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System Identi� cation in the Presence of Completely
Unknown Periodic Disturbances

Neil E. Goodzeit¤ and Minh Q. Phan†

Princeton University, Princeton, New Jersey 08544

A system identi� cation method to extract the disturbance-free dynamics and the disturbance effect correctly
despite the presence of unknown periodic disturbances is presented. The disturbance frequencies and waveforms
can be completely unknown and arbitrary. Only measurements of the excitation input and the disturbance-
contaminated response are used for identi� cation. Initially, the disturbances are modeled implicitly. When the
order of an assumed input-output model exceeds a certain minimum value, the disturbance information is com-
pletely absorbed in the identi� ed model coef� cients. A special interaction matrix explains the mechanism by which
information about the system and the disturbances are intertwined and more importantly, how they can be sepa-
rated uniquely and exactly for later use in identi� cation and control. From the identi� ed informationa feedforward
controller can be developed to reject the unwanted disturbances without requiring the measurement of a separate
disturbance-correlated signal.The multi-inputmulti-outputformulation is � rst derived in the deterministic setting
for which the system and disturbance identi� cation is exact. Extensions to handle noise-contaminated data are
also provided. Experimental results illustrate the method on a � exible structure. A companion paper addresses the
problem where the disturbance effect is modeled explicitly.

Introduction

T RADITIONAL system identi� cation techniques,1 ¡ 3 and more
recentlydevelopedmethods,4 ¡ 6 can be used to identify the sys-

tem dynamics from input and output data. These methods assume
that all of the system inputs are known, or that any unknown inputs
are white noise whose effects can be averaged out using suf� cient
data. Sometimes, however, not all of the system inputs are known,
and it may not be possible to disable or eliminate these unknown
inputs while data is collected for system identi� cation. In addition,
these inputs may be deterministic, for example, smooth or periodic
functions, and they may be large enough to dominate the system
response. There is no guarantee of perfect identi� cation when un-
known periodic disturbancesare present in the system. In this case,
the identi� ed model may or may not be accurate enough for control
design. In addition, these methods do not provide the information
needed to calculate the feedforward control signal to cancel the
effects of the unknown disturbances.

Reference 7 broadens the traditional approaches by considering
system identi� cation when unknown periodic inputs act on the sys-
tem. When the common disturbance period is known, Ref. 7 shows
that the disturbance effect and the system input–output dynamics
can be identi� ed exactly. The identi� cation results are then used
for feedback control design and to calculate a feedforward control
that cancels the effect of the disturbance on the system response.
The present paper extends the above method by considering pe-
riodic disturbance inputs where both the disturbance waveforms
and periods are unknown. By removing the required knowledge
of the common disturbance period, the paper seeks to answer the
fundamental question of whether it is indeed possible to identify
the system disturbance-free dynamics correctly in the presence of
completelyunknownperiodicdisturbances.Besidesdeterminingthe
conditions that ensure perfect identi� cation, we also wish to extract
the disturbance effect and use it to calculate a feedforward control
signal that cancels the effect of the disturbance. For this purpose,
we assume that the only information available are measurements
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of a control excitation signal and the system response. The system
response is corrupted by unmeasurable periodic disturbances with
unknownperiods that enter the system at unknownlocations.Unlike
Ref. 7, there is no explicit model of the disturbance effect on the
output in the current technique.Instead, the disturbanceinformation
is initially absorbed in the identi� ed model coef� cients from which
the system disturbance-freedynamics and the disturbanceeffect are
recovered.

We brie� y mention the implication of the proposed identi� cation
technique on the disturbance-rejection control problem. In addi-
tion to the classical notch � lter approach, the literature includes
many methods for solving disturbance-rejection problems. These
methods, some of which are capable of handling systems with un-
known dynamics and disturbances, include state-space approaches
based on disturbance-accommodation control (DAC),8 ¡ 11 transfer
function approaches that use adaptive � ltering techniques,12 ¡ 21 and
techniques using neural networks.22 ¡ 24 Our primary goal is to ad-
dress the system identi� cation problem in the presence of unknown
disturbance inputs. Once the system input–output dynamics and
disturbance effect are identi� ed, a disturbance-rejectioncontroller
can be designed using these results. In so doing, we avoid some of
the assumptions inherent in the referenced techniques. For exam-
ple,unlikeDAC approaches,we assumeno knowledgeof the system
dynamics.Also, rather than modeling and calculatingthe actualdis-
turbances,we identify their combinedeffect on the system response
instead. As a result, the number of disturbancesor where they enter
the system is unimportant. Unlike adaptive � ltering or neural net-
work approaches, we do not require a disturbance-correlated refer-
ence signal or need to determine the transfer function relating the
disturbances to the system response.

