂G(q)= −6.43 × 10−7q−2 + q−1

q−2 + q−1 + 1

which, apart from a very small extra term in the numerator, coincides with the exact
transfer function of the system, presented in Example 6.11.

Clearly, in subspace identification the Hankel matrix, for a prespecified predic-
tion horizon m, plays a key role.

6.1.7 *Linear Parameter-varying Model Identification

In this subsection, the identification of discrete-time linear parameter-varying (LPV)
models of nonlinear or time-varying systems is considered. We assume that inputs,
outputs, and the scheduling parameters, which can be interpreted as the “set-point”
of the system, can be directly measured. Furthermore, some form of the functional

6.1 Linear Dynamic Systems 141

dependence of the system parameters on the scheduling parameters is known. Al-
though these models are introduced to describe nonlinear or time-varying systems,
it will be shown in the following that the model can be written as a linear regres-
sion. Recall that a model in linear regression form, as introduced in Chap. 5, allows
us to use direct least-squares estimation methods. However, in this section, we will
only show how to arrive at a linear regression, since from this the next estimation
step becomes rather trivial. Finally, we will demonstrate the identification of a linear
parameter-varying model by an example.

Consider the (noise-free) discrete-time LPV model

y(t)=G(p,q;ϑ)u(t) (6.75)

where p is a measured time-varying scheduling parameter, and ϑ contains the
unknowns of the functional dependence between the system parameters and the
scheduling parameters. In what follows, we assume that G(p,q;ϑ) is of the form

G(p,q;ϑ)= B(p,q)

A(p,q)
(6.76)

where B(p,q) = b0(p) + b1(p)q
−1 + · · · + bnb(p)q

−nb and A(p,q) = 1 +
a1(p)q

−1 + · · · + ana (p)q
−na . Hence, these polynomials contain n = na + nb + 1

unknowns. Furthermore, we assume that p = p(t) is a function of t with t ∈ (Z)+.
To be more specific, we assume that the functions ai and bi are linear combinations
of the known fixed basis functions f1, . . . , fM , so that, for example,

a1(p)= a1
1f1(p)+ · · · + aM1 fM(p) (6.77)

with constant real numbers aj1 . Thus, the problem is to find the parameters aji with

i = 1, . . . , na and b
j
i with i = 0, . . . , nb, j = 1, . . . ,M from input–output data. As

yet, we are free to choose the basis functions. However, in what follows, we choose
these functions as powers of p, that is, fj (p)= pj .

Consequently, the system parameter functions become

ai(p) = a1
i + a2

i p + · · · + aMi pM−1

bi(p) = b1
i + b2

i p + · · · + bMi pM−1 (6.78)

Obviously, many other choices are possible. For a direct estimation of the system
parameters, it will be very helpful if we can write the model as a linear regression.

142 6 Dynamic Systems Identification

Therefore, we define

Θ :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a1
1 · · · aM1

a1
2 · · · aM2
...

...

a1
na

· · · aMna

b1
0 · · · bM0
...

...

b1
nb

· · · bMnb

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.79)

In addition to this, we define the extended regressor Ψ ,

Ψ :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−y(t − 1)
...

−y(t − na)

u(t)
...

u(t − nb)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

1 p(t) · · · p(t)M−1
]

(6.80)

Given these definitions, we obtain the following regression:

y(t)= 〈

Θ,Ψ (t)
〉= Tr

(

ΘT Ψ (t)
)

(6.81)

where 〈·, ·〉 denotes the inner product of matrices (see Appendix A). This result can
be verified as follows:

y(t) =

〈
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a1
1 · · · aM1

a1
2 · · · aM2
...

...

a1
na

· · · aMna

b1
0 · · · bM0
...

...

b1
nb

· · · bMnb

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−y(t − 1) · · · −y(t − 1)p(t)M−1

−y(t − 2) · · · −y(t − 2)p(t)M−1

...
...

u(t) · · · u(t)p(t)M−1

...
...

u(t − nb) · · · u(t − nb)p(t)
M−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

〉

= Tr

⎛

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎣

a1
1 · · · a1

na
b1

0 · · · b1
nb

a2
1 · · · a2

na
· · ·

...
...

aM1 · · · bMnb

⎤

⎥

⎥

⎥

⎥

⎦

6.1 Linear Dynamic Systems 143

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−y(t − 1) · · · −y(t − 1)p(t)M−1

−y(t − 2) · · · −y(t − 2)p(t)M−1

...
...

u(t) · · · u(t)p(t)M−1

...
...

u(t − nb) · · · u(t − nb)p(t)
M−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= [

a1
1 · · · a1

na
b1

0 · · · b1
nb

]

⎡

⎢

⎢

⎢

⎣

−y(t − 1)
−y(t − 2)

...

u(t − nb)

⎤

⎥

⎥

⎥

⎦

+ [

a2
1 · · · a2

na
b2

0 · · · b2
nb

]

⎡

⎢

⎢

⎢

⎣

−p(t)y(t − 1)
−p(t)y(t − 2)

...

p(t)u(t − nb)

⎤

⎥

⎥

⎥

⎦

+ · · ·

+ [

aM1 · · · aMna bM0 · · · bMnb
]

⎡

⎢

⎢

⎢

⎣

−p(t)M−1y(t − 1)
−p(t)M−1y(t − 2)

...

p(t)M−1u(t − nb)

⎤

⎥

⎥

⎥

⎦

(6.82)

After arranging terms we obtain

y(t) = −[a1
1 + a2

1p(t)+ · · · + aM1 p(t)M−1
]

y(t − 1)− · · ·
− [

a1
na

+ a2
na
p(t)+ · · · + aMnap(t)

M−1
]

y(t − na)

+ [

b1
0 + b2

0p(t)+ · · · + bM0 p(t)M−1
]

u(t)+ · · ·
+ [

b1
nb

+ b2
nb
p(t)+ · · · + bMnbp(t)

M−1
]

u(t − nb) (6.83)

In compact notation, this leads to

A(p,q)y(t)= B(p,q)u(t) (6.84)

with p = p(t). Notice that this is exactly the original model we started with in
(6.75)–(6.76).

Algorithm 6.6 Identification of LPV model parameters from input–output data

1. Specify an ARX model structure in terms of na and nb .
2. Specify the basis functions f1(p), . . . , fM(p).
3. Define the vector y := [y(na), . . . , y(N)]T and the matrices Θ , as in (6.79), and

Ψ in terms of fi(p), similar as in (6.80), for na ≥ nb .
4. Expand (6.81) as in (6.83), but now in terms of f1(p), . . . , fM(p).

144 6 Dynamic Systems Identification

Fig. 6.9 Unit step input,
scheduling parameter, and
LPV step response

5. Collect products of fi(p), i = 1, . . . ,M , with y(t− l), l = 1, . . . , na and u(t− l),
l = 0, . . . , nb, respectively, and define Φ .

6. Calculate from (5.10) the least-squares estimate of the unknown M(na + nb)-
dimensional parameter vector ϑ .

Let us illustrate the LPV identification procedure by an example.

Example 6.13 LPV first-order system: Let a first-order process in discrete-time with
varying system parameters be described by

y(t)+ a1(p)y(t − 1)= b0(p)u(t)+ b1(p)u(t − 1)

where

a1(p) = a1
1 + a2

1p + a3
1p

2 = 0.5 + 0.1p − 0.2p2

b0(p) = b1
0 + b2

0p + b3
0p

2 = 0.7 + 0.1p − 0.3p2

b1(p) = b1
1 + b2

1p + b3
1p

2 = 0.9 + 0.1p − 0.4p2

Hence, this LPV model contains nine unknown coefficients. Assume that the
scheduling parameter, time-varying set-point, is given by p(t) = sin(t). The input
to this system is a shifted unit step function, namely u(t)= 0, t < 2, and u(t) = 1,
t ≥ 2. The input, scheduling parameter, and step response are presented in Fig. 6.9,
and the resulting varying system parameters in Figs. 6.10 and 6.11. Let us select the
first ten inputs and outputs (see Table 6.4) for identification, while neglecting the
noninformative data at t = 0.

6.1 Linear Dynamic Systems 145

Fig. 6.10 Time-varying
parameters a1, b0 and b1

Fig. 6.11 Time-varying
parameters a1, b0, and b1 as
functions of p

Given the input–output data, we obtain

t = 2: y(2) =

〈⎡

⎢

⎢

⎣

a1
1 a2

1 a3
1

b1
0 b2

0 b3
0

b1
1 b2

1 b3
1

⎤

⎥

⎥

⎦

,

⎡

⎢

⎣

−y(1) −y(1) sin(2) −y(1) sin2(2)

1 sin(2) sin(2)2

0 0 0

⎤

⎥

⎦

〉

= −[a1
1 + a2

1 sin(2)+ a3
1 sin2(2)

]

y(1)+ · · ·
+ [

b1
0 + b2

0 sin(2)+ b3
0 sin2(2)

] ∗ 1 + · · ·
+ [

b1
1 + b2

1 sin(2)+ b3
1 sin2(2)

] ∗ 0

146 6 Dynamic Systems Identification

Table 6.4 Input and output data for the identification of LPV model

Time 1 2 3 4 5 6 7 8 9 10

u(t) 0 1 1 1 1 1 1 1 1 1

y(t) 0 0.5429 1.3373 0.6334 0.6251 1.2042 0.8520 0.7692 1.1734 0.8306

t = 3: y(3) =

〈⎡

⎢

⎢

⎣

a1
1 a2

1 a3
1

b1
0 b2

0 b3
0

b1
1 b2

1 b3
1

⎤

⎥

⎥

⎦

,

⎡

⎢

⎣

−y(2) −y(2) sin(3) −y(2) sin2(3)

1 sin(3) sin2(3)

1 sin(3) sin2(3)

⎤

⎥

⎦

〉

= −[a1
1 + a2

1 sin(3)+ a3
1 sin2(3)

]

y(2)+ · · ·
+ [

b1
0 + b2

0 sin(3)+ b3
0 sin2(3)

] ∗ 1 + · · ·
+ [

b1
1 + b2

1 sin(3)+ b3
1 sin2(3)

] ∗ 1

t = 4: y(4) =

〈
⎡

⎢

⎣

a1
1 a2

1 a3
1

b1
0 b2

0 b3
0

b1
1 b2

1 b3
1

⎤

⎥

⎦ ,

⎡

⎣

[2pt] − y(3) −y(3) sin(4) −y(3) sin2(4)
1 sin(4) sin2(4)

1 sin(4) sin2(4)

⎤

⎦

〉

= −[a1
1 + a2

1 sin(4)+ a3
1 sin2(4)

]

y(3)+ · · ·
+ [

b1
0 + b2

0 sin(4)+ b3
0 sin2(4)

] ∗ 1 + · · ·
+ [

b1
1 + b2

1 sin(4)+ b3
1 sin2(4)

] ∗ 1

...

From these expressions at each time instant t we can easily build the linear regres-
sion y =Φϑ , where y = [y(2), . . . , y(10)]T , ϑ = [a1

1, . . . , b
3
1]T , and

Φ =

⎡

⎢

⎢

⎢

⎣

0 0 0 1 sin(2) sin2(2) 0 0 0
−y(2) −y(2) sin(3) −y(2) sin2(3) 1 sin(3) sin2(3) 1 sin(3) sin2(3)

−y(3) −y(3) sin(4) −y(3) sin2(4)
.
.
.

.

.

.
.
.
. 1 sin(4) sin2(4)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

⎤

⎥

⎥

⎥

⎦

Direct inversion Φ−1y gives

̂ϑ = [0.5000 0.1000 −0.2000 4.2743 0.8667 −5.4661 −2.6743 −0.6667 4.7661]
with perfect estimates for the coefficients related to a1(p) and residuals that are very
close to zero. A careful evaluation of Φ leads to the conclusion that the matrix is
close to singular. Hence, in this case a step input is not a very good choice; a white
noise input signal would have been a better choice.

6.1 Linear Dynamic Systems 147

6.1.8 *Orthogonal Basis Functions

Recall that the transfer function in a convolution or impulse response model is given
by

G(q)=
∞
∑

k=0

g(k)q−k (6.85)

This expression can be interpreted as a series expansion with coefficients g(k) and
standard pulse basis fk(q)= q−k . In general terms, (6.85) can also be written as

G(q)=
∞
∑

k=0

L(k)fk(q) (6.86)

where L(k) for k = 0,1,2, . . . is the real-valued expansion coefficient, and fk(q) is
a so-called basis function. Preferably, the so-called orthogonal basis functions are
chosen for efficient calculation. For example, instead of q−k , we may choose

fk(q,α)= q−k

q − α
(6.87)

where, as a natural choice, α is the system pole closest to the unit circle. However, in
practice, α has to be obtained from prior knowledge or estimated from experimental
data first. Let us illustrate the idea by a simple example.

Example 6.14 First-order system: Let a stable process be described by

y(t)= bq−1

1 − αq−1

Given an observed input–output data set, we can try to estimate the impulse re-
sponse coefficients g(k) in G(q) = ∑∞

k=0 L(k)fk(q) for this process. Notice then
that the relationship between g(k) and the unknown process parameters α and b,
after polynomial division of b

(q−α) , is given by

g(k)= αkb for k = 1,2, . . .

Consequently, for parameter α close to 1, many impulse response coefficients must
be estimated. Alternatively, choosing fk(q,α) according to (6.87) gives

G(q) =
∞
∑

k=0

L(k)
q−k

q − α

= b

q − α

and thus, for α obtained a priori, only one coefficient has to be estimated from the
experimental data, i.e., L(0)= b, because L(k)= 0 for k = 1,2,

148 6 Dynamic Systems Identification

Notice from this example that this identification approach using orthogonal basis
functions avoids the choice of an appropriate noise model. Basically, the process
dynamics are already governed by the basis functions, but in practice most often
some iterations are needed to have a good estimate of the unknown parameter a.

Another type of a frequently used basis function is the Laguerre polynomial given
by

fk(q,α)=
√

1 − α2q
(1 − αq)k

(q − α)k+1
, |α|< 1 (6.88)

This idea has been generalized using the expansion

G(q)= q−1
∞
∑

k=0

L(k)fk(q) (6.89)

Herein, fk(q) := (qI −A)−1BGk
b(q) is a so-called orthogonal basis function, with

(A,B) system matrices in a linear state-space representation, and Gk
b(q) is a func-

tion that is able to incorporate dynamics of any complexity.

6.1.9 *Closed-loop Identification

So far, the input–output data has been obtained from an open-loop system configu-
ration, as in Fig. 1.5. However, identification of a system from closed-loop input–
output data requires a special treatment. Consider for this the following SISO LTI
control system configuration (Fig. 6.12) with P(q) and Q(q) rational transfer func-
tions.

Let us first have a look at the different relationships in this configuration. For
instance, the transfer function between r , d , and y is given by

y(t) = P(q)u(t)+ d(t)

= P(q)Q(q)e(t)+ d(t)

= P(q)Q(q)
(

r(t)− y(t)
)+ d(t)

Consequently,

y(t)= P(q)Q(q)

1 + P(q)Q(q)
r(t)+ 1

1 + P(q)Q(q)
d(t) (6.90)

Commonly, it is assumed that Q(q) is known. However, in many industrial situa-
tions, due to, for instance, scaling and interfacing, this knowledge may be tricky to
use. Nevertheless, for now we assume that Q(q) is given and thus only the param-
eters in P(q) must be estimated. However, let us first illustrate the key problem in
closed-loop identification by a simple example.

6.1 Linear Dynamic Systems 149

Fig. 6.12 Feedback system

Example 6.15 P-control: Consider a plant with the transfer function

P(q)= bq−1

1 + f q−1

and assume further that the plant is controlled under proportional feedback such that

u(t) = Ke(t)

= K
[

r(t)− y(t)
]

Hence, Q(q)=K . Applying (6.90) gives

y(t) =
bq−1

1+f q−1K

1 + bq−1

1+f q−1K
r(t)+ 1

1 + bq−1

1+f q−1K
d(t)

= bKq−1

1 + (bK + f)q−1
r(t)+ 1 + f q−1

1 + (bK + f)q−1
d(t)

Thus,

y(t)= −(bK + f)y(t − 1)+ bKr(t − 1)+ d(t)+ f d(t − 1)

From this we can deduce the following case for r(t) = 0, and the filtered noise
sequence e(t)= (1 + f q−1)d(t) is white. Then,

y(t)= −(bK + f)y(t − 1)+ e(t)

As a consequence of this, the parameters b and f can never be estimated uniquely
irrespective of knowledge of the controller gain K . However, given the gain K and
using the reference signal r(t) to excite the system, thus choosing r(t) �= 0, the
parameter b can be calculated from the estimate of bK .

Notice from the example that after substitution of P(q) and Q(q) into (6.90) a
linear difference equation model structure results. The parameters in this model can
be estimated straightforward using the methods in Sects. 6.1.2–6.1.4. Basically, for
a specific application, an appropriate noise model structure must be chosen.

150 6 Dynamic Systems Identification

A fundamental problem arises when to signal-to-noise ratio is small, so that
r(t) � d(t). More specifically, let us assume that P(q)Q(q)r(t) � d(t). Conse-
quently, from (6.90) we have

y(t)≈ 1

1 + P(q)Q(q)
d(t) (6.91)

Let us assume that we have a zero-mean noise, so that E[d(t)] = 0. Consequently,
E[1 + P(q)Q(q)y] = E[d(t)] = 0, and thus P ≈ −1

Q
. In other words, when the

signal-to-noise ratio is small, closed-loop identification will not be able to find
the true plant. Consequently, a persistently exciting reference signal with sufficient
power must be chosen as an input to the closed-loop system.

In literature, three main groups of closed-loop identification methods have been
distinguished, namely

• Direct identification
• Indirect identification
• Joint I–O identification

In particular, the direct approach can be seen as a natural approach to closed-loop
data analysis. Therefore, in what follows, our focus will be on this approach. In
the direct approach the input u and output y are used in the same way as in open
loop, ignoring any possible feedback and not using the reference signal r . Unstable
systems can be handled as well, as long as the closed loop system and the predictor
are stable. The last condition implies that any of the unstable poles of G(q) (see
(6.12)) must be shared by H(q), like in the ARX and ARMAX models.

Example 6.16 P-control: Consider again the plant with the transfer function

P(q)= bq−1

1 + f q−1

with b = 0.5 and f = 1.2, so that the plant is unstable. Let the controller gain K be
equal to −0.5, so that the stable transfer function from r to y is given by

T (q)= −0.25q−1

1 + 0.95q−1

with steady-state gain of −0.1282.
Furthermore, let r(t) be a step function. The responses for the noise-free case

are presented in Fig. 6.13. Clearly, for this discrete-time process with P-control,
a stable closed-loop transfer function will always go together with a substantial
off-set. Hence, for better closed-loop performance, a more advanced controller is
needed. However, the design of such a controller is out of the scope of the book.
In what follows, we will focus in particular on the identification of T (q), given
reference input and output data from the closed-loop system.

6.1 Linear Dynamic Systems 151

Fig. 6.13 Signals of
closed-loop system

Fig. 6.14 Observed and
simulated (- -) signals of
closed-loop system

For the identification of this process, let us start with the following ARX model
structure, relating the reference input r(t) to y(t):

y(t)= −ay(t − 1)+ brr(t − 1)+ e(t)

From the reference input–output data presented in Fig. 6.13 we obtain â = 0.95
and̂br = −0.25. Consequently, the original parameter values of T (q) are recovered
from the data. From these parameters of T (q) we obtain the process parameters
̂f = â −̂bK = 1.2 and ̂b = ̂br

K
= 0.5 (see Example 6.15). If zero-mean normally

distributed noise with variance of 0.0025 is added to the output data, then the follow-
ing estimates of the process parameter are obtained: ̂f = 1.0169,̂b = 0.4736, again
via the estimates â and ̂br in the transfer function T (q) and using an ARX model
structure. The closed-loop input–output data and corresponding ∞-steps ahead pre-

152 6 Dynamic Systems Identification

dictions with steady-state value of −0.1330, as a result of a step in the reference
input, can be seen in Fig. 6.14. Clearly, appropriate estimation results have been ob-
tained, and thus there is no direct need for a more advanced noise model structure.

6.2 Nonlinear Dynamic Systems

6.2.1 Simulation Models

Recall that the general description of a finite-dimensional system, see (1.2), is given
by

dx(t)

dt
= f

(

t, x(t), u(t),w(t);ϑ), x(0)= x0

y(t) = h
(

t, x(t), u(t);ϑ)+ v(t), t ∈ R

(6.92)

where generally both function f (·) and h(·) are found from prior system knowl-
edge. These functions may, however, be found after an approximation of an infinite-
dimensional or so-called distributed parameter system. Notice that in this descrip-
tion, also sequences of disturbances w(t) and v(t) have been incorporated. Recall
that these disturbances represent the errors in the modeling, due, for instance, to
approximations and unmodeled effects, and measurement process, respectively. In
a real implementation usually a discrete-time version of this model is used,

x(t + 1) = f
(

t, x(t), u(t),w(t);ϑ), x(0)= x0

y(t) = h
(

t, x(t), u(t);ϑ)+ v(t), t ∈ Z
+ (6.93)

This representation is well suited for identification. However, it should be men-
tioned that neither w(t) nor v(t) are known in advance. These quantities can only
be evaluated afterward when an estimate of the model parameter vector ϑ is avail-
able. Assuming that both w(t) and v(t) have zero mean, the following predictor can
be derived from (6.93):

x(t + 1) = f
(

t, x(t), u(t),0;ϑ), x(0)= x0

ŷ(t) = h
(

t, x(t), u(t);ϑ), t ∈ Q
+ (6.94)

which is also called a simulation model. This simulation model, in which Q
+ is

the set of positive rational numbers, can thus also be used to describe the system
behavior between the sampling instants to avoid large integration steps. Only at
sampling instants, t = kTs with k = 1,2, . . . and Ts the sampling interval, the full
discrete-time description with disturbances is used.

Apart from simulation studies, other types of analysis most often require a lin-
earized model, which can be found from linearizing the nonlinear system around
reference trajectories x∗(t) and u∗(t). In Part III these reference trajectories may
even be functions of the parameter estimate ̂ϑ , but for the moment, it suffices to

6.2 Nonlinear Dynamic Systems 153

disregard this dependence. For the linearization of the nonlinear system (6.94), let
us introduce the differences

Δx(t) = x(t)− x∗(t)

Δu(t) = u(t)− u∗(t)

Δy(t) = y(t)− h
(

t, x∗(t), u∗(t)
)

Using a Taylor series expansion of both f (·) and h(·) in (6.94) and neglecting the
nonlinear (higher-order) terms in the resulting approximate model, we arrive at

Δx(t + 1) = Fx(t)Δx(t)+ Fu(t)Δu(t)

Δŷ(t) = Hx(t)Δx(t)+Hu(t)Δu(t)
(6.95)

where

Fx(t) = ∂

∂x
f (t, x,u;ϑ)

∣

∣

∣

∣

x∗(t),u∗(t)
, Fu(t)= ∂

∂u
f (t, x,u;ϑ)

∣

∣

∣

∣

x∗(t),u∗(t)

Hx(t) = ∂

∂x
h(t, x,u;ϑ)

∣

∣

∣

∣

x∗(t),u∗(t)
, Hu(t)= ∂

∂u
h(t, x,u;ϑ)

∣

∣

∣

∣

x∗(t),u∗(t)

Notice that the simulation model (6.94) is approximated by a linear, time-varying
model (6.95), which in principle is only a valid approximation around the trajecto-
ries x∗(t) and u∗(t).

6.2.2 *Parameter Sensitivity

Recall that for nonlinear static systems with ϑ ∈ R
p , ŷ(t) ∈ R

s , and t = 1, . . . ,N ,
the sensitivity matrix is given by

X(ϑ)= [

ψ(1, ϑ), . . . ,ψ(M,ϑ)
]T (6.96)

with M = N s and ψ(t,ϑ) := dŷ(t)
dϑ ∈ R

s×p for t = 1, . . . ,M . For the noise-free
continuous-time nonlinear dynamic case, with x(t) ∈ R

n,

dx(t)

dt
= f

(

t, x(t), u(t);ϑ) (6.97)

ŷ(t) = h
(

t, x(t), u(t);ϑ) (6.98)

the parameter sensitivity will be calculated in two steps. First, let us define the state
sensitivity matrix Sx(t,ϑ) := dx(t)

dϑ ∈ R
n×p . Taking the derivative with respect to ϑ

on both sides of (6.97) gives

∂

∂ϑ

dx(t)

dt
= ∂f (t, x(t), u(t);ϑ)

∂ϑ
(6.99)

154 6 Dynamic Systems Identification

If the parameters are constant, i.e., ∂
∂ϑ

dx(t)
dt = d

dt
∂x(t)
∂ϑ

, then

dSx(t,ϑ)

dt
= ∂f (t, x(t), u(t);ϑ)

∂x
Sx(t,ϑ)+ ∂f (t, x(t), u(t);ϑ)

∂ϑ
(6.100)

where ∂f (t,x(t),u(t);ϑ)
∂x

∈ R
n×n is the Jacobi matrix (see also Fx(t) in (6.95)) and

∂f (t,x(t),u(t);ϑ)
∂ϑ

∈ R
n×p . In addition to this, the initial conditions must be speci-

fied. Clearly, the initial values of x(t) do not depend on the parameters and thus
Sx(0, ϑ) = 0. However, the initial sensitivity with respect to an initial condition is
equal to 1. In a second step, the output sensitivity matrix Sy(t,ϑ) := dŷ(t)

dϑ ∈ R
s×p

is calculated from

Sy(t,ϑ) = dh(t, x(t), u(t);ϑ)
dt

= ∂h(t, x(t), u(t);ϑ)
∂x

Sx(t,ϑ)+ ∂h(t, x(t), u(t);ϑ)
∂ϑ

(6.101)

Then, in a final step the sensitivity vector is defined as

ψ(t,ϑ) := Vec
(

Sy(t,ϑ)
T
)

(6.102)

where the operator Vec simply stacks the columns of Sy(t,ϑ)T on top of each other,
so that the first p elements of ψ contain the parameter sensitivities with respect to
the first output.

Let us illustrate the procedure by a simple bioreactor example.

Example 6.17 Bioreactor: The substrate concentration (S in mg/l) in a fed-batch
bioreactor with Monod kinetic substrate consumption can be described by

dS

dt
= −μ S

KS + S
+ u, S(0)= S0

where μ is the decay rate in mg/l/min, KS is the half-saturation constant in mg/l, and
u is the feed in mg/l/min. Notice that in the short-hand notation the time arguments
are not explicitly shown. The Jacobi matrix is given by

∂f (·)
∂x

= −μ KS

(KS + S)2

Consequently, the parameter sensitivities are described by

dSx
dt

= d

dt

[dS
dμ

dS
dKS

]

= [−μ KS

(KS+S)2
dS
dμ − S

KS+S −μ KS

(KS+S)2
dS

dKS
+μ S

(KS+S)2
]

6.2 Nonlinear Dynamic Systems 155

Fig. 6.15 Substrate concentration (top figure) and parameter sensitivities (indicated by KS and μ,
respectively, in bottom figure) in a fed-batch bioreactor with Monod kinetics

with Sx(0) = [0 0]. Let the feed be chosen such that u = μ. Then, an analytical
solution of the differential equation with S(0)= S0 can be found and is given by

S(t) = −KS +
√

K2
S + 2μKSt + 2KS0 + S2

0

= [S0=0] −KS +
√

K2
S + 2μKSt

Hence, for S0 = 0, the following parameter sensitivities are found:

Sx(t,ϑ) = [dS
dμ

dS
dKS

]

= [Kt
√

K2
S+2μKSt

−1 + K+μt
√

K2
S+2μKSt

]

The trajectories of the substrate concentration, S(t), and both sensitivities, Sx(t,ϑ),
for μ = 0.1 mg/l/min and KS = 1 mg/l are shown in Fig. 6.15. Basically, the feed
has been chosen such that the sensitivity of S with respect to KS (i.e., SKS

) is maxi-
mized. Notice from Fig. 6.15 that both S and SKS

show a monotonically increasing
behavior. Hence, for this specific choice of the feed, the sensitivity of S(t) with re-
spect to KS is increased by increasing the substrate concentration, according to a

156 6 Dynamic Systems Identification

square root law. The increasing sensitivity for KS allows subsequently a very good
estimate of KS from fed-batch bioreactor data with u= μ and S0 = 0.

6.2.3 Nonlinear Regressions

Using the linearization techniques presented in the previous section, but now with
respect to ϑ , the linearized simulation model (6.95) can be written in terms of the
linear regression

ŷ(t)= φT (t)ϑ (6.103)

which can be used to directly estimate the parameters in the linearized model. How-
ever, often this is not required; in order to estimate the physically interpretable pa-
rameters, the full nonlinear model should be used. Let us therefore introduce the
nonlinear predictor

ŷ(t)=Π
(

t,Zt−1;ϑ) (6.104)

where Zt−1 denotes the set of input and output measurements available at time t .
The function Π(·) can be viewed as the result of a black-box or mechanistic mod-
eling procedure with or without filtering. In case the predictor is based on a simu-
lation model, Zt−1 contains only the initial output values and the past input values.
Equation (6.104) is thus a further generalization of the nonlinear predictor (5.66)
derived for the static case and of the pseudo-linear regressions (6.17) and (6.20)
derived for some of the linear dynamic model structures. Hence, in general, the pre-
diction ŷ(t) can be constructed by evaluating the model up to time t for given inputs
u(0), . . . , u(t−1), outputs y(0), . . . , y(t−1) and parameter vector ϑ . Hence, (6.93)
can be written as

y(t)=Π(t,Zt−1;ϑ)+ e(t) (6.105)

where e(t) can be considered now as a multi-step-ahead prediction error. This non-
linear regression model forms the starting point for parameter estimation.

6.2.4 Iterative Solution

Clearly, the unknown parameter ϑ in (6.105) cannot be found directly from the data.
As in the nonlinear static case, an iterative solution is required. Starting with an ini-
tial guess ̂ϑ(0), the model predictions starting at y(0) can be found using (6.104),
which in most cases just requires a model simulation. If, however, the initial con-
ditions are also unknown, they can be easily included in ̂ϑ(0), so that the initial
conditions are simultaneously estimated with the unknown model parameters. On
the basis of output measurements and model output predictions, the prediction er-
rors can be evaluated to form the sum of squares. In the next iteration, new values of

6.2 Nonlinear Dynamic Systems 157

the estimates are required to form̂ϑ(1), which can subsequently be used in the simu-
lation model. The simulation model with parameter vector̂ϑ(1) ultimately leads to a
new sum of squares of the prediction errors. Notice then that this nonlinear estima-
tion problem does not deviate too much from the one presented for the static case.
The only difference is that now a nonlinear dynamic simulation, with more compu-
tational costs, instead of a nonlinear function evaluation is needed. Hence, the same
kind of optimization algorithms as presented in Sect. 5.2.3 can be used here.

6.2.5 Model Reparameterization: Dynamic Case

As mentioned before, the key issue in solving nonlinear estimation problems by
iterative optimization methods is that a global solution cannot be guaranteed. As in
Sect. 5.2.5, we can try to reparameterize the model so that a linear regression results.
As extensively shown in Chap. 5, the linear regression type of model allows a direct
estimation of the unknown parameters, via matrix inversion.

The following example of model reparameterization of a dynamic system in dis-
crete time has been inspired by Ljung [Lju87].

Example 6.18 Solar-heated house: Consider a solar-heated house with a solar panel
collector constructed on the roof. The air in the solar panel collector is heated by the
sun and is fanned to a heat storage. The problem then is how to find a relationship be-
tween the solar radiation I , fan velocity u, and the temperature in the heat storage y.
Ljung introduced a variable x(t) for the temperature of the solar panel collector at
time t . In discrete time, the heating of the air in the collector [= x(t + 1)− x(t)] is
approximately equal to heat supplied by the sun [= d2.I (t)] minus loss of heat to
the environment [= d3.x(t)] minus heat transported to the storage [= d0.x(t).u(t)],
so that

x(t + 1)− x(t)= d2.I (t)− d3.x(t)− d0.x(t).u(t)

The increase of storage temperature [= y(t +1)−y(t)] is equal to the heat supplied
from the collector [= d0.x(t).u(t)] minus losses to the environment [= d1.y(t)],
that is,

y(t + 1)− y(t)= d0.x(t).u(t)− d1.y(t)

Let u, I , and y be frequently measured; then the unknowns in this model are
d0, . . . , d3 and x(t). However, x can be eliminated from these relationships. Then,

y(t) = (1 − d1)y(t − 1)+ (1 − d3)
y(t − 1)u(t − 1)

u(t − 2)

+ (d3 − 1)(1 + d1)
y(t − 2)u(t − 1)

u(t − 2)
+ d0d2u(t − 1)I (t − 2)

− d0u(t − 1)y(t − 1)+ d0(1 + d1)u(t − 1)y(t − 2)

158 6 Dynamic Systems Identification

which is clearly a nonlinear relationship in the unknown parameters d0, . . . , d3.
A straightforward solution is then to apply one of the search routines. However,
as mentioned before, these routines do not necessarily provide a global optimum of
the nonlinear least-squares problem. In this case, Ljung suggested to reparameterize
the model as

ϑ1 = (1 − d1) φ1(t)= y(t − 1)

ϑ2 = (1 − d3) φ2(t)= y(t−1)u(t−1)
u(t−2)

ϑ3 = (d3 − 1)(1 + d1) φ3(t)= y(t−2)u(t−1)
u(t−2)

ϑ4 = d0d2 φ4(t)= u(t − 1)I (t − 2)

ϑ5 = −d0 φ5(t)= u(t − 1)y(t − 1)

ϑ6 = d0(1 + d1) φ6(t)= u(t − 1)y(t − 2)

ϑ = [ϑ1, ϑ2, . . . , ϑ6]T φ(t)= [

φ1(t), φ2(t), . . . , φ6(t)
]T

which leads to the noise-free linear regression

y(t,ϑ)= φ(t)T ϑ

and thus to a direct estimation of the parameter vector ϑ . However, the algebraic
relationship between these parameters has been lost, which may result in physically
unrealistic estimates.

Furthermore, in addition to the possible existence of local minima, iterative opti-
mization methods can be very time-consuming. Therefore, in practice, the number
of parameters to be estimated should usually be limited to 5–7. Hence, given the
input–output data set, it is important to adjust only the most sensitive parameters or
parameter combinations.

Let us demonstrate this approach to the identification of the dissolved oxygen
(DO) dynamics in an activated sludge plant. In this continuous-time grey-box model-
ing example, model reparameterization of the physically interpretable model struc-
ture implies a systematic reduction of the number of parameters to be estimated.
In addition to this, it also leads to a reduction in the correlation between parameter
estimates.

Example 6.19 Dissolved Oxygen (DO) dynamics (based on [LKvS96]): A general
activated sludge plant layout is presented in Fig. 6.16, where AT indicates the aera-
tion tank with actual DO concentration C(t) and volume V .

The a priori knowledge of the DO dynamics in the completely mixed aeration
tank of this pilot plant layout is represented by the following model:

dC(t)

dt
= −f (C)ract(t)+ kLa(qair)

[

Cs −C(t)
]

(6.106)

− qin + qr

V
C(t)

6.2 Nonlinear Dynamic Systems 159

Fig. 6.16 Activated sludge
plant layout

kLa(qair) = αqair(t)+ γ (6.107)

f (C) = C(t)

KC +C(t)
(6.108)

where qin = qr = 0.8 l/min and V = 475 l. The first term on the right-hand side of
the differential equation represents the consumption of DO for biodegradation of
the substrate entering the plant, which may be limited by the DO concentration. The
second term expresses the amount of DO as a result of forced aeration with air flow
(qair), and the last term represents the outflow of DO. The unknown parameters in
this model are α, γ , KC , and Cs .

From previous experiments it was roughly known that the saturation concentra-
tion Cs = 9.23 mg/l, the so-called Monod constant KC = 0.3 mg/l, and the parame-
ters in the oxygen transfer relation α = 3.34×10−3 l−1 and γ = 5.9×10−2 min−1.
The inputs in this model are qair(t) and ract(t), which have been measured directly
with a respirometer. On the basis of this, experimental inputs have been designed
for a period of 24 hours. The output equation is given by

y(t)= C(t)+ e(t) (6.109)

However, the experiment aborted, so that only data for the first 11 hours became
available (see Fig. 6.17). The corresponding output y(t) and disturbance ract(t) are
also presented (see Fig. 6.18).

The model fit with optimized parameters α, γ , KC , and Cs appeared to be un-
satisfactory. Consequently, the model structure was modified. First, it was decided
to extend the kLa relationship with a term proportional to the square root of qair.
Secondly, based on cross-correlation analysis, a dead time (Δ) was introduced for
qair. Thirdly, a scaling factor (fmax) to ract was introduced in order to trace a pos-
sible systematic error in this signal. Hence, the following modifications were sug-
gested:

kLa(qair) = αqair(t −Δ)+ β
√

qair(t −Δ)+ γ (6.110)

f (C) = fmax
C(t)

KC +C(t)
(6.111)

Notice that the model contains now seven unknown parameters that need to be
estimated from the data. In the optimization procedure all parameters have been

160 6 Dynamic Systems Identification

Fig. 6.17 Designed experimental air flow (m3 h−1) and influent wastage (%)

scaled in advance to reduce numerical problems. The results for t ∈ [0,150] min
with a sampling interval of one minute, which makes it a continuous-discrete time
system, is presented in Table 6.5 (column 1). The last row in Table 6.5 shows
the corresponding standard deviation of the prediction errors. The continuous-
discrete time system description allows a detailed simulation of the DO-dynamics
with, for example, time-varying integration steps between sampling time instants.
Consequently, the residuals are evaluated at the sampling time instants only,
and thus the objective function is, as shown before, a (weighted) finite sum of
squares.

The estimated value of fmax, close to one, confirms the correctness of the mea-
sured ract. Thus, for the time being, fmax is fixed at one. As the dead time Δ is
caused by the electro-mechanical part of the system, and thus will be largely time-
invariant, it is fixed at 0.5 min. The optimal estimates for the remaining five param-
eters, thus with Δ and fmax fixed, are presented in column 2 of Table 6.5. Notice
that σε , the standard deviation of the prediction errors, is hardly increased by fixing
fmax and Δ. From Fig. 6.19 we may conclude that the model output satisfactorily
fits the data.

In the next two steps, successive reductions of the parameter dimensionality were
made on the basis of analysis of dominant directions in the parameter space. For this
purpose, consider the following covariance matrix, using (5.80), associated with the

6.2 Nonlinear Dynamic Systems 161

Fig. 6.18 Measured DO and ract during the experiment

Table 6.5 Estimation results

Parameter Estimated values Exponent

Column 1 Column 2 Column 3 Column 4

Δ (min) 0.5

fmax 1.04

α (l−1) −0.82 −0.80 −1.29 10−3

β (l− 1
2 min− 1

2) 1.88 1.85 3.60 2.13 10−2

γ (min−1) −4.71 −4.67 −8.33 −4.51 10−2

KC (mg l−1) 0.54 0.54 0.29 3.16

Cs (mg l−1) 17.5 17.4

σε (mg l−1) 6.8 6.8 9.4 9.6 10−2

last estimates:

Cov̂ϑ =

⎡

⎢

⎢

⎢

⎢

⎣

0.0320 −0.046 0.1146 0.0514 0.1543
−0.046 0.0759 −0.185 −0.097 −0.365
0.1146 −0.185 0.4595 0.2176 0.8408
0.0514 −0.097 0.2176 0.1833 0.6295
0.1543 −0.365 0.8408 0.6295 2.9952

⎤

⎥

⎥

⎥

⎥

⎦

162 6 Dynamic Systems Identification

Fig. 6.19 Measured (. . .) and predicted (—) output for the case with five parameters

From this covariance matrix it is immediately clear that the variance of ̂Cs , which
is equal to 2.9952, is rather large. Further analysis of the matrix with eigenvectors
of Cov̂ϑ :

M =

⎡

⎢

⎢

⎢

⎢

⎣

0.5669 0.7682 0.0679 0.2839 0.0561
0.8144 −0.4763 −0.0275 −0.3067 −0.1225
0.1176 −0.3931 −0.2446 0.8309 0.2852
0.0182 −0.1619 0.9565 0.1330 0.2023
0.0331 0.0468 −0.1411 −0.3424 0.9271

⎤

⎥

⎥

⎥

⎥

⎦

with associated eigenvalues (related to the corresponding column of M)

λi ∈ {−0.0001, 0.0006, 0.0412, 0.2554, 3.4487}
reveals that the largest eigenvalue is about 15 times the second largest, indicating an
insensitive direction with large uncertainty in the parameter space (see Sect. 5.1.6
and Appendix B). The accompanying eigenvector that spans this insensitive direc-
tion (last column of M) is dominated by the fifth parameter, Cs . This result implies
that the errors in the estimate of Cs have only minor influences on the sum of squares
of the prediction errors. It is worth mentioning that the eigenvalues of the covariance
matrix are the squared values of the singular values related to the sensitivity matrix
associated with this estimation problem.

The estimated value of Cs is much larger than the physically expected value,
which should be in the range of 8–10 mg/l. In view of the uncertainty in the esti-
mate of Cs , it was decided to estimate both Cs and the parameters determining kLa
from the measurements at high DO concentrations, that is, for t ∈ [300,450] min
(see Fig. 6.18). From these data it has been found that Cs = 9.12 mg/l.

In the following analysis, Cs was fixed at this value, which slightly deteriorates
the results for lower DO concentrations. However, it makes the model much more
acceptable to engineers in the field of application. Estimation of the resulting four
parameters, again for t ∈ [0,150] min and with Δ, fmax, and Cs fixed, is found in
column 3 of Table 6.5. Since the estimated value of α is rather small, the model
can be further reduced by setting α equal to zero. The effect of this is presented in

6.3 Historical Notes and References 163

Table 6.6 Estimation results
reparameterized model Parameter Estimated values

Column 1 Column 2

α′ (mg l−1.5 min− 1
2) 0.166 0.1610

β ′ (l− 1
2 min− 1

2) −1.32 × 10−2 −6.22 × 10−3

γ ′ (min−1) 5.20 × 10−2

δ′ (mg l−1 min−1) −0.429 −0.383

KC (mg l−1) 0.627 0.602

σε (mg l−1) 7.3 × 10−2 7.4 × 10−2

column 4 of Table 6.5, indicating a not too large loss in performance. A next step
for final acceptation of the model structure is then to cross-validate this model with
fresh data from a new experiment.

One problem that remains is the large correlation between the estimates of β
and γ . This large correlation may well become a stumbling block when applying
recursive techniques, to be treated in Part III, for online implementation. A possible
way out is to reparameterize the initial model so that the parameter estimates be-
come less correlated. Most correlation is caused by the products of β and γ with Cs

in the DO model. This correlation is removed by defining a new set of parameters.
Let therefore α′ = β ∗Cs , β ′ = −β , γ ′ = −γ , and δ′ = γ ∗Cs . Then

dC(t)

dt
= −f (C)ract(t)+ α′√qair(t −Δ)

+ β ′√qair(t −Δ)C(t)+ γ ′C(t)

− qin + qr

V
C(t)+ δ′ (6.112)

This reparameterization offers some model whiteness for an increase in indepen-
dence between the estimates. The estimated values can be viewed from Table 6.6
(column 1).

Analysis of the covariance matrix shows that γ ′ is insignificant. Consequently, it
should be possible to fix γ ′ at zero without introducing a large error (see Table 6.6,
column 2). Still a large correlation exists, especially between the parameter esti-
mates of β ′ and KC , but it is less profound than that between β and γ . Hence, this
model structure with γ ′ = 0 will be used in future applications.