This paper begins by determining the conditionsfor the existence
of an exact model that relates the control excitation inputs to the
system disturbance-contaminated outputs without an explicit dis-
turbance model. The unknown periodic disturbances are entirely
absorbed in the coef� cients of this model that can be identi� ed from
input–output data. Next, from the identi� ed model, we show that
the system (disturbance-free) input–output dynamics can still be
extracted exactly, as if the unknown disturbanceswere not present.
We show how the disturbance effect can also be extracted and then
eliminated by a feedforward control signal. Finally, we discuss is-
sues related to system and disturbanceidenti� cation using measure-
ments that are contaminated by noise. Following the mathematical
development, experimental results illustrate the theory in the iden-
ti� cation of a � exible truss structure.
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Mathematical Formulation
We now developan interactionmatrix formulationthat showshow

information about the system and the disturbances are intertwined
and how they can be uniquely separated.

Input–Output Models Relating Excitation Input
to Disturbance-Corrupted Output Data

In this section we show that it is possible to construct a model
that can exactly predict the current value of the response,given only
past values of the response and control inputs, despite the system
response data being corrupted by the effects of unknown periodic
disturbanceinputs.The main emphasisof this section is to determine
the conditions under which such a model exists.

The system to be identi� ed is assumed to be representable by a
linear discrete-time state-space model

x(k + 1) = Ax (k) + Bu(k) + Bdd(k), y(k) = Cx(k) (1)

where x(k) is an n £ 1 state vector, u(k) is the m £ 1 control vector,
y(k) is the q £ 1 output vector, and k is the time step. The vec-
tor d(k) represents the unknown periodic disturbance inputs. The
system matrices, A, B, and C have dimensions n £ n, n £ m, and
q £ n. Both these matrices and the disturbance input matrix Bd are
unknown. Only measurements of the input u(k) and measurements
of the disturbance-corrupted system response y(k) are available for
identi� cation.

Equation (1) calculatesa one-step-aheadstate predictionx(k + 1)
given x(k), u(k), and d(k). By repeatedly evaluating x(k + 1), and
then substituting it back into Eq. (1), we generate a p-step-ahead
state vector prediction,

x(k + p) = Ap x(k) + Cu p(k) + Cd dp(k) (2)

where u p(k) and dp(k) are vectors of the control inputs and distur-
bances,

u p(k) =
é
êêêë

u(k)

u(k + 1)
...

u(k + p ¡ 1)

ùúúúû
, dp(k) =

é
êêêë

d(k)

d(k + 1)
...

d(k + p ¡ 1)

ùúúúû
The matrices Cand Cd are given by

C = [Ap ¡ 1 B, . . . , AB, B], Cd = [Ap ¡ 1 Bd , . . . , ABd , Bd ]
(3)

Note that Cand Cd are controllability matrices associated with the
control excitation and disturbance inputs, respectively.By repeated
application of the output equation, the expression for the pq £ 1
vector of system outputs yp(k) is

yp(k) = Ox(k) + Tu p(k) + Td dp (k) (4)

where yp (k) and the matrices O, T, and Td are given by

yp(k) =
é
êêë

y(k)

y(k + 1)
...

y(k + p ¡ 1)

ùúúû
, O =

é
êêêêêë

C

C A
...

C A p ¡ 2

C A p ¡ 1

ùúúúúúû

T =

é
êêêêêë

0 0 ¢ ¢ ¢ ¢ ¢ ¢ 0

C B 0
. . .

. . .
...

C AB C B
. . .

. . .
...

...
. . .

. . .
. . . 0

C Ap ¡ 2 B ¢ ¢ ¢ C AB C B 0

ùúúúúúû

Td =

é
êêêêêë

0 0 ¢ ¢ ¢ ¢ ¢ ¢ 0

C Bd 0
. . .

. . .
...

C ABd C Bd

. . .
. . .

...
...

. . .
. . .

. . . 0

C A p ¡ 2 Bd ¢ ¢ ¢ C ABd C Bd 0

ùúúúúúû
(5)

Note that O is the pq £ n system observability matrix. The ma-
trix T is a pq £ pm Toeplitz matrix made up of the q £ m system
Markov parameters C B, C AB , . . . , C Ap ¡ 2 B, whose elements are
the system response to a unit pulse applied at each control input.

To eliminate the effects of the disturbances dp(k) and the initial
state x(k) on the system input–output mapping, additional degrees
of freedomare now introducedinto the model. This is accomplished
by adding and subtracting Myp(k) to the right-hand side of Eq. (2)
to obtain

x(k + p) = Ap x(k) + Cu p (k) + Cddp(k) + Myp(k) ¡ Myp(k) (6)

where M is an arbitrary n £ pq matrix. Next, substituting Eq. (4)
for yp(k), expression (6) becomes

x(k + p) = A px(k) + Cu p(k) + Cd dp (k)

+ M[Ox(k) + Tu p (k) + Tddp(k)] ¡ Myp(k)

= ( Ap + MO)x(k) + (C + MT )u p(k)

+ (Cd + MTd )dp(k) ¡ Myp(k) (7)

As expected, Eq. (7) involves the system state x(k) and the dis-
turbance input dp(k), both of which are unknown. However, these
terms can be eliminated from the equation if there exists an n £ pq
matrix M such that the following conditions are satis� ed for all k:

Ap + MO = 0 (8)

(Cd + MTd )dp(k) = 0 8 k (9)

so that Eq. (7) becomes

x(k + p) = (C + MT )u p (k) ¡ Myp(k) (10)

Let us examine Eq. (9) more closely. For k =1, 2, . . . , N , N +
1, . . ., the constraint equations imposed by Eq. (9) can be grouped
together as

(Cd + MTd )D = 0 (11)

where

D = [dp (1), dp (2), . . . , dp(N ), dp(N + 1), . . .] (12)

Although it may appear that Eq. (11) is a rather large set of con-
straints, not all of these constraint equations are linearly indepen-
dent.The actualnumberof linearlyindependentconstraintequations
in Eq. (11) is nq , where n is the order of the system and q is the
rank of D. According to Eq. (12), the rows of D are time-shifted
sampled histories of the periodic disturbances. Consequently, its
row rank (for a suf� ciently large N ) is limited by the number of
distinct frequencies present the disturbances. To see this, consider
an example where the disturbance input is a sine wave function of
a single frequency, for example, 1 Hz, and this signal is being sam-
pled with a sampling interval of less than 0.5 s. Time shifting this
1-Hz signal by one time step will introduce a new (cosine) compo-
nent to this signal, thus causing the time-shiftedsignal to be linearly
independent from the original sampled signal. Additional shiftings
will not introduce new linearly independent signals. Furthermore,
these statements are valid even if the period of the signal is not an
integer multiple of the sampling interval. If the sampling interval
is exactly 0.5 s, then time shifting it will produce the same signal
with the sign reversed, thus creating no new linearly independent
signal. Thus, every distinct, zero-mean harmonic component of the
disturbance contributes at most two linearly independent rows to
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D. If any one of these disturbances have nonzero mean, the rank
of Dwill be increased further by one. In other words, if there are
f distinct frequencies present in the disturbances, then q = 2 f or
2 f + 1, depending on whether any disturbance has nonzero mean.
Let Df be formed by q linearly independent columns of D(a row
rank of a matrix is the same as its column rank), we can now write
all of the equations that M must satisfy as follows:

M[O, TdDf ] = ¡ [Ap , Cd Df ] (13)

Equation (13) is a set of n2 + 2nq linear equations in n £ qp =nqp
unknowns in M . Thus, the existence of M is assured provided
[O, Td Df ] is full (column) rank and p is chosen such that
nqp ¸ n2 + q n. When expressed in terms of the disturbance fre-
quencies, we have the following condition for p:

pq ¸ n + 2 f + 1 (14)

Equation (14) represents a safe lower bound for p because there
are cases where the true lower bound for p is even smaller. First,
Eq. (14) assumes the general case where the disturbances do not
have zero mean. Otherwise, it becomes pq ¸ n + 2 f . Second, it
also assumes that the disturbances have no frequency components
at exactly the Nyquist frequency (half the sampling frequency). As
illustratedin the precedingexample, such sampled signals will con-
tribute not two but only one linearly independent row to D. Note
that all of these exceptions will potentially cause the lower bound
for p to be even smaller, indicating that Eq. (14) is a suf� cient con-
dition. It is important to realize that there is no need to select p
corresponding to its truly lower bound because any larger p can be
used. In so doing, one can avoid all of the subtletiesdiscussed in the
preceding explanation.