6.3 Historical Notes and References

Most of the basic material in this chapter can be found in the books of Norton
[Nor86] and Ljung [Lju87, Lju99b], which, as mentioned before, have been a start-
ing point for this book. Especially, the unification of identification methods for dy-
namic system under the umbrella of the so-called prediction-error methods has been
a big step forward.

164 6 Dynamic Systems Identification

For practical use, the choice of an appropriate sampling interval is crucial, as a
wrong choice may easily lead to a drastic increase of the variance of the estimates
(see, for instance, [Lju87], p. 452). It has been found that very fast sampling leads
to numerical problems, optimal choices of the sampling interval will lie in the range
of time constants of the system, and that too fast sampling may radically increase
the estimation variance. Some historical references to optimal sampling are [Sak61,
DI82, BBF87, ZWR91, DW95]. In addition to the choice of the sampling rate, the
choice of an appropriate presampling filter is also important. A basic and natural
choice for a presampling filter is an integrator.

In this chapter only linear model structure selection was emphasized, with a focus
on Akaike’s criterion [Aka74]. Following Ljung [Lju87], the criterion has been for-
mulated as the Final Prediction Error (FPE) criterion. However, many other criteria
have been formulated as well, see [BA02] for an overview.

Parameter sensitivity studies are essential when identifying complex nonlinear
systems. It helps to detect which parameters dominate the system’s behavior. Sen-
sitivity analysis is applied in many research areas. However, for a general theory on
sensitivities, we refer to [TV72].

The algorithms presented in this chapter are at the heart of the MATLAB es-
timation routines, as arx, armax, iv, oe, and pem. For more advanced estimation
routines, related to Box–Jenkins model structures, extended Instrumental Variables
techniques, and subspace identification, see the MATLAB routines bj, iv4, and
n4sid.

For the estimation of parameters in nonlinear models, usually iterative optimiza-
tion algorithms are used, as presented in Sect. 5.2.3. However, for special classes
of nonlinear systems, dedicated solutions became available, see for Hammerstein
type of models (with only input nonlinearities) [Paw91, Gre00, Bai02, WZL09].
For Wiener type of models (with only output nonlinearities), we refer to [Wig93,
Gre94, Gre98, Bai03b, BRJ09, GRC09], and for Hammerstein–Wiener identifica-
tion, to [Bai02]. Finally, for the identification of rational systems, see also Exam-
ples 5.23–5.25 for static rational relationships, we refer to [Zhu05, DK09, KD09].

Subspace identification is essentially based on classical realization theory. In the
1990s many methods based on this principle were published, see [VD92, vOdM95,
Vib95] to mention a few from the beginning. Since then many more papers have
appeared, see [VH05] for a recent review. A route that was not further investigated
in this book, but which may be valuable if one wants to obtain a state-space model
from very limited prior knowledge, is to start from an identified input–output rela-
tionship and, using realization theory, to obtain a state-space model realization (see
also Fig. 2.1). An interesting paper that investigates realization problems for system
identification can be found in [VS04].

For the identification of linear parameter-varying (LPV) models, different routes
have been followed, such as using linear fractional transformation (LFT), nonlinear
programming, subspace identification techniques, linear regression, and orthonor-
mal basis functions, see, for instance, [LP96, LP99, VV02, BG02, THvdH09].

The general theory of orthonormal basis function for system identification started
with the work of van den Hof et al. [vdHPB95]. Other useful references in this
context are [dVvdH98, AN99, Akc00, AH01, HdHvdHW04, THvdH09].

6.4 Problems 165

In the 1990s much emphasis was put on closed-loop identification. However, the
first papers on identification in closed loop appeared in the early 1970s, see [BM74,
TK75]. For overviews of closed-loop identification issues, related to the indirect,
direct, and two-steps methods for linear systems, we refer to [MF95, HGDB96,
FL99, GvdH01, EMT00]. An approach to nonlinear, time-varying systems is given
by [DA96].

As stated in the Introduction, in this book the continuous-time model represen-
tation will only be used for demonstration. For identification and parameter estima-
tion, the discrete-time form will mainly be explored due to the availability of sam-
pled data and the ultimate transformation of a mathematical model into a simulation
code. However, from Example 1.4 it is immediately clear that when starting from
physical laws, and in particular when balance equations are used, usually differential
equations or transfer functions in the continuous-time domain appear. Notice from
Example 1.5 that, even for simple, linear differential equations, the input–output
relation is nonlinear-in-the-parameters. A classical approach is to estimate the pa-
rameters using iterative estimation algorithms, as for simulation models, in general.
However, already in the 1970s, attention had been paid to the special character of
continuous-time identification, see [Phi73, SR77, Bag75, SR79]. In recent years,
there has been a renewed interest in continuous-time identification methods, see,
for example, [CSS08, GL09b], or in the preservation of continuous-time physical
parameters in linear regression type of models, see [VKZ06, Vri08, KK09].

6.4 Problems

Problem 6.1 Consider the discrete-time system

G(q)= 0.2q−2

1 − 0.8q−1

which has been found after modeling the oxygen concentration in a composting
plant. (NB: in MATLAB z is used as forward shift operator instead of q .)

(a) Define the system in MATLAB using the function tf and, if necessary,
sys.inputdelay = 1 for the specification of a unit time delay.

(b) Generate a random binary input signal (RBS) with p = 0.2 and N = 50 and
determine the corresponding model output using lsim.

(c) Add noise (“output-error”) to this output, so that one obtains a noise-corrupted
output and estimate the parameter values using oe.

(d) Use the function compare to compare the identification result with the generated
data.

(e) Repeat this estimation procedure, but now with the function arx, and again use
compare to evaluate the result.

Problem 6.2 From an experiment in an industrial process the following data have
been obtained (see Table 6.7).

166 6 Dynamic Systems Identification

Table 6.7 Experimental data

u(t) −1 −1 −1 −1 1 1 1 1 1 1 1 −1 −1 −1

y(t) 0 −0.40 −0.69 −1.0 −1.27 −0.79 −0.35 0.0 0.4 0.73 1.03 1.30 0.82 0.38

(a) Determine the parameters a and b in the model

y(t)= ay(t − 1)+ bu(t − 1)

on the basis of two iterations of a Markov estimation procedure and use as much
as possible data. Present and interpret the results.

(b) Repeat (a), but now using an instrumental variable (IV) method.

Part III
Time-varying Systems Identification

Basically, in Parts I and II the data have been processed batch-wise, so that the
resulting estimates hold for the complete time span of the data. However, in a num-
ber of real-time implementations, it is preferred to obtain estimates of the actual
process parameters without processing the complete past input–output data set at
each sample instant. This is especially the case in those applications with a (possi-
ble) time-varying system behavior, that is, the parameter estimates, even those in a
presumed time-invariant static system description, vary with time. For these cases,
in addition to the batch-wise processing of the data, recursive identification tech-
niques have been introduced in the past. In the statistical literature these techniques
are often identified as “sequential parameter estimation” or, when applied in signal
processing, as “adaptive algorithms.”

In Chap. 7 recursive estimation will be introduced and applied to static, linear,
or nonlinear systems with possibly time-varying parameters. The idea is as follows.
On the basis of a priori knowledge, the model parameters in the linear regression
models will be considered as constant. Subsequently, the experimental data will tell
how the parameter estimates vary with time. This idea can be easily extended to the
case with a dynamic parameter model in the form of a linear dynamic state equa-
tion, which clearly illustrates the system theoretic concept of a model parameter as
a (unobserved) state. Hence, the resemblance of the recursive least-squares parame-
ter estimator to the well-known Kalman filter will be emphasized. For the nonlinear
case, the concept of Extended Kalman filtering will be introduced. For practical im-
plementation of the recursive least-squares parameter estimator/Kalman filter, mod-
ifications of the standard algorithm are needed to avoid, for instance, loss of symme-
try of the covariance matrix and instabilities due to rounding errors. The numerical
issues related to the Kalman filter are presented in Sect. 7.1.5. Although this section
is marked as advanced material, it surely essential reading for the practitioner.

Chapter 8 focuses on the recursive parameter estimation in dynamic systems,
where in general optimality of the estimation results of the linear regression models
of Chap. 7 will no longer hold. Here the interchanging concept of parameter and
state will be further worked out, using extended Kalman filtering and observer-based
methods. And, again it will be applied to both the linear and the nonlinear cases.
The theory will be illustrated by real-world examples, with most often a biological
component in it, as these cases often show a time-varying behavior due to adaptation
of the (micro)organisms.

Chapter 7
Time-varying Static Systems Identification

7.1 Linear Regression Models

7.1.1 Recursive Estimation

Let the inputs u(0), u(1), . . . , u(N) and corresponding outputs y(0), y(1), . . . , y(N)

be recorded. In the previous chapters these data have been processed batch-wise,
that is the input and output data were collected into (N + 1)-dimensional vectors
u := [u(0), . . . , u(N)]T and y := [y(0), . . . , y(N)]T , respectively. The parameter
estimates are then found by “inverting” the model with input and output data. How-
ever, for large N , this can be a heavily computational task. Furthermore, it is implic-
itly assumed that the parameters are constant during the experiment. Recursive esti-
mation of the model parameters will lead to more efficient computational schemes
and allows the estimation of time-varying parameters. At this point, we clearly have
to distinguish between recursive and iterative data processing. Typical iterative pro-
cessing schemes are presented in the Sects. 5.2.3, 6.1.3, and 6.2.4, where in each
iteration step the complete data set is processed. Recursive data processing, on the
other hand, only processes the data from time instant t − 1 to t for t = 1, . . . ,N . Let
us start by illustrating the recursive estimation technique to a very simple example
with just one parameter and one observation at each sampling instant. This case will
subsequently be extended to the parameter vector case with p parameters and finally
to the vector-output case with p parameters and n measurements at each sampling
instant.

Example 7.1 Mean tracking: Consider the following regression model (see
Sect. 5.1):

y(t)= ϑ + e(t)

with unknown parameter ϑ , a noise-free constant estimate of the observations y(t).
The error e(t) has zero-mean and variance E[e(t)2] =R. Furthermore, it is assumed
that e(t) is uncorrelated with the estimation error at the previous time instant. Let N
output measurements y(1), y(2), . . . , y(N) be available. Then, an unbiased estimate

K.J. Keesman, System Identification,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-0-85729-522-4_7, © Springer-Verlag London Limited 2011

169

http://dx.doi.org/10.1007/978-0-85729-522-4_7

170 7 Time-varying Static Systems Identification

of ϑ , given all N data points and, in what follows, denoted as ̂ϑ(N), can be found
from

̂ϑ(N)= 1

N

N
∑

t=1

y(t)

where ̂ϑ(N) is thus the mean value of y(t) for t = 1, . . . ,N . After N + 1 measure-
ments the estimate becomes

̂ϑ(N + 1)= 1

N + 1

N+1
∑

t=1

y(t)

=⇒ (N + 1)

N
̂ϑ(N + 1)= 1

N

N
∑

t=1

y(t)+ 1

N
y(N + 1)

=⇒ ̂ϑ(N + 1)= N

N + 1
̂ϑ(N)+ 1

N + 1
y(N + 1) (7.1)

Hence, instead of repeating the calculation of the mean for each new sampling in-
stant, we can recursively update the new estimate using appropriate weighting fac-
tors.

Notice that by defining x := ϑ we could also consider the linear regression model
in the example as a linear output equation with constant state x (see Example 5.1).
This shows that from a system-theoretical point of view a model parameter could be
seen as a state; this view will be developed further in the sequel.

Let us generalize the idea on mean tracking, as presented by (7.1) in Exam-
ple 7.4. Define, therefore, the estimatêϑ(t) as a linear combination of the preceding
estimate ̂ϑ(t − 1) and the actual output measurement y(t), that is,

̂ϑ(t) := J (t)̂ϑ(t − 1)+K(t)y(t) (7.2)

For ̂ϑ(t) to be unbiased, the following must hold:

E
[

̂ϑ(t)
] = J (t)E

[

̂ϑ(t − 1)
]+K(t)E

[

y(t)
]

= J (t)ϑ +K(t)ϑ

= ϑ (7.3)

Hence, J (t)+K(t)= 1. Substituting J (t)= 1 −K(t) into (7.2) then gives

̂ϑ(t) = (

1 −K(t)
)

̂ϑ(t − 1)+K(t)y(t)

=̂ϑ(t − 1)+K(t)
[

y(t)−̂ϑ(t − 1)
]

(7.4)

Notice from this equation that the last estimate depends on the previous estimate,
reflecting the updated prior knowledge of the parameter value, and a weighted pre-
diction error. The prediction error [y(t)−̂ϑ(t − 1)] is also called a recursive resid-
ual or an innovation, and it reflects the mismatch between predicted and measured

7.1 Linear Regression Models 171

Fig. 7.1 Illustration of
parameter estimate update

output. Hence, the new estimate ̂ϑ(t) is a compromise between prior and posterior
knowledge (see also Fig. 7.1).

Next, the question is how to choose K(t), in what follows also called the gain or,
more specifically, the Kalman gain. If, in addition to unbiasedness of the estimate,
we also demand a minimum variance estimate, then the following can be obtained.
Recall that the variance is defined as

P(t) :=E
[(

̂ϑ(t)−E
[

̂ϑ(t)
])2] (7.5)

Substituting (7.4) with y(t)= ϑ + e(t) into (7.5) and noting that E[y(t)] = ϑ gives

P(t) = E
[(

̂ϑ(t − 1)+K(t)
[

y(t)−̂ϑ(t − 1)
]− ϑ

)2]

= E
[(

̂ϑ(t − 1)− ϑ
)2 − 2K(t)

[

̂ϑ(t − 1)− y(t)
](

̂ϑ(t − 1)− ϑ
)

+K(t)2
[

y(t)−̂ϑ(t − 1)
]2]

= P(t − 1)− 2K(t)P (t − 1)+K(t)2

× {

E
[(

ϑ −̂ϑ(t − 1)
)2]+ 2E

[

e(t)(ϑ −̂ϑ(t − 1)
]+E

[

e(t)2
]}

(7.6)

Since E[e(t)] = 0, E[e(t)2] = R and e(t) is uncorrelated with ̂ϑ(t − 1), the cross-
term E[e(t)(ϑ −̂ϑ(t − 1)] = 0, and thus (7.6) further reduces to

P(t) = P(t − 1)− 2K(t)P (t − 1)

+K(t)2P(t − 1)+K(t)2R

= (

1 −K(t)
)2
P(t − 1)+K(t)2R (7.7)

For finding the K(t) that minimizes P(t) variational calculus will be used by writing
ΔP(t) as a function of ΔK(t), that is,

ΔP(t) = (

1 − [

K(t)+ΔK(t)
])2

P(t − 1)

+ [

K(t)+ΔK(t)
]2
R

− (

1 −K(t)
)2
P(t − 1)−K(t)2R

172 7 Time-varying Static Systems Identification

= [

1 − 2
[

K(t)+ΔK(t)
]+K(t)2

+ 2K(t)ΔK(t)+ΔK(t)2
]

P(t − 1)

+ [

K(t)2 + 2K(t)ΔK(t)+ΔK(t)2
]

R

− (

1 −K(t)
)2
P(t − 1)−K(t)2R

� 2ΔK(t)
[

K(t)R − (

1 −K(t)
)

P(t − 1)
]

(7.8)

where the approximation is a result of neglecting the second-degree terms. Recall
that at a minimum point the derivative is equal to zero. Hence, for requiring a mini-
mum variance, at least ΔP(t) must be equal to zero. Consequently,

K(t)R − (

1 −K(t)
)

P(t − 1)= 0 (7.9)

and thus

K(t)= P(t − 1)

(P (t − 1)+R)
(7.10)

Since the neglected quadratic terms only contribute in a positive way to ΔP(t), for
this choice of K(t), a minimum of P(t) has been achieved.

In conclusion,

̂ϑ(t) =̂ϑ(t − 1)+K(t)
[

y(t)−̂ϑ(t − 1)
]

(7.11)

K(t) = P(t − 1)

(P (t − 1)+R)
(7.12)

P(t) = (

1 −K(t)
)2
P(t − 1)+K(t)2R (7.13)

for t = 1, . . . ,N and ϑ(0),P (0) given. Equations (7.11)–(7.13) are the scalar ver-
sion of the so-called recursive least-squares (RLS) parameter estimator (see Ap-
pendix F for a general derivation) with the nice properties that it is linear and pro-
vides minimum variance, unbiased estimates. Notice that in the recursive estimation
framework at each time instant both the estimate ̂ϑ(t) and associated estimation er-
ror P(t) are directly available.

From this result we can derive some particular solutions. First, setting P(0)= 0,
that is, the initial estimate ϑ(0) is assumed to be exactly known, leads to P(t) = 0
and thus to K(t) = 0 for all t . Consequently, this choice implies that the estimator
will not use any measurement information and thus ϑ(t)= ϑ(0) for all t . Secondly,
setting R = 0 leads to K(t) = 1 and P(t) = R for all t , which implies that the
estimate is equal to the measurement y(t), and thus prior knowledge is not taken
into account at all. Substituting (7.10) into (7.7) ultimately leads to

P(t)= (

1 −K(t)
)

P(t − 1) (7.14)

7.1 Linear Regression Models 173

a simplified expression for P(t). Alternatively, substituting P(t − 1)= P(t)−K(t)2R

(1−K(t))2

into (7.10) gives

K(t) = −(R + P(t))± (R − P(t))

−2R

=
{

P(t)
R

1
(7.15)

where only the first solution is of practical relevance. Clearly, both simplified ex-
pressions (7.14) and (7.15) cannot be used together.

Let us now evaluate the properties of the recursive estimators (7.1) and (7.11)–
(7.13) for the mean tracking example.

Example 7.2 Mean tracking: For estimator (7.1) related to the mean tracking prob-
lem, we can easily derive, using (7.2), that the gain K(t) is equal to 1

t
. Because

J (t) = t−1
t

and thus J (t) + K(t) = 1, the recursive estimate of the mean is un-
biased. However, for the unbiased, minimum variance estimator (7.11)–(7.13) the
gain is P(t−1)

P (t−1)+R . Clearly, both estimators (7.1) and (7.11)–(7.13) become equiva-

lent when P(t − 1)= R
t−1 , and thus P(1)= R, which is not a bad choice when, as

an initial estimate, ϑ(1) = y(1) is chosen. Let us investigate what happens when a
different choice for P(1) is made.

Suppose that P(1)= 2R. Then from (7.1) with K(t)= 1
t

and thus K(2)= 1
2 , we

have

P(2)= 1

4
P(1)+ 1

4
R = 3

4
R

However, from (7.11)–(7.13) with gain K(2)= 2
3 we obtain

P(2)= 1

9
P(1)+ 4

9
R = 2

3
R <

3

4
R

which clearly gives a smaller variance of the estimate. For P(1) = 1
2R, using

estimator (7.1), P(2) = 3
8R, but from (7.11)–(7.13) with K(2) = 1

3 we obtain
P(2)= 1

3R < 3
8R, which again leads to a smaller variance, as predicted by the the-

ory. Thus, estimator (7.1) gives an unbiased, but nonminimum variance, estimate.

Let us extend the scalar parameter case to the parameter vector case with p un-
known parameters. If now the following univariate linear regression model is con-
sidered

y(t)= φ(t)T ϑ + e(t) (7.16)

where y(t) is the scalar output measurement and both φ(t) and ϑ are vectors of
dimension p, the recursive estimator takes the following form:

̂ϑ(t) =̂ϑ(t − 1)+K(t)
[

y(t)− φ(t)T̂ϑ(t − 1)
]

(7.17)

174 7 Time-varying Static Systems Identification

K(t) = P(t − 1)φ(t)
[

φ(t)T P (t − 1)φ(t)+R
]−1 (7.18)

P(t) = (

I −K(t)φ(t)T
)

P(t − 1)
(

I − φ(t)K(t)T
)

(7.19)

+K(t)RK(t)T

for t = 1, . . . ,N and ϑ(0),P (0) given. Notice that now P(t) is a p × p covariance
matrix and both K(t) and φ(t) are p-dimensional column vectors. Equation (7.19)
is also known as the “Joseph form” of the covariance matrix update equation and
is valid for any value of K(t). Alternatively, the covariance matrix update equation
(7.14) can be used. This expression for the covariance matrix update is computa-
tionally cheaper but is only correct for the optimal gain. For real-time application,
however, or if a nonoptimal Kalman gain is deliberately used, the simplified form
(7.14) cannot be applied. In these cases, (7.19) must be used. In a later section, all
this will be further extended to the vector-output case with a multivariate regression
model. However, first explicit modeling of parameter variations will be considered.

7.1.2 Time-varying Parameters

In the previous section, it has been implicitly assumed that the parameters are con-
stant, that is,

ϑ(t)= ϑ(t − 1) (7.20)

which can be seen from the presented recursive estimators when the effect of the
innovations is neglected. Hence, the parameter estimates only vary due to the misfit
between predicted parameter value and measurement. This very simple difference
equation model of parameter invariance can be easily extended toward a Gauss–
Markov stochastic difference equation. This equation will allow extra dynamics and
stochastic parameter variability and thus an explicit modeling of the parameters. In
the case of modeling parameter variations, the Gauss–Markov stochastic difference
equation is given by

ϑ(t)=Ξϑ(t − 1)+Πw(t − 1) (7.21)

where Ξ is a p × p time-invariant matrix, and Π is a p × q time-invariant input
matrix. The disturbance input w(t − 1) at sample instant t − 1 is a p-dimensional
white noise vector with covariance matrix Q(t − 1). Notice at this point the resem-
blance with a discrete-time version of the state equation (1.3). Notice also the subtle
difference in interpretation of u(t) in (1.3) or a discrete-time version of it and w(t)

in (7.21), respectively. In the former, u(t) is the deterministic input related to the
dynamic state equation, while in (7.21), w(t) represents the presumed stochastic
time variation in the parameters.

In practice, most often the matrices Ξ and Π are not known in advance. There-
fore, simplified versions of (7.21) are more frequently used, as, for instance, the

7.1 Linear Regression Models 175

Table 7.1 Moving object
data Time t (s) 1 2 3 4 10 12 18

Distance y (ft) 9 15 19 20 45 55 78

so-called random walk model where Ξ = I and Π = I , so that

ϑ(t)= ϑ(t − 1)+w(t − 1) (7.22)

Notice that by using a parameter model like (7.22) a stochastic variation of the
parameters is prespecified a priori. The parameter variation will be greatly affected
by the choice of the covariance matrix Q(t − 1), which is commonly chosen as a
diagonal matrix presuming serially independent random variables in w(t − 1). This
adjustment of the parameter model (7.20) leads to the following linear unbiased
minimum-variance estimator:

̂ϑ(t) =̂ϑ(t − 1)+K(t)
[

y(t)− φ(t)T̂ϑ(t − 1)
]

(7.23)

K(t) = ˜P (t − 1)φ(t)
[

φ(t)T ˜P (t − 1)φ(t)+R
]−1 (7.24)

P(t) = (

I −K(t)φ(t)T
)

˜P (t − 1)
(

I − φ(t)K(t)T
)

+K(t)RK(t)T (7.25)

for t = 1, . . . ,N , where ˜P (t−1)= P(t−1)+Q(t−1). After replacing P(t−1) by
P(t − 1)+Q(t − 1), this algorithm becomes a straightforward extension of (7.17)–
(7.19). Hence, the gain and error covariance matrix is directly affected by Q(t − 1).
For the simplest case with only one parameter, that is, p = 1, and φ(t)= 1 for all t ,
choosing the variance Q(t) constant and very large will give a gain that at each time
instant tends to 1, and thus ̂ϑ(t) � y(t) with P(t) � R. Consequently, this choice
implies that no filtering of the data will take place.

Another parameter model that is frequently used is the integrated random walk
model

η(t) = η(t − 1)+w(t − 1) (7.26)

γ (t) = γ (t − 1)+ η(t − 1) (7.27)

with Covw(t) = Q(t), a diagonal p × p matrix. In this case the parameter incre-
ments η(t − 1) are integrated stochastic variations or random walks. Consequently,
both parameters η and γ are estimated, that is, ϑ(t) := [η(t)

γ (t)

]

.
Let us illustrate the recursive estimation theory, presented so far, to a linear two-

parameter problem.

Example 7.3 Moving object (constant velocity): Let the following observations on
an object moving in a straight line with constant velocity v, as presented in Table 7.1,
be available (after [You84], p. 18).

From Table 7.1 we obtain that p = 2 and N = 7. Let us first plot the data (see
Fig. 7.2), which shows an approximate linear relationship between time t and the

176 7 Time-varying Static Systems Identification

Fig. 7.2 Measured moving
object data

measured distance y, as predicted by the kinematic law s(t) = s0 + vt , where s(t)
is the noise-free distance at time instant t , with initial position s0 (ft) and velocity v
(ft/s).

Then, an appropriate model, relating the measured distance to the noise-free dis-
tance, as predicted by the kinetic law, would be

y(t)= s0 + vt + e(t)

Define ϑ := [s0
v

]

and φ(t) := [1
t

]

in order to obtain a model of the form (7.16).
Recursive estimation of the parameters s0 and v on the basis of (7.17)–(7.19), with
ϑ(0)= [0

0

]

, P(0)= 1000I , Q= 0, and R = 1 leads to the following results:

t = 1 : K(1)=
[

0.4998
0.4998

]

, ϑ(1)=
[

4.4978
4.4978

]

P(1)=
[

500.2499 −499.7501
−499.7501 500.2499

]

t = 2 : K(2)=
[−0.9921

0.995

]

, ϑ(2)=
[

3.0030
5.9970

]

P(2)=
[

4.9692 −2.9791
−2.9791 1.9871

]

t = 3 : K(3)=
[−0.6646

0.4991

]

, ϑ(3)=
[

4.4282
5.0018

]

P(3)=
[

2.3269 −0.9972
−0.9972 0.4988

]

t = 4 : K(4)=
[−0.4991

0.2997

]

, ϑ(4)=
[

6.4921
3.7025

]

P(4)=
[

1.4975 −0.4992
−0.4992 0.1997

]

7.1 Linear Regression Models 177

Fig. 7.3 Estimated parameter values (left figure) with (co)variances (right figure)

t = 5 : K(5)=
[−0.2798

0.1200

]

, ϑ(5)=
[

6.0772
3.8804

]

P(5)=
[

0.5197 −0.0800
−0.0800 0.0200

]

t = 6 : K(6)=
[−0.1773

0.0645

]

, ϑ(6)=
[

5.6590
4.0325

]

P(6)=
[

0.4417 −0.0516
−0.0516 0.0097

]

t = 7 : K(7)=
[−0.1791

0.0451

]

, ϑ(7)=
[

5.7027
4.0215

]

P(7)=
[

0.3546 −0.0296
−0.0296 0.0042

]

The estimation results are graphically presented in Fig. 7.3.
The effect of setting Q= I , using (7.17)–(7.19), so that the parameter estimates

are allowed to vary a bit more, can be viewed from Fig. 7.4. Notice that especially
the estimate of s0 with associated estimation variance are affected.

In the following section, a state-space representation, which easily allows the
incorporation of explicit parameter models and allows a natural extension to the
vector-output case, will be presented.

7.1.3 Multioutput Case

Suppose now that n different measurements are available at each time instant. Then,
at each sampling instant an algebraic equation relating the p unknown parameters

178 7 Time-varying Static Systems Identification

Fig. 7.4 Estimated parameter values (left figure) with (co)variances (right figure) for random walk
model with Q= I

to the n given measurements is needed. Together with the explicit parameter model,
a linear, discrete-time, time-varying state-space representation (see also Sect. 1.2.2)
is obtained,

ϑ(t) = Ξϑ(t − 1)+Πw(t − 1)

y(t) = Φ(t)ϑ(t)+ v(t)
(7.28)

where at t = 1, . . . ,N , w(t) and v(t) are mutually uncorrelated zero-mean white
noise terms with Covw(t)=Q(t), Covv(t)=R(t), and E[v(t)w(t − τ)] = 0. No-
tice that by combining a dynamic parameter model and an algebraic output equation
as in (7.28), two independent noise terms are introduced. Recall from Chap. 1 that
these noise terms are also known as the system and sensor noises, respectively. This
system representation of the vector-output case, with an n × p matrix Φ(t), leads
to a full matrix version of the recursive least-squares (RLS) parameter estimator.
Furthermore, for a better insight into the procedure, the estimator is presented in a
prediction-correction scheme as follows. Prediction:

̂ϑ(t |t − 1) = Ξ̂ϑ(t − 1) (7.29)

P(t |t − 1) = ΞP(t − 1)ΞT +ΠQ(t − 1)ΠT (7.30)

Correction:

K(t) = P(t |t − 1)Φ(t)T
[

Φ(t)P (t |t − 1)ΦT (t)+R(t)
]−1 (7.31)

̂ϑ(t) =̂ϑ(t |t − 1)+K(t)
[

y(t)−Φ(t)̂ϑ(t |t − 1)
]

(7.32)

P(t) = (

I −K(t)Φ(t)
)

P(t |t − 1)
(

I −Φ(t)T K(t)T
)

+K(t)R(t)K(t)T (7.33)

for t = 1, . . . ,N and given ϑ(0) and P(0). Notice that now K(t) becomes a p ×
n gain matrix and that (7.11)–(7.13), (7.17)–(7.19), and (7.23)–(7.25) are special
cases.

7.1 Linear Regression Models 179

Fig. 7.5 Innovations (left figure) and residuals (right figure)

Before illustrating the recursive least-squares estimator by an example, let us first
summarize the algorithm.

Algorithm 7.1 Recursive Least-squares estimation of ϑ(t) in linear time-varying
static systems

1. Given y(t) and Φ(t) for t = 1, . . . ,N , specify the dynamic parameter model
matrices Ξ and Π .

2. Specify the covariance matrices Q(t) and R(t).
3. Choose the initial parameter vector ϑ(0) and the initial error covariance matrix

P(0).
4. Evaluate, for t = 1, . . . ,N , (7.29)–(7.33).
5. Check the mean and autocorrelation function of the innovations sequence ε for

optimality of the solution.

Example 7.4 Moving object (constant velocity): The innovations related to the re-
cursive estimation with ϑ(0) = [0

0

]

, P(0) = 1000 I , Q = 0, and R = 1 are pre-
sented in Fig. 7.5. Clearly, due to the “wrong” initial estimate, the mean value of
{ε} is nonzero. Further, the number of data is too limited to perform a full correla-
tion analysis. Therefore, as yet, the graphical inspection suffices. Notice especially
that the effect of the initial estimate dominates the sequence of innovations. In order
to appreciate the difference between the recursive residuals or innovations and the
residuals obtained when using the final estimates, in Fig. 7.5 also the residuals are
added.

Let us point-wise present some additional remarks on the recursive estimation
problem.

Remark 7.1 Referring to the assumptions on the measurement noise v(t) and ini-
tially for the linear regression case denoted by e(t), made in the beginning of this
section, the “whiteness” of the recursive residuals (innovations)

ε(t)= y(t)−Φ(t)̂ϑ(t |t − 1) (7.34)

180 7 Time-varying Static Systems Identification

is an indication of “optimal” estimation. Ideally, there should hold ε(t) = v(t).
Hence, the mean and autocorrelation function of the innovations sequence {ε}
should be checked.

Remark 7.2 In the time-invariant case where Φ(t), Q(t), and R(t) are constant ma-
trices Φ , Q, and R, respectively, the covariance matrix P(t) converges to a constant
matrix P∞ for large N , which can be found from

P∞ = [

ΦTR−1Φ + (

ΦP∞ΦT +ΠQΠT
)−1]−1 (7.35)

If the discrete-time linear dynamic model (7.28) is controllable and observable1 and
if Q> 0 and R > 0, then P(t) converges to a unique positive definite P∞. Let us
demonstrate this by an example.

Example 7.5 Mean tracking: For the simple mean tracking problem with Φ(t)= 1
for all t , Φ = 1. Under the assumption of a time-varying mean with Ξ = 1 and
Π = 1, we obtain

P∞ = 1

2

[−Q+
√

Q2 + 4RQ
]

so that for Q = 0 and/or R = 0, P∞ = 0. Otherwise, that is, for Q> 0 and R > 0,
P∞ > 0.

Remark 7.3 In the case of unknown initial conditions, set ϑ(0) = 0 and let
P(0) → ∞I . In practice, setting P(0) = 106I is an appropriate choice. In fact,
choosing P(0) as a very large diagonal matrix such that Φ(1)(ΞP (0)ΞT +
ΠQ(0)ΠT)ΦT (1) � R(1) can be interpreted as setting a very large variance on
each of the initial estimates. In other words, the initial estimates in ϑ(0), and con-
sequently the output prediction Φ(1)Ξϑ(0), are assumed to be very uncertain as
compared to the uncertainty in the measurement y(1), specified by R(1). Conse-
quently,

Φ(1)̂ϑ(1) = Φ(1)
{

Ξϑ(0)+K(1)
[

y(1)−Φ(1)Ξϑ(0)
]}

= Φ(1)
{

Ξϑ(0)+ (

ΞP(0)ΞT +ΠQ(0)ΠT
)

Φ(1)T

× [

Φ(1)
(

ΞP(0)ΞT +ΠQ(0)ΠT
)

ΦT (1)+R(1)
]−1

× [

y(1)−Φ(1)Ξϑ(0)
]}

� Φ(1)Ξϑ(0)+ [

y(1)−Φ(1)Ξϑ(0)
]

= y(1) (7.36)

1System controllable ⇔ rank([Π,ΞΠ, . . . ,Ξp−1Π])= p; system observable ⇔ rank([Φ,ΦΞ,
. . . ,ΦΞp−1])= p; for details, see [KS72, GGS01]

7.1 Linear Regression Models 181

Hence, the estimate ̂ϑ(1) will be fully determined by the first measurement y(1),
and the influence of ϑ(0) on ̂ϑ(1) is negligible. Notice that setting Q(0) very large
will lead to similar results.

Remark 7.4 In the case of a perfect observation, set R(t) = 0. Then, again
Φ(t)̂ϑ(t) � y(t). On the contrary, in the case of an unreliable observation, let
R(t)→ ∞. Consequently, K(t)→ 0, and thus,

̂ϑ(t)=̂ϑ(t |t − 1) (7.37)

In other words, the unreliable observation y(t) does not at all affect the esti-
mate ̂ϑ(t). Hence, there is no measurement update.

Remark 7.5 In general, estimator performance is more sensitive to structured mod-
eling errors in Ξ , Π , and Φ than to uncertainty model errors in P(0), Q, and R.
If, however, we know in advance that the observation noise is structured, then state
augmentation should be used to incorporate this structure in the model. Let us illus-
trate this by a simple example.

Example 7.6 Mean tracking: Let the constant ϑ be observed with structured obser-
vation noise vs(t), so that

y(t)= ϑ + vs(t)

with

vs(t)= φvs(t − 1)+ws(t − 1)

Then, in state-space form,

[

ϑ(t)

vs(t)

]

=
[

1 0
0 φ

][

ϑ(t − 1)
vs(t − 1)

]

+
[

0
ws(t − 1)

]

y(t) = [1 1]
[

ϑ(t)

vs(t)

]

which is indicated as state augmentation. Hence, the approach is to put all the dy-
namics in process, sensors, and actuators in the state equation and subsequently
apply the estimator (7.29)–(7.33).

Let us now further evaluate some properties of the estimator on a real-world
example.

Example 7.7 Respiration rate data: Consider the measurements of the respiration
rates in an activated sludge plant (see Fig. 7.6).

Let the ultimate goal be to reconstruct the noise-free respiration rates from these
measurements. Therefore, we formulate the following state-space model:

182 7 Time-varying Static Systems Identification

Fig. 7.6 Measured respiration rates

ϑ(t) = ϑ(t − 1)+w(t − 1)

y(t) = ϑ(t)+ v(t)

where ϑ is the noise-free respiration rate, w are the unknown variations with respect
to the unknown mean value, y are the measured respiration rates, and v is the ob-
servation or sensor noise. Let us first investigate the effect of R on the performance
of the estimator and thus on the estimated values of the respiration rates. The results
for ϑ(0)= 0 with P0 = 1000, Q(t)= 0 for all t , and R(t)= 1 initially, which after
500 samples is set to 10−6 and after 1000 samples to R(t) = 106, are presented in
Fig. 7.7.

Notice from Fig. 7.7 that initially the estimated value jumps to a value close to
the first measurements and then settles. Further, the variance is drastically decreased
after some measurements. Then, after 500 samples when R(t) becomes very small,
and thus each of the following measurements is taken very seriously, the estimates
follow most of the dynamics present in the measurements. While by setting R(t)

very large after 1000 samples, the estimated value just remains constant, and thus
it is not updated by the measurements. Finally, the effect of P0, the initial error
covariance matrix, in this case just a scalar that is set on 1000, 1, or 0.1, on the
estimated respiration rates can be seen in Fig. 7.8. Clearly, setting P(0) large will
lead to a fast adjustment of the estimates to the measurements. Hence, as a rule of
thumb mentioned before, in practice we always choose P(0) large.

7.1.4 Resemblance with Kalman Filter

Consider the following linear, discrete-time state-space model (see Sect. 1.2.2) with
system noise w(t) and observation or sensor noise v(t):

x(t) = A(t)x(t − 1)+B(t)u(t − 1)+G(t)w(t − 1)

y(t) = C(t)x(t)+ v(t), t ∈ Z
+ (7.38)

7.1 Linear Regression Models 183

Fig. 7.7 Measured respiration rates (dots) with their estimates (solid line) (top figure) and vari-
ances (bottom figure)

Fig. 7.8 Effect of P0 on estimates

where all the vectors and matrices have appropriate dimensions. Further, assume
again that w(t) and v(t) are zero-mean, statistically independent, white noise terms
with Covw(t) = Q(t) and Covv(t) = R(t). Under these assumptions, the well-
known Kalman filter related to (7.38) reads as follows.

184 7 Time-varying Static Systems Identification

Prediction:

x̂(t |t − 1) = A(t)̂x(t − 1)+B(t)u(t − 1) (7.39)

P(t |t − 1) = A(t)P (t − 1)A(t)T +G(t)Q(t − 1)G(t)T (7.40)

Correction:

K(t) = P(t |t − 1)C(t)T
[

C(t)P (t |t − 1)CT (t)+R(t)
]−1 (7.41)

x̂(t) = x̂(t |t − 1)+K(t)
[

y(t)−C(t)̂x(t |t − 1)
]

(7.42)

P(t) = (

I −K(t)C(t)
)

P(t |t − 1)
(

I −C(t)T K(t)T
)

+K(t)R(t)K(t)T (7.43)

Hence, the recursive estimator described by (7.29)–(7.33) shows a great resem-
blance with these filter equations. More specifically, by setting x = ϑ , A(t) = Ξ ,
B(t)= 0, G(t)=Π , and C(t)=Φ(t) the resemblance becomes more clear. How-
ever, the essential difference is that the Kalman filter has initially been derived for
state estimation, while the recursive estimator in the previous sections is dedicated
to parameter estimation. Notice then that, for linear (time-invariant) regression-type
models as (7.16), the observation matrix in a state-space representation becomes
time-varying, that is, C(t) = Φ(t), unlike the Kalman filter for state estimation in
linear time-invariant systems. From this point of view, the concept of time-varying
parameters as (unobserved) state variables becomes very transparent! Consequently,
the mean tracking problem could also have been seen as a state estimation problem
for a linear, static model.

7.1.5 *Numerical Issues

For implementation of the Kalman filter and the recursive least-squares parameter
estimator in practical situations, some modifications of the equations are needed.
First, by definition the covariance matrix P(t) is symmetric. However, due to the
asymmetric form of the Kalman gain expression in (7.42), P(t) may become asym-
metric. From this perspective the application of the error covariance matrix expres-
sion as in (7.33), i.e., in Joseph’s form, is much more preferred than the simplified
version P(t)= [I−K(t)Φ(t)]P(t |t−1), which is the more general matrix counter-
part of (7.14). A simple remedy could be to mirror the upper triangular part at each
time instant so that P(t) = P(t)T . A more advanced technique uses the modified
Choleski or UD-decomposition of P ,

P = LDLT (7.44)

where L is a lower triangular matrix with only ones along the principal diagonal, and
D is a diagonal matrix. In some numerical schemes the decomposition P = LLT ,

7.1 Linear Regression Models 185

where the nonunique lower triangular matrix L can be interpreted as the square root
of the error covariance matrix, is used to maintain symmetry of P(t) at each time
instant. Secondly, the condition number of P(t), that is, the quotient of maximum
and minimum eigenvalues, may become very large when accurate measurements are
used. This often leads to negative eigenvalues of P(t), which in turn usually causes
instability of the filter algorithm. The use of factorization methods often prevents
the occurrence of large condition numbers and thus of negative eigenvalues. For this
purpose, the most well-known factorization methods are eigenvalue decomposition,
singular value decomposition, and, again, UD decomposition. In particular, the last
decomposition method has been widely used in Kalman filtering problems, leading
to the so-called square root filter, which is more robust than the original Kalman
filter. Using square roots reduces the range of number magnitudes, and thus the
computation becomes less sensitive to rounding errors. In the square root filtering
algorithm (see [May79]), using the state-space representation of (7.38) with constant
covariance matrices Q and R, the prediction and correction of L, together with the
expression for the Kalman gain, are given by

L(t |t − 1) = [

A(t)L(t − 1)
...G(t)Q

1
2
]

U (t) (7.45)

K(t) = L(t |t − 1)L(t |t − 1)T C(t)T

× [

C(t)L(t |t − 1)L(t |t − 1)T C(t)T +R
]−1 (7.46)

L(t) = L(t |t − 1)

× [

I −L(t |t − 1)T C(t)T V (t)−T
(

V (t)+R
1
2
)−1

×C(t)L(t |t − 1)
]

(7.47)

where U (t) is an orthogonal matrix such that the last m rows of A(t)L(t − 1)
become zero, using, for example, the Modified Gram-Schmidt procedure, and fur-
thermore V (t)V (t)T = C(t)L(t |t − 1)L(t |t − 1)T C(t)T +R.

Algorithm 7.2 Square root filtering for the estimation of x(t) in (7.38)

1. Given input–output data u(t) and y(t) for t = 1, . . . ,N and the state-space ma-
trices A(t),B(t),C(t), and G(t), specify the covariance matrices Q(t) and R(t).

2. Choose the initial state vector x(0) and the initial square root of the error covari-
ance matrix L(0).

3. Evaluate, for t = 1, . . . ,N , (7.39), (7.45)–(7.47), (7.42).

Let us illustrate the effect of accurate measurements on the estimation result by
the following example (after [Gel74]).

Example 7.8 Square root filter: Consider the recursive estimation of two unknowns
from a single measurement. Let P(t)= I , C = [1 0], and R = ε2, where ε � 1. To
simulate computer word length roundoff, it is assumed that 1+ε �= 1, but 1+ε2 � 1.

186 7 Time-varying Static Systems Identification

Then, the exact value of P(t+1|t) is found from P(t+1|t)= [ε2

1+ε2 0

0 1

]

, whereas the

value calculated in the computer using the standard Kalman filter algorithm gives
P(t + 1|t)= [0 0

0 1

]

. Using the square root filter algorithm gives P(t + 1|t)= [

ε2 0
0 1

]

.

Since K(t + 1)= P(t + 1|t)CR−1, it follows that

K(t + 1) = [exact]
[1

1+ε2

0

]

K(t + 1) = [conventional]
[

0
0

]

K(t + 1) = [squareroot]
[

1
0

]

Obviously, the conventional Kalman filter algorithm may lead to divergence prob-
lems.

Clearly, the price for a more accurate and robust result is a significant increase
of the number of calculations. Although square root algorithms are more robust
than the standard Kalman filter, they are, in general, not more efficient, and there-
fore the algorithm presented above cannot be directly used for large-scale mod-
els.