Therefore, for periodic disturbances, if p is selected to be large
enough to satisfy Eq. (14), existence of M implies existence of an
input–output model of the form

y(k + p) = C(C + MT )u p (k) ¡ C Myp(k) (15)

Equation (15) is obtained by premultiplying both sides of Eq. (10)
by C . Shifting the time index back by p steps, for k ¸ p this expres-
sion becomes

y(k) = C(C + MT )u p(k ¡ p) ¡ C Myp(k ¡ p) (16)

where

u p(k ¡ p) =
é
êêë

u(k ¡ p)

u(k ¡ p + 1)
...

u(k ¡ 1)

ùúúû
, yp (k ¡ p) =

é
êêë

y(k ¡ p)

y(k ¡ p + 1)
...

y(k ¡ 1)

ùúúû
Equation (16) shows that, even though the system response is

corrupted by the unknown disturbance inputs, a model exists such
that a one-step-ahead response prediction y(k) can be calculated
exactly from p past values of the inputs and outputs. The distur-
bance information is completely absorbed in such an input–output
model, the coef� cients of which are calculated as will be described.
The special matrix M as derived here describes the mechanism by
which the system and disturbance information is interrelated. For
this reason we use the term interaction matrix to describe it.

Calculating Model Coef� cients from Input–Output Data
Equation (16) expresses y(k) in terms of p past values of the

system response, y(k ¡ 1), . . . , y(k ¡ p), and p past values of the
control input,u(k ¡ 1), . . . , u(k ¡ p). This expressionhas the same
form as an autoregressive moving average model with exogenous
input (ARX) model,

y(k) = a 1 y(k ¡ 1) + a 2 y(k ¡ 2) + ¢ ¢ ¢ + a p y(k ¡ p) + b 1u(k ¡ 1)

+ b 2u(k ¡ 2) + ¢ ¢ ¢ + b pu(k ¡ p) (17)

where a 1, a 2 , . . . , a p and b 1 , b 2, . . . , b p are the ARX model coef-
� cients that are now known to be related to the matrices in Eq. (16)
by

[a p , a p ¡ 1, . . . , a 1] = ¡ C M

[b p , b p ¡ 1, . . . , b 1] =C(C+ MT ) (18)

By the assumptionthat measurementsof u(k) and y(k) are available
for k = 0, 1, . . . , ,̀ the model coef� cient matrices can be calculated
from

[C(C + MT ), ¡ C M] = Y V T (V V T )+ (19)

where Y and V are data matrices arranged in the form

Y = [ y( p), y( p + 1), . . . , y( )̀]

V = [ u p (0) u p(1) ¢ ¢ ¢ u p(` ¡ p)

yp (0) yp(1) ¢ ¢ ¢ yp(` ¡ p)] (20)

The + sign in Eq. (19) denotes the pseudoinverse operation that
should be performed via the singular value decomposition to de-
tect and eliminate numerical ill-conditioningissues if they arise. It
is assumed that the control input is suf� ciently rich, for example,
random input, so that the rows containing the shifted sequences of
u(k) are linearly independentand that there are suf� cient measure-
ments available so that the number of equations is at least equal to
or greater than the number of unknowns. As already mentioned, in
the absence of noise, if p is selected to be large enough, Eq. (19)
will determine a model that results in an exact � t to the data, despite
the presenceof the unknown periodicdisturbance.As shown earlier,
increasing p makes available additional degrees of freedom so that
the disturbance effect can be completely absorbed into the model
coef� cients. In the following section we show that this absorption
occurs in such a speci� c way that the system pulse responsesamples
(Markov parameters) can still be recovered exactly from the altered
coef� cients without knowing the interaction matrix M . The system
Markov parameters completely describe the system input–output
dynamics.

Recovering System Markov Parameters from Model Coef� cients
Once the model coef� cientshavebeendeterminedusing Eq. (19),

any number of system Markov parameters can be calculated as fol-
lows. The ARX model coef� cients in Eq. (18) are related to one
another by

[b p , b p ¡ 1 , . . . , b 1] = CC ¡ [a p , a p ¡ 1, . . . , a 1]T

= [C Ap ¡ 1 B, . . . , C AB, C B] ¡ [a p , a p ¡ 1 , . . . , a 1]

£

é
êêêêêë

0 0 ¢ ¢ ¢ ¢ ¢ ¢ 0

C B 0
. . .

. . .
...

C AB C B
. . .

. . .
...

...
. . .

. . .
. . . 0

C Ap ¡ 2 B ¢ ¢ ¢ C AB C B 0

ùúúúúúû
(21)

By equating of the terms on each side of this expression, the � rst p
system Markov parameters are

C B = b 1

C AB = b 2 + a 1C B

C A2 B = b 3 + a 2C B + a 1C AB

...