The so-called reduced-rank square root (RRSQRT) filter is a special formulation
of the Kalman filter or, more specifically, of the square root filter for assimilation of
data in large-scale models. In most large-scale applications the time update of the
error covariance matrix (P(t)) is the most problematic part. The number of oper-
ations needed for a time update of P(t) is of order O(n2). In the RRSQRT filter
the covariance matrix is expressed in a small number of modes, stored in a lower-
rank square root matrix. The algorithm includes a reduction step that reduces the
number of modes if it becomes too large in order to ensure that the problem is feasi-
ble. When different scales in the model are considered, some sort of normalization
of the square root matrix is required in the reduction step. The approximated error
covariance matrix is found by a truncated eigenvalue decomposition. The optimal
rank q approximation of a positive semi-definite symmetric matrix is given by a
projection onto the q leading eigenvectors. The smaller rank can be exploited to
reduce both the computational burden of the Kalman filter and the memory require-
ments.

In particular, for constant Q and R, the following steps in the algorithm can be
distinguished.

Prediction:

x̂(t |t − 1) = A(t)̂x(t − 1)+B(t)u(t − 1) (7.48)

L(t |t − 1) = [

A(t)L(t − 1)
...G(t)Q

1
2
]

(7.49)

7.2 Nonlinear Static Systems 187

Reduction:

L(t |t − 1)T L(t |t − 1) = U(t)D(t)U(t)T (7.50)

L∗(t |t − 1) = [

L(t |t − 1)U(t)
]

1:n,1:q (7.51)

Correction:

H(t) = L∗(t |t − 1)T C(t)T (7.52)

β(t) = [

H(t)T H(t)+R
]−1 (7.53)

K(t) = L∗(t |t − 1)H(t)β(t) (7.54)

x̂(t) = x̂(t |t − 1)+K(t)
[

y(t)−C(t)̂x(t |t − 1)
]

(7.55)

L(t) = L∗(t |t − 1)−K(t)H(t)T
[

1 + (

β(t)R
) 1

2
]−1 (7.56)

Algorithm 7.3 Reduced-rank square root (RRSQRT) filtering for the estimation of
x(t) in (7.38)

1. Given input–output data u(t) and y(t) for t = 1, . . . ,N and the state-space ma-
trices A(t), B(t), C(t), and G(t), specify the constant covariance matrices Q
and R.

2. Choose the initial state vector x(0) and the initial square root of the error covari-
ance matrix L(0).

3. Evaluate, for t = 1, . . . ,N , (7.48)–(7.56).

In the next section, the recursive estimation theory will be applied to nonlinear
static systems.

7.2 Nonlinear Static Systems

7.2.1 State-space Representation

In what follows, only simple dynamic parameter models, that is, either the constant
or the random walk parameter model will be considered. Then, a nonlinear regres-
sion model with possibly time-varying parameters can be cast in the state-space
framework as follows:

ϑ(t) = ϑ(t − 1)+w(t − 1)

y(t) = h
(

φ(t),ϑ(t)
)+ v(t)

(7.57)

where h(φ(t),ϑ(t)) is a vector function relating the explanatory variables in φ(t)

to the output vector y(t), and ϑ contains all unknown parameters that have to be
estimated from the available data. Let us illustrate this to a moving vehicle example.

188 7 Time-varying Static Systems Identification

Example 7.9 Moving vehicle: Consider a moving vehicle which is equipped with a
differential global positioning system (DGPS) receiver and a radar velocity sensor.
According to the kinetic law, the position at time instant t in both the x- and y-
directions can be described by the linear algebraic equation

s(t)= s0 + vt + 1

2
at2

where s(t) is the position (m), v is the velocity (m/s), and a is the accelera-
tion (m/s2). The radar velocity is a composition of both velocities in the x- and

y-directions, that is, vradar =
√

v2
x + v2

y . Assuming zero acceleration and setting

s0 = 0, so that velocities in both directions, vx and vy , are the only unknowns.
A discrete-time state-space representation of this system is given by

[

vx(t)

vy(t)

]

=
[

vx(t − 1)
vy(t − 1)

]

+w(t − 1)

⎡

⎣

yx(t)

yy(t)

yv(t)

⎤

⎦ =
⎡

⎢

⎣

vx(t)t

vy(t)t
√

vx(t)2 + vy(t)2

⎤

⎥

⎦
+ v(t)

where the system and measurement noise consists of two, respectively three, statis-
tically independent white noise terms. Notice that only one nonlinear term appears
due to the measured radar velocity.

A common approach to nonlinear estimation problems is to linearize the set of
equations. In recursive estimation schemes one usually linearizes around the cur-
rently available estimate, so that (7.57) is approximated by

Δϑ(t) = Δϑ(t − 1)+w(t − 1)

Δy(t) = H(t)Δϑ(t)+ v(t)
(7.58)

where w(t) and v(t) are now noise terms related to perturbations in the trajectories
of ϑ(t) and y(t). The Jacobi matrix H(t) = H(φ,̂ϑ), where its elements hij are
defined in the following manner:

hij :=
[

∂hi(φ(t),̂ϑ(t − 1))

∂̂ϑj (t − 1)

]

for i, j = 1,2, . . . (7.59)

Hence, the Jacobi matrix contains all the partial differential coefficients of the vector
function h(φ,ϑ) with respect to all p elements in the last estimated parameter vector
̂ϑ(t − 1).

Example 7.10 Moving vehicle: The linearized set of state-space equations related to
the moving vehicle problem simply becomes

[

Δvx(t)

Δvy(t)

]

=
[

Δvx(t − 1)
Δvy(t − 1)

]

+w(t − 1)

7.2 Nonlinear Static Systems 189

⎡

⎣

Δyx(t)

Δyy(t)

Δyv(t)

⎤

⎦ =
⎡

⎢

⎣

t (t − 1) 0
0 t (t − 1)

vx(t−1)√
vx(t−1)2+vy(t−1)2

vy(t−1)√
vx(t−1)2+vy(t−1)2

⎤

⎥

⎦

×
[

Δvx(t)

Δvy(t)

]

+ v(t)

which is a linear, discrete-time, time-varying state-space representation in perturba-
tion variables.

In the following, the Extended Kalman Filter (EKF) algorithm, based on the
linearized state-space representation, for the static, nonlinear case with unknown
parameter vector ϑ will be presented.

7.2.2 Extended Kalman Filter

Since the EKF is based on the Kalman filter, in principle, a similar prediction-
correction structure of the algorithm as in (7.39)–(7.43) will be used to present the
EKF algorithm.

Prediction:

̂ϑ(t |t − 1) =̂ϑ(t − 1) (7.60)

P(t |t − 1) = P(t − 1)+Q(t − 1) (7.61)

Correction:

K(t) = P(t |t − 1)H(t)T
[

H(t)P (t |t − 1)HT (t)+R(t)
]−1 (7.62)

̂ϑ(t) =̂ϑ(t |t − 1)+K(t)
[

y(t)− h
(

φ(t),̂ϑ(t − 1)
)]

(7.63)

P(t) = (

I −K(t)H(t)
)

P(t |t − 1)
(

I −H(t)T K(t)T
)

+K(t)R(t)K(t)T (7.64)

Notice that the calculation of the innovations, and thus the update of ̂ϑ , is fully
based on the nonlinear relationship using the currently available estimate, that is,
ε(t) = y(t) − h(φ(t),̂ϑ(t − 1)). Hence, the linearization step is only needed for
the calculation of K(t) and the update of P(t), which is in fact a first-order vari-
ance propagation step. Consequently, for this type of application related to nonlin-
ear static systems, for the linearization, it just suffices to compute the Jacobi matrix
H(t) at each time instant.

To summarize, the Extended Kalman Filter is given by the next algorithm.

Algorithm 7.4 Extended Kalman filtering for the estimation of ϑ(t) in a static non-
linear system

190 7 Time-varying Static Systems Identification

Table 7.2 Moving vehicle data

Time t (s) 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

x (m) −0.01 0.10 0.15 0.23 0.32 0.37 0.48 0.57 0.59 0.75 0.83

y (m) 0.01 0.07 0.07 0.11 0.16 0.21 0.21 0.23 0.35 0.36 0.37

Radar velocity 0.41 0.41 0.44 0.44 0.40 0.49 0.41 0.44 0.43 0.41 0.49

Fig. 7.9 Measured positions (left figure) and velocity estimates (right figure, with vx(0) = 1 and
vy(0)= 0)

1. Given input–output data u(t) and y(t) for t = 1, . . . ,N and the nonlinear state-
space representation (7.57), specify the covariance matrices Q(t) and R(t).

2. Choose the initial parameter vector ϑ(0) and the initial error covariance matrix
P(0).

3. Evaluate, for t = 1, . . . ,N , (7.60)–(7.64).

Example 7.11 Moving vehicle: Let the following data (see Table 7.2) be available
for estimation of both vx and vy .

The position in x- and y-coordinates is also presented in Fig. 7.9, which indi-
cates that the vehicle is moving along a straight line. Hence, the assumption that the
acceleration is zero appears to be valid.

The estimated velocities under the assumption that ϑ(0) = [vx(0)
vy(0)

] = [1
0

]

with
P0 = 1000I , Q(t)= 0, and R(t)= 0.1I for all t are presented in Fig. 7.9.

In a second experiment, where the acceleration in x-direction is equal to 1 m/s2

while keeping the acceleration in y-direction zero, the data presented in Table 7.3
have been generated.

In order to allow more time variation in the velocity estimates, the covariance
matrix related to the systems noise Q(t) is set to 0.1 I for all t . The noise-corrupted
position (y) and estimates are presented in Fig. 7.10.

Clearly, the estimated velocity in x-direction shows a trajectory that tends to a
constant increase of the velocity with time, which is obviously related to the ac-
celeration in this direction. In a next step, the parameter vector could therefore be

7.3 Historical Notes and References 191

Table 7.3 Moving vehicle data with acceleration

Time t (s) 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

x (m) 0.05 0.07 0.25 0.42 0.68 0.93 1.20 1.49 1.95 2.33 2.81

y (m) 0.01 0.07 0.07 0.11 0.16 0.21 0.21 0.23 0.35 0.36 0.37

Radar velocity 0.41 0.41 0.44 0.44 0.40 0.49 0.41 0.44 0.43 0.41 0.49

Fig. 7.10 Measured positions (left figure) and velocity estimates (right figure, with vx(0)= 1 and
vy(0)= 0) for ax = 1 m/s2

extended to include an unknown acceleration, where an initial guess can be ob-
tained from the slope of vx in Fig. 7.10. It is well known that in the EKF algorithm
the parameter estimation error covariance matrix is usually rather poorly estimated.
Therefore, the estimates of P(t), especially in highly nonlinear cases, should be
handled carefully.

7.3 Historical Notes and References

For an overview of recursive least-squares (RLS) estimation techniques and their
implementations, we refer to [Gel74, LS83, You84, Tur85, Ver89]. For recursive
estimation of statistical parameters, as introduced in the first sections of Chap. 7,
see the historical papers of [Sak65, Whi70, Maj73].

Shortly after the introduction of the Kalman filter [Kal60, KB61], Mayne
[May63] and Lee [Lee64] were among the first who pointed out the link between
parameter and state estimation, so that the resemblance between the Kalman filter
and the recursive least-squares parameter estimator became very clear. In this inter-
pretation, parameters are seen as time-varying unobserved states, see also [Kau69,
Che70]. However, apart from the unbiased, minimum variance concept, as used in
this book for the derivation of the Kalman filter, many other derivations have been
presented in literature as well. For instance, in the derivation, a Bayesian framework,

192 7 Time-varying Static Systems Identification

orthogonal projection, and dynamic programming concepts have also been used, see
Sorenson [Sor85] for an overview on this.

For time-varying parameter tracking, as an alternative to dynamic parameter
modeling, a forgetting factor [SS83, You84, BBB85, BC94] or covariance resetting
[SGM88] in the recursive algorithm has been used.

Especially for real-time implementation and for large-scale systems, the numer-
ical implementation of the estimator becomes important; for details, see [Gel74,
Bie77, May79, GVL89]. In particular, the square root filter [Car73, Pet75, MV91b,
Car90] has been introduced, while nowadays in data assimilation studies the
reduced-rank square root filter is popular, see [VH97, BEW02, TM03, CKBR08].

For nonlinear estimation problems, Jazwinski [Jaz70] introduced the so-called
Extended Kalman Filter, usually abbreviated to EKF. However, in case the model
is highly nonlinear, the extended Kalman filter may not always give reliable results,
basically because the mean and covariance are propagated through linearization of
the underlying nonlinear model. As an alternative to the EKF, the unscented Kalman
filter (UKF) [JU97] has been introduced. Instead of linearization, the UKF uses a
deterministic sampling technique to pick sample points around the mean. Via sim-
ple simulation-based propagation, these sample points are used to recover the mean
and covariance of the estimate. In addition to this, in general, application of (7.60)–
(7.64) will not guarantee stability of the algorithm. Therefore, a somewhat modified
EKF, based on regularization theory [BRD97, RU99], has been suggested in litera-
ture.

7.4 Problems

Problem 7.1 Consider again the discrete-time system of Problem 6.1,

G(q)= 0.2q−2

1 − 0.8q−1

and repeat Problem 6.1a–c to generate synthetic noisy data.

(a) Recursively estimate the parameter values using the MATLAB function roe.
Set adm = ‘kf’ and adg = a∗eye(2) with a = 0, 0.1, 10. Evaluate the recursive
estimation results.

(b) Repeat this procedure, but now by varying the initial covariance matrix of the
estimates, that is choose P0 = b∗eye(2) with b = 1, 100, 1e6. Evaluate again the
recursive estimation results.

Problem 7.2 Let us compare the results from a recursive parameter estimation and
a state estimation for the moving object example, i.e., an object moving in a straight
line with constant velocity (Example 5.2). Notice that this process can be described
by kinetic and dynamic models. Thus,

s(t)= s0 + vt (7.65)

7.4 Problems 193

or

ds(t)/dt = v (7.66)

(a) Define a discrete-time state-space model, including the noise terms with their
stochastic characterization, for the case that both parameters s0 and v have to
be estimated recursively from the measured output data. HINT: start with the
(kinematic model) equation (7.65) as output equation and add two discrete-time
state (difference) equations to describe the expected changes of the parameters
s0 and v. Assume that s0 is constant and v is a random walk process due to
unmodeled accelerations.

(b) Recursively estimate, using a standard Kalman filter, the position of the object
under the assumption that the parameters are completely unknown, for example,
s0 = v = 0 with P0 = 103I . Hence, first estimate the trajectories of s0 and v and
subsequently use (7.65) to calculate the position at each time instant. Evaluate
the result.

(c) Use the results from (a) as prior knowledge to obtain new recursive estimates of
s0 and v. Evaluate the result.

(d) Vary the diagonal elements in the covariance matrices P0, R, and Q to obtain
some feeling of their effect on the final estimation result. Evaluate the result.

(e) Using the previous results give an appropriate prediction (including the predic-
tion uncertainty) of the position at time instant t = 25 s.

(f) Instead of using first a parameter estimation step, one could also directly es-
timate the position (state) on the basis of model (7.66) and a standard Kalman
filter. Formulate a discrete-time state-space model for this state estimation prob-
lem under the assumption that, for example, v = 4 m/s.

(g) Repeat the steps in (b)–(e) for this new model.
(h) Compare the results from both approaches.

Chapter 8
Time-varying Dynamic Systems Identification

8.1 Linear Dynamic Systems

8.1.1 Recursive Least-squares Estimation

In Chap. 7, a time-varying static system representation has been introduced for re-
cursive estimation of parameters. In this representation, state dynamics were not
considered. Thus, in addition to the algebraic output equation, it contains only dif-
ferential or difference equations related to the possible dynamics in the parameter
estimates. In this chapter, the idea of recursive estimation of the model parame-
ters is further developed for the estimation of unknowns in a dynamic system. Let
us start with an example that illustrates how to estimate inputs and parameters in
a continuous-time linear dynamic system. In this particular example, the process
dynamics are described by piece-wise linear differential equations with piece-wise
constant inputs. Consequently, given the explicit solution of the differential equa-
tions (see footnote 1 in Chap. 1), a time-varying static system representation results,
and thus the algorithms of Chap. 7 can be applied directly.

Example 8.1 NH4/NO3 dynamics in pilot plant Bennekom (based on [LKvS99]):
The layout of the pilot-activated sludge plant (ASP) is presented in Fig. 8.1.

In the alternating (anoxic/aerobic) reactor the air flow is manipulated by a
dissolved oxygen controller (DO-ctrl) that receives its alternating set-point from
a higher-level nitrogen controller (N-ctrl). Furthermore, the amount of activated
sludge is regulated by a sludge controller (X-ctrl). The NH4/NO3 dynamics in
alternating ASPs on the time scale of hours can be explained by only three pro-
cesses: reactor’s influent load, nitrification, and denitrification. Hence, the combined
NH4/NO3 balances in alternating aerated reactors can be modeled as

[dNH4
dt

dNO3
dt

]

= −q in

V

[

NH4
NO3

]

+
[−rNH
rNH + rNO

]

u+
[

q in

V
NHin

4−rNO

]

(8.1)

K.J. Keesman, System Identification,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-0-85729-522-4_8, © Springer-Verlag London Limited 2011

195

http://dx.doi.org/10.1007/978-0-85729-522-4_8

196 8 Time-varying Dynamic Systems Identification

Fig. 8.1 Pilot activated sludge plant layout

rNH =
{

rNH,max if NH4 > 0

q in

V
NHin

4 if NH4 = 0
(8.2)

rNO =
{

rNO,max if NO3 > 0

0 if NO3 = 0
(8.3)

[

y1(t)

y2(t)

]

=
[

NH4(t − τ)

NO3(t − τ)

]

(8.4)

where q in is the influent flow, V is the reactor volume, r·,max is the maximum con-
sumption rate of NH4 or NO3, respectively. Furthermore, τ is the measurement time
delay, and u ∈ {0, 1}, thus, u is “off” or “on,” i.e., in Fig. 8.1, DOR = 0 (anoxic) or
DOR = 3 mg/l (aerobic, no DO limitation). In particular we define

ϑ := [

NHin
4 rNH,max rNO,max

]T

Using the random walk parameter model, (7.22), using (8.1)–(8.4) and after elim-
inating the state variables NH4 and NO3 to arrive at an equivalent discrete-time
system, the following state-space model is obtained:

ϑ(t + 1) = ϑ(t)+w(t)

y(t + 1)− e
−qin(t−τ)

V
T y(t) = X(t)ϑ(t)+ v(t)

where ϑ ∈ R
p , y ∈ R

n, w ∈ R
p , v ∈ R

n; in this application, p = 3 and n = 2.
Furthermore,

8.1 Linear Dynamic Systems 197

Table 8.1 Jacobi matrix elements in different operating modes

{y(t + 1), y(t)}> 0 {y1(t + 1), y1(t)} = 0 {y2(t + 1), y2(t)} = 0

X11(t)
q in(t−τ)

V
0 q in(t−τ)

V

X12(t) −u(t − τ) 0 −u(t − τ)

X13(t) 0 0 0

X21(t) 0 q in(t−τ)
V

0
X22(t) u(t − τ) 0 0
X23(t) u(t − τ)− 1 u(t − τ)− 1 0

X(t) = ∂ŷ(t + 1|t)
∂ϑ

= 1 − e
−qin(t−τ)

V
Ts

e
−qin(t−τ)

V

×
[

X11(t) X12(t) X13(t)

X21(t) X22(t) X23(t)

]

where Ts is the sampling interval (5 min). The elements X11(t), . . . ,X23(t) are de-
fined in Table 8.1.

Consequently, the piece-wise linear dynamic system with time-varying parame-
ters has been cast into the framework of a time-varying static system. In particular,

(7.28) with Ξ = I , Π = I , Φ = X, and output y(t + 1)− e
−qin(t−τ)

V
Ts y(t). Hence,

under the assumption that w(t) and v(t) are white, the recursive estimator of (7.29)–
(7.33) can be used to estimate the unknowns in ϑ .

Experimental data has been collected from the alternating aerated pilot scale ASP
with continuously mixed aeration tank (V = 475 l, Mixed Liquor Suspended Solids
(“biomass”) MLSS = 3.5 g/l, pH = 7) continuously fed with presettled municipal
waste water. The inputs, DO and q in, and measured output data, NH4 and NO3, are
shown in Figs. 8.2 and 8.3.

The tuning matrices of the recursive least-squares estimator P(0), Q, and R are
set to

P(0) = 106I

Q =
⎡

⎣

10 0 0
0 5 × 10−7 0
0 0 1 × 10−5

⎤

⎦

R = 0.1I

where P(0) is chosen large enough (see Remark 7.3), Q has been derived from the
diagonal of the final covariance matrix P(N), related to the case of Q = 0, and is
chosen as 0.1 diag(P (N)), and R is related to the accuracy of the measurement
devices. The estimated parameter trajectories are presented in Fig. 8.4.

Contrary to expectation, the influent related parameter NHin
4 does not show much

diurnal variation, probably due to attenuation of diurnal influent cycles in the over-
estimated presettler (see Fig. 8.1). As expected, the estimated rNH,max in Fig. 8.4

198 8 Time-varying Dynamic Systems Identification

Fig. 8.2 Input signals, dissolved oxygen concentration (top figure), and influent flow (bottom fig-
ure) for the pilot-activated sludge plant

just represented without the subscript “max”, shows little variation on a short time
scale, but a clear change is observed on a larger time scale. A clear diurnal variation
is observed in the estimates of rNO,max; it consistently reaches its minimum at about
noon, just after a period with low loads. On the basis of these results, several hy-
potheses can be stated, but this is beyond the scope of this book. It should, however,
be noted that for practical implementation, special actions with respect to prediction
errors and the matrix R are required in unusual situations. These unusual situations
occur, for instance, in case of auto-calibration of the sensors (see fat over-bars at the
top of the subplots in Fig. 8.3), outliers, or when NH4 or NO3 is depleted, while due
to some off-set, the sensor indicates a nonzero value.

To summarize, Example 8.1 illustrates how to recursively estimate both inputs
and parameters in a continuous-time linear dynamic system. Since the process dy-
namics are described by piece-wise linear differential equations with piece-wise
constant inputs, explicit solutions of the differential equations (see footnote 1 in
Chap. 1) were found. In this case, it further appears that, after some rewriting, the ex-
plicit solution is linear in the parameter vector, ϑ = [NHin

4 rNH,max rNO,max]T . Con-
sequently, a multioutput, time-varying static system representation, as in Sect. 7.1.3,
results, and thus algorithm (7.29)–(7.33) from Chap. 7 can be applied directly. How-
ever, if we intend to recursively estimate, for instance, the influent flow q in (input)

8.1 Linear Dynamic Systems 199

Fig. 8.3 Measured (dots) and predicted model output (solid line) signals, NH4–N (top figure) and
NO3–N (bottom figure), for the pilot-activated sludge plant

or volume V (parameter) as well, a nonlinear regression between y(t) and ϑ(t) will
result. Notice that this input and parameter are directly related to the states and thus
appear in the exponent of the resulting exponential function. Hence, for this case,
the EKF algorithm ((7.60)–(7.64)) can be used.

Thus, for the recursive estimation of parameters, and possibly inputs as well,
of continuous-time linear dynamic systems, for which explicit solutions exist, the
algorithms from Chap. 7 can be used.

8.1.2 Recursive Prediction Error Estimation

In addition to the recursive least-squares estimation algorithms presented sofar,
which are basically related to the equation-error identification problem, several
modified recursive schemes related to the output-error identification problem with
its colored noise have been proposed as well. Typical examples of these schemes,
which will not be worked out here, are the extended least-squares and the instru-
mental variables algorithms (see Sect. 6.1.3).

Recall that, in particular in Sect. 7.1, the emphasis has been on unbiased, min-
imum variance estimates. As an alternative to this, when a model is, for instance,

200 8 Time-varying Dynamic Systems Identification

Fig. 8.4 Estimated parameter, NHin
4 (top figure), rNH (middle figure), and rNO (bottom figure)

trajectories

developed for prediction, the algorithm should be chosen such that some scalar func-
tion of the prediction errors is minimized. Algorithms that focus on this particular
model application are called Prediction-Error algorithms that in fact provide a gen-
eral framework for identification (see Sect. 6.1.4).

For the development of a recursive prediction-error (RPE) algorithm, first an
expression for ψ(t,ϑ), the gradient of the prediction, must be found. Recall the
definition of the gradient, that is,

ψ(t,ϑ) := dŷ(t, ϑ)

dϑ
= −dε(t,ϑ)

dϑ
(8.5)

Example 8.2 Output error model: Recall from (6.19) and (6.33) that for an output
error model structure with A(q)= C(q)=D(q)= 1, the one-step-ahead prediction
ŷ(t |t − 1), and further denoted by ŷ(t, ϑ) to express its dependency on ϑ , is given
by

ŷ(t, ϑ)= B(q)

F (q)
u(t)= ξ(t, ϑ)

8.1 Linear Dynamic Systems 201

Then,

∂ŷ(t, ϑ)

∂bk
= 1

F(q)
u(t − k) (8.6)

∂ŷ(t, ϑ)

∂fk
= − B(q)

F (q)F (q)
u(t − k)

= − 1

F(q)
ξ(t − k,ϑ) (8.7)

=⇒ ∂ŷ(t, ϑ)

∂ϑ
= 1

F(q)

[

u(t − 1), . . . , u(t − nb),

− ξ(t − 1, ϑ), . . . ,−ξ(t − nf ,ϑ)
]T

=ψ(t,ϑ) (8.8)

Consequently, ψ(t,ϑ) = 1
F(q)

φ(t,ϑ) with regression vector φ(t,ϑ) = [u(t − 1),

. . . , u(t − nb),−ξ(t − 1, ϑ), . . . ,−ξ(t − nf ,ϑ)]T , so that the gradient of the pre-
diction is a filtered regression vector.

Notice that in the time recursions ϑ is not known. What is available is the ap-
proximation ̂ϑ(t − 1). Consequently, the idea is to substitute ϑ by ̂ϑ(t − 1) in the
variables ŷ(t, ϑ) and ψ(t,ϑ), which are further denoted by ŷ(t) and ψ(t). For the
calculation of ŷ(t) and ψ(t) we introduce the ‘state’ vector, which is related to the
generalized model structure (6.11) with nk = 0, and which is given by

φ(t,ϑ) = [− y(t − 1), . . . ,−y(t − na),u(t − 1), . . . , u(t − nb),

− ξ(t − 1, ϑ), . . . ,−ξ(t − nf ,ϑ), ε(t − 1, ϑ), . . . , ε(t − nc,ϑ),

− v(t − 1, ϑ), . . . ,−v(t − nd,ϑ)
]T (8.9)

with ξ(t, ϑ) = B(q)
F (q)

u(t), ε(t,ϑ) = y(t) − ŷ(t) = D(q)
C(q)

[A(q)y(t) − B(q)
F (q)

u(t)] and
v(t,ϑ) = A(q)y(t) − ξ(t, ϑ). The corresponding parameter vector of the general-
ized model structure (6.11) ϑ ∈ R

p is given by

ϑ = [a1 . . . ana b1 . . . bnb f1 . . . fnf c1 . . . cnc d1 . . . dnd]T (8.10)

After some algebraic manipulation and assuming a linear time-invariant finite-
dimensional model, as (6.11), the output prediction is found from

φ(t + 1)= F
(

̂ϑ(t)
)

φ(t)+ G
(

̂ϑ(t)
)

[

y(t)

u(t)

]

ŷ(t)= H
(

̂ϑ(t − 1)
)

φ(t)

(8.11)

where F ,G and H are properly chosen. Let us illustrate this model description to
a simple output error model, so that proper choices for F ,G and H become clear

202 8 Time-varying Dynamic Systems Identification

straightforwardly. For simplicity of notation, no reference is made to the estimates
in a time recursion.

Example 8.3 Output error model: Consider the following output error model with
nb = 2 and nf = 2:

ξ(t, ϑ)= b1u(t − 1)+ b2u(t − 2)− f1ξ(t − 1, ϑ)− f2ξ(t − 2, ϑ)

Then, (8.11) with φ(t,ϑ) = [u(t − 1), u(t − 2),−ξ(t − 1, ϑ),−ξ(t − 2, ϑ)]T , be-
comes

⎡

⎢

⎢

⎣

u(t)

u(t − 1)
−ξ(t, ϑ)

−ξ(t − 1, ϑ)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 0 0 0
1 0 0 0

−b1 −b2 −f1 −f2
0 0 1 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

u(t − 1)
u(t − 2)

−ξ(t − 1, ϑ)
−ξ(t − 2, ϑ)

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

0 1
0 0
0 0
0 0

⎤

⎥

⎥

⎦

[

y(t)

u(t)

]

ŷ(t, ϑ) = ξ(t, ϑ)= [b1 b2 f1 f2]

⎡

⎢

⎢

⎣

u(t − 1)
u(t − 2)

−ξ(t − 1, ϑ)
−ξ(t − 2, ϑ)

⎤

⎥

⎥

⎦

Consequently,

F =

⎡

⎢

⎢

⎣

0 0 0 0
1 0 0 0

−b1 −b2 −f1 −f2
0 0 1 0

⎤

⎥

⎥

⎦

G =

⎡

⎢

⎢

⎣

0 1
0 0
0 0
0 0

⎤

⎥

⎥

⎦

H = [b1 b2 f1 f2]

After differentiating (8.11) with respect to ϑ1, . . . , ϑp and introducing

χ(t)= [

φ(t)T ∂
∂ϑ1

φ(t)T . . . ∂
∂ϑp

φ(t)T
]T (8.12)

8.1 Linear Dynamic Systems 203

the following approximation is obtained

χ(t + 1)= A
(

̂ϑ(t)
)

χ(t)+ B
(

̂ϑ(t)
)

[

y(t)

u(t)

]

[

ŷ(t)

ψ(t)

]

= C
(

̂ϑ(t − 1)
)

χ(t)

(8.13)

Let us illustrate this extended model description, thus including the gradient of the
prediction, ψ(t) = ∂ŷ(t)

∂ϑ
, as in (8.13), to a first-order output error model and again

no reference is made to the estimates in a time recursion.

Example 8.4 Output error model: Consider the following output-error model with
nb = 1 and nf = 1:

ŷ(t, ϑ)= ξ(t, ϑ)= b1u(t − 1)− f1ξ(t − 1, ϑ)

so that φ(t,ϑ)= [u(t − 1),−ξ(t − 1, ϑ). The gradients of the prediction are found
from

∂ŷ(t, ϑ)

∂b1
= ψ1(t, ϑ)= u(t − 1)− f1

∂ξ(t − 1, ϑ)

∂b1

∂ŷ(t, ϑ)

∂f1
= ψ2(t, ϑ)= −ξ(t − 1, ϑ)− f1

∂ξ(t − 1, ϑ)

∂f1

See also (8.6) and (8.7). Consequently, for

χ(t,ϑ) = [

u(t − 1),−ξ(t − 1, ϑ),ub1(t − 1),−ξb1(t − 1, ϑ),uf1(t − 1),

− ξf1(t − 1, ϑ)
]T

using the short-hand notation ux := ∂u
∂x

and ξx := ∂ξ
∂x

, the dynamic systems (8.13)
becomes

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u(t)

−ξ(t, ϑ)
ub1(t)−ξb1(t, ϑ)

uf1(t)−ξf1(t, ϑ)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
−b1 −f1 0 0 0 0

0 0 0 0 0 0
−1 0 0 −f1 0 0
0 0 0 0 0 0
0 −1 0 0 0 −f1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u(t − 1)
−ξ(t − 1, ϑ)
ub1(t − 1)

−ξb1(t − 1, ϑ)
uf1(t − 1)

−ξf1(t − 1, ϑ)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1
0 0
0 0
0 0
0 0
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

y(t)

u(t)

]

204 8 Time-varying Dynamic Systems Identification

⎡

⎣

ŷ(t, ϑ)

ψ1(t, ϑ)

ψ2(t, ϑ)

⎤

⎦ =
⎡

⎣

b1 f1 0 0 0 0
1 0 0 f1 0 0
0 1 0 0 0 f1

⎤

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u(t − 1)
−ξ(t − 1, ϑ)
ub1(t − 1)

−ξb1(t − 1, ϑ)
uf1(t − 1)

−ξf1(t − 1, ϑ)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

from which the matrices A ,B and C (see (8.13)) can be directly deduced.

Hence, the required approximations ŷ(t) and ψ(t) are found from the dynamic
system (filter) given by (8.13), as illustrated by the example.

A general recursive algorithm is given by

̂ϑ(t)=̂ϑ(t − 1)+ γ (t)R−1(t)ψ
(

t,̂ϑ(t − 1)
)

ε
(

t,̂ϑ(t − 1)
)

(8.14)

Consequently, using (8.14), for a specific choice of R(t), for example,

R(t)= γ (t)

t
∑

k=1

β(t, k)ψ(k)ψ(k)T

based on the Gauss–Newton method with gain γ (t) and (least-squares) weight-
ing sequence β(t, k) both defined below, the following so-called recursive Gauss–
Newton prediction-error algorithm is obtained:

ε(t) = y(t)− ŷ(t) (8.15)

R(t) = R(t − 1)+ γ (t)
[

ψ(t)ψ(t)T −R(t − 1)
]

(8.16)

̂ϑ(t) =̂ϑ(t − 1)+ γ (t)R−1(t)ψ(t)ε(t) (8.17)

For details of the derivation of (8.15)–(8.17), we refer to [Lju99b], Sect. 11.2. What
is important for now is to notice that, unlike the previously presented recursive least-
squares algorithms, in the derivation of (8.15)–(8.17) no statistical information in
terms of means and covariances is taken into account; it directly starts from explicit
search schemes. Especially, for model structures that cannot be written as linear re-
gressions, the general algorithm (8.15)–(8.17) provides a good alternative, because
the recursive least-squares algorithms of Chap. 7 are only optimal for linear re-
gression models. However, the tuning parameters β(t, k) or γ (t) must be properly
chosen in order to obtain a good behavior of the estimator. This behavior is usually
expressed in terms of a trade-off between tracking ability and noise sensitivity. Un-
fortunately, no unique tuning rules that take into account this trade-off are available.
Ljung [Lju99b] summarizes the relationships between the forgetting profile β(t, k)
with forgetting factors λ(t) and the gain γ (t) as

β(t, k) =
t
∏

j=k+1

λ(j)= γ (k)

γ (t)

t
∏

j=k+1

(

1 − γ (j)
)

(8.18)

8.1 Linear Dynamic Systems 205

Fig. 8.5 Forgetting profiles β(t, k) (top figure) and gain γ (t) (bottom figure)

λ(t) = γ (t − 1)

γ (t)

(

1 − γ (t)
)

(8.19)

γ (t) = 1

1 + λ(t)
γ (t−1)

(8.20)

In the following example, the profiles are evaluated for specific choices of λ,γ (0)
and k.

Example 8.5 RPE-algorithm: Let λ(t)≡ λ= 0.99, γ (0)= 1, and k = 0 : 20 : 200.
Then, the following profiles for t ∈ [0,400], as presented in Fig. 8.5, are found.

Let us round off this section by summarizing the RPE-algorithm.

Algorithm 8.1 Recursive Prediction-Error estimation of ϑ(t) in linear time-varying
dynamic systems

1. Choose the initial parameter vector ϑ(0) and the forgetting factor β(t) or gain
γ (t).

2. Evaluate, for t = 1, . . . ,N , the prediction ŷ(t) and the gradient of the prediction
ψ(t), and subsequently calculate ε(t), R(t), and ̂ϑ from (8.15)–(8.17).

206 8 Time-varying Dynamic Systems Identification

In the next section, we will focus on the third type of estimation problem already
mentioned in Sect. 1.1.2, i.e., smoothing.

8.1.3 Smoothing

Recall that smoothing is the estimation of x(t), 0 ≤ t ≤ T , from y(t), 0 ≤ t ≤ T .
If, for example, the final goal is to reconstruct possibly time-varying parameter es-
timates in a model of a dynamic system from a (short) data set, smoothing is a good
alternative to filtering, because at any time instant it builds into the estimates the in-
formation contained in the present, future, and past measurements. Notice from the
material presented so far that filtering always introduces some time lag; the new es-
timate depends on the current output and also on the previous estimate. Especially in
short data sets with limited prior parameter knowledge, this phenomenon becomes
visible quite clearly. Therefore, algorithms have been proposed that do not only take
into account past data, but also future data, when available, in the data set. Hence,
instead of the estimation of ϑ(t |t), i.e., the estimate at time instant t given informa-
tion up to t , the focus is now on the estimation of ϑ(t |N) and which is known as
smoothing. Given the explicit time-varying parameter model with output equation
(7.28) with Covw(t)=Q(t), Covv(t)=R(t), and Π = I , a fixed-interval optimal
smoothing algorithm for the time-varying parameters can be formulated as

̂ϑ(t + 1|N) =̂ϑ(t + 1|t)− P(t + 1|t)λ(t), for t = 0,1, . . . ,N − 1 (8.21)

λ(t) = (

I −Φ(t + 1)T R(t + 1)−1Φ(t + 1)P (t + 1|t + 1)
)

(

ΞT λ(t + 1)−Φ(t + 1)T R(t + 1)−1)

(

y(t + 1)−Φ(t + 1)̂ϑ(t + 1|t)),
for t =N − 1,N − 2, . . . ,0 (8.22)

wherêϑ(t+1|t) and P(t+1|t) are found from the nonsmoothing forward recursion
(7.29)–(7.30), and λ(t) is the so-called Lagrange multiplier related to the explicit
time-varying parameter model. In fact, the smoothing algorithm minimizes

VN =
N
∑

t=1

[(

y(t)−Φ(t)̂ϑ(t |N)T
)

R(t)−1(y(t)−Φ(t)̂ϑ(t |N)
)]

+ ŵ(t − 1)T Q(t − 1)−1ŵ(t − 1)

+ (

̂ϑ(0|N)−̂ϑ(0|0))T P (0|0)T (̂ϑ(0|N)−̂ϑ(0|0)) (8.23)

under the equality constraints

ϑ(t) = Ξϑ(t − 1)+w(t − 1) (8.24)

8.1 Linear Dynamic Systems 207

Table 8.2 Moving object data

Time t (s) 1 2 3 4 10 12 18

Distance y (ft) 9 15 19 20 45 55 78

In (8.24), the first term on the right-hand side reflects the costs of prediction errors,
the second one represents the costs of parameter variations, and the last term is
related to the final cost of the parameter deviations. Alternative forms, in which
̂ϑ(t + 1|N) is expressed in terms of ̂ϑ(t + 1|t + 1) instead of ̂ϑ(t + 1|t), can be
formulated as well, but this is not further shown here.

Algorithm 8.2 Fixed-interval optimal smoothing of ϑ(t) in linear time-varying dy-
namic systems

1. Given y(t) and Φ(t) for t = 1, . . . ,N , specify the dynamic parameter model
matrix Ξ .

2. Specify the covariance matrices Q(t) and R(t).
3. Choose the initial parameter vector ϑ(0) and the initial error covariance matrix

P(0).
4. Evaluate, for t = 1, . . . ,N , (7.29)–(7.30) and subsequently, for t =N −1, . . . ,0,

(8.21)–(8.22).

Example 8.6 Moving object (constant velocity): Let us focus again on the moving
object data of [You84], p. 18, see also Table 8.2.

A simple linear dynamic model describing the behavior of a moving object along
a straight line is

ds(t)

dt
= v(t)+ω(t)

y(t) = s(t)+ ν(t)

where in this example ω and ν are used instead of w and v to avoid confusion with
the velocity v. If s0 is fixed at s0 = 5.7 ft, v is assumed to be constant, and only a
smoothed estimate of this constant velocity v is required, an appropriate model is

v(t + 1) = v(t)

y(t)− s0 = v(t)t + e(t)

Hence, under the assumption that v is constant, Ξ = 1, Π = 0, and Q(t) = 0 ∀t .
Let further R(t)= 1 ∀t and P(0|0)= 108. Then, the following smoothed estimates
with corresponding estimation variances are found (see Figs. 8.6–8.7). Notice from
these figures that, as expected, the trajectory of the smoothed estimates does not
show any effect of the unknown initial estimate. Furthermore, smoothing shows
that the estimation variances are significantly smaller than in the case of filter-
ing.

208 8 Time-varying Dynamic Systems Identification

Fig. 8.6 Filtered (solid line)
and smoothed (dashed line)
estimates

Fig. 8.7 Estimation
variances related to
one-step-ahead predictions
P (k + 1|k), filtered estimates
P (k|k), and smoothed
estimates P (k|N)

Recall that Chap. 7 focusses on static systems or (non)linear regression type of
models. In this chapter so far (piece-wise) linear dynamic systems with time-varying
parameters have been considered. Because of the linear system dynamics, explicit
solutions of the state differential equations exist. In Example 8.1, these explicit solu-
tions have been substituted in the output equation (see footnote 1 in Chap. 1), so that
the algorithms of Chap. 7 were finally used. However, in the next section, algorithms
and examples will be presented for the general nonlinear dynamic case, where the
differential or difference equations related to the process states and output equations
remain present. Thus, in the following, the question is: “given a nonlinear dynamic
system description, how can we recursively estimate the unknown parameters?”

8.2 Nonlinear Dynamic Systems 209

Fig. 8.8 Components and
prespecified outputs of the
positioning system

8.2 Nonlinear Dynamic Systems

8.2.1 Extended Kalman Filtering

Basically, all the ingredients for solving a recursive estimation problem of a nonlin-
ear dynamic system have been presented in Chap. 7. Let us start with an example
of a moving vehicle, which shows linear dynamics and a nonlinear relationship be-
tween the states and the measured outputs.

Example 8.7 Moving vehicle—real-world case (based on [vBGKS98]): Consider
a moving vehicle which, unlike the previous case, is equipped with a differential
global positioning system (DGPS) receiver, a radar velocity sensor, a wheel veloc-
ity sensor, and an electronic compass. The structure of the positioning system is
schematically presented in Fig. 8.8. The sensors for position, velocity, and heading
were connected to a PC-based data acquisition system equipped with analogue-to-
digital conversion, counter inputs and an RS-232 port. The data-logging rate for the
DGPS receiver was restricted to the maximum update rate of 4 Hz. Velocity and
heading measurements were collected at a sampling frequency of 40 Hz.

Assume that, for the online estimation of the x- and y-positions, the system be-
havior can be described by the difference equations

s(t) = s(t − Ts)+ v(t − Ts)Ts + 1

2
a(t − Ts)T

2
s

v(t) = v(t − 1)+ a(t − Ts)Ts

a(t) = a(t − Ts)+ω(t)

where s(t) is the position at time instant t (m), v(t) is the velocity (m/s), a(t) is
the acceleration (m/s2), and Ts is the sampling interval (s). As in Example 8.6, we
will use ω(t) and ν(t) to represent the system and sensor noise. In what follows,
we distinguish between x- and y-directions, so that the six-dimensional state vector
becomes x(t)= [sx sy vx vy ax ay]. Given the set of difference equations, the state

210 8 Time-varying Dynamic Systems Identification

matrix related to the position, velocity, and acceleration in both x- and y-directions
is given by

A=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 Ts
1
2T

2
s 0 0 0

0 1 Ts 0 0 0
0 0 1 0 0 0
0 0 0 1 Ts

1
2T

2
s

0 0 0 1 Ts 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Assuming equal system noise properties in the accelerations in x- and y-directions,
the noise matrix is defined as G := [0 0 1 0 0 1]. Furthermore, the nonlinear vector
function h(x(t),ϑ(t)) relates the state variables and parameters to the output vec-
tor y(t), containing measurements from the DGPS receiver, radar velocity sensor,
wheel velocity sensor, and electronic compass, and is defined as

h
(

x(t),ϑ(t)
) :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

sx(t)

sy(t)
√

vx(t)2 + vy(t)2
√

vx(t)2 + vy(t)2

arctan(vx(t)
vy(t)

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Notice that the state equations are linear and the output equation is nonlinear. For an
EKF implementation, the vector function h(·, ·) must be linearized, usually at time
instant t − 1, leading to the observation matrix

H(t)=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 0 0 1 0 0
0 vx

√

v2
x+v2

y

0 0 vy
√

v2
x+v2

y

0

0 vx
√

v2
x+v2

y

0 0 vy
√

v2
x+v2

y

0

0 vy

v2
x+v2

y
0 0 − vx

√

v2
x+v2

y

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The results of a real-world experiment with, for all t ,

Q(t) = 0.1

R(t) =

⎡

⎢

⎢

⎢

⎢

⎣

1.39 0 0 0 0
0 1.39 0 0 0
0 0 0.001 0 0
0 0 0 0.002 0
0 0 0 0 0.14

⎤

⎥

⎥

⎥

⎥

⎦

can be seen in Fig. 8.9. Notice that at the northeast corner, when the vehicle crossed
the tree line, the DGPS lost satellite fixed and jumped to positions 20–30 m away

8.2 Nonlinear Dynamic Systems 211

Fig. 8.9 Filtered positions
(solid line) and DGPS
measurements (circles)
during a satellite no fix period
in the northeast corner

from the real position. The positioning system then relied on dead reckoning, using
only the radar velocity sensor, wheel velocity sensor, and electronic compass. The
DGPS receiver needed about 80 m or 12 s, to recover from the satellite loss.

So far in Part III, the emphasis was on recursive parameter estimation, and the
resemblance with state estimation was underlined. However, in those applications
where mainly indirect or rather uncertain measurements are available, state esti-
mation using a mathematical model of the system is indispensable. In general,
these models contain uncertain or even unknown parameters. Hence, in addition to
state estimation, in fact some or all of the parameters must be estimated as well
from experimental data. For these cases, one commonly applies a simultaneous
state/parameter estimation approach. This approach uses so-called state augmen-
tation by regarding the parameters as states (see also Example 7.6). Consequently,
given (7.28a) and (7.38a), the following state equation with x′(t) := [x(t)

ϑ(t)

]

is ob-
tained:

x′(t) =
[

A(t) 0
0 Ξ

]

x′(t − 1)+
[

B(t)

0

]

u(t − 1)

+
[

G(t) 0
0 Π

]

ω′(t − 1) (8.25)

Notice that in Example 8.7 state augmentation was already implicitly used. That
is, in addition to the four states sx , sy , vx , and vy , the acceleration in both x- and
y-directions, which can be considered as parameters of the model, is simultaneously
estimated from the data.

Let us now demonstrate the simultaneous estimation of states and parameters,
using state augmentation and extended Kalman filtering, in a real-world application
with nonlinear dynamics. However, for this example, we need an essential modifi-
cation of the basic EKF for static, nonlinear systems, as in (7.60)–(7.64).

212 8 Time-varying Dynamic Systems Identification

Let us first introduce a continuous-discrete time system description,

dx(t)

dt
= f

(

t, x(t), u(t)
)+w(t), x(0)= x0

y(tk) = h
(

tk, x(tk), u(tk)
)+ v(tk), k = 0,1, . . . ,N

(8.26)

where x(t) may be an augmented state vector, so that we do not distinguish be-
tween states and parameters. Furthermore, because of the continuous-discrete time
description, we introduce the new notation tk , indicating the kth sampling time in-
stant. As before, w(t) is the system noise, representing modeling error and unknown
inputs, and v(tk) is the measurement noise at time instant tk . Define the Jacobi ma-
trix F = (fij) with elements

fij =
[

∂fi(t, x̂(t), u(t))

∂x̂j

]

t=tk−1

(8.27)

and from this the transition matrix A(tk)=A(̂x(tk−1)) := eFΔt with Δt = tk − tk−1

for equidistant measurements. Notice that, in general, eFΔt is the exponential of a
matrix (see Appendix A). Furthermore, define the matrix H(tk) with elements

hij = ∂hi(t, x̂(tk−1), u(tk−1))

∂x̂j
(8.28)

Then, the Extended Kalman filter equations for the continuous-discrete time dy-
namic system, (8.26), are given as follows.

Prediction:

x̂(tk|tk−1) = x̂(tk−1)+
∫ tk

tk−1

f
(

τ, x(τ), u(τ)
)

dτ (8.29)

P(tk|tk−1) = A(tk)P (tk−1)A(tk)
T +Q(tk) (8.30)

Correction:

K(tk) = P(tk|tk−1)H(tk)
T
[

H(tk)P (tk|tk−1)H
T (tk)+R(tk)

]−1
(8.31)

x̂(tk) = x̂(tk|tk−1)+K(tk)
[

y(tk)− h
(

tk, x(tk|tk−1), u(tk)
)]

(8.32)

P(tk) = (

I −K(tk)H(tk)
)

P(tk|tk−1)
(

I −H(tk)
T K(tk)

T
)

+K(tk)R(tk)K(tk)
T (8.33)

where P(tk) is the covariance matrix of the estimates at time instant tk , Q(tk) is
the covariance matrix associated with the system noise (w(tk)), and R(tk) is the
covariance matrix of the measurement noise (v(tk)) at tk . As before, the argument
“tk|tk−1” denotes prediction from time instant tk−1 to tk . Notice then from the defi-
nition of F that A(tk) is evaluated at each new sampling instant.

8.2 Nonlinear Dynamic Systems 213

Algorithm 8.3 Extended Kalman filtering for the estimation of both x(t) and ϑ(t)

in a continuous-discrete time nonlinear system

1. Given input–output data u(tk) and y(tk) for tk = 1, . . . ,N and the nonlinear
(state-augmented) state-space representation (8.26), specify the covariance ma-
trices Q(tk) and R(tk).

2. Choose the initial (augmented) state vector x(0) and the initial error covariance
matrix P(0).

3. Evaluate, for tk = 1, . . . ,N , (8.29)–(8.33).

Example 8.8 Dissolved Oxygen (DO) dynamics (based on [LKvS96]): Recall from
Example 6.19 that for a specific application, the DO dynamics in an aeration tank
are at last described by (6.106), (6.108), and (6.110). Recall that this is a continuous-
discrete time system, as the output was sampled every minute. After reparameteri-
zation of (6.106), the following DO balance was obtained:

dC(t)

dt
= −f (C)ract(t)+ α′√qair(t −Δ)

+ β ′√qair(t −Δ)C(t)+ γ ′C(t)− qin + qr

V
C(t)+ δ′

Let us now try to estimate the continuous-time parameters KC , α′, β ′, and δ′
and the DO concentration C(t) recursively from the first 11 hours of experimen-
tal data in Fig. 6.18a. Clearly, simultaneous estimation of parameters and states
will, in general, lead to nonlinear estimation problems. Assuming a simple random
walk model for the parameters, the system matrix of the linearized system with
x = [Kc α

′ β ′ δ′ C], and linearized around the last estimates (not explicitly shown
here) and inputs, becomes

A(t)=

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C

(KC+C)2 ract
√
qair C

√
qair 1 KC

(KC+C)2 ract + β ′√qair − qin+qr
V

⎤

⎥

⎥

⎥

⎥

⎦

For specific choices of Q and R such that a good trade-off between tracking ability
and noise reduction is obtained, the following trajectories of the continuous-time
parameter estimates, as presented in Fig. 8.10, result. These trajectories were ob-
tained by using a continuous-discrete time EKF implementation, see (8.29)–(8.33).
The estimates of C(t) are not shown here, as they smoothly follow the measured
DO concentrations.

8.2.2 *Observer-based Methods

Consider a simplified version of (1.2) without the noise terms w and v and obtained
after state augmentation, so that the model parameter vector ϑ is assimilated in the

214 8 Time-varying Dynamic Systems Identification

Fig. 8.10 Recursive parameter estimates of re-parameterized DO model

state vector x,

dx(t)

dt
= f

(

t, x(t), u(t)
)

y(t) = h
(

t, x(t), u(t)
)

(8.34)

Hence, our starting point is a noise-free system representation, where x has to be
estimated from the available data. Notice then that the focus is on state estimation,
which originates from mathematical systems theory, rather than parameter estima-
tion. It may, however, be clear from the previous sections that parameters can be
considered as unobserved states. Thus, for parameter estimation problems, state es-
timation techniques may be deployed as well. Suppose now that an estimate x̂(t) of
x(t) in (8.34) is given. We will then use a linearized version of (8.34) to see how the
estimate propagates. Linearization around the given estimate gives

dx(t)

dt
≈ f

(

t, x̂(t), u(t)
)+ ∂f (t, x(t), u(t)

∂x

∣

∣

∣

∣

x̂(t)

[

x(t)− x̂(t)
]

y(t) ≈ h
(

t, x̂(t), u(t)
)+ ∂h(t, x(t), u(t)

∂x

∣

∣

∣

∣

x̂(t)

[

x(t)− x̂(t)
]

(8.35)

8.3 Historical Notes and References 215

Define

Fx := ∂f (t, x(t), u(t)

∂x

∣

∣

∣

∣

x̂(t)

, Hx := ∂h(t, x(t), u(t)

∂x

∣

∣

∣

∣

x̂(t)

Dx := h
(

t, x̂(t), u(t)
)− ∂h(t, x(t), u(t)

∂x

∣

∣

∣

∣

x̂(t)

x̂(t)

Ex := f
(

t, x̂(t), u(t)
)− ∂f (t, x(t), u(t)

∂x

∣

∣

∣

∣

x̂(t)

x̂(t)

where Dx , Ex , Fx , Hx are time-varying matrices that depend on x̂(t) and u(t). The
linearized system, after rearranging (8.35) and using the definitions of Dx, . . . ,Hx ,
becomes

dx(t)

dt
= Fxx(t)+Ex

y(t) = Hxx(t)+Dx

(8.36)

Following classical observer theory (see, for instance, [KS72]), a linear observer
related to (8.36) is given by

dx̂(t)

dt
= Fxx̂(t)+Ex +K

[

y(t)−Hxx̂(t)−Dx

]

(8.37)

After substituting Dx, . . . ,Hx in (8.37), we obtain, in terms of the nonlinear func-
tions f (t, x̂(t), u(t)) and h(t, x̂(t), u(t)),

dx̂(t)

dt
= f

(

t, x̂(t), u(t)
)+K

[

y(t)− h
(

t, x̂(t), u(t)
)]

(8.38)

There are basically two common ways of designing the observer gain K . One way
is to take fixed matrices for Dx , Ex , Fx , Hx and use these to design a single fixed K
based on linear observer theory. Alternatively, we can design a gain K that depends
on x̂(t) at every instant of time, as, for example, in the EKF algorithm in Sect. 8.2.1.
Notice that the structure of the nonlinear observer (8.38) also fits into the recursive
prediction error schemes of Sect. 8.1.2, where K can be chosen on the basis of a
selected search method.

8.3 Historical Notes and References

The first recursive estimation algorithms were driven by one-step ahead prediction
errors. However, to generalize the idea to multistep ahead prediction errors, recur-
sive prediction-error (RPE) algorithms have been introduced by [MW79, Lju81,
MB86]. Extensions of the RPE algorithm to nonlinear systems [CB89, LB93] and
to a continuous-discrete time version [SB04] followed.

It is interesting to notice that already in the mid 1970s, it has been recognized
that the recursive parameter estimates contain information that could be used in

216 8 Time-varying Dynamic Systems Identification

the model structure selection procedure. In particular, trends and jumps in the re-
constructed parameter trajectories indicate model deficiencies, see [BY76, SB94,
LB07] for real-world applications of this.

However, we could go a step further by inferring the nonlinear model structure
from the data. So far, it has always been assumed that some prior knowledge in terms
of (non)linear differential equations was available. This is most often the case if we
start with a physical model and put this into a semi-physical modeling approach, as
outlined in this book. In the mid 1990s, several papers appeared on what is called
state-dependent parameter modeling (see [YB94, KJ97, You98]). In these papers,
transfer function models have always been taken as a starting point. The key idea
behind this approach is that time-varying parameter estimates, preferably as a result
of smoothing, can be modeled in terms of the known states/outputs of the system.
Hence, nonlinear data-based mechanistic models result if the resulting nonlinear
model allows a mechanistic interpretation. In the earliest papers on state-dependent
parameter modeling, correlation techniques were used to find relationships between
the time-varying parameters and the states/outputs. However, by plotting parame-
ter values against an appropriate choice of states/inputs/outputs, or a combination
of these, in general, nonlinear relationships will be revealed, see [YG06]. These
(non)linear relationships can subsequently be substituted into the transfer function
model, thus modifying the original input and output variables. Thus, basically the
data instead of prior physical knowledge is taken as a starting point and hopefully a
physically interpretable model structure results. This approach shows some resem-
blance with the linear parameter-varying modeling approach. However, in the latter
case, unlike the data-based mechanistic modeling approach, the nonlinear parameter
relationship is specified a priori, see Example 6.13.

The first smoothing algorithms were published in the early 1970s, see [BS72,
Blu72, Nor75, Nor76], where Norton was among the first who used smoothing al-
gorithms to estimate time-varying parameters in linear models. Since then, many
papers have appeared on this subject of smoothing.

The specific problem of joint parameter and state estimation has been recog-
nized in the late 1970s [JY79, SAML80]. Using local linearization techniques and
state augmentation, the problem was cast in the EKF framework. However, state
augmentation usually leads to a large dimension of the augmented state vector.
Hence, there is a need for model reduction while maintaining the physical in-
sights, see [Kee02] for useful decomposition methods. As an alternative to this,
Goodwin and Sin [GS84] suggested an alternated parameter and state estimation
scheme. Recently, Keesman, and Maksimov [KM08a, KM08b] presented an algo-
rithm that solves the simultaneous state and parameter estimation problem and that
is stable with respect to bounded informational noises and computational errors.
The algorithm is based on the principle of auxiliary models with adaptive con-
trols.

In addition to EKF and UKF (see Sect. 7.3), a third Kalman filter type of algo-
rithm, suited for solving nonlinear estimation problems, is known as the Ensemble
Kalman Filter (EnKF) [Eve94]. As with the UKF, the EnKF also uses sampling tech-
niques, in particular Monte Carlo sampling. It is very popular in data-assimilation

8.4 Problem 217

studies of dynamic systems and, in particular, in weather forecast applications. This
idea of using sampling techniques in estimation problems can be found in many
books and articles on Bayesian estimation using Monte Carlo methods, see, for
example, [Liu94, GRS96, BR97, CSI00, DdFG01, LCB+07]. The application of
sequential Monte Carlo methods, as the Monte Carlo Markov Chain (MCMC) al-
gorithm, in estimation of dynamic systems is also known as “particle filtering.” The
simulation-based Bayesian estimation methods, as a result of the increasing com-
puting power, will increase in popularity, see [Nin09].

For further reading on observer-based methods for recursive parameter estima-
tion in nonlinear dynamic systems, as an alternative to the EKF, we refer to [She95,
KH95, OFOFDA96, PDAFD00].

8.4 Problem

Problem 8.1 This exercise, presented here as a project problem related to the identi-
fication and prediction of a continuous-time dynamic system, will lead you through
a couple of different estimation methods introduced in this book. Fill in your an-
swers at the appropriate places, presented by 〈·〉. The full “real-world” data set1 can
be found in Appendix G, Table 6.1. The exercise focuses, in particular, on dissolved
oxygen (DO) prediction uncertainty evaluation, which has also been treated in a
couple of papers, see [KvS89, Kee89, Kee90].

Problem formulation:
Given N = 196 hourly measurements of the dissolved oxygen concentration in

g/m3, the saturated DO concentration (CS) in g/m3 and the radiation (I) in W/m2,
from the lake “De Poel en ’t Zwet” (The Netherlands) over the period 111.875–120
days (see Fig. 8.11), predict the DO concentration at time instant 120.25 d, i.e., at
06:00 a.m. of the next day.

In the following we distinguish between a nonparametric, using only the avail-
able data, and a parametric approach which incorporates prior knowledge in the
form of a commonly used mass balance equation of the DO concentration (C), i.e.,

dC(t)

dt
= kr

(

Cs(t)−C(t)
)+ αI (t)−R (8.39)

where the first term on the right-hand side describes the reaeration process, the sec-
ond term describes the effects of photosynthesis, and R (g/m3 h) represents the
respiration rate due to decay of organic matter. Furthermore, kr is the reaeration
coefficient (1/h), and α the photosynthesis rate coefficient (g/m h W).

1The data from “De Poe1 en ’t Zwet,” a lake situated in the western part of the Netherlands, for the
period 21–30 April 1983, were collected by students of the University of Twente.

218 8 Time-varying Dynamic Systems Identification

Fig. 8.11 Measurements in lake “De Poel en ’t Zwet”, saturated DO concentrations (dark solid
line), radiation (light solid line) (top figure), and DO concentrations (plus signs) (bottom figure)

Let us start with a nonparametric prediction approach. Then, a rough prediction
of the DO concentration at 120.25 d, on the basis of data only, can be given by the
mean value plus standard deviation. Hence, C(120.25)= 〈1〉 g/m3 with a standard
deviation of 〈2〉 g/m3, a rather uncertain estimate! Alternatively, the unknown-but-
bounded estimate can be given. This estimate is given by

C(120.25) ∈ [minC(t),maxC(t)
]

for 111.875 ≤ t ≤ 120

that is, the interval [〈3a〉, 〈3b〉] g/m3, a very wide range! For obtaining more accu-
rate results, in what follows a stochastic uncertainty modeling approach is used.

A more advanced prediction is found when the trend is taken into account. Hence,
the following predictor is formulated:

C(120.25)= C(t0)+ a(t − t0)

with t0 = 111.875 d. Notice that we had to find first estimates of the unknowns
C(t0) and a. Hereto the following regression (or static linear) model in vector-matrix

8.4 Problem 219

notation is formulated:

y =

⎡

⎢

⎢

⎢

⎣

1 t1 − t0
1 t2 − t0
...

...

1 tN − t0

⎤

⎥

⎥

⎥

⎦

[

C(t0)

a

]

+ v

where y = [C(t1),C(t2), . . . ,C(tN)]T and t1 = 111.917, t2 = 111.958, . . . , tN =
120 d. From the available data we find the following estimate of ϑT = [C(t0) a]T ,
i.e., 〈4〉 with covariance matrix of the estimation errors Cov̂ϑ = 〈5〉. Consequently,
the prediction is given by C(120.25) = 〈6〉 g/m3 with prediction uncertainty of
〈7〉 g/m3.

In conclusion, these short-term predictions, implicitly using linear static models,
seem to be not very reliable, although they can be good estimates for the mean value
on day 120. Clearly the dynamics present in the available data are missing. Exten-
sion toward sinusoidal models, as, for instance, in Fourier analysis (see Appendix C
for details on the Fourier transform), could be a possibility.

However, in the following, we will take a different point of view by incorporating
prior knowledge when making predictions and which is known as the parametric or
model-based prediction approach.

Let us first derive the discrete-time equivalence of (8.39) with sampling inter-
val Ts , i.e., using the general solution to a set of linear differential equations as in
(1.3) (see also footnote 1 in Chap. 1), with u(t) piece-wise constant and t , Ts in
hours,

x(t)= eATs x(t − Ts)+ (

eATs − I
)

A−1Bu(t − Ts)

Notice that this solution is a generalization of the linear differential equation solu-
tion presented in Example 1.4, but now for the special case that u(t) is constant on
the interval [t − Ts, t].

Hence,

C(t)= e−krTsC(t − Ts)+ e−krTs − 1

−kr
(

krCs(t − Ts)+ αI (t − Ts)−R
)

Recall that e−krTs = 1 − krTs + 1
2 (krTs)

2 − 1
6 (krTs)

3 + · · · , so that with krTs small,
the following approximation is valid: e−krTs ≈ 1 − krTs , and thus the DO model
(8.39) can be written as

C(t)= (1 − krTs)C(t − Ts)+ krTsCs(t − Ts)+ αTsI (t − Ts)−RTs (8.40)

the so-called Euler approximation of (8.39). Since the data is hourly sampled, the
sampling interval Ts = 1 h!

Assume that kr = 0.1 1/h, α = 0.002 g/m h W, and R = 0.1 g/m3 h. Conse-
quently, krTs = 0.1 is small, so that higher-order terms in the approximation of

220 8 Time-varying Dynamic Systems Identification

e−krTs can be neglected, and thus the Euler approximation is valid. Furthermore, as-
sume that Cs on the interval [120,120.25] d is equal to 10.7 g/m3 and the radiation
is zero (see Fig. 8.11). Hence, at the next sampling instant (1:00 a.m.) and using
(8.40), we obtain, with Ts = 1 h at day 120.042,

C(t + 1) = (1 − kr)C(t)+ krCs(t)+ αI (t)−R

= 〈8〉

in g/m3. At the next time instant we obtain 〈9〉 g/m3 etc., so that at day 120.25,
C(t) = 〈10〉 g/m3. The prediction uncertainty at 1:00 a.m., given an initial uncer-
tainty in terms of the covariance matrix P(0) in the DO concentration of 0.1 g/m3

at day 120.000, and in this case simply the variance of the prediction, is found from
[1 kr]T P (0) [1 kr] = 〈11〉 (see Chap. 7). Notice that the contribution of the mea-
surement uncertainty at 1:00 a.m. is not taken into account. Hence, the noise-free
model output and not the sensor output is predicted! Consequently, at day 120.25
we obtain a variance of 〈12〉 (g/m3)2, that is, a standard deviation of 〈13〉 g/m3.

If, on the contrary, the parameters kr , α, and R are unknown, we should first
estimate these from the available data. Hereto the following regression model in
vector-matrix notation with parameter vector ϑ := [kr α R]T is defined:

y =Φϑ + e

where

y =

⎡

⎢

⎢

⎢

⎣

C(1)−C(0)
C(2)−C(1)

...

C(N)−C(N − 1)

⎤

⎥

⎥

⎥

⎦

and

Φ =

⎡

⎢

⎢

⎢

⎣

Cs(0)−C(0) I (0) −1
Cs(1)−C(1) I (1) −1

...

Cs(N − 1)−C(N − 1) I (N − 1) −1

⎤

⎥

⎥

⎥

⎦

Notice that the parameter estimation problem of the discretized dynamic model is
formulated as a linear regression problem. Then standard least-squares estimation
leads to

̂ϑ =
⎡

⎢

⎣

̂kr

â

̂R

⎤

⎥

⎦= 〈14〉, Cov̂ϑ = 〈15〉

Consequently, as before, the model output at 1:00 a.m., that is, at day 120.042,
is calculated as follows using the estimated values of kr and R: C(t = 1) =

8.4 Problem 221

(1−kr)C(0)+krCs(0)+R = 〈16〉 g/m3. Finally, at 6:00 a.m., thus for day 120.25,
we find C(t) = 〈17〉 g/m3. Notice that now smaller values are found because the
aeration coefficient is approximately 20% smaller than before and the respiration is
some 20% higher. For the propagation of the parameter estimation uncertainty to
the uncertainty in the prediction, the discretized DO model is rewritten in terms of
the estimated parameter vector ̂ϑ , that is,

C(t)= [

Cs(t − 1)−C(t − 1) I (t − 1) − 1
]

̂ϑ +C(t − 1)

Hence, at 1:00 a.m. the variance of the prediction P(1) is given by

P(1) = Φ(0)Cov̂ϑΦ(0)T + P(0)

= [

Cs(0)−C(0) 0 − 1
]

Cov̂ϑ

⎡

⎣

Cs(0)−C(0)
0

−1

⎤

⎦+ P(0)

= 〈18〉
where the uncertainty effect in C(0) on the parameter uncertainty propagation, rep-
resented by the term Φ(0)Cov̂ϑΦ(0)T , is neglected; only the direct effect is taken
into account via the covariance matrix P(0)= 0.1. Hence, the standard deviation in
this one-step-ahead prediction is equal to 〈19〉 g/m3. Notice that for the next step,
this procedure can be repeated, but now the predicted value of the DO concentration
is needed, giving P(2)= 〈20〉. Finally, at day 120.25 we find P(t)= 〈21〉, and thus
the standard deviation is equal to 〈22〉 g/m3, which is mainly affected by the initial
DO concentration uncertainty at t = 0, thus at day 120.000.

Alternatively, a Monte Carlo approach can be performed, but this is out of the
scope of this exercise. In general, a Monte Carlo approach is preferred when the
system is complex and analytical error propagation rules cannot be easily found. In
this case the analytical approach is chosen, because more insight in the error prop-
agation process is obtained. If, instead of the continuous-time, DO model is used,
nonlinear estimation and error propagation problems will appear (see [vSK91]).

Part IV
Model Validation

In the previous parts, from data-based identification to time-invariant/time-varying
system identification, many methods have been introduced to find an appropriate
model structure, with or without using prior knowledge, from experimental data.
From Fig. 1.7 it can be seen that the final step in a single system identification loop
is model validation. In this step the user has to decide whether the identified model
is appropriate or not. This part of the book will therefore focus on methods that
support the user in making the right decisions about the validity of the mathematical
model of the system. To be a little bit more precise, and in line with the Poppe-
rian philosophy, validation does not usually guarantee validity, but just tries to test
adequacy or fails to establish invalidity.

The use of prior knowledge, model experience, and experimental data in the
model validation step is emphasized and basically illustrated by a couple of exam-
ples. After introducing the methods for model validation, a real-world application,
related to perishable food storage, will be extensively introduced and discussed in
terms of model validation.

Chapter 9
Model Validation Techniques

After having identified a model, in a model validation step the identified model is
usually evaluated with respect to

(i) prior knowledge,
(ii) model behavior in numerical experiments,

(iii) experimental data.

Notice that these items are also input to the system identification procedure (see
Fig. 1.7), where the second item is related to the final modeling objective. In what
follows, each of these aspects in a model validation step will be considered and
illustrated in some more detail.

9.1 Prior Knowledge

A first test whether the identified model is appropriate is by evaluating the esti-
mated parameter values. In particular, the knowledge of a priori parameter bounds
is very useful. For example, in a physical modeling approach we expect positive
parameter values, and thus negative estimates found after a formal calibration step
indicate model inappropriateness. Consider the following biochemical example as
an illustration of this.

Example 9.1 Substrate consumption: Frequently, the substrate consumption in a
reactor is expressed in terms of Michaelis–Menten kinetics. Hence, the following
discrete-time model with unit time step is a good starting point for describing the
substrate concentration in a batch reactor:

S(t)= S(t − 1)−μ
S(t − 1)

KS + S(t − 1)
, S(0)= S0 (9.1)

with S(t) the substrate concentration at time instant t , μ > 0 the maximum degra-
dation rate of a substrate, and KS > 0 the corresponding half saturation constant.

K.J. Keesman, System Identification,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-0-85729-522-4_9, © Springer-Verlag London Limited 2011

225

http://dx.doi.org/10.1007/978-0-85729-522-4_9

226 9 Model Validation Techniques

Table 9.1 Substrate data
t (min) 7 17 19

y(t) (g/m3) 16.9 4.48 2.42

Notice that this model is nonlinear in the parameters μ and KS . Let measurements
of S(t) be denoted by y(t); Table 9.1 shows the next three measurements.

In fact, in this example the measurements have been generated under the as-
sumption that S0 = 30 g/m3, μ = 2 min−1, and KS = 2 g/m3 and using some
additive noise. The application of a nonlinear least-squares estimation procedure,
as implemented by the MATLAB function lsqnonlin, with starting values μ = 2
and KS = 0.001 results in [μ̂ ̂KS] = [2.26158 −0.15417]. Hence, the estimate ̂KS

violates the positivity constraint on the possible values of KS .

Hence, this example clearly shows that, if no physical knowledge in terms of
bounds is used and the estimation is merely treated as a fitting problem, we could
easily end up in, as we will see later, a local minimum, because of a possible singu-
larity in the equation. Recall that, as illustrated in Example 5.25 for a similar model,
model reparameterization of (9.1) into a linear regression would avoid this problem
of a local minimum.

Introduction of parameter bounds will keep the parameter estimates in the right
physical range, but this will at the same time limit the model output to fit the data.
However, positive estimates alone do not suffice, because it is also important to
evaluate the corresponding estimation variances. For instance, a positive parame-
ter estimate with a coefficient of variation (that is, the ratio of standard deviation
to mean value) of one is not very reliable. In this case, we could consider to fix
or to remove the corresponding term from the model. However, before removing
terms, it is always good practice to evaluate the output sensitivity with respect to
this parameter for checking its practical identifiability. If, for instance, the practical
identifiability is low, a better experiment design should be considered, if possible.

9.2 Experience with Model

9.2.1 Model Reduction

For further use of the model of an LTI system, it is always sensible to investigate the
possibilities for model reduction by pole-zero cancelation, as in the next example.

Example 9.2 Pole-zero cancelation: Consider a discrete-time state-space model
with

A=
[−1 0

0 0

]

, B =
[

1
0

]

, C = [

1 0
]

, D = 0

9.2 Experience with Model 227

The corresponding transfer function in z-domain (see Appendix C), using the ex-
pression G(z)= C(zI −A)−1B +D (see also (E.4)), is given by

G(z) = z

z(z+ 1)

= 1

(z+ 1)

Consequently, after eliminating the pole and zero at z = 0, a less complex model
results with the same input–output behavior as the original system. Consequently,
most likely fewer parameters need to be estimated.

It is common practice to cancel poles and zeros that are close to each other.
Consequently, the input–output properties of the original and reduced model after
pole-zero cancelation will not be exactly the same, but this deviation can be specified
beforehand.

9.2.2 Simulation

In addition to the evaluation of the parameter estimates and, for LTI systems, check-
ing possible pole-zero cancelation, the output of the model should also be evaluated.
Typically, the model output is evaluated in simulation mode. Let us first demonstrate
this by the substrate consumption example.

Example 9.3 Substrate consumption: Calculation of the corresponding model out-
put using difference equation (9.1), which describes the substrate concentration in
the batch reactor, with the estimates

[

μ̂ ̂KS

]= [2.26158 −0.15417]
leads to the response as shown in Fig. 9.1. In this figure, the original noise-free
model output (thin line) and the measurements (⊕) are also shown.

This graphical result directly shows why the particular parameter combination
leads to a local minimum for a negative parameter value of KS . It, furthermore,
illustrates the sudden unrealistic increase in substrate concentration when the con-
centration comes close to zero.

Simulation results may also indicate over- and under-modeling, as in the next
example.

Example 9.4 Integrator: A pure integrator in discrete-time is given by

x(t) = x(t − 1)+ u(t − 1)

y(t) = x(t)

228 9 Model Validation Techniques

Fig. 9.1 Model responses
(noise-free: thin line,
estimated: bold line) and
measurements (⊕) of the
substrate concentration in a
batch reactor

with discrete-time transfer function

y(t)= q−1

1 − q−1
u(t)

For the noise-free case, several ARX models, as ARX(2, 2, 1) and ARX(3, 3, 1), give
a perfect fit. If we add a noise term e(t) to the output, such that e(t)= 0.2y(t)w(t)
with w(t) ∈ N(0,1) for all t , we obtain for an ARX(5, 5, 1) model structure the
following estimation result:

B(q)= 0.9293q−1 + 0.7220q−2 + 0.6299q−3 + 0.3144q−4 + 0.2508q−5

±0.1561 ±0.2076 ±0.2220 ±0.2337 ±0.2073

A(q)= 1 − 0.2862q−1 − 0.0534q−2 − 0.3654q−3 − 0.1243q−4 − 0.1418q−5

±0.1075 ±0.1116 ±0.1092 ±0.1197 ±0.1161

Consequently, the last two terms of each polynomial and the third term of A(q) are
unreliable and can possibly be neglected. In Fig. 9.2 the simulation results of the
pure integrator and of the ARX(5, 5, 1) model are presented. Clearly, the ARX(5,
5, 1) model fits the noise to a large extent. This phenomenon is even more visible
when we evaluate the high-frequency region in the Bode plots (see Appendix D) of
the pure integrator and ARX(5, 5, 1) model, as in Fig. 9.3. Hence, both the parameter
estimation and simulation results indicate over-modeling. Notice that, especially in
the low frequency region of the Bode plots, a large misfit appears. Hence, in time
domain we expect a large difference when applying a low frequency signal, as a unit
step, to the model. Figure 9.4 shows the unit step responses of both models, and this
figure confirms what we expected from the analysis of the Bode plots.

On the contrary, let us neglect the effects of the input signal and consider the very
simple model

x(t) = x(t − 1) (9.2)

y(t) = x(t) (9.3)

9.2 Experience with Model 229

Fig. 9.2 Input signal (top panel), noisy output (·) and simulation results of a pure integrator (thin
line) and ARX(5, 5, 1) model (bold line) (bottom panel)

Fig. 9.3 Bode plots of pure integrator (thin line) and ARX(5, 5, 1) model (bold line)

Given this model and the data in Fig. 9.2, we find that x̂(t) = 2.1703 ± 3.1623 for
all t . Consequently, the predicted model output is constant and rather uncertain.
Notice from Fig. 9.2 that this result is not fully supported by the data, unless we
attribute the resulting structured noise to sensor noise. Recall that we start from the
introduced structured noise into this example, and thus the last conclusion is, in fact,
partly correct. Hence, applying (9.2) will typically lead to under-modeling.

230 9 Model Validation Techniques

Fig. 9.4 Step responses of pure integrator (thin line) and ARX(5, 5, 1) model (bold line)

Table 9.2 Process data
t 1 2 3 4

y(t) 5.2 5.3 5.1 5.0

9.2.3 Prediction

Sometimes model simulation studies are not able to elucidate the deficiencies in
the model structure that could be made visible by model predictions. In the next
example, we demonstrate the use of model predictions in the model validation step.

Example 9.5 Constant process with noise: Presume that from prior expert knowl-
edge we know that the process is more or less in steady state. Let, furthermore, the
following measurements, as in Table 9.2, be given.

The polynomial model

y(t)= ϑ0 + ϑ1t + ϑ2t
2 + ϑ3t

3

with ϑ0 = 4.4, ϑ1 = 1.2833, ϑ2 = −0.55, and ϑ3 = 0.0667 results in a perfect fit
on the interval [1, 4], see Fig. 9.5. Thus, the model simulation results do not indi-
cate any model deficiency. However, model predictions outside the range and for
increasing t tend to go to infinity. Clearly, from the prior process knowledge this is
not expected, and thus the polynomial model does not pass the validation test. The
sine function

y(t)= ϑ0

(

sin

(

2πt

0.25
+ ϑ1

)

+ ϑ2

)

with ϑ0 = 0.7418, ϑ1 = 1.4464, and ϑ2 = 5.9499 shows a good fit with respect
to the data, too. However, neither the data nor the prior knowledge do support a
model output with this frequency. As in the integrator example (Example 9.4), we

9.3 Experimental Data 231

Fig. 9.5 Measurements and model predictions

see in both cases the effect of over-modeling. Given the prior process knowledge,
the model y(t)= c with ĉ = 5.15 seems to be the most appropriate model.

9.3 Experimental Data

In addition to an evaluation of the parameter estimates with respect to prior knowl-
edge and of the model simulations and predictions, in this section we will explicitly
use the residuals for model validation. Recall that the residuals are defined as

ε(t) := y(t)− ŷ(t |ϑ) (9.4)

The residuals do play a key role in the model validation process, since they re-
flect the difference between the measured output y(t) and the predicted model out-
put ŷ(t |ϑ), given an estimate of ϑ . In the following, we therefore introduce some
common residual tests and finalize this section with a real-world example.

9.3.1 Graphical Inspection

A first test on the residuals should be based on graphical inspection. Plotting the
residuals, at an appropriate scale, will directly show some peculiarities, as outliers,
drift and periodicity, see Fig. 5.4 and Fig. 7.5 in previous chapters. Let us also
demonstrate this graphical inspection to the moving object of Example 7.3.

Example 9.6 Moving object (constant velocity): Recall that the following observa-
tions on an object moving in a straight line with constant velocity v, as presented in
Table 9.3, were available.

232 9 Model Validation Techniques

Table 9.3 Moving object
data Time t (s) 1 2 3 4 10 12 18

Distance y(t) (ft) 9 15 19 20 45 55 78

Fig. 9.6 Residuals

The proposed model for the moving object was

y(t)= s0 + vt + e(t)

with final estimates ŝ0 = 5.7027 ft and v̂ = 4.0215 ft/s. In Fig. 9.6 the residuals
ε(t) := y(t)− φ(t)T̂ϑ , with ϑ = [s0 v]T , are plotted.

Notice from Fig. 9.6 that the observation at time index 4 is possibly an outlier.
Furthermore, the residuals show some periodicity, but the time series is far too short
to come up with firm statements. Hence, this clearly illustrates the problem of model
validation for small data sets.

However, apart from the model validation problem related to small data sets, it
is never clear beforehand whether drift and periodicity in the residuals originate
from an invalid model; the experimental data may contain these characteristics as
well. Hence, analysis of the experimental data, using, for instance, linear regres-
sion and correlation techniques, and examination of the sensor system may help
to solve this dilemma. Furthermore, some basic properties of the prediction error
sequence, as maxt |ε(t)| = ‖ε‖∞ and 1

N

∑N
ε(t)2 = ‖ε‖2, may also help to vali-

date the model. For instance, when ‖ε‖∞ is large, most likely outliers are present
in the data, and thus, for an appropriate validation of the model, these should be
removed. The 2-norm of the residuals can be used to compare models, and, under
the assumption that the system is time-invariant, it indicates the expected magnitude
of prediction errors. Hence, on the basis of these statistics, interpreted as quantities
calculated from a set of data, one may or may not accept the model as valid.

9.3 Experimental Data 233

9.3.2 Correlation Tests

Ideally, the residuals or prediction errors related to dynamic models should not de-
pend on the inputs or previous residuals. If that is not the case, there is room for
model improvement. For instance, in case of a general transfer function model struc-
ture, the exogenous part G(q)u(t) can be extended with delayed inputs or the noise
model H(q)e(t) modified. To check the dependencies, it is very natural to study
the correlations between residuals and past inputs. Let N data points of the input
and residuals, respectively, be given. Then, the cross-correlation function, see also
Sect. 4.1, between input and residuals is given by

ruε(l)= 1

N − l

N−l
∑

i=1

u(i)ε(i + l) (9.5)

Hence, if the cross-correlations are small, this indicates that the residuals, and thus
the model output y(t), do not contain any further information originated from past
inputs. In particular, it should be noted that significant correlation for negative l

indicates output feedback in the input.
In a similar way, we can use the auto-correlation function for investigating the

correlations among the residuals. The autocorrelation function is given by

rεε(l)= 1

N − l

N−l
∑

i=1

ε(i)ε(i + l) (9.6)

As mentioned before, the auto-correlation function can be used to test whether the
residuals are white and thus do not contain any further information that can be used
to improve the model predictions. A popular test for whiteness of the residuals,
implicitly assuming that the residuals are normally distributed and within a range of
M data points, is

N

r̂εε(0)2

M
∑

l=1

r̂εε(l)
2 ≤ χ2

α(M) (9.7)

with χ2
α(M) the α-level of the χ2(M)-distribution (see Appendix B). Hence, if this

inequality holds, we may conclude that the residuals are serially uncorrelated over
a range of M data points.

For a formal test on the statistically independence between residuals and inputs,
we could check if the following holds for the estimated cross-correlations:

∣

∣r̂uε(l)
∣

∣≤
√

P1

N
Nα (9.8)

where P1 =∑∞
i=−∞ rεε(l)ruu(l), and Nα denotes the α-level of the standard normal

distribution, N(0,1). Notice that, since the right-hand side of (9.8) does not depend

234 9 Model Validation Techniques

on l, it is a constant. Apart from this formal test, we could also investigate the scatter
plot of the pairs (ε(t), u(t − l)).

Let us demonstrate the correlation tests on different models of a mass-spring-
damper system with known input and output.

Example 9.7 Mass-spring-damper: Let in discrete-time, the model of a mass-
spring-damper system be given by

x(t) =
[

1 0.5
−0.5 0.5

]

x(t − 1)+
[

0
0.5

]

u(t − 1)

y(t) = [1 0]x(t)

The corresponding discrete-time transfer function is

G(q)= 0.25q−2

1 − 1.5q−1 + 0.75q−2

If, however, we select an ARX(1, 1, 0) and ARX(2, 1, 0) model structure, we obtain
the discrete-time transfer functions

G1(q)= 0.1337

1 − 0.9082q−1

and

G2(q)= 0.0762

1 − 1.6979q−1 + 0.8735q−2

respectively. The corresponding residuals and correlation functions are presented in
Figs. 9.7 and 9.8.

From Fig. 9.7 significant correlations between the residuals can be seen, indi-
cating an inappropriate model structure. Furthermore, the cross-correlation function
between input and residuals shows a clear peak at lag 2, which refers to a defi-
ciency in the time lag of the model. Increasing the model complexity toward an
ARX(2, 1, 0) model removes the significant correlations between the residuals, but
the peak at lag 2 in the cross-correlation function remains, as expected. Obviously,
an ARX(2, 1, 2) model, with a similar structure as the transfer function G(q) derived
from the discrete-time state-space model, gives a perfect fit.

However, unlike the previous example, in practice always some noise is present.
For an evaluation of a noisy data case, the heating system (Example 2.2) is consid-
ered again.

Example 9.8 Heating system: The following responses to a random binary signal
with switching probability (p0) of 0.2 and 0.5, respectively, have been measured
from a simple heating system (see Figs. 9.9 and 9.10). Recall that the input of the

9.3 Experimental Data 235

Fig. 9.7 Residuals, correlation functions, and α-levels (see (9.7) and (9.8)) related to ARX(1, 1, 0)
model

Fig. 9.8 Residuals, correlation functions, and α-levels related to ARX(2, 1, 0) model

system is the voltage applied to the heating element and the output, also in voltage,
is measured with a thermistor. The maximum allowable magnitude of the input is
10 V, and the sampling interval is 0.08 s.

236 9 Model Validation Techniques

Fig. 9.9 Input and measured output signals for p0 = 0.2

Fig. 9.10 Input and measured output signals for p0 = 0.5

In both figures, the effect of the initial conditions is clearly visible. Furthermore,
apart from the difference in switching probability, a similar behavior is seen. In an
identification step, after neglecting the first 2 s of the data set and after detrending
both the input and output signals, we found from the first data set, with p0 = 0.2,

9.3 Experimental Data 237

Fig. 9.11 Auto- and cross-correlation functions related to an ARX(2, 1, 3) model for p0 = 0.2

Fig. 9.12 Auto- and cross-correlation functions related to an ARX(2, 1, 3) model for p0 = 0.5

238 9 Model Validation Techniques

Fig. 9.13 Simulated (solid line) and measured (dotted line) output signals for p0 = 0.2

Fig. 9.14 Simulated (solid line) and measured (dotted line) output signals for p0 = 0.5

the following ARX model:

G(q)= 0.0507q−3

1 − 1.437q−1 + 0.520q−2

9.3 Experimental Data 239

with a loss function value of 0.00181512 and an FPE function value of 0.00182725.
In what follows, we fix this model structure and test it on the two data sets. The
correlation functions related to both data sets are presented in Figs. 9.11 and 9.12.
In both cases significant auto-correlations between the residuals at lag 1 can be
seen. Furthermore, for lag 2–5, also significant cross-correlations between input
and residuals are visible, indicating an additional time lag of 2, i.e., 0.16 seconds.
Hence, at this point we conclude that there is some model deficiency.

At last, we evaluate the model behavior in time domain by simulating the ARX(2,
1, 3) model for both data sets. The results are presented in Figs. 9.13 and 9.14. Since
the model shows a good behavior with respect to the observed data, our overall
conclusion is that the model is appropriate, at least for short-term predictions. Thus,
as yet, the ARX(2, 1, 3) model passes the model validation test.

Finally, in this subsection, we will demonstrate the use of predictions and exper-
imental data in a cross-validation step by a real-world example.

Example 9.9 Storage facility (based on [KD09]): A discrete-time nonlinear model
describing the temperature dynamics in a storage room with a respiring product
and suitable for incorporation in a model-based control strategy is given by (see
[KPL03])

Tp(t) =
(

p1 + p2

p3 + p4u(t − 1)
+ p5

p6 + p7u(t − 1)

)

Tp(t − 1)

+ p8 + p9u(t − 1)

p3 + p4u(t − 1)
Te(t − 1)+ p10 + p11u(t − 1)

p6 + p7u(t − 1)
Xe(t − 1)

+
(

p12 + p13

p6 + p7u(t − 1)

)

(9.9)

where Tp(t) is measured. The variable Tp denotes the temperature of the pro-
duce (°C), Te is the external temperature (°C), Xe is the external absolute humid-
ity (kg/kg), and p = [p1, . . . , p13]T the parameter vector. Finally, the control in-
put u denotes the product of fresh inlet ratio and ventilation rate and is bounded
by 0 ≤ u ≤ 1. In Fig. 9.15 a schematic representation of the storage facility with
corresponding variables is presented. The variables Tin (air temperature in channel),
Ta (air temperature in bulk), Xin (absolute humidity in channel), and Xa (absolute
humidity in bulk), as shown in the figure, do not appear in (9.9) as a result of a
model reduction step based on singular perturbation analysis of the full system, see
[KPL03] for details on this. In this model reduction step, quasi-steady states of air
temperature and humidity were substituted in the heat balance of the product. This
substitution finally leads to the rational terms, as in (9.9), and it enforces that the
product temperature in (9.9) depends only on the external temperature Te and exter-
nal absolute humidity Xe.

240 9 Model Validation Techniques

Fig. 9.15 Schematic representation of the storage facility

Rearranging (9.9) into a linear regression (see also Sect. 6.2.5 on model reparam-
eterization) leads to

Tp(t) = [

u(t − 1)Tp(t) u(t − 1)2Tp(t) Tp(t − 1) u(t − 1)Tp(t − 1)

u(t − 1)2Tp(t − 1) Te(t − 1) u(t − 1)Te(t − 1) u(t − 1)2Te(t − 1)

Xe(t − 1) u(t − 1)Xe(t − 1) u(t − 1)2Xe(t − 1) u(t − 1)

u(t − 1)2 1
][θ1 · · · θ14]T (9.10)

with θ = ϕ(p). After estimating θ = [θ1, . . . , θ14]T the model (9.10) can be rewrit-
ten in the nonlinear predictor form

̂Tp(t) = 1

1 −̂θ1u(t − 1)−̂θ2u(t − 1)2
[

̂θ3Tp(t − 1)+̂θ4u(t − 1)Tp(t − 1)

+̂θ5u(t − 1)2Tp(t − 1)+̂θ6Te(t − 1)+̂θ7u(t − 1)Te(t − 1)

+ · · · +̂θ13u(t − 1)2
]+̂θ14 (9.11)

In this example, our focus was not so much on the reconstruction of the physical
parameters p. Hence, a nonlinear estimation step from θ = ϕ(p) can be avoided.
Our focus was on the performance of the predictors, (9.9) and (9.11). Both predictors
were evaluated for two different data sets in terms of the mean square error (MSE)
of the prediction errors. Notice, however, that if (9.10) is rewritten in the predictor
form (9.11), a constraint on the estimated parameters ̂θ1 and ̂θ2 must be added,
because for the whole range of u, the denominator of (9.11) should not be equal to
zero. Hence, the constraint is given by

1 −̂θ1u(t − 1)−̂θ2u(t − 1)2 �= 0, 0 ≤ u≤ 1

If, however, the constraint is violated, the solution is rejected. In that case, the pre-
diction at time instant t can simply be considered as infeasible.

9.3 Experimental Data 241

Fig. 9.16 Disturbance (Te : - -; Xe : . . .) and control (u) inputs of calibration data set

Given input–output data, the parameters in (9.9) were estimated with a nonlinear
least-squares (NLS) (see Sect. 5.2.2) method, while the parameters in (9.11) were
estimated with direct estimation methods. The direct estimation methods applied
here were the truncated least-squares (tLS) (see Sect. 5.1.6) and Generalized To-
tal Least-Squares (GTLS) (see Sect. 5.1.7 for TLS) method. For details on GTLS,
we refer to [VHV89]. In this specific application, two data-sets with measured vari-
ables, that is, Tp , Te, Xe, and u, of about 50 days with a sampling interval of 15 min-
utes were available. The data were obtained from the same location during the same
season, but for a different period within the season. All parameters were assumed to
be constant during the whole season. The parameters were calibrated from one data
set in the so-called calibration period. The prediction performance was subsequently
evaluated using an open-loop prediction over the same data set and cross-validated
over the second data set in the so-called validation period. See Figs. 9.16–9.17 for
inputs to the system in these periods. Notice from Fig. 9.17 that in the first 15 days of
this period the room was hardly ventilated, which significantly affected the product
temperature, as we will see later on.

The MSE of predictor (9.9) with the parameters (p̂) estimated by an NLS algo-
rithm and the MSE of predictor (9.11) with the parameters (̂θ) estimated by the trun-
cated LS and GTLS method, using data set 1 for calibration and data set 2 for vali-
dation, are presented in Table 9.4. From Table 9.4 it can be seen that the truncated
LS method, assuming an equation-error structure in (9.10), gives good results for

242 9 Model Validation Techniques

Fig. 9.17 Disturbance (Te : - -; Xe : . . .) and control (u) inputs of validation data set

Table 9.4 MSE of predictors with parameters estimated by NLS, truncated LS (tLS), and GTLS
in the calibration (data set 1) and the validation (data set 2) period

NLS tLS GTLS

Calibration 0.027 0.019 0.022

Validation 0.113 0.031 0.053

both the calibration and the validation periods. Although we know that the data ma-
trix contains errors, it is not very likely that the results of GTLS estimation become
significantly better as the error is probably close to the accuracy of the measurement
device. Notice that the original model (9.9), in combination with an NLS parameter
estimation method, shows the least predictive performance of all predictors for both
periods. The predicted and measured temperatures using NLS, truncated LS, and
GTLS estimation for both data sets are shown in Figs. 9.18 and 9.19.

Let us now switch the data sets. Consequently, data set 2 is used for estimation
of p̂ and ̂θ , and data set 1 is used for validation. Furthermore, the same estimation,
validation, and cross-validation procedures were performed. The results are given
in Table 9.5 and Figs. 9.20 and 9.21.

After switching the data sets, several points are noticeable from Table 9.5. First,
it is clear that the predictor with GTLS estimates has the best performance. Fur-
thermore, the original predictor with NLS estimates has a better performance in the

9.3 Experimental Data 243

Fig. 9.18 (a) Measured (∗) and predicted product temperatures (NLS: . . . ; tLS: -.-.; GTLS: - - -),
and (b) residuals in the calibration period (data set 1)

Fig. 9.19 (a) Measured (∗) and predicted product temperatures (NLS: . . . ; tLS: -.-.; GTLS: - - -),
and (b) residuals in the validation period (data set 2)

244 9 Model Validation Techniques

Table 9.5 MSE of predictors with parameters estimated by NLS, truncated LS (tLS), and GTLS
in the calibration (data set 2) and the validation (data set 1) period

NLS tLS GTLS

Calibration 0.097 0.035 0.017

Validation 0.036 0.766 0.016

Fig. 9.20 (a) Measured (∗) and predicted product temperatures (NLS: . . . ; tLS: -.-.; GTLS: - - -),
and (b) residuals in the calibration period (data set 2)

validation period than in the calibration period. Finally, the predictor (9.11) with the
truncated LS estimates performs poorly. If the prediction performance of the pre-
dictor with the truncated LS estimates is further analyzed, it can be seen in Fig. 9.21
that from day 0 to 20 the predictor has very poor performance, but from day 25
till the end of the period it performs quite well. A possible explanation is that the
truncated LS estimates are very sensitive to lack of information in the data set. If
the calibration data set is informative enough (Fig. 9.18), that is, the data span the
whole range, then this predictor performs properly (see Table 9.4 and Fig. 9.19).

Summarizing, the predictor with GTLS estimates has a good performance in each
of the four cases and clearly outperforms the original predictor with NLS estimates.
Using truncated LS estimation, as an alternative to the GTLS procedure, has a good
performance only if the calibration data set is informative enough.

9.4 Historical Notes and References 245

Fig. 9.21 (a) Measured (∗) and predicted product temperatures (NLS: . . . ; tLS: -.-.; GTLS: - - -),
and (b) residuals in the validation period (data set 1)

9.4 Historical Notes and References

Model validation is a crucial step in the modeling process. Hence, many papers
have appeared on this subject. For additional information on procedures and tests
in time and frequency domain, we refer to [BBM86, LG97, CDC04, ZT00, KB94,
MN95]. In particular, we mention [RH78] for his work on nonstationary signals
and [HB94, BZ95, SBD99, MB00] for their work on nonlinear systems. For model
validation within a set-membership context, and thus suited for small data sets, we
refer to [BBC90, Lju99a, FG06]. A nice overview of model validation techniques
for simulation models is given by [Sar84].

If, however, the model does not pass the model validation test, in the worst case
new experiments have to be designed (see Fig. 1.7). A new experiment design should
also be considered when the practical identifiability of model parameters is low.
Consequently, experiment design plays a key role in the identification process. In
the past, in addition to some books [GP77, Zar79, WP97], many articles on this sub-
ject have appeared, see, for instance, [KS73, NGS77, Bit77, Zar81, QN82, deS87,
SMMH94, BP02, RWGF07, Luo07] for linear systems and [DI76, WP87, PW88,
WP90, DGW96, BSK+02, BG03, JDVCJB06] for nonlinear systems, to mention a
few. Recently, the optimal input design problem has also been tackled by optimiz-
ing the parametric sensitivities using optimal singular control [SK01, KS02, KS03,

246 9 Model Validation Techniques

SK04, SVK06]. For low-dimensional systems, this approach allows analytical solu-
tions and thus insight into the design procedure.

9.5 Outlook

Let us finish with a concise outlook on the developments in system identification for
the next decade, 2010–2020.

The curse of dimensionality is an issue in many problems, such as in non-
linear parameter estimation, optimal experiment/input design, and in identifiabil-
ity analysis. Hence, it is expected that, in combination with ever increasing com-
puter power, new methods that circumvent this problem to a large extent will be
found.

Identification for control, but then within a dynamic optimization context for
nonlinear systems, the development of automatic identification procedures using
some multimodel approach, the design of measurement networks for complex sys-
tems, and the application of advanced particle filtering techniques are other issues
that need (further), and most likely will receive, attention in the near future.

Nowadays, there is a trend to focus on specific model classes, such as, for exam-
ple, polynomial, Wiener, Hammerstein, and rational models, and to aim at further
development of identification procedures using this specific system knowledge. This
trend will diversify the system identification methods that can be applied. However,
the proven “least-squares” concept, as can be found in many sections of this book,
will remain the basis for most of these special cases.

In the last decade, system identification has become a mature discipline. Hence,
system identification will be more and more involved in new developments, with in-
creasing complexity, in industry and society. This creates a big challenge to identify
complex processes, in engineering and in biological and economical applications,
for more insight and better control/management.

Looking back, we see a very active system identification community. Hence, it
is expected that in the near future this community may be able to tackle the above-
mentioned problems effectively, with a focus on errors and—in line with the first
words of this book—learning from mistakes.

9.6 Problems

Problem 9.1 A rather popular cross-validation technique is the so-called leave-one-
out cross-validation (LOOCV). Instead of splitting a data set in one calibration and
one validation set, as in Example 9.6, LOOCV uses a single observation from the
original data set as the validation data set and the remaining observations as the
training data set for calibration. This procedure is repeated so that each observation
in the sample is used once as the validation data. Consequently, for large data sets,
leave-one-out cross-validation is usually very expensive from a computational point

9.6 Problems 247

of view because of the large number of repetitions. Hence, in what follows, we will
test it on a small data set, as presented in Example 9.5.

(a) Apply LOOCV to the process data (Table 9.2) using a polynomial model as in
Example 9.5.

(b) Repeat the procedure for the sine function and the constant.
(c) Compare and evaluate the results.
(d) Finally, evaluate the results of an LOOCV with respect to the validation results

obtained in Example 9.5.

Problem 9.2 As model validation is best illustrated by examples using real data,
repeat the procedures as demonstrated in Examples 9.1 and 9.3, and in Examples 9.4
and 9.7.

Appendix A
Matrix Algebra

A.1 Basic Definitions

A matrix A is a rectangular array whose elements aij are arranged in rows and
columns. If there are m rows and n columns, we say that we have an m× n matrix

A=

⎡

⎢

⎢

⎢

⎣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · ...

am1 am2 · · · amn

⎤

⎥

⎥

⎥

⎦

= (aij)

When m= n, the matrix is said to be square. Otherwise, it is rectangular. A triangu-
lar matrix is a special kind of square matrix where the entries either below or above
the main diagonal are zero. Hence, we distinguish between a lower and an upper
triangular matrix. A lower triangular matrix L is of the form

L=

⎡

⎢

⎢

⎢

⎣

l11 0 · · · 0
l21 l22 · · · 0
...

...
. . .

...

ln1 an2 · · · lnn

⎤

⎥

⎥

⎥

⎦

Similarly, an upper triangular matrix can be formed. The elements aii or lii , with
i = 1, . . . , n are called the diagonal elements. When n= 1, the matrix is said to be
a column matrix or vector. Furthermore, one distinguishes between row vectors in
case m = 1, submatrices, diagonal matrices (aii), zero or null matrices O = (0ij),
and the identity matrix I , a diagonal matrix of the form (aii) = 1. To indicate an
n-dimensional identity matrix, sometimes the notation In is used. A matrix is called
symmetric if (aij)= (aji).

K.J. Keesman, System Identification,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-0-85729-522-4, © Springer-Verlag London Limited 2011

249

http://dx.doi.org/10.1007/978-0-85729-522-4

250 A Matrix Algebra

A.2 Important Operations

In this book, calculation is only based on real-valued matrices, hence A ∈ R
m×n. As

for the scalar case (m = 1, n = 1), addition, subtraction (both element-wise), and
multiplication of matrices is defined. If A is an m× n and B an n× p matrix, then
the product AB is a matrix of dimension m× p whose elements cij are given by

cij =
n
∑

k=1

aikbkj

Consequently, the ij th element is obtained by, in turn, multiplying the elements of
the ith row of A by the j th column of B and summing over all terms. However, it
should be noted that for the matrices A and B of appropriate dimensions, in general

AB �= BA

Hence, generally, premultiplication of matrices yields different results than post-
multiplication.

The transpose of the matrix A = (aij), denoted by AT and defined as AT =
(aij)

T := (aji), is another important operation, which in general changes the di-
mension of the matrix. The following holds:

(AB)T = BT AT

For vectors x, y ∈ R
n, however,

xT y = yT x

which is called the inner or scalar product. If the inner product is equal to zero, i.e.,
xT y = 0, the two vectors are said to be orthogonal. In addition to the inner product
of two vectors, also the matrix inner product has been introduced. The inner product
of two real matrices A and B is defined as

〈A,B〉 := Tr
(

AT B
)

Other important operations are the outer or dyadic product (ABT) and matrix inver-
sion (A−1), which is only defined for square matrices. In the last operation one has
to determine the determinant of the matrix, denoted by det(A) or simply |A|, which
is a scalar.

The determinant of an n× n matrix A is defined as

|A| := ai1ci1 + ai2ci2 + · · · + aincin

Herein, the cofactors cij of A are defined as follows:

cij := (−1)i+j |Aij |

A.2 Important Operations 251

where |Aij | is the determinant of the submatrix obtained when the ith row and the
j th column are deleted from A. Thus, the determinant of a matrix is defined in terms
of the determinants of the associated submatrices. Let us demonstrate the calculation
of the determinant to a 3 × 3 matrix.

Example A.1 Determinant: Let

A=
⎡

⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦

Then,

|A| = a11

∣

∣

∣

∣

a22 a23
a32 a33

∣

∣

∣

∣

− a12

∣

∣

∣

∣

a21 a23
a31 a33

∣

∣

∣

∣

+ a13

∣

∣

∣

∣

a21 a22
a31 a32

∣

∣

∣

∣

After some algebraic manipulation using the same rules for the subdeterminants, we
obtain

|A| = a11(a22a33 − a32a23)− a12(a21a33 − a31a23)+ a13(a21a32 − a31a22)

When the determinant of a matrix is equal to zero, the matrix is singular, and the
inverse A−1 does not exist. If det(A) �= 0, the inverse exists, and the matrix is said to
be regular. Whether a matrix is invertible or not can also be checked by calculating
the rank of a matrix. The column rank of a matrix A is the maximal number of
linearly independent columns of A. Likewise, the row rank is the maximal number
of linearly independent rows of A. Since the column rank and the row rank are
always equal, they are simply called the rank of A. Thus, an n × n matrix A is
invertible when the rank is equal to n.

The inverse of a square n× n matrix is calculated from

A−1 = 1

|A| adj(A)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

c11|A|
c21|A| · · · cn1|A|

c12|A|
c22|A| · · · cn2|A|

...
... · ...

c1n|A|
c2n|A| · · · cnn|A|

⎤

⎥

⎥

⎥

⎥

⎥

⎦

where adj(A) denotes the adjoint of the matrix A and is obtained after transposing
the n× n matrix C with elements cij , the cofactors of A.

The following properties are useful:

1. (AB)−1 = B−1A−1

2. (AB)(B−1A−1)=A(BB−1)A−1 =AIA−1 = I

3. (ABC)−1 = C−1B−1A−1

252 A Matrix Algebra

4. (AT)−1 = (A−1)T

5. |A|−1 = 1/|A|.
A square matrix is said to be an orthogonal matrix if

AAT = I

so that A−1 =AT .
If, however, the matrix is rectangular, the matrix inverse does not exist. For these

cases, the so-called generalized or pseudo-inverse has been introduced. The pseudo-
inverse A+ of an m×n matrix A, also known as the Moore–Penrose pseudo-inverse,
is given by

A+ = (

ATA
)−1

AT

provided that the inverse (AT A)−1 exists. Consequently,

(

A+A
)= (

ATA
)−1

ATA= I

and thus A+ of this form is also called the left semi-inverse of A. This Moore–
Penrose pseudo-inverse forms the heart of the ordinary least-squares solution to a
linear regression problem, where m = N (number of measurements), and n = p

(number of parameters). The generalized inverse is not unique. For the case m< n,
where the inverse (AT A)−1 does not exist, one could use

A+ =AT
(

AAT
)−1

so that
(

AA+)=AAT
(

AAT
)−1 = I

if (AAT)−1 exists. Application of this generalized inverse or right semi-inverse
plays a key role in so-called minimum-length solutions. Finally, for the cases where
(AT A)−1 and (AAT)−1 do not exist, the generalized inverse can be computed via a
limiting process

A+ = lim
δ→0

(

ATA+ δI
)−1

AT = lim
δ→0

AT
(

AAT + δI
)−1

which is related to Tikhonov regularization.

A.3 Quadratic Matrix Forms

Define the vector x := [x1, x2, . . . , xn]T ; then a quadratic form in x is given by

xTQx

A.4 Vector and Matrix Norms 253

where Q= (qij) is a symmetric n× n matrix. Following the rules for matrix multi-
plication, the scalar xTQx is calculated as

xTQx = q11x
2
1 + 2q12x1x2 + · · · + 2q1nx1xn

+ q22x
2
2 + · · · + 2q2nx2xn

+ · · · + qnnx
2
n

Hence, if Q is diagonal, the quadratic form reduces to a weighted inner product,
which is also called the weighted Euclidean squared norm of x. In shorthand nota-
tion, ‖x‖2

2,Q; see Sect. A.4 for a further introduction of vector and matrix norms.
Consequently, the weighted squared norm represents a weighted sum of squares.

An n× n real symmetric matrix Q is called positive definite if

xTQx > 0

for all nonzero vectors x. For an n × n positive definite matrix Q, all diagonal
elements are positive, that is, qii > 0 for i = 1, . . . , n. A positive definite matrix is
invertible. In case xTQx ≥ 0, we call the matrix semi-positive definite.

A.4 Vector and Matrix Norms

Let us introduce the norm of a vector x ∈ R
n, as introduced in the previous section,

in some more detail, where the norm is indicated by the double bar. A vector norm
on R

n for x, y ∈ R
n satisfies the following properties:

‖x‖ ≥ 0
(‖x‖ = 0 ⇐⇒ x = 0

)

‖x + y‖ ≤ ‖x‖ + ‖y‖
‖αx‖ = |α|‖x‖

Commonly used vector norms are the 1-, 2-, and ∞-norm, which are defined as

‖x‖1 := |x1| + · · · + |xn|
‖x‖2 := (

x2
1 + · · · + x2

n

) 1
2

‖x‖∞ := max
1≤i≤n

|xi |

where the subscripts on the double bar are used to indicate a specific norm. Hence,
the 2-norm, also known as the Euclidean (squared) norm, is frequently used to in-
dicate a length of a vector. The weighted Euclidean norm for diagonal matrix Q, as
already introduced in Sect. A.3, is then defined as

‖x‖2,Q := (

q11x
2
1 + · · · + qnnx

2
n

) 1
2

254 A Matrix Algebra

Sometimes this norm is also denoted as ‖x‖Q, thus without an explicit reference
to the 2-norm. However, in the following, we will use the notation ‖x‖2,Q for a
weighted 2-norm to avoid confusion. This idea of norms can be further extended
to matrices A,B ∈ R

m×n with the same kind of properties as presented above. For
the text in this book, it suffices to introduce one specific matrix norm, the so-called
Frobenius norm ‖ · ‖F ,

‖A‖F =
√

√

√

√

m
∑

i=1

n
∑

j=1

|aij |2 =
√

Tr
(

ATA
)

where the trace (denoted by Tr(·)) of a square n× n matrix is the sum of its diag-
onal elements. The Frobenius norm is used in the derivation of a total least-squares
solution to an estimation problem with noise in both the regressors and regressand,
the dependent variable.

A.5 Differentiation of Vectors and Matrices

Differentiation of vector and matrix products is important when deriving solutions
to optimization problems. Let us start by considering the inner product of two n-
dimensional vectors a and x,

xT a = x1a1 + x2a2 + · · · + xnan

Then, the partial derivatives with respect to ai are given by

∂(xT a)

∂ai
= xi

Consequently, after stacking all the partial derivatives, we obtain x, and thus vector
differentiation can be summarized as

∂(xT a)

∂a
= x,

∂(xT a)

∂aT
= xT

In general terms, a vector differentiation operator is defined as

d

dx
:=

[

∂

∂x1
, . . . ,

∂

∂xn

]T

Applying to any scalar function f (x) to find its derivative with respect to x, we
obtain

d

dx
f (x)=

[

∂f (x)

∂x1
, . . . ,

∂f (x)

∂xn

]T

A.5 Differentiation of Vectors and Matrices 255

Vector differentiation has the following properties:

1. d
dx a

T x = d
dx x

T a = a.
2. d

dx x
T x = 2x.

3. d
dx x

T Ax = xT AT + xT A, and thus for AT =A, d
dx x

T Ax = 2Ax.

The matrix differentiation operator is defined as

d

dA
:=

⎡

⎢

⎢

⎣

∂
∂a11

· · · ∂
∂a1n

... · ...
∂

∂am1
· · · ∂

∂amn

⎤

⎥

⎥

⎦

The derivative of a scalar function f (A) with respect to A is given by

d

dA
f (A)=

⎡

⎢

⎢

⎣

∂f (A)
∂a11

· · · ∂f (A)
∂a1n

... · ...
∂f (A)
∂am1

· · · ∂f (A)
∂amn

⎤

⎥

⎥

⎦

For the special case f (A) = uT Av with u an m × 1 constant vector, v an n × 1
constant vector, and A an m× n matrix,

d

dA
uT Av = uvT

Example A.2 Derivative of cost function: Let a cost function JW (ϑ), with ϑ a pa-
rameter vector, be defined as

JW (ϑ) := ‖y −Φϑ‖2
2,Q

= (y −Φϑ)TQ(y −Φϑ)

= yTQy − yTQΦϑ − ϑT ΦTQy + ϑT ΦTQΦϑ

= yTQy − 2ϑT ΦTQy + ϑT ΦTQΦϑ

with Q a symmetric positive definite weighting matrix. Then, following the rules of
vector differentiation,

d

dϑ
JW = −2ΦTQy + 2ΦTQΦϑ

After setting d
dϑ JW = 0, a necessary condition for finding a minimum, a weighted

least-squares estimate of ϑ is found.

256 A Matrix Algebra

A.6 Eigenvalues and Eigenvectors

Eigenvalue decomposition of a square matrix is given by

Au= λu

where u is an eigenvector, and λ the associated eigenvalue. The combination (λ,u)
is called an eigenpair. For an n-dimensional square matrix A, n (not necessarily
different) eigenvalues exist. The eigenpairs (λ,u) of a square matrix A can be com-
puted (in principle) by first determining the roots λ of the characteristic polyno-
mial

c(λ)= det(λIn −A)

Subsequently, the eigenvectors u can be found by solving the associated linear equa-
tions

(λIn −A)u= 0

Let us illustrate this by an example.

Example A.3 Eigenvalues and eigenvectors: Let

A=
[

1 0
0 0

]

Then

det

([

λ 0
0 λ

]

−
[

1 0
0 0

])

= det

([

λ− 1 0
0 λ

])

= (λ− 1)λ= 0

=⇒ λ1 = 1:
[

1 0
0 1

][

u11
u21

]

=
[

u11
u21

]

=⇒ u11 free, u21 = 0

=⇒ u1 =
[

1
0

]

=⇒ λ2 = 0:
[

1 0
0 1

][

u21
u22

]

=
[

0
0

]

=⇒ u21 = 0, u22 free

=⇒ u2 =
[

0
1

]

When

A=
[

1 0
0 1

]

=⇒ λ1,2 = 1, u1 =
[

1
0

]

and u2 =
[

0
1

]

or

A=
[

2 0
0 1

]

=⇒ λ1 = 2, u1 =
[

1
0

]

and λ2 = 1, u2 =
[

0
1

]

A.6 Eigenvalues and Eigenvectors 257

Finally, when

A=
[

2 1
1 1

]

=⇒ λ1 = 2.618, u1 =
[−0.8507
−0.5257

]

λ2 = 0.382, u2 =
[−0.5257
−0.8507

]

Two matrices A and B are said to be similar if and only if there exists a non-
singular matrix P such that B = P−1AP . The matrix function f (A) = P−1AP is
called the similarity transformation of A. It appears that an n×n matrix A is similar
to the diagonal matrix with the eigenvalues of A on the diagonal, provided that A
has n distinct eigenvalues.

In the case with n linearly independent eigenvectors, we can generalize Au= λu

to AU =UD, and thus

A=UDU−1

also called the eigendecomposition or spectral decomposition of matrix A. From
this it also follows that

U−1AU =D

with U = [u1 u2 · · · un] that is a matrix formed by the eigenvectors, sometimes
called the eigenmatrix, and

D =

⎡

⎢

⎢

⎢

⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

... · ...

0 0 · · · λn

⎤

⎥

⎥

⎥

⎦

If this holds, it is said that A is diagonalizable. This property is important in having
a geometrical interpretation of the eigenvectors and also in analyzing the behavior
and error propagation of linear dynamic models. Note from the above that only
diagonalizable matrices can be factorized in terms of eigenvalues and eigenvectors.

The following list (derived from [HK01]) summarizes some useful eigen proper-
ties

1. If (λ,u) is an eigenpair of A, then so is (λ, ku) for any k �= 0.
2. If (λ1, u1) and (λ2, u2) are eigenpairs of A with λ1 �= λ2, then u1 and u2 are lin-

early independent. In other words, eigenvectors corresponding to distinct eigen-
values are linearly independent.

3. A and AT have the same eigenvalues.
4. If A is diagonal, upper triangular, or lower triangular, then its eigenvalues are

its diagonal entries.
5. The eigenvalues of a symmetric matrix are real.
6. Eigenvectors corresponding to distinct eigenvalues of a symmetric matrix are

orthogonal.

258 A Matrix Algebra

7. det(A) is the product of the absolute values of the eigenvalues of A.
8. A is nonsingular if and only if 0 is not an eigenvalue of A. This implies that A

is singular if and only if 0 is an eigenvalue of A.
9. Similar matrices have the same eigenvalues.

10. An n×n matrix A is similar to a diagonal matrix if and only if A has n linearly
independent eigenvectors. In that case, it is said that A is diagonalizable.

Especially, properties (5) and (6) are important in the evaluation of the symmet-
ric, positive definite covariance matrices and the corresponding ellipsoidal uncer-
tainty regions (see Appendix B). Finally, it is worth noting that eigenvalues do also
play an important role in the calculation of the spectral norm of a square matrix. The
spectral or 2-norm of a real matrix A is the square root of the largest eigenvalue of
the positive semi-definite matrix ATA,

‖A‖2 =
√

λmax
(

ATA
)

with is different from the entry-wise Frobenius norm, introduced before. However,
the following inequality holds: ‖A‖2 ≤ ‖A‖F ≤ √

n‖A‖2.

A.7 Range and Kernel of a Matrix

The range of a matrix A, denoted by ran(A), also called the column space of A, is
the set of all possible linear combinations of the column vectors of A. Consequently,
for a matrix A of dimension m× n,

ran(A)= {

y ∈ R
m : y =Ax for some x ∈ R

n
}

In addition to the range of a matrix, the kernel or null space (also nullspace) of a
matrix A is defined as the set of all vectors x for which Ax = 0. In mathematical
notation, for an m× n matrix A,

ker(A)= {

x ∈ R
n :Ax = 0, x �= 0

}

Let us demonstrate these properties of a matrix by some examples.

Example A.4 If

A=
[

2 1
1 1

]

then given the column vectors v1 = [2
1

]

and v2 = [1
1

]

, a linear combination of v1
and v2 is any vector of the form

β1

[

2
1

]

+ β2

[

1
1

]

=
[

2β1 + β2
β1 + β2

]

A.8 Exponential of a Matrix 259

Fig. A.1 Range of
A= [1 1]T (bold solid line)
and kernel of AT = [1 1]
(dashed line)

Hence, in this case with real constants β1, β2 ∈ R, the range of A is the two-
dimensional plane R

2. If, however,

A=
[

1
1

]

then the range of A is precisely the set of vectors [y1y2]T ∈ R
2 that satisfy the

equation y1 = y2. Consequently, this set is a line through the origin in the two-
dimensional space (see Fig. A.1). It can then be easily verified that the kernel of A
is empty, but ker(AT) with

AT = [

1 1
]

is a line with normalized slope, thus with unit length:
[−0.7071

0.7071

]

, as x1 + x2 = 0

with ‖x‖ = 1. The kernel of AT is also presented in Fig. A.1 by the dashed line
that satisfies the equation x1 = −x2. Hence, for the linear transformation AT x with
AT = [1 1], every point on this line maps to the origin. For more information on
these properties and their application in estimation problems, we refer to, for in-
stance, [GVL89].

A.8 Exponential of a Matrix

The matrix exponential, denoted by eA or exp(A), is a matrix function on the square
matrix A, analogous to the ordinary exponential function. Let A be an n× n real or

260 A Matrix Algebra

complex matrix. The exponential of A is the n× n matrix given by the power series

eA =
∞
∑

k=0

1

k!A
k

This series always converges, and thus eA is well defined. However, using this power
series is not a very practical way to calculate the matrix exponential. In the famous
paper of Moler and Van Loan [MVL78], 19 ways to compute the matrix exponential
are discussed. Here, it suffices to illustrate this matrix function by an example.

Example A.5 Exponential of a matrix:

A=
[

2 1
1 1

]

=⇒ eA =
[

10.3247 5.4755
5.4755 4.8492

]

This result is based on MATLAB’s expm. It is important to realize that this re-
sult is completely different from the case where the exponential function is taken
element-wise, which in fact is not the exponential of a matrix. For a comparison,
using MATLAB’s exp gives

[

7.3891 2.7183
2.7183 2.7183

]

≈
[

e2 e
e e

]

A.9 Square Root of a Matrix

A matrix B is said to be a square root of the square matrix A, if the matrix prod-
uct BB is equal to A. Furthermore, B is the unique square root for which every
eigenvalue has nonnegative real part. The square root of a diagonal matrix D, for
example, is found by taking the square root of all the entries on the diagonal. For
a general diagonalizable matrix A such that D = U−1AU , we have A = UDU−1.
Consequently,

A1/2 =UD1/2U−1

since UD1/2U−1UD1/2U−1 = UDU−1 = A. This square root is real if A is pos-
itive definite. For nondiagonalizable matrices, we can calculate the Jordan normal
form followed by a series expansion. However, this is not an issue here, as in most
system identification applications, in particular filtering, the square root of a real,
symmetric, and positive definite covariance matrix is calculated. Let us demonstrate
the calculation of the square root of the matrix used in Example A.3.

Example A.6 Square root of a matrix:

A=
[

2 1
1 1

]

=⇒ U =
[−0.8507 0.5257

−0.5257 −0.8507

]

, D =
[

2.618 0
0 0.382

]

A.10 Choleski Decomposition 261

and thus

A1/2 =
[−0.8507 0.5257

−0.5257 −0.8507

][√
2.618 0
0

√
0.382

][−0.8507 0.5257
−0.5257 −0.8507

]

=
[

1.3416 0.4472
0.4472 0.8944

]

as in this special case U =U−1.
Let us also evaluate this result analytically. Then, for an unknown matrix B =

[b1 b2
b3 b4

]

, we obtain

A=
[

2 1
1 1

]

=
[

b1 b2
b3 b4

][

b1 b2
b3 b4

]

=
[

b2
1 + b2b3 b1b2 + b2b4

b1b3 + b3b4 b2b3 + b2
4

]

Consequently, the solution set is given by

⎡

⎢

⎢

⎣

b1
b2
b3
b4

⎤

⎥

⎥

⎦

∈

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎣

1
1
1
0

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

−1
−1
−1
0

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎣

3
5

√
5

1
5

√
5

3
5

√
5

2
5

√
5

⎤

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎣

− 3
5

√
5

− 1
5

√
5

− 3
5

√
5

− 2
5

√
5

⎤

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

Hence, from this matrix equality four solutions appear. However, only the third so-
lution results in a matrix for which every eigenvalue has nonnegative real part, that
is, λ1 = 1.6180 and λ2 = 0.6180. The other solutions result in a matrix B with at
least one negative eigenvalue. Thus, the matrix B with entries as defined by the third
solution is the principal square root of A.

A.10 Choleski Decomposition

The Choleski decomposition or Choleski factorization is a decomposition of a sym-
metric, positive definite matrix A into the product of a lower triangular matrix L

and its transpose LT , for A real and thus with all entries real. Hence, A can be
decomposed as

A= LLT

where L is a lower triangular matrix with strictly positive diagonal, real entries. No-
tice that the Choleski decomposition is an example of a square root of a matrix. The
Choleski decomposition is unique: given a symmetric, positive definite matrix A,
there is only one lower triangular matrix L with strictly positive diagonal entries
such that A = LLT . In general, Choleski factorizations for positive semidefinite
matrices are not unique.

262 A Matrix Algebra

Example A.7 Choleski decomposition:

A=
[

2 1
1 1

]

=⇒ L=
[

1.4142 0
0.7071 0.7071

]

, LT =
[

1.4142 0.7071
0 0.7071

]

such that A= LLT .
Let us evaluate this result analytically. Then, for L= [l1 0

l3 l2

]

,

A=
[

2 1
1 1

]

=
[

l1 0
l3 l2

][

l1 l3
0 l2

]

=
[

l21 l1l3
l1l3 l22 + l23

]

=⇒ l1 = √
2, l3 = 1

2

√
2, l2 = 1

2

√
2

A.11 Modified Choleski (UD) Decomposition

In addition to the Choleski decomposition, as presented in the previous subsection,
there is also a unique, real, lower triangular matrix, L̃, and a real, positive diagonal
matrix, D̃, such that

A= L̃D̃L̃T

where L̃ has unit diagonal elements. This decomposition is known as the modified
Choleski decomposition, [vRLS73]. Given the Choleski and modified Choleski de-
composition, we obtain that L = L̃D̃1/2. However, A can also be decomposed as
A = UDUT , known as the modified Choleski (UD) decomposition, with U a unit
upper triangular matrix and D a diagonal matrix with nonnegative elements.

Example A.8 Modified Choleski decomposition: For L = [1 0
l 1

]

and D = [d1 0
0 d2

]

,
we obtain

A=
[

2 1
1 1

]

=
[

1 0
l 1

][

d1 0
0 d2

][

1 l

0 1

]

=
[

d1 d1l

d1l d2

]

=⇒ d1 = 2, d2 = 1, l = 0.5

Similarly, we can decompose A as UDUT with U = [1 u
0 1

]

and D as before, leading
to d1 = 1, d2 = 1, u= 1.

A.12 QR Decomposition

Any real square matrix A may be decomposed as A = QR, where Q is an orthog-
onal matrix (i.e., QTQ = I), and R is an upper triangular matrix, also called right
triangular matrix. If A is nonsingular, then the factorization is unique if the diag-
onal elements of R are positive. However, this so-called QR decomposition or QR
factorization also exists for rectangular matrices; see an example below.

A.13 Singular Value Decomposition 263

Example A.9 QR decomposition: Let us start with a square matrix. For example,

A=
[

2 1
1 1

]

=
[

q1 q2
q3 q4

][

r1 r2
0 r3

]

=
[

q1r1 q1r2 + q2r3
q3r1 q3r2 + q4r3

]

with

[

q1 q3
q2 q4

][

q1 q2
q3 q4

]

=
[

q2
1 + q2

3 q1q2 + q3q4

q1q2 + q3q4 q2
2 + q2

4

]

=
[

1 0
0 1

]

Hence, we do have seven equations with seven unknowns. The solution set is given
by

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

q1

q2

q3

q4

r1

r2

r3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2
5

√
5

− 1
5

√
5

1
5

√
5

2
5

√
5√

5
3
5

√
5

1
5

√
5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2
5

√
5

1
5

√
5

1
5

√
5

− 2
5

√
5√

5
3
5

√
5

− 1
5

√
5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 2
5

√
5

− 1
5

√
5

− 1
5

√
5

2
5

√
5

−√
5

− 3
5

√
5

1
5

√
5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 2
5

√
5

1
5

√
5

− 1
5

√
5

− 2
5

√
5

−√
5

− 3
5

√
5

− 1
5

√
5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

Thus, the QR decomposition is not unique. However, there is one unique combina-
tion that gives positive values for the diagonal elements r1 and r3, and this one is
given by the entries as defined by the first solution.

As a second case, let A be an n×m matrix with n= 3 and m= 2. For instance,

A=
⎡

⎣

2 1
1 1
1 2

⎤

⎦ =⇒ Q =
⎡

⎣

−0.8165 0.4924 0.3015
−0.4082 −0.1231 −0.9045
−0.4082 −0.8616 0.3015

⎤

⎦ ,

R =
⎡

⎣

−2.4495 −2.0412
0 −1.3540
0 0

⎤

⎦

such that A = QR = Q
[

R1
0

]= [Q1 Q2]
[

R1
0

]= Q1R1, where R1 is an n× n upper
triangular matrix, Q1 is an m× n matrix, Q2 is an m× (m− n) matrix, and Q1 and
Q2 both have orthogonal columns.

A.13 Singular Value Decomposition

Recall that eigenvalue decomposition is limited to square matrices only. The singu-
lar value decomposition (SVD) is an important factorization of a rectangular ma-
trix. It has several applications in signal processing and statistics. In particular, in

264 A Matrix Algebra

this book, SVD is used in relation with least-squares fitting, identifiability, and total
least-squares solutions. In what follows, we focus on the N ×p regressor matrix Φ .
The SVD technique decomposes Φ into

Φ =USV T

where U and V are orthogonal matrices of dimensions N ×N and p × p, respec-
tively, such that UT U = IN and V T V = Ip . The N ×p singular value matrix S has
the following structure:

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

σ1 0 · · · 0
0 σ2 · · · 0
...

...
...

...

0 0 · · · σp
.........................

0(N−p)×p

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where 0(N−p)×p denotes an (N − p) × p zero or null matrix. An intuitive expla-
nation of this result is that the columns of V form a set of orthonormal “input” or
“analyzing” basis vector directions for Φ , the columns of U form a set of orthonor-
mal “output” basis vector directions for Φ , and the matrix S contains the singular
values that can be thought of as a scalar “gain” by which each corresponding in-
put is multiplied to give a corresponding output. If the SVD of Φ is calculated and
σ1 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0, then the rank of Φ is equal to r . Hence, there
exists a clear link between the rank of a matrix and its singular values.

For a further interpretation of the singular vectors and values, notice that the SVD
of ΦTΦ is given by

ΦTΦ = V ST UT USV T

= V ST SV T

Since V T V = Ip , we have V T = V −1, and thus

(

ΦTΦ
)

V = V ST S

with ST S a p×p diagonal matrix. Consequently, with Λ= ST S, the right singular
vector matrix V in the SVD of Φ can be calculated as the eigenmatrix of ΦTΦ , and
σi in S as the square root of the corresponding eigenvalues. Similarly, the left singu-
lar vector matrix U can be calculated from an eigenvalue decomposition of ΦΦT .

A.14 Projection Matrices

A square matrix A is said to be idempotent if A2 =A. Idempotent matrices have the
following properties:

A.14 Projection Matrices 265

1. Ar =A for r being a positive integer.
2. I −A is idempotent.
3. If A1 and A2 are idempotent matrices and A1A2 =A2A1, then A1A2 is idempo-

tent.
4. A is a projection matrix.

If, however, an idempotent matrix is also symmetric, then we call it an orthogonal
projection matrix. Hence, for orthogonal projection in real spaces, it holds that the
projection matrix is idempotent and symmetric, i.e., A2 =A and A=AT . In linear
regression with least-squares estimate ̂ϑ = (ΦT Φ)−1ΦT y, where Φ the regressor
matrix, we use the matrix P = Φ(ΦTΦ)−1ΦT to calculate the predicted model
output, ŷ =Φ̂ϑ =Φ(ΦTΦ)−1ΦT y, from the output vector y. Since

(

Φ
(

ΦTΦ
)−1

ΦT
)2 = Φ

(

ΦTΦ
)−1

ΦTΦ
(

ΦTΦ
)−1

ΦT

= Φ
(

ΦTΦ
)−1

ΦT

and
(

Φ
(

ΦTΦ
)−1

ΦT
)T = Φ

(

ΦTΦ
)−T

ΦT

= [(ΦT Φ)=(ΦT Φ)T]Φ
(

ΦTΦ
)−1

ΦT

P defines an orthogonal projection in a real space, as does I − P .

Appendix B
Statistics

B.1 Random Entities

B.1.1 Discrete/Continuous Random Variables

A discrete random variable ξ is defined as a discrete-valued function ξ(j) with
probability of occurrence of the j th value given by p(j), where

p(j): probability density function of the random variable ξ(j)

The mean value or first moment of p(j), which is defined as the expected value of
ξ (E[ξ]) and also denoted by ξ̄ , is given by

E[ξ] = ξ̄ =
∑

j

ξ(j)p(j)

This concept can be extended to continuous random variables, where, for simplicity,
we write ξ and p(ξ). In the following, some useful operations on ξ for given p(ξ)

are defined. First, we define the expectation,

E[ξ] = μ :=
∫ ∞

∞
ξp(ξ)dξ

which can be interpreted as the center of the probability density function (pdf).
Hence, for a, b ∈ R,

(i) E[a] = a,
(ii) E[aξ + b] = aE[ξ] + b.

Second, we define the variance,

Var ξ :=E
[(

ξ −E[ξ])2]

which can be interpreted as the dispersion of the probability density function. The
following properties hold:

K.J. Keesman, System Identification,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-0-85729-522-4, © Springer-Verlag London Limited 2011

267

http://dx.doi.org/10.1007/978-0-85729-522-4

268 B Statistics

(i) Varaξ + b = a2 Var ξ .
(ii) Var ξ =E[ξ2] − (E[ξ])2.

For two, either discrete or continuous random variables, ξ and ψ , the covariance is
defined as

Cov(ξ,ψ)=E
[(

ξ −E[ξ])(ψ −E[ψ])]

which represents the dependence between two random variables. The following
properties hold:

(i) Cov(ξ,ψ)=E[ξψ] −E[ξ]E[ψ].
(ii) ξ and ψ independent: Cov(ξ,ψ)= 0 and E[ξψ] =E[ξ]E[ψ].

(iii) Varaξ + bψ = a2 Var ξ + b2 Varψ + 2abCov(ξ,ψ).

Then, the normalized covariance or correlation is given by

ρ = Cov(ξ,ψ)√
Var ξ

√
Varψ

We state the following properties:

(i) −1 < ρ < 1.
(ii) ξ and ψ are linearly related if ρ = ±1.

(iii) ξ and ψ independent if ρ = 0.

B.1.2 Random Vectors

A random vector is a column vector whose elements are random variables. The
expectation of ξ ∈ R

r is given by

E[ξ] = μξ =

⎡

⎢

⎢

⎢

⎢

⎣

E[ξ1]
E[ξ2]
...

E[ξr]

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

μ1

μ2

...

μr

⎤

⎥

⎥

⎥

⎥

⎦

The covariance of ξ is given by

P = Pξ =E
[

(ξ −μξ)(ξ −μξ)
T
]

= E

⎡

⎢

⎢

⎢

⎣

(ξ1 −μ1)
2 (ξ1 −μ1)(ξ2 −μ2) · · · (ξ1 −μ1)(ξr −μr)

· (ξ2 −μ2)
2

...
. . .

...

· · · · (ξr −μr)
2

⎤

⎥

⎥

⎥

⎦

In the following examples, the covariance matrix is calculated and visualized for
some cases.

B.1 Random Entities 269

Example B.1 Covariance matrix: Let for a given vector ξ , ξi and ξj for i �= j be
uncorrelated with constant variance σ 2 and zero mean. Then

P =

⎡

⎢

⎢

⎢

⎣

σ 2 0 · · · 0
0 σ 2 · · · 0
...

. . .
...

0 0 · · · σ 2

⎤

⎥

⎥

⎥

⎦

because μξ = 0, E[ξi ξj] = 0 for i �= j , and E[ξ2
i] = σ 2 for i = j .

Example B.2 Covariance matrix: Let two random vectors ξ1 = [1 2 2 3]T and ξ2 =
[1 1 2 2]T be given. Consequently, E[ξ1] = ξ̄1 = 2 and E[ξ2] = ξ̄2 = 1.5, so that
the normalized vectors are given by ξ̃1 = ξ1 −E[ξ1] = [−1 0 0 1]T and ξ̃2 = ξ2 −
E[ξ2] = [−0.5 −0.5 0.5 0.5]T . Define

Ξ̃ := [

ξ̃1 ξ̃2
]=

⎡

⎢

⎢

⎣

−1 −0.5
0 −0.5
0 0.5
1 0.5

⎤

⎥

⎥

⎦

Thus,

P = 1

3
Ξ̃T Ξ̃ =

[

2
3

1
3

1
3

1
3

]

=
[

Var ξ̃1 Cov(ξ̃1, ξ̃2)

Cov(ξ̃2, ξ̃1) Var ξ̃2

]

The eigenvalues and eigenvectors of P are given by

λ1,2 = 1

2
± 1

6

√
5

and

u1 =
[−0.8507
−0.5257

]

and u2 =
[

0.5257
−0.8507

]

Given any positive definite and symmetric covariance matrix, the so-called uncer-
tainty ellipsoid can be constructed (see, for instance, [Bar74]). This ellipsoid rep-
resents an isoline connecting points of equal probability, which could be specified
if we would accept, for example, a specific symmetric, unimodal multivariate dis-
tribution of the data. For our case, the uncertainty ellipse, with center ξ̄ = [2 1.5]T
and form matrix P , is given by

{

ξ ∈ R
2 : (ξ − ξ̄

)T
P−1(ξ − ξ̄

)= 1
}

and presented in Fig. B.1. Another interpretation for the uncertainty ellipse is that,
assuming that the given data have a bivariate Gaussian distribution (see explanation
below), the ellipse in Fig. B.1 is the smallest area that contains a fixed probabil-
ity mass. Notice from Fig. B.1 that the (orthogonal) main axes are defined by the

270 B Statistics

Fig. B.1 Uncertainty ellipse
with data points (o)

eigenvectors u1 and u2. In addition to this, the lengths of the semi-axes are given by
the square root of the corresponding eigenvalues λ1 and λ2 multiplied by a scaling
factor. Consequently, the eigenvectors and eigenvalues of a covariance matrix and a
distribution-related scaling factor define the uncertainty ellipse.

Example B.3 Forecast errors, see [DK05]: Forecast and observation files for loca-
tion “De Bilt” from 1 March 2001 until 1 March 2002 were provided by the weather
agency “HWS”. These forecast files contain data from 0 until 31 hours ahead with
an hourly interval. Every six hours, a new forecast file was delivered. Observation
files were received daily containing hourly data from the previous 24 hours. From
these data the average forecast error (i.e., observation minus forecast) of the temper-
ature and the covariance matrix Q of the forecast error are obtained. The covariance
matrix is graphically represented in Fig. B.2.

The normally distributed probability density function (pdf) of the random vector
ξ ∈ R

r is given by

p(ξ)= 1

(2π)r/2|P |1/2
exp

{

−1

2
(ξ −μξ)

T P−1(ξ −μξ)

}

where (ξ −μξ)
T P−1(ξ −μξ) defines an ellipsoid with center μξ and principal axes

that are the eigenvectors of the r × r matrix P . Clearly,

E[ξ] = μξ

E
[

(ξ −μξ)(ξ −μξ)
T
] = P

In short-hand notation, ξ ∼N(μξ ,P). It is also common practice to say that ξ has
a Gaussian distribution.

B.1 Random Entities 271

Fig. B.2 Covariance matrix
of the short-term forecast
error

The Gaussian distribution is of paramount importance in statistics, as stated by
the Central Limit Theorem. Let ξ1, ξ2, . . . , ξn be a sequence of n independent and
identically distributed (iid) random variables, each having finite values of expec-
tation μ and variance σ 2 > 0. The central limit theorem states that, as the sample
size n increases, the distribution of the sample average of these random variables
approaches the normal distribution with mean μ and variance σ 2/n, irrespective of
the shape of the common distribution of the individual terms ξi . The central limit
theorem is formally stated as follows.

Theorem B.1 Let ξ1, ξ2, . . . be independent, identically distributed random vari-
ables having mean μ and finite nonzero variance σ 2.

Let Sn = ξ1 + ξ2 + · · · + ξn. Then

lim
n→∞P

(

Sn − nμ

σ
√
n

≤ x

)

=Φ(x)

where Φ(x) is the probability that a standard normal random variable is less than x.

Another distribution, which is especially of paramount importance in hypothesis
testing, is the so-called chi-square or χ2-distribution. The chi-square distribution
(also called chi-squared distribution) with M degrees of freedom is the distribution
of a sum of the squares of M independent standard normal random variables. In
Fig. B.3 the cumulative distribution function, which is the integral of the chi-square
probability density function, is presented.

The chi-square distribution is commonly used in the so-called chi-square tests for
goodness of fit of an observed distribution to a theoretical one. A chi-square test is
any statistical hypothesis test in which the sampling distribution of the test statistic
(as in (9.7)) has a chi-square distribution when the null hypothesis is true, or any in
which this is asymptotically true.

272 B Statistics

Fig. B.3 Cumulative
distribution function related
to χ2(M)-distributions with
M = 1, . . . ,6

B.1.3 Stochastic Processes

A statistical phenomenon that evolves in time according to probabilistic laws is
called a stochastic process, see [BJ70]. Let ξ and ψ be elements of the same stochas-
tic process, denoted by ξ(t) and ξ(t + τ). Then, the autocorrelation function is de-
fined by

rξξ (τ, t) :=E
[

ξ(t)ξ(t + τ)
]

Some properties of the autocorrelation function are:

(i) For τ = 0, rξξ (τ, t) has its maximum.
(ii) rξξ (τ, t)= rξξ (−τ, t).
In the analysis of sequences or time series, a series is said to be stationary in the
wide sense if the first and second moments, i.e., mean and (co)variances, are not
functions of time. In what follows, we will call these series simply stationary. A very
useful property of stationary series is that they are ergodic, in other words, we can
estimate the mean and (co)variances by averages over time. This implies that the
autocorrelation function can be estimated from

rξξ (τ)= lim
T→∞

1

2T

∫ T

−T
u(t)u(t + τ)dt

Notice that this function is now, under the assumption of ergodicity, only a function
of lag τ and not of t . Let us illustrate the autocorrelation function by an example
using real-world data.

Example B.4 Autocorrelation function of wastewater data: Consider the follow-
ing measurements of the ammonium concentration entering a wastewater treatment
plant (upper graph, Fig. B.4) and associated normalized autocorrelation function
(bottom graph, Fig. B.4).

It suffices here to say that this autocorrelation function clearly demonstrates the
previously mentioned properties of the autocorrelation function and that strong cor-
relations between subsequent ammonium concentrations are observed.

B.1 Random Entities 273

Fig. B.4 Measured ammonium concentrations with corresponding autocorrelation function

In a similar way, the cross-correlation function between ξ(t) and ψ(t) is defined
as

rξψ(τ, t) :=E
[

ξ(t)ψ(t + τ)
]

which under ergodic conditions becomes

rξψ(τ)= lim
T→∞

1

2T

∫ T

−T
ξ(t)ψ(t + τ)dt

Appendix C
Laplace, Fourier, and z-Transforms

C.1 Laplace Transform

The Laplace transform is one of the best-known and most widely used integral trans-
forms. It is commonly used to produce an easily solvable algebraic equation from
an ordinary differential equation. Furthermore, the Laplace transform is often in-
terpreted as a transformation from the time domain, in which inputs and outputs
are functions of time, to the frequency domain, where the same inputs and outputs
are functions of complex angular frequency, or radians per unit time. For LTI sys-
tems, the Laplace transform provides an alternative functional description that often
simplifies the analysis of the behavior of the system. The most commonly applied
Laplace transform is defined as

L
[

f (t)
]≡ F(s) :=

∫ ∞

0
f (t)e−st dt

It is a linear operator on a function f (t) (original) with real argument t that trans-
forms it to a function F(s) (image) with complex argument s. Let us illustrate this
unilateral or one-sided Laplace transform by two simple examples.

Example C.1 Laplace transform: Given f (t)= e−at with a, t ∈ R+. Then,

L
[

e−at] =
∫ ∞

0
e−ate−st dt

=
∫ ∞

0
e−(a+s)t dt

=
[

1

−(a + s)
e−(a+s)t

]∞

0

= 1

−(a + s)
[0 − 1]

= 1

(a + s)

K.J. Keesman, System Identification,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-0-85729-522-4, © Springer-Verlag London Limited 2011

275

http://dx.doi.org/10.1007/978-0-85729-522-4

276 C Laplace, Fourier, and z-Transforms

Example C.2 Laplace transform: Consider the function f (t − τ) with time delay
τ ∈ R and f (t − τ)= 0 for t < τ . Then,

L
[

f (t − τ)
] =

∫ ∞

0
f (t − τ)e−st dt

= [t ′=t−τ]
∫ ∞

−τ
f
(

t ′
)

e−s(t ′+τ) dt ′

= e−sτ
∫ ∞

−τ
f
(

t ′
)

e−st ′ dt ′

= [f (t ′)=0 for t ′<0] e−sτ
∫ ∞

0
f
(

t ′
)

e−st ′ dt ′

= e−sτL
[

f (t)
]

A very powerful property of the Laplace transform is given in the following ex-
ample, without showing all the intermediate steps.

Example C.3 Laplace transform: Laplace transformation of the convolution integral
y(t)= ∫ t

−∞ g(t − τ)u(τ)dτ , with y(t), u(t), and g(t) appropriate (integrable) time
functions, leads to

Y(s)=G(s)U(s)

which defines an algebraic relationship between transformed output signal Y(s) and
transformed input signal U(s).

Finally, for the transformation from one model representation in the frequency
domain to the time domain and vice versa, as depicted in Fig. 2.1, the following
property is essential.

Example C.4 Laplace transform: The Laplace transform of a derivative can be
found after integrating the expression for the definition of the Laplace transform,
as given above, by parts. Hence,

∫ ∞

0
f (t)e−st dt =

[−f (t)e−st

s

]∞

0
+ 1

s

∫ ∞

0
f ′(t)e−st dt

After evaluating the limits and multiplying by s we obtain

sL
[

f (t)
]= f (0)+ L

[

f ′(t)
]

=⇒ L
[

f ′(t)
]= sL

[

f (t)
]− f (0)

The Laplace transform has the useful property that not only the ones shown above
but many relationships and operations over the originals f (t) correspond to simpler
relationships and operations over the images F(s).

C.2 Fourier Transform 277

C.2 Fourier Transform

The Fourier transform shows a close similarity to the Laplace transform. The con-
tinuous Fourier transform is equivalent to evaluating the bilateral Laplace transform
with complex argument s = jω, with ω in rad/s. The result of a Fourier transfor-
mation of a real-valued function (f (t)) is often called the frequency domain repre-
sentation of the original function. In particular, it describes which frequencies are
present in the original function. There are several common conventions for defin-
ing the Fourier transform of an integrable function f (t). In this book, with angular
frequency ω = 2πξ in rad/s and frequency ξ in Hertz, we use

F
[

f (t)
]≡ F(ω) :=

∫ ∞

−∞
f (t)e−jωt dt

for every real number t . The most important property for further use in this book is
illustrated by the following example.

Example C.5 Fourier transform: Fourier transformation of the convolution integral
y(t)= ∫ t

−∞ g(t − τ)u(τ)dτ , with y(t), u(t), and g(t) integrable functions, leads to

Y(ω)=G(ω)U(ω)

which, as in the case of the Laplace transform, defines an algebraic relationship
between transformed output signal Y(ω) and transformed input signal U(ω).

In this book, in addition to the continuous Fourier transform, the Discrete Fourier
Transform (DFT) of the sampled, continuous-time signal f (t) for t = 1,2, . . . ,N is
used as well and is given by

FN(ω)= 1√
N

N
∑

t=1

f (t)e−jωt

where ω = 2πk/N , k = 1,2, . . . ,N . In this definition, N/k is the period associated
with the specific frequency ωk . The absolute square value of F(ωk), |F(2πk/N)|2,
is a measure of the energy contribution of this frequency to the energy of the signal.
The plot of values of |F(ω)|2 as a function of ω is called the periodogram of the
signal f (t).

C.3 z-Transform

The z-transform converts a discrete time-domain signal, which in general is a se-
quence of real numbers, into a complex frequency domain representation. The
z-transform is like a discrete equivalent of the Laplace transform. The unilateral

278 C Laplace, Fourier, and z-Transforms

Table C.1 Transforms of commonly used functions

Function Time domain
x(t)

Laplace s-domain
X(s)= L [x(t)]

z-domain
X(z)= Z [x(t)]

Unit impulse δ(t) 1 –

Ideal delay x(t − τ) e−sτX(s) z−τ/Ts X(z)

Unit step Hs(t)
1
s

Ts
z−1

Unit pulse 1
Ts

[Hs(t)−Hs(t − Ts)] 1
Ts

1−e−sTs
s

1

Ramp tHs(t)
1
s2

T 2
s (z+1)

2(z−1)2

Exp. decay e−αtHs(t)
1

(s+α)
1
α

1−e−αTs
2−e−αTs

or one-sided z-transform is simply the Laplace transform of an ideally sampled sig-
nal after the substitution z = esTs , with Ts the sampling interval. The z-transform
can also be seen as a generalization of the Discrete Fourier transform (DFT), where
the DFT can be found by evaluating the z-transform F(z) at z= ejω. The two-sided
z-transform of a discrete-time signal f (t) is the function F(z) defined as

Z
[

f (t)
]≡ F(z) :=

∞
∑

t=−∞
f (t)z−t

where t ∈ Z, and z is, in general, a complex number. In this book, and basically for
causal signals, the unilateral z-transform is used as well and is given by

Z
[

f (t)
]≡ F(z) :=

∞
∑

t=0

f (t)z−t

Again, a very relevant property of the z-transform is illustrated in the following.

Example C.6 z-transform: z-transformation of the convolution sum

y(t)=
t
∑

k=0

g(t − k)u(k)

with y(t), u(t), and g(t) discrete-time functions, gives

Y(z)=G(z)U(z)

which defines a similar relationship between transformed output signal Y(z) and
transformed input signal U(z), as in the case of Laplace or Fourier transforma-
tion.

C.3 z-Transform 279

For the approximate conversion from Laplace to z-domain and vice versa, the
following relationships can be used:

s = 2

Ts

z− 1

z+ 1
(Tustin transformation)

z = 2 + sTs

2 − sTs

with Ts the sampling interval.
Finally, we will show some relationships between the transforms. Let Hs(t) be

the Heaviside step function, and δ(t) the Dirac delta function with t a real number
(usually, but not necessarily, time) and Ts the sampling interval. Then, some basic
time functions with their transforms are presented in Table C.1.

Appendix D
Bode Diagrams

D.1 The Bode Plot

In literature, the Bode plot is also referred to as the logarithmic or corner plot. The
Bode plot allows graphical instead of analytical interpretations of signals and LTI
systems in the frequency domain, for example, of F(ω). Because of the logarithmic
transformation of functions, multiplication and division are reduced to addition and
subtraction. Recall that in the frequency domain, complex numbers appear, even if
the original function is real-valued. Hence, in what follows, we use F(jω) instead
of F(ω). Because of the complex numbers, the Bode plot consists of two plots, i.e.,
20 times the logarithm of the magnitude (Lm) in decibels (dB) and the phase shift
in degrees, as functions of the angular frequency ω. Notice then that if |F(jω)|
increases by tenfold, or one decade, then the log magnitude increases by 20. To
simplify the interpretation of Bode plots of transfer functions, four basic types of
terms are specified and analyzed beforehand. In general, the numerator and denom-
inator of transfer functions of LTI systems consists of these four basic types, which
are

K

(jω)±n

(1 + jωT)±m

e±jωτ

Because of the logarithmic transformation, a large class of Bode plots of the entire
transfer function can be analyzed by simply adding the contribution of each of these
simple terms.

K.J. Keesman, System Identification,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-0-85729-522-4, © Springer-Verlag London Limited 2011

281

http://dx.doi.org/10.1007/978-0-85729-522-4

282 D Bode Diagrams

D.2 Four Basic Types

D.2.1 Constant or K Factor

For a real positive constant K , it holds that Lm(K) = 20 log |K| appears as a hori-
zontal line that raises or lowers the log magnitude curve of the entire transfer func-
tion by a fixed amount. Clearly, because of the constant value, there is no contribu-
tion to the phase shift.

D.2.2 (jω)±n Factor

The log magnitude and phase shift of (jω)±n are given by

Lm(jω)±n = ±20n logω

∠(jω)±n = ±nπ

2

Hence, the magnitude plot consists of a straight line whose slope is ±20n dB/decade
and goes through 0 dB at ω = 1. The phase shift is a constant with a value of ±nπ

2 .
These results have been obtained using the following rules for complex numbers,

i.e., given z = a + bi ∈ C with a, b ∈ R, |z| =
√

Re2 z+ Im2 z = √
a2 + b2, and

∠z= arg z= arctan Im z
Re z = arctan b

a
.

D.2.3 (1 + jωT)±m Factor

Let us first consider the case with m= 1 and negative exponent. Then,

Lm(1 + jωT)−1 = 20 log

∣

∣

∣

∣

1

1 + jωT

∣

∣

∣

∣

= 20 log

∣

∣

∣

∣

1 − jωT

1 +ω2T 2

∣

∣

∣

∣

= 20 log

√

1

(1 +ω2T 2)2
+ ω2T 2

(1 +ω2T 2)2

= 20 log

√

1

(1 +ω2T 2)

= −20 log
√

1 +ω2T 2

∠(1 + jωT)−1 = arctan
−ωT

1
= − arctanωT

D.2 Four Basic Types 283

Fig. D.1 Bode plot for G(jω)= 20
jω+10 with asymptotes in the magnitude plot

For very small values of ωT , the log magnitude becomes

Lm(1 + jωT)−1 = −20 log 1 = 0

Consequently, for low frequencies, the log magnitude becomes a line at 0 dB. On
the contrary, if ωT � 1,

Lm(1 + jωT)−1 ≈ Lm(jωT)−1 = −20 logωT

This defines a line through zero dB at ω = 1/T and with a −20 dB/decade slope for
ωT > 1. The intersection of both lines for ωT < 1 and ωT > 1 is at ω = 1/T . The
point is called the corner frequency. Let us first demonstrate this by an example.

Example D.1 Bode plot: Let a transfer function of an LTI system be given by

G(jω)= 20

jω+ 10
= 2

0.1jω+ 1

The corresponding Bode plot is presented in Fig. D.1
Taking ω = 0 gives the static gain, which in this case is equal to 2. The corner

frequency is at ω = 1/T = 10. Furthermore, we obtain the asymptotes for ωT � 1:
|G| = 20 log 2 = 6.0206 (horizontal line) and for ωT � 1: |G| = 20/ω (line with

284 D Bode Diagrams

−20 dB/decade slope). These asymptotes are also presented in Fig. D.1. Notice that
the error between the exact curve of the magnitudes and the asymptotes is greatest
at the corner frequency.

If we now consider the case with m = 1 and positive exponent, we find that the
corner frequency is still at ω = 1/T except that the asymptote for ωT � 1 has
a slope of +20 dB/decade. This is the only, but significant, difference, since this
implies that for increasing frequency, the magnitude increases as well. When we
consider a transfer function with two or more factors of this form, we can simply
add the contribution of each. Consider, for example, the transfer function

G(jω)= 1

jωT1 + 1

1

jωT2 + 1

Then, the magnitude and phase are given by

LmG(jω) = −20 log
√

1 +ω2T 2
1 − 20 log

√

1 +ω2T 2
2

∠G(jω) = − arctanωT1 − arctanωT2

If we assume that T2 < T1, then the contribution of both terms is 0 dB for ω < 1/T1.
For 1/T1 < ω < 1/T2, the first factor contributes −20 dB/decade. Up to frequency
ω = 1/T2, the second factor has no contribution to the asymptotic behavior of the
plot. However, at ω = 1/T2, which is another corner frequency, and increasing fre-
quencies, the second factor is approximated by −20 log |ωT2|. This again defines a
straight line with a slope of −20 dB/decade. However, since this reinforces the first
factor, the magnitude follows a straight line with slope of −40 dB/decade. If the ex-
ponent of the second factor of G(jω) were positive, a horizontal line for ω > 1/T2
would appear.

D.2.4 e±jωτ Factor

The log magnitude and phase shift of e±jωτ is given by

Lm e±jωτ = 20 log
∣

∣e±jωτ ∣
∣

= 20 log
∣

∣cos(±ωτ)+ j sin(±ωτ)∣∣
= 20 log 1 = 0

∠e±jωτ = arctan
sin(±ωτ)
cos(±ωτ)

= ±ωτ
Hence, the magnitude plot consists of a horizontal line at 0 dB, because the magni-
tude is equal to one. The phase shift is proportional to the frequency ω.

D.2 Four Basic Types 285

In conclusion, we can state that given a (sampled) Bode plot related to, for exam-
ple, an empirical transfer function estimate (ETFE), we are able to approximately
recover the underlying factors of the complete transfer function. Thus, we can iden-
tify the entire continuous-time transfer function, provided that the transfer function
consists of the four basic types mentioned above.

Appendix E
Shift Operator Calculus

E.1 Forward- and Backward-shift Operator

Shift operator calculus is a convenient tool for manipulating linear difference equa-
tions with constant coefficients, and for details, we refer to [Åst70] and the refer-
ences therein. In the development of shift operator calculus, systems are viewed as
operators that map input signals to output signals. To specify an operator, it is nec-
essary to define its range. In particular, the class of input signals must be specified
and how the operator acts on the signals. In shift operator calculus, all (sampled)
signals are considered as double infinite sequences f (t) : t = . . . ,−1,0,1, . . . with
t the time index. In what follows, the sampling interval is chosen as the time unit.

The forward-shift operator, denoted by q , is defined by

qf (t)= f (t + 1)

If the norm of a signal is defined as ‖f ‖2 :=∑∞
t=−∞ f 2(t), 2-norm, then it directly

follows that the shift operator is bounded with unit norm. The inverse of the forward-
shift operator is called the backward-shift operator or delay operator. It is denoted
by q−1. Consequently,

q−1f (t)= f (t − 1)

This inverse of q exists simply because all the signals are considered as double infi-
nite sequences. Shift operator calculus allows compact descriptions of discrete-time
systems. Furthermore, relationship between system variables can be easily derived,
because the manipulation of difference equations is reduced to purely algebraic ma-
nipulation. A similar result holds for differential equations after applying integral
transforms, as the Laplace or Fourier transforms (see Appendix C).

Let us illustrate this to a general difference equation of the form

y(t + na)+ a1y(t + na − 1)+ · · · + anay(t)= b0u(t + nb)+ · · · + bnbu(t) (E.1)

K.J. Keesman, System Identification,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-0-85729-522-4, © Springer-Verlag London Limited 2011

287

http://dx.doi.org/10.1007/978-0-85729-522-4

288 E Shift Operator Calculus

where na ≥ nb to guarantee causality. We call d = na − nb the pole excess of the
system. Application of the shift operator gives

(

qna + a1q
na−1 + · · · + ana

)

y(t)= (

b0q
nb + · · · + bnb

)

u(t)

Define

A(q) := qna + a1q
na−1 + · · · + ana

B(q) := b0q
nb + b1q

nb−1 + · · · + bnb

Then, in compact notation, the difference equation can be written as

A(q)y(t)= B(q)u(t) (E.2)

Shifting (E.1) to the left, i.e., after substituting k + na by κ and using d = na − nb ,
we obtain

y(κ)+ a1y(κ − 1)+ · · · + anay(κ − na)= b0u(κ − d)+ · · · + bnbu(κ − d − nb)

With

A∗(q−1) = 1 + a1q
−1 + · · · + anaq

−na

B∗(q) = b0 + b1q
−1 + · · · + bnbq

−nb

we obtain

A∗(q−1)y(t)= B∗(q−1)u(t − d)

and

A∗(q−1)= q−naA(q)

Thus, it follows from the definition of the shift operator that the difference equation
(E.1) can be multiplied by powers of q , which implies a forward shift of time. The
equations for shifted times can also be multiplied by real numbers and added. This
operation implies the multiplication of a polynomial in q by another polynomial
in q . Hence, if (E.2) holds, then also

C(q)A(q)y(t)= C(q)B(q)u(t)

with C(q) a polynomial in q . Multiplication of polynomials is illustrated by the next
example.

Example E.1 Multiplication of polynomials: Let

A(q)= q2 + a1q + a2, C(q)= q − 1

Then

C(q)A(q)y(t) = (q − 1)
(

q2 + a1q + a2
)

y(t)

= (

q3 + a1q
2 + a2q − q2 − a1q − a2

)

y(t)

E.2 Pulse Transfer Operator 289

= (

q3 + (a1 − 1)q2 + (a2 − a1)q − a2
)

y(t)

= y(t + 3)+ (a1 − 1)y(t + 2)+ (a2 − a1)y(t + 1)− a2y(t)

= (q − 1)
(

y(t + 2)+ a1y(t + 1)+ a2y(t)
)

= C(q)
[

A(q)y(t)
]

To obtain a convenient algebra, division by a polynomial in q has also to be
defined. It is possible to develop an operator algebra that allows division by an
arbitrary polynomial in q if it is assumed that there is some k0 such that all sequences
are zero for k ≤ k0. Consequently, this shift operator calculus allows the normal
manipulations of multiplication, division, addition, and subtraction. Let us illustrate
this algebra by an example.

Example E.2 Shift operator calculus: Consider the difference equation

x(t + 2)= ax(t + 1)+ bu(t)

with output equation y(t)= x(t). Hence,

y(t + 2)− ay(t + 1)= bu(t)

and thus
(

q2 − aq
)

y(t)= bu(t)

Under the assumption that y(1) = 0 and after premultiplication both sides by
1/(q2 − aq),

y(t)= b

(q2 − aq)
u(t)= bq−2

1 − aq−1
u(t)

After long division we obtain

y(t)= bq−2(1 + aq−1 + a2q−2 + · · ·) u(t)
Hence, multiplication and division can be applied on polynomials in q in a normal
way. Similarly, addition and subtraction rules hold. However, it should be realized
that q is not a variable but an operator. As in Example E.2, the basic assumption,
which holds throughout this book, is that all initial conditions for the difference
equation are zero.

E.2 Pulse Transfer Operator

The introduction of shift operator calculus also allows input–output relationships to
be conveniently expressed as rational functions, as illustrated by Example E.2. For

290 E Shift Operator Calculus

instance, since division by polynomials in q is defined, from (E.2) we can derive
that

y(t)= 1

A(q)
B(q)u(t)

The function B(q)/A(q) is called the pulse-transfer operator. This operator can be
easily obtained from a linear time-invariant (LTI) system description as follows. Let
an LTI system be described by

x(t + 1) = qx(t)=Ax(t)+Bu(t)

y(t) = Cx(t)+Du(t)
(E.3)

with A, B , C, D matrices of appropriate dimensions. From this discrete-time state-
space description we obtain

(qI −A)x(t)= Bu(t)

and thus

y(t)= [

C(qI −A)−1B +D
]

u(t)

For u(t) a unit pulse, the pulse-transfer operator of the LTI system (E.3) is given by

G(q)= [

C(qI −A)−1B +D
]

(E.4)

In the backward-shift operator,

G∗(q−1)= [

C
(

I − q−1A
)−1

q−1B +D
]=G(q)

The pulse-transfer operator of the system of (E.3) is thus a matrix whose elements
are rational functions in q . For single-input single-output (SISO) systems with B

and C vectors and D a scalar,

G(q) = [

C(qI −A)−1B +D
]

= C adj(qI −A)B

det(qI −A)

= B(q)

A(q)
(E.5)

If the state vector is of dimension n and if the polynomials A(q) and B(q) do not
have common factors, then A(q) is of degree n. It directly follows from (E.5) that
the polynomial A(q) is the characteristic polynomial of the system matrix A. We
call A(q) monic if its zeroth coefficient is 1 or the identity matrix in the multiinput
multioutput case. The poles of a system are the zeros of the denominator of G(q),
the characteristic polynomial A(q). The system zeros are obtained from B(q) = 0.
Time delay in a system gives rise to poles at the origin. From Example E.2 we
notice that this system has two poles, one in a and one at the origin, as a result of a

E.2 Pulse Transfer Operator 291

single time delay. The pulse-transfer operator of a discrete-time LTI system G(q) is
also called the discrete-time transfer function. The z-transform of Sect. 3.2.1 maps
a semi-infinite time sequence into a function of a complex variable (z = ejω with
ω the frequency, see also Appendix C). Notice then the difference in range for the
z-transform and the shift-operator calculus. In the operator calculus double-infinite
sequences are considered. In practice, this means that the main difference between
z and q , apart from being a complex variable or an operator, respectively, is that the
z-transform takes the initial values explicitly into account.

Example E.3 Shift operator calculus: Consider the LTI system with matrices

A=
[

1 0
0 0

]

, B =
[

1
0

]

, C = [1 0], D = 0

Then

G(q) = [1 0]
[

q − 1 0
0 q

]−1 [1
0

]

= q

q(q − 1)

Hence, after pole-zero cancelation, the pulse-transfer operator or discrete-time
transfer function becomes

G(q)= 1

q − 1

with no zero and a single pole in 1. Consequently, this system is a simple single
integrator.

Appendix F
Recursive Least-squares Derivation

F.3 Least-squares Method

Recall that in this book the linear regression at each time instant t is written as

y(t)= φ(t)T ϑ + e(t)

where y(t) is the measurement, φ(t) the regressor vector, and e(t) the prediction
error (in this case also called the equation error) for t = 1,2, . . . ,N , and ϑ is the
unknown p× 1 parameter vector. The ordinary least-squares method minimizes the
criterion function

J (ϑ)=
N
∑

t=1

(

y(t)− φ(t)T ϑ
)2

with respect to ϑ . Notice that the criterion function is quadratic in ϑ , and thus it can
be minimized analytically, as shown before. The ordinary least-squares estimate is
then given by

̂ϑ(N)=
[

N
∑

t=1

φ(t)φT (t)

]−1 N
∑

t=1

φ(t)y(t) (F.1)

provided that the inverse exists.
The estimate can also be written in a recursive form. Here we follow the deriva-

tion as presented in Ljung and Söderström [LS83]. Define the p × p matrix

K̄(t) :=
t
∑

k=1

φ(k)φT (k)

Then from (F.1) we obtain

t−1
∑

k=1

φ(k)y(k)= K̄(t − 1)̂ϑ(t − 1)

K.J. Keesman, System Identification,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-0-85729-522-4, © Springer-Verlag London Limited 2011

293

http://dx.doi.org/10.1007/978-0-85729-522-4

294 F Recursive Least-squares Derivation

From the definition of K̄(t) it follows that

K̄(t − 1)= K̄(t)− φ(t)φT (t)

Thus,

̂ϑ(t) = K̄−1(t)

[

t−1
∑

k=1

φky(k)+ φ(t)y(t)

]

= K̄−1(t)
[

K̄(t − 1)̂ϑ(t − 1)+ φ(t)y(t)
]

= K̄−1(t)
[

K̄(t)̂ϑ(t − 1)+ φ(t)
(−φT (t)̂ϑ(t − 1)+ y(t)

)]

=̂ϑ(t − 1)+ K̄−1(t)φ(t)
[

y(t)− φT (t)̂ϑ(t − 1)
]

(F.2)

and

K̄(t)= K̄(t − 1)+ φ(t)φT (t) (F.3)

Consequently, (F.2) and (F.3) together form a recursive algorithm for the estimation
of ϑ(t), given the previous estimate ̂ϑ(t − 1), K̄(t − 1) and φ(t), y(t). Notice that
we do not need previous values of φ and y(t); the actual values suffice to estimate
the current value of ̂ϑ(t). However, there is still a need to invert a p × p matrix at
each time step.

F.4 Equivalent Recursive Form

Let us first define

K(t) := 1

t
K̄(t)

so that (F.3) becomes

K(t) = 1

t

[

K̄(t − 1)+ φ(t)φT (t)
]= t − 1

t
K(t − 1)+ 1

t
φ(t)φT (t)

= K(t − 1)+ 1

t

[

φ(t)φT (t)−K(t − 1)
]

(F.4)

Subsequently, we introduce

P(t)= K̄−1(t)= 1

t
R−1(t)

so that P(t) can be updated directly, instead of using (F.3). However, to accomplish
this, we need the so-called matrix inversion lemma, which is given by

[A+ BCD]−1 =A−1 −A−1B
[

DA−1B +C−1]−1
DA−1

F.4 Equivalent Recursive Form 295

with matrices A,B,C, and D of appropriate dimensions, such that the product
BCD and the sum A+ BCD exist. Furthermore, the inverses A−1 and C−1 must
exist. Given the definition of P(t), (F.4) can be written as

tK(t)= [

(t − 1) K(t − 1)+ φ(t)φT (t)
]

=⇒ [

tK(t)
]−1 = [

(t − 1) K(t − 1)+ φ(t)φT (t)
]−1

=⇒ P(t)= [

P−1(t − 1)+ φ(t)φT (t)
]−1

Consequently, after setting P−1(t − 1)= A, φ(t)= B , C = 1, and φT (t)=D, we
obtain

P(t) = [

P−1(t − 1)+ φ(t) · 1 · φT (t)]−1

= P(t − 1)− P(t − 1)φ(t)
[

φT (t)P (t − 1)φ(t)+ 1
]−1

φT (t)P (t − 1)

= P(t − 1)− P(t − 1)φ(t)φT (t)P (t − 1)

1 + φT (t)P (t − 1)φ(t)

Instead of inverting a p×p matrix, we only need the division by a scalar. From this
equation we also find that

P(t)φ(t) = P(t − 1)φ(t)− P(t − 1)φ(t)φT (t)P (t − 1)φ(t)

1 + φT (t)P (t − 1)φ(t)

= P(t − 1)φ(t)

1 + φT (t)P (t − 1)φ(t)

Define L(t) := P(t)φ(t); then the so-called recursive least-squares (RLS) algo-
rithm is given by

̂ϑ(t) =̂ϑ(t − 1)+L(t)
[

y(t)− φT (t)̂ϑ(t − 1)
]

L(t) = P(t − 1)φ(t)

1 + φT (t)P (t − 1)φ(t)

P (t) = P(t − 1)− P(t − 1)φ(t)φT (t)P (t − 1)

1 + φT (t)P (t − 1)φ(t)

Recall that this algorithm has been derived from an un-weighted least-squares crite-
rion function. If, however, a time-varying weight R(t) is included, such that

JW (ϑ)=
N
∑

t=1

1

R(t)

(

y(t)− φ(t)T ϑ
)2

we will obtain

̂ϑ(t) =̂ϑ(t − 1)+L(t)
[

y(t)− φT (t)̂ϑ(t − 1)
]

296 F Recursive Least-squares Derivation

L(t) = P(t − 1)φ(t)

R(t)+ φT (t)P (t − 1)φ(t)

P (t) = P(t − 1)− P(t − 1)φ(t)φT (t)P (t − 1)

R(t)+ φT (t)P (t − 1)φ(t)

Notice that the initial values of ̂ϑ(0) and P(0) must be known in order to run the
RLS algorithm. Typical choices arêϑ(0)= 0 and P(0)= c I with c a large constant.

Appendix G
Dissolved Oxygen Data

Table G.1 DO data lake “De Poel en ’t Zwet”a

t (d) DO (g/m3) Cs (g/m3) I (W/m2)

111.8750 9.1860 10.9873 0.0000

111.9170 9.1980 11.0374 0.0000

111.9580 8.9960 11.0374 0.0000

112.0000 8.7930 11.0374 0.0000

112.0420 8.8040 11.0878 0.0000

112.0830 8.8150 11.0878 0.0000

112.1250 8.8270 11.1412 0.0000

112.1670 8.4070 11.1412 0.0000

112.2080 8.4170 11.1412 0.0000

112.2500 8.4280 11.1924 0.0000

112.2920 8.4390 11.1924 15.8900

112.3330 8.4490 11.1924 57.1900

112.3750 8.4600 11.1412 108.0000

112.4170 8.6880 11.0878 165.2000

112.4580 8.9170 10.9873 209.7000

112.5000 9.3650 10.9351 158.9000

112.5420 9.8130 10.8343 130.3000

112.5830 10.4800 10.7350 266.9000

112.6250 10.7100 10.6373 127.1000

112.6670 10.7300 10.6373 85.7800

112.7080 10.7400 10.5902 54.0100

aThis data set, for the period 21–30 April 1983, was collected by students of the University of
Twente.

K.J. Keesman, System Identification,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-0-85729-522-4, © Springer-Verlag London Limited 2011

297

http://dx.doi.org/10.1007/978-0-85729-522-4

298 G Dissolved Oxygen Data

Table G.1 (Continued)

t (d) DO (g/m3) Cs (g/m3) I (W/m2)

112.7500 10.7600 10.6373 31.7700

112.7920 10.9900 10.6373 25.4200

112.8330 10.7800 10.6373 6.3540

112.8750 10.8000 10.6872 0.0000

112.9170 10.8100 10.6872 0.0000

112.9580 10.3800 10.7350 0.0000

113.0000 9.9510 10.7857 0.0000

113.0420 10.1900 10.8343 0.0000

113.0830 9.9760 10.8858 0.0000

113.1250 9.9880 10.8858 0.0000

113.1670 9.5550 10.9351 0.0000

113.2080 9.5670 10.9873 0.0000

113.2500 9.5780 10.9873 0.0000

113.2920 9.1430 11.0374 12.7100

113.3330 9.1540 11.0374 60.3700

113.3750 9.6140 10.9873 98.4900

113.4170 9.8510 10.9351 133.4000

113.4580 10.5400 10.8343 168.4000

113.5000 10.3300 10.7857 225.6000

113.5420 11.0200 10.6373 184.3000

113.5830 11.4800 10.6373 25.4200

113.6250 11.2700 10.6373 15.8900

113.6670 11.5100 10.5902 47.6600

113.7080 11.0700 10.5902 28.5900

113.7500 11.3100 10.5902 9.5320

113.7920 11.7800 10.5435 3.1770

113.8330 11.3400 10.5435 0.0000

113.8750 11.5800 10.5902 0.0000

113.9170 11.1400 10.6373 0.0000

113.9580 11.1500 10.6373 0.0000

114.0000 10.9400 10.6373 0.0000

114.0420 10.9500 10.6872 0.0000

114.0830 10.7300 10.6872 0.0000

114.1250 10.5200 10.7350 0.0000

114.1670 10.0700 10.7857 0.0000

114.2080 10.0800 10.8343 0.0000

114.2500 9.8640 10.8343 0.0000

114.2920 9.4130 10.8343 12.7100

114.3330 9.6560 10.8858 41.3000

G Dissolved Oxygen Data 299

Table G.1 (Continued)

t (d) DO (g/m3) Cs (g/m3) I (W/m2)

114.3750 9.8990 10.8858 73.0800

114.4170 9.9110 10.8343 117.6000

114.4580 10.8500 10.7857 139.8000

114.5000 11.5600 10.6872 238.3000

114.5420 12.2800 10.5902 171.6000

114.5830 12.7600 10.4947 251.0000

114.6250 12.7700 10.4008 187.5000

114.6670 11.3900 10.3555 197.0000

114.7080 13.0400 10.3083 168.4000

114.7500 13.5200 10.2639 117.6000

114.7920 13.3000 10.2639 60.3700

114.8330 13.3200 10.2639 19.0600

114.8750 12.8700 10.3555 9.5320

114.9170 12.8800 10.4008 0.0000

114.9580 12.4200 10.4487 0.0000

115.0000 12.2000 10.4947 0.0000

115.0420 11.9800 10.4947 0.0000

115.0830 11.7600 10.4947 0.0000

115.1250 11.5400 10.5435 0.0000

115.1670 11.5500 10.5902 0.0000

115.2080 10.8500 10.6373 0.0000

115.2500 10.6200 10.6872 0.0000

115.2920 10.8800 10.7350 19.0600

115.3330 10.1700 10.7857 50.8400

115.3750 10.6600 10.7857 54.0100

115.4170 10.9100 10.7857 50.8400

115.4580 11.1700 10.7350 114.4000

115.5000 11.1800 10.6373 114.4000

115.5420 11.6700 10.6373 41.3000

115.5830 11.6900 10.6373 19.0600

115.6250 11.4600 10.6373 66.7200

115.6670 9.8720 10.6373 22.2400

115.7080 11.1200 10.5902 82.6100

115.7500 11.5600 10.5435 57.1900

115.7920 11.9900 10.5435 31.7700

115.8330 12.0200 10.5435 9.5320

115.8750 11.8500 10.5435 0.0000

115.9170 11.6700 10.5902 0.0000

115.9580 11.2900 10.5902 0.0000

300 G Dissolved Oxygen Data

Table G.1 (Continued)

t (d) DO (g/m3) Cs (g/m3) I (W/m2)

116.0000 11.3200 10.6373 0.0000

116.0420 10.9300 10.6373 0.0000

116.0830 11.3700 10.6373 0.0000

116.1250 11.1900 10.6373 0.0000

116.1670 10.5900 10.6373 0.0000

116.2080 11.0400 10.6872 0.0000

116.2500 10.6400 10.7350 0.0000

116.2920 10.4500 10.7350 15.8900

116.3330 10.6900 10.7350 60.3700

116.3750 10.5100 10.6872 114.4000

116.4170 10.7400 10.6373 149.3000

116.4580 10.7700 10.5902 181.1000

116.5000 11.2200 10.5435 120.7000

116.5420 11.4700 10.4487 155.7000

116.5830 12.3500 10.3555 177.9000

116.6250 12.6000 10.2639 222.4000

116.6670 12.6300 10.2174 212.9000

116.7080 13.0900 10.1737 92.1400

116.7500 12.6900 10.1737 34.9500

116.7920 12.7200 10.2174 19.0600

116.8330 12.5300 10.2174 9.5320

116.8750 12.1200 10.2639 0.0000

116.9170 11.9300 10.3083 0.0000

116.9580 11.9600 10.3555 0.0000

117.0000 11.5500 10.3555 0.0000

117.0420 11.3500 10.4008 0.0000

117.0830 10.9400 10.4008 0.0000

117.1250 10.7400 10.4487 0.0000

117.1670 10.7600 10.4487 0.0000

117.2080 10.3400 10.4487 0.0000

117.2500 9.9170 10.4947 0.0000

117.2920 10.1600 10.4947 0.0000

117.3330 9.9630 10.5435 3.1770

117.3750 9.3080 10.5435 12.7100

117.4170 9.5550 10.5435 9.5320

117.4580 9.5770 10.5902 25.4200

117.5000 10.0500 10.5902 41.3000

117.5420 10.0800 10.5902 22.2400

117.5830 10.1000 10.6373 15.8900

G Dissolved Oxygen Data 301

Table G.1 (Continued)

t (d) DO (g/m3) Cs (g/m3) I (W/m2)

117.6250 10.1200 10.6373 12.7100

117.6670 10.1400 10.6373 15.8900

117.7080 10.1700 10.6872 19.0600

117.7500 10.1900 10.7350 12.7100

117.7920 10.2100 10.7350 9.5320

117.8330 10.0000 10.7857 3.1770

117.8750 9.7920 10.8343 0.0000

117.9170 9.8130 10.8343 0.0000

117.9580 9.6010 10.8858 0.0000

118.0000 9.6220 10.9351 0.0000

118.0420 10.3500 10.9351 0.0000

118.0830 10.3700 10.9873 0.0000

118.1250 9.6850 10.9873 0.0000

118.1670 9.4700 11.0374 0.0000

118.2080 9.4900 11.0374 0.0000

118.2500 9.5110 11.0878 0.0000

118.2920 9.5310 11.1412 15.8900

118.3330 9.5510 11.1412 63.5400

118.3750 10.0500 11.0878 88.9600

118.4170 10.0700 11.0374 114.4000

118.4580 10.5700 11.0374 85.7800

118.5000 11.0800 10.9351 181.1000

118.5420 11.1000 10.8343 162.0000

118.5830 11.8500 10.7857 212.9000

118.6250 12.1200 10.7350 247.8000

118.6670 12.3800 10.6373 219.2000

118.7080 12.6500 10.5902 174.7000

118.7500 12.6800 10.5902 123.9000

118.7920 12.7100 10.5435 66.7200

118.8330 12.2400 10.5902 22.2400

118.8750 12.0800 10.6373 0.0000

118.9170 11.9300 10.6872 0.0000

118.9580 11.6500 10.6872 0.0000

119.0000 11.5700 10.7350 0.0000

119.0420 11.4800 10.7350 0.0000

119.0830 11.1800 10.7350 0.0000

119.1250 10.8700 10.7857 0.0000

119.1670 10.5600 10.7857 0.0000

119.2080 11.0900 10.8343 0.0000

302 G Dissolved Oxygen Data

Table G.1 (Continued)

t (d) DO (g/m3) Cs (g/m3) I (W/m2)

119.2500 10.3300 10.8343 0.0000

119.2920 10.4300 10.8343 6.3540

119.3330 10.0900 10.8343 12.7100

119.3750 10.1900 10.8343 15.8900

119.4170 10.2800 10.8343 34.9500

119.4580 10.3700 10.8343 57.1900

119.5000 9.8000 10.8343 139.8000

119.5420 10.8200 10.7350 222.4000

119.5830 10.8300 10.6872 152.5000

119.6250 10.8500 10.5902 254.2000

119.6670 11.2700 10.4947 228.8000

119.7080 11.0800 10.4487 184.3000

119.7500 11.5000 10.4008 130.3000

119.7920 11.5200 10.3555 73.0800

119.8330 11.5400 10.4008 25.4200

119.8750 11.3500 10.4008 3.1770

119.9170 10.9600 10.4487 0.0000

119.9580 10.7800 10.4947 0.0000

120.0000 10.5900 10.5435 0.0000

References

[ADSC98] S. Audoly, L. D’Angiò, M.P. Saccomani, C. Cobelli, Global identifiability of lin-
ear compartmental models—a computer algebra algorithm. IEEE Trans. Biomed.
Eng. 45(1), 36–47 (1998)

[ÅH84] K.J. Åström, T. Hagglund, Automatic tuning of simple regulators with specifica-
tions on phase and amplitude margins. Automatica 20, 645–651 (1984)

[ÅH88] K.J. Åström, T. Hagglund, Automatic tuning of PID controllers (Instrument So-
ciety of America, 1988)

[AH01] H. Akcay, P.S.C. Heuberger, Frequency-domain iterative identification algorithm
using general orthonormal basis functions. Automatica 37(5), 663–674 (2001)

[Aka74] H. Akaike, A new look at statistical model identification. IEEE Trans. Autom.
Control AC-19, 716–723 (1974)

[Akc00] H. Akcay, Continuous-time stable and unstable system modelling with orthonor-
mal basis functions. Int. J. Robust Nonlinear Control 10(6), 513–531 (2000)

[AMLL02] A. Al Mamun, T.H. Lee, T.S. Low, Frequency domain identification of transfer
function model of a disk drive actuator. Mechatronics 12(4), 563–574 (2002)

[AN99] H. Akcay, B. Ninness, Orthonormal basis functions for modelling continuous-
time systems. Signal Process. 77(3), 216–274 (1999)

[And85] B.D.O. Anderson, Identification of scalar errors-in-variables models with dynam-
ics. Automatica 21(6), 709–716 (1985)

[Åst70] K.J. Åström, Introduction to Stochastic Control Theory. Mathematics in Science
and Engineering, vol. 70 (Academic Press, San Diego, 1970)

[BA02] K.P. Burnham, D.R. Anderson, Model Selection and Multimodel Inference:
A Practical Information-theoretic Approach, 2nd edn. (Springer, Berlin, 2002)

[Bag75] A. Bagchi, Continuous time systems identification with unknown noise covari-
ance. Automatica 11(5), 533–536 (1975)

[Bai02] E.-W. Bai, A blind approach to the Hammerstein–Wiener model identification.
Automatica 38(6), 967–979 (2002)

[Bai03a] E.-W. Bai, Frequency domain identification of Hammerstein models. IEEE Trans.
Autom. Control 48(4), 530–542 (2003)

[Bai03b] E.-W. Bai, Frequency domain identification of Wiener models. Automatica 39(9),
1521–1530 (2003)

[Bar74] Y. Bard, Nonlinear Parameter Estimation (Academic Press, San Diego, 1974)
[BBB85] D. Bertin, S. Bittanti, P. Bolzern, Prediction-error directional forgetting technique

for recursive estimation. Syst. Sci. 11(2), 33–39 (1985)
[BBC90] G. Belforte, B. Bona, V. Cerone, Identification, structure selection and valida-

tion of uncertain models with set-membership error description. Math. Comput.
Simul. 32(5–6), 561–569 (1990)

K.J. Keesman, System Identification,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-0-85729-522-4, © Springer-Verlag London Limited 2011

303

http://dx.doi.org/10.1007/978-0-85729-522-4

304 References

[BBF87] G. Belforte, B. Bona, S. Fredani, Optimal sampling schedule for parameter esti-
mation of linear models with unknown but bounded measurement errors. IEEE
Trans. Autom. Control AC–32(2), 179–182 (1987)

[BBM86] A. Benveniste, M. Basseville, G. Moustakides, Modelling and monitoring of
changes in dynamical systems, in Proceedings of the IEEE Conference on De-
cision and Control (1986), pp. 776–782

[BC94] S. Bittanti, M. Campi, Bounded error identification of time-varying parameters
by RLS techniques. IEEE Trans. Autom. Control 39(5), 1106–1110 (1994)

[BE83] D.R. Brillinger, P.R. Krishnaiah (eds.), Handbook of Statistics 3: Time Series in
the Frequency Domain (North-Holland, Amsterdam, 1983)

[BEW02] L. Bertino, G. Evensen, H. Wackernagel, Combining geostatistics and Kalman
filtering for data assimilation in an estuarine system. Inverse Probl. 18(1), 1–23
(2002)

[BG02] B. Bamieh, L. Giarre, Identification of linear parameter varying models. Int. J.
Robust Nonlinear Control 12(9), 841–853 (2002)

[BG03] G. Belforte, P. Gay, Optimal input design for set-membership identification of
Hammerstein models. Int. J. Control 76(3), 217–225 (2003)

[Bie77] G.J. Bierman, Factorization Methods for Discrete Sequential Estimation. Mathe-
matics in Science and Engineering (Academic Press, San Diego, 1977)

[Bit77] S. Bittanti, On optimal experiment design for parameters estimation of dynamic
systems under periodic operation, in Proceedings of the IEEE Conference on De-
cision and Control, 1977, pp. 1126–1131

[BJ70] G.E.P. Box, G.M. Jenkins, Time Series Analysis: Forecasting and Control
(Holden-Day, Oakland, 1970)

[Bjo96] A. Bjork, Numerical Methods for Least Squares Problems (SIAM, Philadelphia,
1996)

[BK70] R. Bellman, K.J. Åström, On structural identifiability. Math. Biosci. 7, 329–339
(1970)

[Blu72] M. Blum, Optimal smoothing of piecewise continuous functions. IEEE Trans. Inf.
Theory 18(2), 298–300 (1972)

[BM74] G.E.P. Box, J.F. MacGregor, Analysis of closed-loop dynamic-stochastic systems.
Technometrics 16(3), 391–398 (1974)

[BMS+04] T.Z. Bilau, T. Megyeri, A. Sárhegyi, J. Márkus, I. Kollár, Four-parameter fitting
of sine wave testing result: Iteration and convergence. Comput. Stand. Interfaces
26(1), 51–56 (2004)

[Box71] M.J. Box, Bias in nonlinear estimation. J. R. Stat. Soc., Ser. B, Stat. Methodol.
33(2), 171–201 (1971)

[BP02] G. Belforte, G.A.Y. Paolo, Optimal experiment design for regression polynomial
models identification. Int. J. Control 75(15), 1178–1189 (2002)

[BR97] P. Barone, R. Ragona, Bayesian estimation of parameters of a damped sinusoidal
model by a Markov chain Monte Carlo method. IEEE Trans. Signal Process.
45(7), 1806–1814 (1997)

[BRD97] M. Boutayeb, H. Rafaralahy, M. Darouach, Convergence analysis of the extended
Kalman filter used as an observer for nonlinear deterministic discrete-time sys-
tems. IEEE Trans. Autom. Control 42(4), 581–586 (1997)

[Bri81] D.R. Brillinger, Time Series: Data Analysis and Theory (Holden-Day, Oakland,
1981)

[BRJ09] E.-W. Bai, J. Reyland Jr., Towards identification of Wiener systems with the least
amount of a priori information: IIR cases. Automatica 45(4), 956–964 (2009)

[BS72] B.D.O. Anderson, S. Chirarattananon, New linear smoothing formulas. IEEE
Trans. Autom. Control 17(1), 160–161 (1972)

[BSK+02] K. Bernaerts, R.D. Servaes, S. Kooyman, K.J. Versyck, J.F. Van Impe, Optimal
temperature input design for estimation of the square root model parameters: pa-
rameter accuracy and model validity restrictions. Int. J. Food Microbiol. 73(2–3),
145–157 (2002).

References 305

[BY76] B. Beck, P. Young, Systematic identification of do-bod model structure. J. Envi-
ron. Eng. Div. ASCE 102(5 EE5), 909–927 (1976)

[BZ95] S.A. Billings, Q.M. Zhu, Model validation tests for multivariable nonlinear mod-
els including neural networks. Int. J. Control 62(4), 749–766 (1995)

[Car73] N.A. Carlson, Fast triangular formulation of the square root filter. AIAA J. 11(9),
1259–1265 (1973)

[Car90] N.A. Carlson, Federated square root filter for decentralized parallel processes.
IEEE Trans. Aerosp. Electron. Syst. 26(3), 517–525 (1990)

[CB89] S. Chen, S.A. Billings, Recursive prediction error parameter estimator for non-
linear models. Int. J. Control 49(2), 569–594 (1989)

[CC94] J.-M. Chen, B.-S. Chen, A higher-order correlation method for model-order and
parameter estimation. Automatica 30(8), 1339–1344 (1994)

[CDC04] M. Crowder, R. De Callafon, Time Domain Control Oriented Model Validation
Using Coprime Factor Perturbations, in Proceedings of the IEEE Conference on
Decision and Control, vol. 2 (2004), pp. 2182–2187

[CG00] J. Chen, G. Gu, Control-oriented System Identification: an h∞ Approach (Wiley,
New York, 2000)

[CGCE03] M.J. Chapman, K.R. Godfrey, M.J. Chappell, N.D. Evans, Structural identifiabil-
ity for a class of non-linear compartmental systems using linear/non-linear split-
ting and symbolic computation. Math. Biosci. 183(1), 1–14 (2003)

[Che70] R.T.N. Chen, Recurrence relationship for parameter estimation via method of
quasi-linearization and its connection with Kalman filtering. AIAA J. 8(9), 1696–
1698 (1970)

[CHY02] Y.-Y. Chen, P.-Y. Huang, J.-Y. Yen, Frequency-domain identification algorithms
for servo systems with friction. IEEE Trans. Control Syst. Technol. 10(5), 654–
665 (2002)

[CKBR08] J. Chandrasekar, I.S. Kim, D.S. Bernstein, A.J. Ridley, Cholesky-based reduced-
rank square-root Kalman filtering, in Proceedings of the American Control Con-
ference (2008), pp. 3987–3992

[CM78] F.L. Chernousko, A.A. Melikyan, Game Problems of Control and Search (Nauka,
Moscow, 1978) (in Russian)

[CSI00] M.-H. Chen, Q.-M. Shao, J.G. Ibrahim, Monte Carlo Methods in Bayesian Com-
putation (Springer, New York, 2000)

[CSS08] M.C. Campi, T. Sugie, F. Sakai, An iterative identification method for linear
continuous-time systems. IEEE Trans. Autom. Control 53(7), 1661–1669 (2008)

[CZ95] R.F. Curtain, H.J. Zwart, An Introduction to Infinite-dimensional Linear Systems
Theory (Springer, Berlin, 1995), p. 698

[DA96] S. Dasgupta, B.D.O. Anderson, A parametrization for the closed-loop identifica-
tion of nonlinear time-varying systems. Automatica 32(10), 1349–1360 (1996)

[DdFG01] A. Doucet, N. de Freitas, N. Gordon, Sequential Monte Carlo Methods in Practice
(Springer, New York, 2001)

[DDk05] H. Deng, M. Doroslovački, Improving convergence of the pnlms algorithm for
sparse impulse response identification. IEEE Signal Process. Lett. 12(3), 181–184
(2005)

[deS87] C.W. deSilva, Optimal input design for the dynamic testing of mechanical sys-
tems. J. Dyn. Syst. Meas. Control, Trans. ASME 109(2), 111–119 (1987)

[DGW96] S.K. Doherty, J.B. Gomm, D. Williams, Experiment design considerations for
non-linear system identification using neural networks. Comput. Chem. Eng.
21(3), 327–346 (1996)

[DI76] J.J. DiStefano III, Tracer experiment design for unique identification of nonlinear
physiological systems. Am. J. Physiol. 230(2), 476–485 (1876)

[DI82] J.J. DiStefano III, Algorithms, software and sequential optimal sampling schedule
designs for pharmacokinetic and physiologic experiments. Math. Comput. Simul.
24(6), 531–534 (1982)

306 References

[DK05] T.G. Doeswijk, K.J. Keesman, Adaptive weather forecasting using local meteo-
rological information. Biosyst. Eng. 91(4), 421–431 (2005)

[DK09] T.G. Doeswijk, K.J. Keesman, Linear parameter estimation of rational biokinetic
functions. Water Res. 43(1), 107–116 (2009)

[DS98] N.R. Draper, H. Smith, Introduction to Linear Regression Analysis, 4th edn. Wi-
ley Series in Probability and Statistics (Wiley, New York, 1998)

[DvdH96] H.G.M. Dötsch, P.M.J. van den Hof, Test for local structural identifiability of
high-order non-linearly parametrized state space models. Automatica 32(6), 875–
883 (1996)

[dVvdH98] D.K. de Vries, P.M.J. van den Hof, Frequency domain identification with gener-
alized orthonormal basis functions. IEEE Trans. Autom. Control 43(5), 656–669
(1998)

[DW95] L. Desbat, A. Wernsdorfer, Direct algebraic reconstruction and optimal sampling
in vector field tomography. IEEE Trans. Signal Process. 43(8), 1798–1808 (1995)

[ECCG02] N.D. Evans, M.J. Chapman, M.J. Chappell, K.R. Godfrey, Identifiability of un-
controlled nonlinear rational systems. Automatica 38(10), 1799–1805 (2002)

[EMT00] A. Esmaili, J.F. MacGregor, P.A. Taylor, Direct and two-step methods for closed-
loop identification: A comparison of asymptotic and finite data set performance.
J. Process Control 10(6), 525–537 (2000)

[EO68] L.D. Enochson, R.K. Otnes, Programming and analysis for digital time series
data. Technical report, US Dept. of Defense, Shock and Vibration Info. Center,
1968

[ES81] H. El-Sherief, Multivariable system structure and parameter identification using
the correlation method. Automatica 17(3), 541–544 (1981)

[Eve94] G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics. J. Geophys. Res.
99(C5), 10143–10162 (1994)

[Eyk74] P. Eykhoff, System Identification: Parameter and State Estimation (Wiley-
Interscience, New York, 1974)

[FBT96] B. Farhang-Boroujeny, T.-T. Tay, Transfer function identification with filtering
techniques. IEEE Trans. Signal Process. 44(6), 1334–1345 (1996)

[FG06] P. Falugi, L. Giarre, Set membership (in)validation of nonlinear positive models
for biological systems, in Proceedings of the IEEE Conference on Decision and
Control (2006)

[FH82] E. Fogel, Y.F. Huang, On the value of information in system identification-
bounded noise case. Automatica 18, 229–238 (1982)

[FL99] U. Forssell, L. Ljung, Closed-loop identification revisited. Automatica 35(7),
1215–1241 (1999)

[Fre80] P. Freymuth, Sine-wave testing of non-cylindrical hot-film anemometers accord-
ing to the Bellhouse-Schultz model. J. Phys. E, Sci. Instrum. 13(1), 98–102
(1980)

[GCH98] S. Grob, P.D.J. Clark, K. Hughes, Enhanced channel impulse response identifi-
cation for the itu hf measurement campaign. Electron. Lett. 34(10), 1022–1023
(1998)

[Gel74] A. Gelb, Applied Optimal Estimation (MIT Press, Cambridge, 1974)
[GGS01] G.C. Goodwin, S.F. Graebe, M.E. Salgado, Control System Design (Prentice Hall,

New York, 2001)
[GL09b] J. Gillberg, L. Ljung, Frequency-domain identification of continuous-time

ARMA models from sampled data. Automatica 45(6), 1371–1378 (2009)
[God80] K.R. Godfrey, Correlation methods. Automatica 16(5), 527–534 (1980)
[GP77] G.C. Goodwin, R.L. Payne, Dynamic System Identification: Experiment Design

and Data Analysis (Prentice-Hall, New York, 1977)
[GP08] W. Greblicki, M. Pawlak, Non-Parametric System Identification (Cambridge Uni-

versity Press, Cambridge, 2008)

References 307

[GRC09] F. Giri, Y. Rochdi, F.-Z. Chaoui, An analytic geometry approach to Wiener system
frequency identification. IEEE Trans. Autom. Control 54(4), 683–696 (2009)

[Gre94] W. Greblicki, Nonparametric identification of Wiener systems by orthogonal se-
ries. IEEE Trans. Autom. Control 39(10), 2077–2086 (1994)

[Gre98] W. Greblicki, Continuous-time Wiener system identification. IEEE Trans. Au-
tom. Control 43(10), 1488–1493 (1998)

[Gre00] W. Greblicki, Continuous-time Hammerstein system identification. IEEE Trans.
Autom. Control 45(6), 1232–1236 (2000)

[GRS96] W.R. Gilks, S. Richardson, D.J. Spiegelhalter, Markov Chain Monte Carlo in
Practice (Chapman and Hall, London, 1996)

[GS84] G.C. Goodwin, K.S. Sin, Adaptive Filtering Prediction and Control (Prentice-
Hall, New York, 1984)

[Gui03] R. Guidorzi, Multivariable System Identification: From Observations to Models
(Bononia University Press, Bologna, 2003)

[GvdH01] M. Gilson, P. van den Hof, On the relation between a bias-eliminated least-
squares (BELS) and an IV estimator in closed-loop identification. Automatica
37(10), 1593–1600 (2001)

[GVL80] G.H. Golub, C.F. Van Loan, An analysis of the total least squares problem. SIAM
J. Numer. Anal. 17(6), 883–893 (1980)

[GVL89] G.H. Golub, C.F. Van Loan, Matrix Computations, 2nd edn. (Johns Hopkins Uni-
versity Press, Baltimore, 1989)

[GW74] K. Glover, J.C. Willems, Parametrizations of linear dynamical systems: canonical
forms and identifiability. IEEE Trans. Autom. Control AC-19(6), 640–646 (1974)

[Har91] N. Haritos, Swept sine wave testing of compliant bottom-pivoted cylinders, in
Proceedings of the First International Offshore and Polar Engineering Confer-
ence (1991), pp. 378–383

[HB94] B.R. Haynes, S.A. Billings, Global analysis and model validation in nonlinear
system identification. Nonlinear Dyn. 5(1), 93–130 (1994)

[HdHvdHW04] P.S.C. Heuberger, T.J. de Hoog, P.M.J. van den Hof, B. Wahlberg, Orthonormal
basis functions in time and frequency domain: Hambo transform theory. SIAM J.
Control Optim. 42(4), 1347–1373 (2004)

[HGDB96] H. Hjalmarsson, M. Gevers, F. De Bruyne, For model-based control design,
closed-loop identification gives better performance. Automatica 32(12), 1659–
1673 (1996)

[HK01] D.R. Hill, B. Kolman, Modern Matrix Algebra (Prentice Hall, New York, 2001)
[HP05] D. Hinrichsen, A.J. Pritchard, Mathematical Systems Theory I: Modelling, State

Space Analysis, Stability and Robustness. Texts in Applied Mathematics, vol. 48
(Springer, Berlin, 2005)

[HRvS07] C. Heij, A. Ran, F. van Schagen, Introduction to Mathematical Systems Theory:
Linear Systems, Identification and Control (Birkhäuser, Basel, 2007)

[HS09] M. Hong, T. Söderström, Relations between bias-eliminating least squares, the
Frisch scheme and extended compensated least squares methods for identifying
errors-in-variables systems. Automatica 45(1), 277–282 (2009)

[HSZ07] M. Hong, T. Söderström, W.X. Zheng, A simplified form of the bias-eliminating
least squares method for errors-in-variables identification. IEEE Trans. Autom.
Control 52(9), 1754–1756 (2007)

[HvdMS02] R.H.A. Hensen, M.J.G. van de Molengraft, M. Steinbuch, Frequency domain
identification of dynamic friction model parameters. IEEE Trans. Control Syst.
Technol. 10(2), 191–196 (2002)

[Ips09] I. Ipsen, Numerical Matrix Analysis: Linear Systems and Least Squares (SIAM,
Philadelphia, 2009)

[Jaz70] A.H. Jazwinski, Stochastic Processes and Filtering Theory. Mathematics in Sci-
ence and Engineering, vol. 64 (Academic Press, San Diego, 1970)

[JDVCJB06] C. Jauberthie, L. Denis-Vidal, P. Coton, G. Joly-Blanchard, An optimal input de-
sign procedure. Automatica 42(5), 881–884 (2006)

308 References

[JM05] M.A. Johnson, M.H. Moradi, PID Control: New Identification and Design Meth-
ods (Springer, London, 2005)

[Joh93] R. Johansson, System Modeling and Identification (Prentice Hall, New York,
1993)

[JR04] R. Johansson, A. Robertsson, On behavioral model identification. Signal Process.
84(7), 1089–1100 (2004)

[JU97] S.J. Julier, J.K. Uhlmann, New Extension of the Kalman Filter to Nonlinear Sys-
tems, in Proceedings of SPIE—The International Society for Optical Engineer-
ing, vol. 3068 (1997), pp. 182–193

[JVCR98] R. Johansson, M. Verhaegen, C.T. Chou, A. Robertsson, Behavioral Model Iden-
tification, in Proceedings of the IEEE Conference on Decision and Control, 1998,
pp. 126–131

[JW68] G.M. Jenkins, D.G. Watts, Spectral Analysis and Its Applications (Holden-Day,
Oakland, 1968)

[JY79] A. Jakeman, P.C. Young, Joint parameter/state estimation. Electron. Lett. 15(19),
582–583 (1979)

[Kal60] R.E. Kalman, A new approach to linear filtering and prediction problems. Am.
Soc. Mech. Eng. Trans. Ser. D, J. Basic Eng. 82, 35–45 (1960)

[Kat05] T. Katayama, Subspace Methods for System Identification. Communications and
Control Engineering (Springer, Berlin, 2005)

[Kau69] H. Kaufman, Aircraft parameter identification using Kalman filtering, in Proceed-
ings of the National Electronics Conference, vol. XXV (1969)

[Kay88] S.M. Kay, Modern Spectral Estimation: Theory and Application. Prentice-Hall
Signal Processing Series (Prentice-Hall, New York, 1988)

[KB61] R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction problems.
Am. Soc. Mech. Eng. Trans. Ser. D, J. Basic Eng. 83, 95–108 (1961)

[KB94] A. Kumar, G.J. Balas, Approach to model validation in the μ framework, in Pro-
ceedings of the American Control Conference, vol. 3, 1994, pp. 3021–3026

[KD09] K.J. Keesman, T.G. Doeswijk, Direct least-squares estimation and prediction of
rational systems: application to food storage. J. Process Control 19, 340–348
(2009)

[Kee89] K.J. Keesman, On the dominance of parameters in structural models of ill-defined
systems. Appl. Math. Comput. 30, 133–147 (1989)

[Kee90] K.J. Keesman, Membership-set estimation using random scanning and principal
component analysis. Math. Comput. Simul. 32(5–6), 535–544 (1990)

[Kee97] K.J. Keesman, Weighted least-squares set estimation from l∞ norm bounded-
noise data. IEEE Trans. Autom. Control AC 42(10), 1456–1459 (1997)

[Kee02] K.J. Keesman, State and parameter estimation in biotechnical batch reactors.
Control Eng. Pract. 10(2), 219–225 (2002)

[Kee03] K.J. Keesman, Bound-based identification: nonlinear-model case, in Encyclope-
dia of Life Science Systems Article 6.43.11.2, ed. by H. Unbehauen. UNESCO
EOLSS (2003)

[KH95] Y. Kyongsu, K. Hedrick, Observer-based identification of nonlinear system pa-
rameters. J. Dyn. Syst. Meas. Control, Trans. ASME 117(2), 175–182 (1995)

[KJ97] K.J. Keesman, A.J. Jakeman, Identification for long-term prediction of rainfall-
streamflow systems, in Proceedings of the 11th IFAC Symp. on System Identifica-
tion, Fukuoka, Japan, 8–11 July, vol. 3 (1997), pp. 2519–1523

[KK09] K.J. Keesman, N. Khairudin, Linear regressive realizations of LTI state space
models, in Proceedings of the 15th IFAC Symposium on System Identification, St.
Malo, France (2009), pp. 1868–1873

[KKZ77] V.I. Kostyuk, V.E. Kraskevitch, K.K. Zelensky, Frequency domain identification
of complex systems. Syst. Sci. 3(1), 5–12 (1977)

[KM08a] K.J. Keesman, V.I. Maksimov, On reconstruction of unknown characteristics in
one system of third order, in Prikl. Mat. i Informatika: Trudy fakulteta VMiK

References 309

MGU (Applied Mathematics and Informatics: Proc., Computer Science Dept. of
Moscow State University), vol. 30 (MAKS Press, Moscow, 2008), pp. 95–116 (in
Russian)

[KM08b] K.J. Keesman, V.I. Maksimov, On feedback identification of unknown character-
istics: a bioreactor case study. Int. J. Control 81(1), 134–145 (2008)

[KMVH03] A. Kukush, I. Markovsky, S. Van Huffel, Consistent estimation in the bilinear
multivariate errors-in-variables model. Metrika 57(3), 253–285 (2003)

[Kol93] I. Kollar, On frequency-domain identification of linear systems. IEEE Trans. In-
strum. Meas. 42(1), 2–6 (1993)

[Koo37] T.J. Koopmans, Linear regression analysis of economic time series. The Nether-
lands (1937)

[KPL03] K.J. Keesman, D. Peters, L.J.S. Lukasse, Optimal climate control of a storage
facility using local weather forecasts. Control Eng. Pract. 11(5), 505–516 (2003)

[KR76] R.L. Kashyap, A.R. Rao, Dynamic Stochastic Models from Empirical Data (Aca-
demic Press, San Diego, 1976)

[KS72] H. Kwakernaak, R. Sivan, Linear Optimal Control Systems (Wiley-Interscience,
New York, 1972)

[KS73] R.E. Kalaba, K. Spingarn, Optimal inputs and sensitivities for parameter estima-
tion. J. Optim. Theory Appl. 11(1), 56–67 (1973)

[KS02] K.J. Keesman, J.D. Stigter, Optimal parametric sensitivity control for the estima-
tion of kinetic parameters in bioreactors. Math. Biosci. 179, 95–111 (2002)

[KS03] K.J. Keesman, J.D. Stigter, Optimal input design for low-dimensional systems: an
haldane kinetics example, in Proceedings of the European Control Conference,
Cambridge, UK (2003), p. 268

[KS04] K.J. Keesman, R. Stappers, Nonlinear set-membership estimation: a support vec-
tor machine approach. J. Inverse Ill-Posed Probl. 12(1), 27–41 (2004)

[Kur77] A.B. Kurzhanski, Control and Observation Under Uncertainty (Nauka, Moscow,
1977) (in Russian)

[KvS89] K.J. Keesman, G. van Straten, Identification and prediction propagation of uncer-
tainty in models with bounded noise. Int. J. Control 49(6), 2259–2269 (1989)

[LB93] D. Ljungquist, J.G. Balchen, Recursive Prediction Error Methods for Online Esti-
mation in Nonlinear State-space Models, in Proceedings of the IEEE Conference
on Decision and Control, vol. 1 (1993), pp. 714–719

[LB07] Z. Lin, M.B. Beck, On the identification of model structure in hydrological and
environmental systems. Water Resources Research 43(2) (2007)

[LCB+07] L. Lang, W.-S. Chen, B.R. Bakshi, P.K. Goel, S. Ungarala, Bayesian estimation
via sequential Monte Carlo sampling-constrained dynamic systems. Automatica
43(9), 1615–1622 (2007)

[Lee64] R.C.K. Lee, Optimal Identification, Estimation and Control (MIT Press, Cam-
bridge, 1964)

[Lev64] M.J. Levin, Estimation of a system pulse transfer function in the presence of
noise. IEEE Trans. Autom. Control 9, 229–335 (1964)

[LG94] L. Ljung, T. Glad, Modeling of Dynamic Systems (Prentice Hall, New York,
1994)

[LG97] L. Ljung, L. Guo, The role of model validation for assessing the size of the un-
modeled dynamics. IEEE Trans. Autom. Control 42(9), 1230–1239 (1997)

[LG09] T. Liu, F. Gao, A generalized relay identification method for time delay and non-
minimum phase processes. Automatica 45(4), 1072–1079 (2009)

[Liu94] J.S. Liu, Monte Carlo Strategies in Scientific Computing (Springer, New York,
1994)

[Lju81] L. Ljung, Analysis of a general recursive prediction error identification algorithm.
Automatica 17(1), 89–99 (1981)

[Lju87] L. Ljung, System Identification—Theory for the User (Prentice Hall, New York,
1987)

310 References

[Lju99a] L. Ljung, Comments on model validation as set membership identification, in Ro-
bustness in Identification and Control. Lecture Notes in Control and Information
Sciences, vol. 245 (Springer, Berlin, 1999)

[Lju99b] L. Ljung, System Identification—Theory for the User, 2nd edn. (Prentice Hall,
New York, 1999)

[LKvS96] L.J.S. Lukasse, K.J. Keesman, G. van Straten, Grey-box identification of dis-
solved oxygen dynamics in an activated sludge process, in Proceedings of the
13th IFAC World Congress, San Francisco, USA, vol. N (1996), pp. 485–490

[LKvS99] L.J.S. Lukasse, K.J. Keesman, G. van Straten, A recursively identified model
for short-term predictions of NH4/NO3-concentrations in alternating activated
sludge processes (1999)

[LL96] W. Li, J.H. Lee, Frequency-domain closed-loop identification of multivariable
systems for feedback control. AIChE J. 42(10), 2813–2827 (1996)

[LP96] L.H. Lee, K. Poolla, Identification of linear parameter-varying systems via LFTs,
in Proceedings of the IEEE Conference on Decision and Control, vol. 2 (1996),
pp. 1545–1550

[LP99] L.H. Lee, K. Poolla, Identification of linear parameter-varying systems using non-
linear programming. J. Dyn. Syst. Meas. Control, Trans. ASME 121(1), 71–78
(1999)

[LS83] L. Ljung, T. Söderström, Theory and Practice of Recursive Identification (MIT
Press, Cambridge, 1983)

[Luo07] B. Luo, A dynamic method of experiment design of computer aided sensory eval-
uation. Adv. Soft Comput. 41, 504–510 (2007)

[Maj73] J.C. Majithia, Recursive estimation of the mean value of a random variable using
quantized data. IEEE Trans. Instrum. Meas. 22(2), 176–177 (1973)

[Mar87] S.L. Marple, Digital Spectral Analysis with Applications (Prentice-Hall, New
York, 1987)

[May63] D.Q. Mayne, Optimal non-stationary estimation of the parameters of a linear sys-
tem with Gaussian inputs. J. Electron. Control 14, 101–112 (1963)

[May79] P.S. Maybeck, Stochastic Models, Estimation and Control, vol. 1 (Academic
Press, San Diego, 1979)

[MB82] M. Milanese, G. Belforte, Estimation theory and uncertainty intervals evaluation
in presence of unknown but bounded errors. IEEE Trans. Autom. Control AC
27(2), 408–414 (1982)

[MB86] J.B. Moore, R.K. Boel, Asymptotically optimum recursive prediction error meth-
ods in adaptive estimation and control. Automatica 22(2), 237–240 (1986)

[MB00] K.Z. Mao, S.A. Billings, Multi-directional model validity tests for non-linear sys-
tem identification. Int. J. Control 73(2), 132–143 (2000)

[MCS08] J. Mertl, M. Cech, M. Schlegel, One point relay identification experiment based
on constant-phase filter, in 8th International Scientific Technical Conference
PROCESS CONTROL 2008, Kouty nad Desnou, Czech Republic, vol. C037
(2008), pp. 1–9

[MF95] J.F. MacGregor, D.T. Fogal, Closed-loop identification: the role of the noise
model and prefilters. J. Process Control 5(3), 163–171 (1995)

[MG86] R.H. Middleton, G.C. Goodwin, Improved finite word length characteristics in
digital control using delta operators. IEEE Trans. Autom. Control AC–31(11),
1015–1021 (1986)

[MG90] R.H. Middleton, G.C. Goodwin, Digital Control and Estimation: A Unified Ap-
proach. (Prentice Hall, New York, 1990)

[Mil95] M. Milanese, Properties of least-squares estimates in set membership identifica-
tion. Automatica 31, 327–332 (1995)

[MN95] J.C. Morris, M.P. Newlin, Model validation in the frequency domain, in Pro-
ceedings of the IEEE Conference on Decision and Control, vol. 4 (1995), pp.
3582–3587

References 311

[MNPLE96] M. Milanese, J.P. Norton, H. Piet-Lahanier, E. Walter (eds.), Bounding Ap-
proaches to System Identification (Plenum, New York, 1996)

[MPV06] D.C. Montgomery, E.A. Peck, G.G. Vining, Introduction to Linear Regression
Analysis, 4th edn. Wiley Series in Probability and Statistics (Wiley, New York,
2006)

[MR97] C. Maffezzoni, P. Rocco, Robust tuning of PID regulators based on step-response
identification. Eur. J. Control 3(2), 125–136 (1997)

[MRCW01] G. Margaria, E. Riccomagno, M.J. Chappell, H.P. Wynn, Differential algebra
methods for the study of the structural identifiability of rational function state-
space models in the biosciences. Math. Biosci. 174(1), 1–26 (2001)

[MV91a] M. Milanese, A. Vicino, Optimal estimation theory for dynamic systems with set
membership uncertainty: an overview. Automatica 27(6), 997–1009 (1991)

[MV91b] M. Moonen, J. Vandewalle, A square root covariance algorithm for constrained
recursive least squares estimation. J. VLSI Signal Process. 3(3), 163–172 (1991)

[MVL78] C. Moler, C. Van Loan, Nineteen dubious ways to compute the exponential of a
matrix. SIAM Rev. 20(4), 801–836 (1978)

[MW79] J.B. Moore, H. Weiss, Recursive prediction error methods for adaptive estimation.
IEEE Trans. Syst. Man Cybern. 9(4), 197–205 (1979)

[MWDM02] I. Markovsky, J.C. Willems, B. De Moor, Continuous-time errors-in-variables
filtering, in Proceedings of the IEEE Conference on Decision and Control, vol. 3
(2002), pp. 2576–2581

[NGS77] T.S. Ng, G.C. Goodwin, T. Söderström, Optimal experiment design for linear
systems with input-output constraints. Automatica 13(6), 571–577 (1977)

[Nin09] B. Ninness, Some system identification challenges and approaches, in 15th IFAC
Symposium on System Identification, St. Malo, France (2009)

[Nor75] J.P. Norton, Optimal smoothing in the identification of linear time-varying sys-
tems. Proc. Inst. Electr. Eng. 122(6), 663–669 (1975)

[Nor76] J.P. Norton, Identification by optimal smoothing using integrated random walks.
Proc. Inst. Electr. Eng. 123(5), 451–452 (1976)

[Nor86] J.P. Norton, An Introduction to Identification (Academic Press, San Diego, 1986)
[Nor87] J.P. Norton, Identification and application of bounded-parameter models. Auto-

matica 23(4), 497–507 (1987)
[Nor03] J.P. Norton, Bound-based Identification: linear-model case, in Encyclopedia of

Life Science Systems Article 6.43.11.2, ed. by H. Unbehauen. UNESCO EOLSS
(2003)

[NW82] V.V. Nguyen, E.F. Wood, Review and unification of linear identifiability concepts.
SIAM Rev. 24(1), 34–51 (1982)

[OFOFDA96] R. Oliveira, E.C. Ferreira, F. Oliveira, S. Feyo De Azevedo, A study on the conver-
gence of observer-based kinetics estimators in stirred tank bioreactors. J. Process
Control 6(6), 367–371 (1996)

[OWG04] S. Ognier, C. Wisniewski, A. Grasmick, Membrane bioreactor fouling in sub-
critical filtration conditions: a local critical flux concept. J. Membr. Sci. 229, 171–
177 (2004)

[Paw91] M. Pawlak, On the series expansion approach to the identification of Hammer-
stein systems. IEEE Trans. Autom. Control 36(6), 763–767 (1991)

[PC07] G. Pillonetto, C. Cobelli, Identifiability of the stochastic semi-blind deconvolu-
tion problem for a class of time-invariant linear systems. Automatica 43(4), 647–
654 (2007)

[PDAFD00] M. Perrier, S.F. De Azevedo, E.C. Ferreira, D. Dochain, Tuning of observer-based
estimators: Theory and application to the on-line estimation of kinetic parameters.
Control Eng. Pract. 8(4), 377–388 (2000)

[Pet75] V. Peterka, Square root filter for real time multivariate regression. Kybernetika
11(1), 53–67 (1975)

[PH05] R.L.M. Peeters, B. Hanzon, Identifiability of homogeneous systems using the
state isomorphism approach. Automatica 41(3), 513–529 (2005)

312 References

[Phi73] P.C.B. Phillips, The problem of identification in finite parameter continuous time
models. J. Econom. 1(4), 351–362 (1973)

[PS97] R. Pintelon, J. Schoukens, Frequency-domain identification of linear timeinvari-
ant systems under nonstandard conditions. IEEE Trans. Instrum. Meas. 46(1),
65–71 (1997)

[PS01] R. Pintelon, J. Schoukens, System Identification: A Frequency Domain Approach
(Wiley–IEEE Press, New York, 2001)

[PW88] L. Pronzato, E. Walter, Robust experiment design via maximin optimization.
Math. Biosci. 89(2), 161–176 (1988)

[PW98] J.W. Polderman, J.C. Willems, Introduction to Mathematical Systems Theory:
A Behavioral Approach (Springer, Berlin, 1998)

[QN82] Z.H. Qureshi, T.S. Ng, Optimal input design for dynamic system parameter esti-
mation: the d//s-optimality case. SIAM J. Control Optim. 20(5), 713–721 (1982)

[Rak80] H. Rake, Step response and frequency-response methods. Automatica 16(5), 519–
526 (1980)

[RH78] J. Rowland, W. Holmes, Nonstationary signal processing and model validation.
IEEE Int. Conf. Acoust. Speech Signal Proc. 3, 520–523 (1978)

[RSP97] Y. Rolain, J. Schoukens, R. Pintelon, Order estimation for linear time-invariant
systems using frequency domain identification methods. IEEE Trans. Autom.
Control 42(10), 1408–1417 (1997)

[RU99] K. Reif, R. Unbehauen, The extended Kalman filter as an exponential observer
for nonlinear systems. IEEE Trans. Signal Process. 47(8), 2324–2328 (1999)

[RWGF07] C.R. Rojas, J.S. Welsh, G.C. Goodwin, A. Feuer, Robust optimal experiment de-
sign for system identification. Automatica 43(6), 993–1008 (2007)

[SAD03] M.P. Saccomani, S. Audoly, L. D’Angiò, Parameter identifiability of nonlinear
systems: The role of initial conditions. Automatica 39(4), 619–632 (2003)

[Sak61] M. Sakaguchi, Dynamic programming of some sequential sampling design.
J. Math. Anal. Appl. 2(3), 446–466 (1961)

[Sak65] D.J. Sakrison, Efficient recursive estimation; application to estimating the param-
eters of a covariance function. Int. J. Eng. Sci. 3(4), 461–483 (1965)

[SAML80] G. Salut, J. Aguilar-Martin, S. Lefebvre, New results on optimal joint parameter
and state estimation of linear stochastic systems. J. Dyn. Syst. Meas. Control,
Trans. ASME 102(1), 28–34 (1980)

[Sar84] R.G. Sargent, Tutorial on verification and validation of simulation models, in Win-
ter Simulation Conference Proceedings (1984), pp. 115–121

[SB94] J.D. Stigter, M.B. Beck, A new approach to the identification of model structure.
Environmetrics 5(3), 315–333 (1994)

[SB04] J.D. Stigter, M.B. Beck, On the development and application of a continuous-
discrete recursive prediction error algorithm. Math. Biosci. 191(2), 143–158
(2004)

[SBD99] R. Smith, A. Banaszuk, G. Dullerud, Model validation approaches for nonlinear
feedback systems using frequency response measurements, in Proceedings of the
IEEE Conference on Decision and Control, vol. 2 (1999), pp. 1500–1504

[SC97] G. Sparacino, C. Cobelli, Impulse response model in reconstruction of insulin
secretion by deconvolution: role of input design in the identification experiment.
Ann. Biomed. Eng. 25(2), 398–416 (1997)

[Sch73] F.C. Schweppe, Uncertain Dynamic Systems (Prentice-Hall, New York, 1973)
[SD98] W. Scherrer, M. Deistler, A structure theory for linear dynamic errors-in-variables

models. SIAM J. Control Optim. 36(6), 2148–2175 (1998)
[SGM88] M.E. Salgado, G.C. Goodwin, R.H. Middleton, Modified least squares algorithm

incorporating exponential resetting and forgetting. Int. J. Control 47(2), 477–491
(1988)

[SGR+00] A. Stenman, F. Gustafsson, D.E. Rivera, L. Ljung, T. McKelvey, On adaptive
smoothing of empirical transfer function estimates. Control Eng. Pract. 9, 1309–
1315 (2000)

References 313

[She95] S. Sheikholeslam, Observer-based parameter identifiers for nonlinear systems
with parameter dependencies. IEEE Trans. Autom. Control 40(2), 382–387
(1995)

[SK01] J.D. Stigter, K.J. Keesman, Optimal parametric sensitivity control for a fed batch
reactor, in Proceedings of the European Control Conference 2001, Porto, Portu-
gal, 4–7 Sep. 2001, pp. 2841–2844

[SK04] J.D. Stigter, K.J. Keesman, Optimal parametric sensitivity control of a fed-batch
reactor. Automatica 40(8), 1459–1464 (2004)

[SL03] S.W. Sung, J.H. Lee, Pseudo-random binary sequence design for finite impulse
response identification. Control Eng. Pract. 11(8), 935–947 (2003)

[SM97] P. Stoica, R.L. Moses, Introduction to Spectral Analysis (Prentice-Hall, New
York, 1997)

[SMMH94] P. Sadegh, H. Melgaard, H. Madsen, J. Holst, Optimal experiment design for
identification of grey-box models, in Proceedings of the American Control Con-
ference, vol. 1 (1994), pp. 132–137

[Söd07] T. Söderström, Errors-in-variables methods in system identification. Automatica
43(6), 939–958 (2007)

[Söd08] T. Söderström, Extending the Frisch scheme for errors-in-variables identification
to correlated output noise. Int. J. Adapt. Control Signal Process. 22(1), 55–73
(2008)

[Sor80] H.W. Sorenson, Parameter Estimation (Dekker, New York, 1980)
[Sor85] H.W. Sorenson, Kalman Filtering: Theory and Application (IEEE Press, New

York, 1985)
[SOS00] L. Sun, H. Ohmori, A. Sano, Frequency domain approach to closed-loop identi-

fication based on output inter-sampling scheme, in Proceedings of the American
Control Conference, vol. 3 (2000), pp. 1802–1806

[SR77] M.W.A. Smith, A.P. Roberts, A study in continuous time of the identification
of initial conditions and/or parameters of deterministic system by means of a
Kalman-type filter. Math. Comput. Simul. 19(3), 217–226 (1977)

[SR79] M.W.A. Smith, A.P. Roberts, The relationship between a continuous-time iden-
tification algorithm based on the deterministic filter and least-squares methods.
Inf. Sci. 19(2), 135–154 (1979)

[SS83] T. Söderström, P.G. Stoica, Instrumental Variable Methods for System Identifica-
tion (Springer, Berlin, 1983)

[SS87] T. Söderström, P.G. Stoica, System Identification (Prentice Hall, New York, 1987)
[SSM02] T. Söderström, U. Soverini, K. Mahata, Perspectives on errors-in-variables esti-

mation for dynamic systems. Signal Process. 82(8), 1139–1154 (2002)
[SVK06] J.D. Stigter, D. Vries, K.J. Keesman, On adaptive optimal input design: a biore-

actor case study. AIChE J. 52(9), 3290–3296 (2006)
[SVPG99] J. Schoukens, G. Vandersteen, R. Pintelon, P. Guillaume, Frequency-domain iden-

tification of linear systems using arbitrary excitations and a nonparametric noise
model. IEEE Trans. Autom. Control 44(2), 343–347 (1999)

[THvdH09] R. Tóth, P.S.C. Heuberger, P.M.J. van den Hof, Asymptotically optimal orthonor-
mal basis functions for LPV system identification. Automatica 45(6), 1359–1370
(2009)

[TK75] H. Thoem, V. Krebs, Closed loop identification—correlation analysis or parame-
ter estimation [Identifizierung im geschlossenen Regelkreis – Korrelationsanalyse
oder Parameterschaetzung?]. Regelungstechnik 23(1), 17–19 (1975)

[TLH+06] K.K. Tan, T.H. Lee, S. Huang, K.Y. Chua, R. Ferdous, Improved critical point
estimation using a preload relay. J. Process Control 16(5), 445–455 (2006)

[TM03] D. Treebushny, H. Madsen, A new reduced rank square root Kalman filter for data
assimilation in mathematical models. Lect. Notes Comput. Sci. 2657, 482–491
(2003) (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics)

314 References

[TOS98] M. Takahashi, H. Ohmori, A. Sano, Impulse response identification by use of
wavelet packets decomposition, in Proceedings of the IEEE Conference on Deci-
sion and Control, vol. 1 (1998), pp. 211–214

[Tur85] J.M. Turner, Recursive Least-squares Estimation and Lattice Filters (Prentice-
Hall, New York, 1985)

[TV72] R. Tomovic, M. Vukobratovic, General Sensitivity Theory (American Elsevier,
New York, 1972)

[TY90] A.P. Tzes, S. Yurkovich, Frequency domain identification scheme for flexible
structure control. J. Dyn. Syst. Meas. Control, Trans. ASME 112(3), 427–434
(1990)

[vBGKS98] J. van Bergeijk, D. Goense, K.J. Keesman, B. Speelman, Digital filters to integrate
global positioning system and dead reckoning. J. Agric. Eng. Res. 70, 135–143
(1998)

[VD92] M. Verhaegen, P. Dewilde, Subspace model identification. Part 1: The output-
error state-space model identification class of algorithms. Int. J. Control 56,
1187–1210 (1992)

[vdH98] J.M. van den Hof, Structural identifiability of linear compartmental systems.
IEEE Trans. Autom. Control 43(6), 800–818 (1998)

[vdHPB95] P.M.J. van den Hof, P.S.C. Heuberger, J. Bokor, System identification with gen-
eralized orthonormal basis functions. Automatica 31(12), 1821–1834 (1995)

[Ver89] M.H. Verhaegen, Round-off error propagation in four generally-applicable, recur-
sive, least-squares estimation schemes. Automatica 25(3), 437–444 (1989)

[VGR89] S. Vajda, K.R. Godfrey, H. Rabitz, Similarity transformation approach to identi-
fiability analysis of nonlinear compartmental models. Math. Biosci. 93(2), 217–
248 (1989)

[VH97] M. Verlaan, A.W. Heemink, Tidal flow forecasting using reduced rank square root
filters. Stoch. Environ. Res. Risk Assess. 11(5), 349–368 (1997)

[VH05] I. Vajk, J. Hetthéssy, Subspace identification methods: review and re-
interpretation, in Proceedings of the 5th International Conference on Control and
Automation, ICCA’05 (2005), pp. 113–118

[VHMVS07] S. Van Huffel, I. Markovsky, R.J. Vaccaro, T. Söderström, Total least squares and
errors-in-variables modeling. Signal Process. 87(10), 2281–2282 (2007)

[VHV89] S. Van Huffel, J. Vandewalle, Analysis and properties of the generalized total
least squares problem Ax ≈ b when some or all columns in A are subject to error.
SIAM J. Matrix Anal. Appl. 10, 294–315 (1989)

[Vib95] M. Viberg, Subspace-based methods for the identification of linear time-invariant
systems. Automatica 31(12), 1835–1851 (1995)

[VKZ06] D. Vries, K.J. Keesman, H. Zwart, Explicit linear regressive model structures
for estimation, prediction and experimental design in compartmental diffusive
systems, in Proceedings of the 14th IFAC Symposium on System Identification,
Newcastle, Australia (2006), pp. 404–409

[vOdM95] P. van Overschee, B. de Moor, Choice of state-space basis in combined
deterministic-stochastic subspace identification. Automatica 31(12), 1877–1883
(1995)

[Vri08] D. Vries, Estimation and prediction of convection-diffusion-reaction systems
from point measurements. Ph.D. thesis, Systems & Control, Wageningen Uni-
versity (2008)

[vRLS73] D.L. van Rooy, M.S. Lynn, C.H. Snyder, The use of the modified Choleski de-
composition in divergence and classification calculations, in LARS Symposia, Pa-
per 22 (1973)

[vS94] J.H. van Schuppen, Stochastic realization of a Gaussian stochastic control system.
J. Acta Appl. Math. 35(1–2), 193–212 (1994)

[VS04] J.H. Van Schuppen, System theory for system identification. J. Econom.
118(1–2), 313–339 (2004)

References 315

[vSK91] G. van Straten, K.J. Keesman, Uncertainty propagation and speculation in projec-
tive forecasts of environmental change—a lake eutrophication example. J. Fore-
cast. 10(2–10), 163–190 (1991)

[VV02] V. Verdult, M. Verhaegen, Subspace identification of multivariable linear
parameter-varying systems. Automatica 38(5), 805–814 (2002)

[VV07] M. Verhaegen, V. Verdult, Filtering and System Identification: A Least Squares
Approach (Cambridge University Press, Cambridge, 2007)

[Wal82] E. Walter, Identifiability of State Space Models. Lecture Notes in Biomathemat-
ics, vol. 46. (Springer, Berlin, 1982)

[Wal03] E. Walter, Bound-based Identification, in Encyclopedia of Life Science Systems
Article 6.43.11.2, ed. by H. Unbehauen. UNESCO EOLSS (2003)

[WC97] L. Wang, W.R. Cluett, Frequency-sampling filters: an improved model structure
for step-response identification. Automatica 33(5), 939–944 (1997)

[Wel77] P.E. Wellstead, Reference signals for closed-loop identification. Int. J. Control
26(6), 945–962 (1977)

[Wel81] P.E. Wellstead, Non-parametric methods of system identification. Automatica 17,
55–69 (1981)

[WG04] E. Wernholt, S. Gunnarsson, On the use of a multivariable frequency response es-
timation method for closed loop identification, in Proceedings of the IEEE Con-
ference on Decision and Control, vol. 1 (2004), pp. 827–832

[Whi70] R.C. White, Fast digital computer method for recursive estimation of the mean.
IEEE Trans. Comput. 19(9), 847–848 (1970)

[Wig93] T. Wigren, Recursive prediction error identification using the nonlinear Wiener
model. Automatica 29(4), 1011–1025 (1993)

[Wil86a] J.C. Willems, From time series to linear system. Part I. Finite dimensional linear
time invariant systems. Automatica 22, 561–580 (1986)

[Wil86b] J.C. Willems, From time series to linear system. Part II. Exact modelling. Auto-
matica 22, 675–694 (1986)

[Wil87] J.C. Willems, From time series to linear system. Part III. Approximate modelling.
Automatica 23, 87–115 (1987)

[WP87] E. Walter, L. Pronzato, Optimal experiment design for nonlinear models subject
to large prior uncertainties. Am. J. Physiol., Regul. Integr. Comp. Physiol. 253(3),
22–23 (1987)

[WP90] E. Walter, L. Pronzato, Qualitative and quantitative experiment design for phe-
nomenological models—a survey. Automatica 26(2), 195–213 (1990)

[WP97] E. Walter, L. Pronzato, Identification of Parametric Models from Experimental
Data. Communications and Control Engineering (Springer, Berlin, 1997)

[WZG01] Q.-G. Wang, Y. Zhang, X. Guo, Robust closed-loop identification with applica-
tion to auto-tuning. J. Process Control 11(5), 519–530 (2001)

[WZL09] J. Wang, Q. Zhang, L. Ljung, Revisiting Hammerstein system identification
through the two-stage algorithm for bilinear parameter estimation. Automatica
45(11), 2627–2633 (2009)

[YB94] P.C. Young, K.J. Beven, Data-based mechanistic modelling and the rainfall-flow
non-linearity. Environmetrics 5(3), 335–363 (1994)

[YG06] P.C. Young, H. Garnier, Identification and estimation of continuous-time, data-
based mechanistic (dbm) models for environmental systems. Environ. Model.
Softw. 21(8), 1055–1072 (2006)

[You84] P.C. Young, Recursive Estimation and Time-series Analysis: An Introduction.
Communications and Control Engineering (Springer, Berlin, 1984)

[You98] P. Young, Data-based mechanistic modelling of environmental, ecological, eco-
nomic and engineering systems. Environ. Model. Softw. 13(2), 105–122 (1998)

[YST97] Z.-J. Yang, S. Sagara, T. Tsuji, System impulse response identification using a
multiresolution neural network. Automatica 33(7), 1345–1350 (1997)

[Zar79] M.B. Zarrop, Optimal Experiment Design for Dynamic System Identification
(Springer, Berlin, 1979)

316 References

[Zar81] M.B. Zarrop, Sequential generation of d-optimal input designs for linear dynamic
systems. J. Optim. Theory Appl. 35(2), 277–291 (1981)

[Zhu05] Q.M. Zhu, An implicit least squares algorithm for nonlinear rational model pa-
rameter estimation. Appl. Math. Model. 29(7), 673–689 (2005)

[ZT00] Y. Zhou, J.K. Tugnait, Closed-loop linear model validation and order estima-
tion using polyspectral analysis. IEEE Trans. Signal Process. 48(7), 1965–1974
(2000)

[Zwa04] H.J. Zwart, Transfer functions for infinite-dimensional systems. Syst. Control
Lett. 52(3–4), 247–255 (2004)

[ZWR91] A. Zakhor, R. Weisskoff, R. Rzedzian, Optimal sampling and reconstruction of
MRI signals resulting from sinusoidal gradients. IEEE Trans. Signal Process.
39(9), 2056–2065 (1991)

Index

Symbols
1-norm, 85, 253
2-norm, 85, 232, 253, 254, 258, 287
∞-norm, 85, 92, 253
z-transform, 277, 278, 291

A
Accuracy, 59, 72, 75, 97, 107, 109
Actuator, 181
AIC, 133
Akaike’s criterion, 164
Algorithm

2.1 g(t) from pulse input, 22
2.2 g(t) from step input, 23
3.1 G(ejω) from sine waves, 29
3.2 G(ejω) from I/O data, 33
3.3 critical point from relay experiment, 35
3.4 g(t) from I/O data, 37
4.1 g(t) from I/O data using the

Wiener–Hopf relationship, 48
4.2 G(ejω) from sine waves using

correlations, 52
4.3 G(ejω) from sine waves using spectra,

54
5.1 (Weighted) Least-Squares estimation,

65
5.2 Constrained Least-Squares estimation,

77
5.3 Truncated Least-Squares estimation, 81
5.4 Total Least-Squares estimation, 86
5.5 Nonlinear Least-Squares estimation, 95
6.1 ARX parameters from I/O data, 118
6.2 ARMAX parameters from I/O data, 120
6.3 OE parameters from I/O data using an

IV method, 124
6.4 OE parameters from I/O data using the

GLS method, 125

6.5 OE parameters from I/O data using
prefiltering, 131

6.6 LPV parameters from I/O data, 143
7.1 Recursive Least-Squares estimation,

179
7.2 Square root filtering, 185
7.3 Reduced rank square root filtering, 187
7.4 Extended Kalman filtering, 189
8.1 Recursive Prediction-Error estimation,

205
8.2 Fixed-interval optimal smoothing, 207
8.3 Extended Kalman

filtering—continuous-discrete time
case, 213

AR, 127
ARIMA, 115
ARMA, 115
ARMAX, 114, 115, 120, 121, 123, 150
ARX, 114, 117, 118, 128, 131, 133, 134, 150,

151, 228, 234, 238, 239
Autocorrelation function, 43–45, 49, 53, 126,

180
Autocorrelation matrix, 73

B
Backward shift operator, 39, 113, 287, 290
Basis function, 141, 147, 148, 164
Bayesian estimation method, xi, 217
Bias, 59, 69, 70, 72, 77, 85, 88, 99, 122
Black-box model, 12
Bode plot, 32–34, 55, 228, 281, 283, 285
Box–Jenkins model, 115

C
Causal, 7, 9, 13, 17, 46, 113, 278, 288
Central Limit Theorem, 88, 271
Characteristic polynomial, 256, 290
Chi-square distribution, 233, 271

K.J. Keesman, System Identification,
Advanced Textbooks in Control and Signal Processing,
DOI 10.1007/978-0-85729-522-4, © Springer-Verlag London Limited 2011

317

http://dx.doi.org/10.1007/978-0-85729-522-4

318 Index

Chi-square test, 271
Choleski decomposition, 125, 261, 262
Closed-loop control, 5, 26, 57
Closed-loop identification, 148, 150, 165
Column space, 258
Conditional probability, 102
Continuous-discrete time, 160, 213, 215
Continuous-time, 6, 7, 9, 39, 153, 165, 221

identification, 165
model, 6, 165
signal, 45, 277
system, 21, 39, 195, 198
transfer function, 40, 285

Controllability matrix, 136
Covariance matrix, 73–77, 82–84, 98, 102,

104, 125, 160, 163, 174, 175, 180,
182, 184–186, 190, 191, 221, 258,
260, 268–270

Cramér–Rao inequality, 104
Cross-correlation, 47, 68, 159
Cross-correlation function, 45, 46, 50, 52, 53
Cross-spectrum, 53, 54
Cross-validation, 135, 163, 239, 241, 242, 246
Curse of dimensionality, 246

D
Data acquisition, x, 20
Data matrix, 74, 85, 242
Data-based

identification, xi, 15, 46, 223
modeling, x, xiii, 216

De-trend, 118, 236
Dead-time, 114, 118, 159, 160
Delay, 21, 31, 33, 38, 112, 116, 122, 124, 134,

165, 196, 233, 276, 278, 290, 291
operator, 38, 287

Describing function, 34, 35
Direct identification, 29, 150
Direct method, 51, 57, 120, 135, 141, 165, 241
Discrete Fourier transform, 24, 29, 30, 33, 36,

277, 278
Discrete-time, 9, 15, 20, 38–40, 43, 46, 113,

144, 150, 152, 157, 174, 193, 219,
227, 290

model, 6, 9, 20, 40, 59, 122, 140, 141, 165,
178, 180, 182, 193, 225, 226, 234,
239

signal, 6, 45, 277, 278
system, 29, 36, 39, 135, 138, 157, 165, 192,

196, 287, 291
transfer function, 37, 228, 234, 291

Discretization, 6
Distributed parameter system, 152

Disturbance, 1
Drift, 116, 117, 231, 232

E
Eigendecomposition, 257
Eigenmatrix, 257, 264
Eigenvalue decomposition, 83, 107, 185, 186,

256, 264
Eigenvalue decomposition matrix, 162
EKF, 192, 210, 211, 213
EnKF, 216
Ensemble, 216
Equation error model, 114
Error distortion, 99
Error propagation, 221, 257
Errors-in-variables, 59, 85, 100, 109
Estimate

constrained least-squares, 77
extended least-squares, 199
Instrumental Variable, 123, 126, 199
Markov, 125, 126, 131
(ordinary) least-squares, 63, 65–68, 70–74,

77, 87, 118, 121, 123–125, 132,
144, 265, 293

total least-squares, 86
truncated least-squares, 81, 82, 241
weighted least-squares, 65, 126, 255

Estimation, 3, 4, 60
parameter, x, 4, 5, 12, 59, 62, 77, 92, 96,

134, 214
state, 4, 5, 62, 184, 211, 214
state/parameter, 211, 213

Estimation method
extended least-squares, 120
generalized least-squares, 125
generalized total least-squares, 241
nonlinear least-squares, 93, 95, 112, 158,

226, 241
(ordinary) least-squares, xi, 59, 63, 66–68,

70, 71, 85, 101, 109, 110, 117, 118,
122, 123, 137, 141, 220, 293

ordinary least-squares, 120
recursive, xi, 167, 169, 172, 175, 176, 179,

185, 187, 188, 191, 192, 195, 199,
204, 209, 211, 215, 217

set-membership, 89, 92, 105, 106, 109
total least-squares, 85, 86
weighted least-squares, 76

Estimator, 69–71, 77, 137, 172–175, 178, 181,
182, 184, 192, 197, 204

Gauss–Markov, 102
least-squares, 103, 167, 172, 178, 184, 191,

197

Index 319

ETFE, 31, 32, 51, 54–56
Euclidean norm, 85, 253
Example

AR process, 127, 128
autocorrelation function, 272
bioreactor, 2, 154
Bode plot, 283
Choleski decomposition, 262
constant process state, 61, 70, 75, 103
constant process with noise, 230
covariance matrix, 269
derivative of cost function, 255
determinant, 251
DO dynamics, 158, 213
eigenvalues and eigenvectors, 256
ETFE, 31
exponential model, 107
Exponential of a matrix, 260
first-order process, 147
FOPDT, 36
forecast errors, 270
Fourier transform, 277
greenhouse climate, 3
heating system, 21–23, 25, 52, 55, 118,

133, 234
identifiability, 78
impulse response identification, 38, 47
integrator, 227
Laplace transform, 275, 276
LPV, 144
MA process, 127, 128
mass-spring-damper, 234
mean tracking, 169, 173, 180, 181
membrane bioreactor fouling, 100
modified Choleski decomposition, 262
moving average filter, 9
moving object, 62, 63, 65, 71, 74, 79, 80,

82, 87, 110
moving object (constant velocity), 89, 175,

179, 192, 207, 231
moving vehicle, 188, 190
moving vehicle—real world case, 209
multiplication of polynomials, 288
NH4/NO3 dynamics in pilot plant

Bennekom, 195
nitrification experiment, 92, 93, 96, 98, 100
orthogonal projection, 66
output error model, 122, 124, 126, 200,

202, 203
P-control, 149, 150
pendulum experiment, 99
pole-zero cancelation, 226
QR decomposition, 263
random process, 132

RBS, 49
respiration rate data, 181
respiration rate experiment, 100
RPE-algorithm, 205
second-order process, 137, 140
shift operator calculus, 289, 291
signal processing, 2
sine-wave signal, 30, 44
single parameter problem, 69, 71
sinusoidal model, 105
solar-heated house, 157
square root filter, 185
square root of a matrix, 260
storage facility, 239
storage tank, 7, 8, 18, 27, 39
substrate consumption, 225, 227
white noise, 45, 53, 73
z-transform, 278

Expectation, 43, 69
Experiment, 5, 21, 58, 61, 70, 75, 78, 79, 84,

92, 93, 96, 99, 100, 110, 118, 159,
161, 163, 165, 169, 190, 225, 226,
245

design, x, 11, 245, 246
Extended least-squares, see estimation method

F
Feedback, 26, 149, 150, 233
Filtering, 4, 23, 117, 131, 156, 175, 206, 207

Extended Kalman, 167, 189, 191, 192, 209,
211

Kalman, 185
FIM, 104
Final Prediction Error, 133, 164
FIR, 113, 114, 117
Fisher information matrix, 104
Forward shift operator, 39, 165, 287
Fourier transform, 24, 53, 277, 287
FPE, 133, 134, 140, 164, 239
Frequency, 23, 25, 27, 29, 30, 32, 36, 44, 51,

52, 54, 55, 112, 130, 228, 230, 275,
277, 281, 283, 284, 291

analysis, 52, 54
domain, x, xi, 15, 26, 29, 52, 57, 245,

275–277, 281
function, 24, 25, 29, 32, 52, 53, 55, 57, 58
response, 18, 33, 40, 43, 51

Frobenius norm, 85, 254, 258
Fuzzy model, x

G
Gain matrix, 178
Gauss–Markov stochastic difference equation,

174

320 Index

Gauss–Markov theorem, 76
Gauss–Newton method, 94–96, 204
Gaussian distribution, 49, 102, 269–271
Generalized least-squares, see estimation

method
Generalized total least-squares, see estimation

method
Global optimum, 96, 158
Global solution, 157
Gradient, 63, 78, 94, 95, 200, 201, 203
Grey-box model, x, 12, 158
GTLS, 241, 242, 244

H
Hammerstein model, 164, 246
Hammerstein–Wiener model, 164
Hamming window, 57
Hankel matrix, 136, 137, 140
Hessian, 78, 94

I
Identifiability, xiii, 78, 82, 84, 109, 118
Identifiable, 78
Identification method

critical point, 34
equation error, 117, 199
output error, 121, 199
prediction error, 127, 130, 131
subspace, 135, 139, 140

Identity matrix, 73, 103, 249
IIR, 113
Independent, 11, 66, 78

serially, 175
statistically, 70–72, 74, 183, 188, 233, 268
variable, 4, 61

Indirect identification, 150
Indirect method, 165
Initial condition, 7, 8, 17, 19, 20, 31, 39, 48,

154, 156, 236, 289
Initial guess, 93, 96, 156, 191
Inner product

matrices, 142, 250
vectors, 68, 250, 253, 254

Innovation, 170, 174, 179, 180, 189
Input, 1
Input–output

behavior, 227
data, x, 37, 38, 43, 47, 116–118, 131, 132,

134, 135, 138, 140, 141, 145, 147,
148, 151, 158, 167, 241

properties, 227
relationship, 18, 20, 41, 113, 165, 289
variables, 4

Instrumental variable matrix, 123
Integration, 9, 152

J
Jacobi matrix, 93, 154, 188, 189, 197
Joint I-O identification, 150
Joint state-parameter estimation, 216
Joseph form, 174, 184
Jump, 216

K
Kalman filter, 167, 182–186, 189, 191, 216
Kalman gain, 171, 174, 184, 185

L
Lag, 234, 239, 272
Lagrange multiplier, 206
Laguerre basis function, 148
Laplace transform, 18, 19, 24, 27, 275–278,

287
Large scale model, xiii, 186
Least-squares method

see estimation method, 59
Left matrix division, 64
Levenberg–Marquardt, 95
Likelihood function, 102, 104
Linear regression, xi, 61, 62, 71, 77, 81, 82, 88,

92, 105, 109, 117, 120, 141, 146,
156, 158, 165, 167, 169, 170, 173,
204, 220, 232, 240, 252, 265, 293

Local optimum, 78, 226, 227
LPV, 140, 141, 144, 164
LTI, 9, 59, 107, 135, 138, 148, 275, 281, 283,

290, 291

M
Mathematical model, x, 1, 3, 5, 6, 10, 11, 165,

223
Matrix

adjoint, 251
co-factors, 251
determinant, 250, 251
diagonal, 65, 75, 175, 180, 184, 249, 257,

258, 264
diagonalizable, 257, 258, 260
exponential, 212, 259
idempotent, 264, 265
identity, 290
invertible, 38, 48, 64, 65, 251, 253
kernel, 71, 258
lower triangular, 125, 139, 184, 185, 249,

261, 262
non-singular, 257
norm, 85, 254, 258

Index 321

Matrix (cont.)
orthogonal, 81, 139, 185, 252, 264
positive definite, 65, 78, 125, 186, 253, 255
range, 85, 258
rank, 78, 79, 136, 251, 264
rectangular, 263
regular, 251, 252
semi-positive definite, 253, 258
singular, 251
square, 66, 249, 252, 256, 264
square root, 125, 186, 260, 261
symmetric, 77, 83, 125, 186, 249, 253, 255
time-invariant, 174
trace, 254
transpose, 250
upper triangular, 139, 249, 262

Matrix dimension, 38
Matrix inversion, 48, 250
Matrix inversion lemma, 294
Maximum, 70, 185
Maximum likelihood, 102, 109
Mean square error, 240
Measurement noise, 179, 188
Minimum, 63, 70, 76–78, 91, 172, 185, 255
Minimum length solution, 252
Minimum variance, 171–173, 175, 191, 199
ML, 102–104
Model calibration, 225, 241, 244
Model realization, 58, 135, 164
Model reduction, 216, 226
Model representation

convolution, see impulse response, 17, 18,
21, 113, 147

differential equation, 8, 9, 12
impulse response, 10, 12, 17, 18, 59, 113,

147
state-space, 8–10, 12, 19, 59, 136, 138,

177, 181, 182, 184, 187–189, 196
transfer function, 18, 24, 31, 36, 39,

113–116, 127
Model set, 12
Model structure, 4, 6, 7, 59, 60, 78, 84, 88, 99,

109, 114–116, 132, 135, 149, 156,
158, 163, 216, 223, 230, 233, 234,
239

Model structure selection, x, 164, 216
Model validation, x, xi, 12, 135, 223, 225,

230–232, 239, 241, 242, 244, 245
Modeling

physical, 225
semi-physical, x, 216

Modified Choleski (UD) decomposition, 262
Monic, 127, 131, 290
Monitoring, 1

Monte Carlo method, 97, 98, 107, 216, 217,
221

Moore–Penrose pseudo-inverse, 137, 252
More-steps ahead prediction, 129–131, 152,

215
Multi-output, 75, 76, 86, 177, 290
Multivariate regression, 174

N
Neural net, x
Newton method, 94, 95
Newton–Raphson, 94
NLS, 242, 244
Noise whitening, 131
Noise-reduction, 213
Non-parametric approach, xi, 15, 26, 217, 218
Nonlinear least-squares, see estimation method
Nonlinear regression, x, 92, 93, 101, 105, 126,

156, 187
Normally distributed, 112, 151, 233, 270, 271
Null matrix, 79, 264
Null space, 71, 258
Nyquist plot, 34, 36

O
Objective function, 62, 83, 102, 103, 130, 132,

133, 160
Observability matrix, 136, 139
Observation matrix, 61, 86, 140, 184, 210
Observer, 215, 217
Observer gain, 215
Off-set, 116, 118, 150, 198
On-line, 5, 163
One-step-ahead prediction, 127–131, 200, 215,

221
Open-loop control, 5, 57
Optimal sampling, 164
Orthogonal projection, 67, 92, 192
Orthogonal projection matrix, 68, 265
Outlier, 64, 198, 231, 232
Output, 2
Output error model, 115, 121, 122, 124, 126,

131, 200–203
Over-parametrization, 116, 133, 135

P
Parametric approach, 217, 219
Parametric sensitivity, 245
Pdf, 101, 102, 267, 270
Periodicity, 231, 232
Periodogram, 277
Phase, 281, 284

shift, 282, 284

322 Index

Physical laws, 5, 12, 165
Physical model, 216
Physical parameters, 12, 156, 165, 240
Pole excess, 288
Pole-zero cancelation, 226, 227, 291
Poles, 150, 227, 290
Polynomial, 109, 113, 115, 116, 130, 141, 147,

228, 246, 288–290
Posterior knowledge, 171
Pre-filtering, 130, 131
Prediction, x, 4, 5, 12, 72, 82, 101, 107, 119,

126, 132, 156, 178, 180, 184–186,
189, 193, 200, 201, 203, 212, 218,
219, 230, 233, 239–241, 244

Prediction error, 62, 64–67, 69, 71, 74, 92, 93,
120, 127, 129–131, 156, 157, 160,
162, 170, 198, 200, 204, 207, 215,
232, 233, 240, 293

Prediction uncertainty, 217, 219–221
Prior knowledge, x, xi, 1, 4, 5, 7, 11–13, 78,

90, 105, 132, 147, 152, 158,
170–172, 193, 206, 216, 217, 219,
223, 225, 230, 231

Probability, 88, 98, 234, 236, 267
Projection, 92, 106, 186, 265
Projection matrix, 265
Pseudo-inverse, 66, 252
Pseudo-linear regression, 120, 121, 156
Pulse-transfer operator, 290, 291

Q
QR factorization, 139, 262
Quadratic, 172, 252, 253, 293
Quasi-Newton method, 94

R
Random, 73, 98, 106

process, 132
variable, 72, 175, 267, 268
vector, 268–270
walk, 175, 187, 193, 196, 213

Range, 92, 287, 291
Rational model, 246
Rational polynomial, 129
RBS, 49, 50, 53–55, 57, 118, 165, 234
Re-parametrization, 81, 96, 99–101, 157, 158,

163, 213
Realization theory, 164
Recursive residuals, 170, 179
Regressor matrix, 79, 84, 92, 93, 117, 118,

120, 123, 264, 265
Regularization, 77, 95, 192

Tikhonov, 252
Relay feedback, 34

Residuals, 62, 65, 70, 71, 110–112, 146, 179,
231–234, 239, 243–245

Response
impulse, 10, 17, 18, 20, 21, 23, 33, 37, 59,

107, 116, 117, 136, 137
sinusoid, 24, 52
step, 22, 23

RLS, 172, 178, 191
Robust, 185, 186
RPE, 200, 205, 215
RQ factorization, 139
RRSQRT filter, 186

S
Sampling, 98, 107–109, 112, 192, 216, 217

instant, 75, 112, 152, 160, 169, 170, 177,
212, 220

interval, 21, 32, 38, 114, 118, 137, 152,
160, 164, 197, 219, 235, 241, 278,
279, 287

rate, 164
Sensitivity matrix, 93, 94, 98, 153, 154, 162
Sensor, 1, 2, 75, 181, 182, 188, 198, 209–211,

229, 232
Set-point, 140, 144, 195
Signal norm, 287
Simulation, 5, 6, 107, 152, 153, 156, 157, 165,

192, 217, 227, 228, 230, 245
Singular value decomposition, 78, 185, 263
Singular value matrix, 264
Smoothing, 4, 77, 206, 207, 216
Spectral decomposition, 257
Square root filter, 185, 186, 192
State, 1
Steepest-descent method, 95
Submatrix, 251
Support vector machine, x
SVD, 78, 79, 82, 84–87, 99, 139, 263, 264

T
Time

domain, x, 228, 239, 245, 275, 276, 278
series, xi, 1, 2, 232, 272

Time-invariant, xi, 7, 9, 13, 113, 131, 160, 167,
180, 184, 201, 223, 232, 290

Time-varying, xi, 5, 7, 59, 140, 141, 144, 145,
153, 165, 167, 169, 174, 178, 180,
184, 187, 189, 191, 192, 195, 197,
198, 206, 208, 215, 216, 223, 295

Index 323

TLS, 241, 242, 244
Total least-squares, see estimation method
Tracking, 169, 170, 173, 180, 184, 192, 204,

213
Trend, 116–118, 216, 218

U
UD decomposition, 184, 185
UKF, 192
Unbiased, 69, 71, 74, 76, 77, 123, 125, 131,

169, 170, 172, 173, 175, 191, 199
Uncertainty ellipse, 83, 269, 270
Uncorrelated, 69, 71, 77, 125, 128, 169, 171,

269
Uniformly distributed, 45, 49
Unknown-but-bounded, 4, 110, 218
Unstable, 132, 150
Update, 91, 171, 181, 186, 189

V
Variance, 73, 74, 76, 77, 88, 98, 110–112, 122,

125, 126, 151, 162, 169, 171, 175,
177, 180, 182, 207, 208, 220, 221,
226, 267, 269

propagation, 98, 189
Vector norm, 85, 253

W
Weighted least-squares, see estimation method
White noise, 6, 73, 74, 113–116, 121, 122,

130, 146, 174, 178, 183, 188
Wiener model, 164
Wiener–Hopf equation, 47, 48, 51, 117

Z
Zero-mean, 62, 70–73, 102, 122, 125, 128,

151, 152, 169, 178, 183, 269
Zero-order hold, 33
Zeros, 227, 290

	System Identification
	Series Editors' Foreword
	Preface
	Acknowledgements
	Contents
	Notations

	Chapter 1: Introduction
	1.1 System Theory
	1.1.1 Terminology
	1.1.2 Basic Problems

	1.2 Mathematical Models
	1.2.1 Model Properties
	1.2.2 Structural Model Representations

	1.3 System Identification Procedure
	1.4 Historical Notes and References
	1.5 Problems

	Part I: Data-based Identification
	Chapter 2: System Response Methods
	2.1 Impulse Response
	2.1.1 Impulse Response Model Representation
	2.1.2 Transfer Function Model Representation
	2.1.3 Direct Impulse Response Identification

	2.2 Step Response
	2.2.1 Direct Step Response Identification
	2.2.2 Impulse Response Identification Using Step Responses

	2.3 Sine-wave Response
	2.3.1 Frequency Transfer Function
	2.3.2 Sine-wave Response Identification

	2.4 Historical Notes and References
	2.5 Problems

	Chapter 3: Frequency Response Methods
	3.1 Empirical Transfer-function Identification
	3.1.1 Sine Wave Testing
	3.1.2 Discrete Fourier Transform of Signals
	3.1.3 Empirical Transfer-function Estimate
	3.1.4 Critical Point Identification

	3.2 Discrete-time Transfer Function
	3.2.1 z-Transform
	3.2.2 Impulse Response Identification Using Input-output Data
	3.2.3 Discrete-time Delta Operator

	3.3 Historical Notes and References
	3.4 Problems

	Chapter 4: Correlation Methods
	4.1 Correlation Functions
	4.1.1 Autocorrelation Function
	4.1.2 White Noise Sequence
	4.1.3 Cross-correlation Function

	4.2 Wiener-Hopf Relationship
	4.2.1 Wiener-Hopf Equation
	4.2.2 Impulse Response Identification Using Wiener-Hopf Equation
	4.2.3 Random Binary Sequences
	4.2.4 Filter Properties of Wiener-Hopf Relationship

	4.3 Frequency Analysis Using Correlation Techniques
	4.3.1 Cross-correlation Between Input-output Sine Waves
	4.3.2 Transfer-function Estimate Using Correlation Techniques

	4.4 Spectral Analysis
	4.4.1 Power Spectra
	4.4.2 Transfer-function Estimate Using Power Spectra
	4.4.3 Bias-variance Tradeoff in Transfer-function Estimates

	4.5 Historical Notes and References
	4.6 Problems

	Part II: Time-invariant Systems Identification
	Chapter 5: Static Systems Identification
	5.1 Linear Static Systems
	5.1.1 Linear Regression
	5.1.2 Least-squares Estimation
	5.1.3 Interpretation of Least-squares Method
	5.1.4 Bias
	5.1.5 Accuracy
	5.1.6 Identifiability
	5.1.7 *Errors-in-variables Problem
	5.1.8 *Bounded-noise Problem: Linear Case

	5.2 Nonlinear Static Systems
	5.2.1 Nonlinear Regression
	5.2.2 Nonlinear Least-squares Estimation
	5.2.3 Iterative Solutions
	5.2.4 Accuracy
	5.2.5 Model Reparameterization: Static Case
	5.2.6 *Maximum Likelihood Estimation
	5.2.7 *Bounded-noise Problem: Nonlinear Case

	5.3 Historical Notes and References
	5.4 Problems

	Chapter 6: Dynamic Systems Identification
	6.1 Linear Dynamic Systems
	6.1.1 Transfer Function Models
	6.1.2 Equation Error Identification
	6.1.3 Output Error Identification
	6.1.4 Prediction Error Identification
	6.1.5 Model Structure Identification
	6.1.6 *Subspace Identification
	6.1.7 *Linear Parameter-varying Model Identification
	6.1.8 *Orthogonal Basis Functions
	6.1.9 *Closed-loop Identification

	6.2 Nonlinear Dynamic Systems
	6.2.1 Simulation Models
	6.2.2 *Parameter Sensitivity
	6.2.3 Nonlinear Regressions
	6.2.4 Iterative Solution
	6.2.5 Model Reparameterization: Dynamic Case

	6.3 Historical Notes and References
	6.4 Problems

	Part III: Time-varying Systems Identification
	Chapter 7: Time-varying Static Systems Identification
	7.1 Linear Regression Models
	7.1.1 Recursive Estimation
	7.1.2 Time-varying Parameters
	7.1.3 Multioutput Case
	7.1.4 Resemblance with Kalman Filter
	7.1.5 *Numerical Issues

	7.2 Nonlinear Static Systems
	7.2.1 State-space Representation
	7.2.2 Extended Kalman Filter

	7.3 Historical Notes and References
	7.4 Problems

	Chapter 8: Time-varying Dynamic Systems Identification
	8.1 Linear Dynamic Systems
	8.1.1 Recursive Least-squares Estimation
	8.1.2 Recursive Prediction Error Estimation
	8.1.3 Smoothing

	8.2 Nonlinear Dynamic Systems
	8.2.1 Extended Kalman Filtering
	8.2.2 *Observer-based Methods

	8.3 Historical Notes and References
	8.4 Problem

	Part IV: Model Validation
	Chapter 9: Model Validation Techniques
	9.1 Prior Knowledge
	9.2 Experience with Model
	9.2.1 Model Reduction
	9.2.2 Simulation
	9.2.3 Prediction

	9.3 Experimental Data
	9.3.1 Graphical Inspection
	9.3.2 Correlation Tests

	9.4 Historical Notes and References
	9.5 Outlook
	9.6 Problems

	Appendix A Matrix Algebra
	A.1 Basic Definitions
	A.2 Important Operations
	A.3 Quadratic Matrix Forms
	A.4 Vector and Matrix Norms
	A.5 Differentiation of Vectors and Matrices
	A.6 Eigenvalues and Eigenvectors
	A.7 Range and Kernel of a Matrix
	A.8 Exponential of a Matrix
	A.9 Square Root of a Matrix
	A.10 Choleski Decomposition
	A.11 Modified Choleski (UD) Decomposition
	A.12 QR Decomposition
	A.13 Singular Value Decomposition
	A.14 Projection Matrices

	Appendix B Statistics
	B.1 Random Entities
	B.1.1 Discrete/Continuous Random Variables
	B.1.2 Random Vectors
	B.1.3 Stochastic Processes

	Appendix C Laplace, Fourier, and z-Transforms
	C.1 Laplace Transform
	C.2 Fourier Transform
	C.3 z-Transform

	Appendix D Bode Diagrams
	D.1 The Bode Plot
	D.2 Four Basic Types
	D.2.1 Constant or K Factor
	D.2.2 (j omega)±n Factor
	D.2.3 (1 + j omegaT)±m Factor
	D.2.4 e±j omegatau Factor

	Appendix E Shift Operator Calculus
	E.1 Forward- and Backward-shift Operator
	E.2 Pulse Transfer Operator

	Appendix F Recursive Least-squares Derivation
	F.3 Least-squares Method
	F.4 Equivalent Recursive Form

	Appendix G Dissolved Oxygen Data
	References
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