C A p ¡ 1 B = b p + a p ¡ 1C B + a p ¡ 2C AB + ¢ ¢ ¢ + a 1C A p ¡ 2 B

(22)
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To determine additional system Markov parameters, recall that by
selection of the model order p to be large enough, a matrix M will
exist so that Eq. (8) is satis� ed. This condition can be expressed as

Ap + MpC A p ¡ 1 + ¢ ¢ ¢ + M2C A + M1C = 0 (23)

where M1 , M2 , . . . , Mp are the n £ q partitions of M, that is,
M = [M1 , M2 , . . . , Mp ]. Premultiplying Eq. (23) by C and post-
multiplying it by B yield

C A p B + (C Mp )C A p ¡ 1 B + ¢ ¢ ¢ + (C M2)C AB + (C M1)C B = 0
(24)

By the recognitionthat a 1 = ¡ C Mp , a 2 = ¡ C M p ¡ 1, . . . , and a p =
¡ C M1 , the system Markov parameter C Ap B is given by

C Ap B = a 1C A p ¡ 1 B + ¢ ¢ ¢ + a p ¡ 1C AB + a pC B (25)

Additional Markov parameters can be obtained analogously,

C A p + 1 B = a 1C Ap B + ¢ ¢ ¢ + a p ¡ 1C A2 B + a pC AB

... (26)

Therefore, despite the unknown disturbances altering the ARX
model coef� cients, the system Markov parameters can still be re-
covered exactly as if the disturbanceswere not present. From these
Markov parameters one can obtain a minimum-order state-space
realization that can predict the disturbance-free response to arbi-
trary inputs. The following section will show how to construct this
reduced-order model. Additionally, note that the formulas for the
system Markov parameters given earlier turn out to be the same
as those derived from the coef� cients of an input–output trans-
fer function identi� ed from data that is not contaminated by any
disturbances.4 ¡ 6 Therefore, the identi� ed model whose coef� cients
are thought to be corrupted by the unknown disturbancesis capable
of predicting the system disturbance-freeresponse exactly as well.

Determining a Minimum-Order State-Space Realization
Given the system Markov parameters, one can easily obtain a

minimum-order state-space realization. For completeness we now
provide the key equations involved in the realization by the eigen-
system realization algorithm (ERA) that is described in detail in
Ref. 4. One � rst forms the Hankel matrices H (0) and H (1) from
the recovered system Markov parameters, k = 0, 1

H (k) =
é
êêë

C Ak B C Ak + 1 B ¢ ¢ ¢ C Ak + s ¡ 1 B

C Ak + 1 B C Ak + 2 B ¢ ¢ ¢ C Ak + s B
...

... ¢ ¢ ¢
...

C Ak + r ¡ 1 B C Ak + r B ¢ ¢ ¢ C Ak + s + r ¡ 2 B

ùúúû
(27)

For suf� ciently largevaluesof r and s, the rank of the Hankelmatrix
is equal to the order n of the minimal realization.A minimum-order
state-space realization is given by

Ā = R
¡ 1

2
n RT

n H (1)Sn R
¡ 1

2
n , B̄ = R

1
2

n ST
n Em , C̄ = E T

q Rn R
1
2

n (28)

where the q £ rq matrix ET
q and the m £ sm matrix ET

m are de� ned
as E T

q = [Iq £ q Oq £ (r ¡ 1)q ] and E T
m = [Im £ m Om £ (s ¡ 1)m ]. The sin-

gular value decomposition of H (0) is H (0) = R R ST = Rn R n ST
n

where n is the order of the minimum realizationand only n nonzero
singular values of the Hankel marix H (0) are retained in R n .

Identifying the Disturbance Effect from Input–Output Data
In the preceding sections the goal was to identify a model for the

system where the explicit effect of the unknown disturbances on
the input–output mapping was completely eliminated. By increas-

ing the ARX model order, we showed that the disturbance effect
was absorbed in the coef� cients. Moreover, we showed that sys-
tem Markov parameters could still be recovered correctly from the
altered coef� cients and be used to calculatea minimum-order state-
space realization, as if there were no disturbances present. If the
purpose of identi� cation is only to produce a correct system model
relating the control inputs to the system outputs, no further steps are
necessary. The disturbance information, however, is contained in
the identi� ed model coef� cients, and if extracted, it can be used to
calculatea feedforwardcontrol that cancels the disturbanceeffect or
to determine the steady-stateeffect of the disturbanceon the system
response. In the following we will show that, in addition to exact
system identi� cation, exact recoveryof the disturbanceinformation
is also possible.

By the use of a similar argument as described in Eqs. (2–7), a
f -step-aheadstate predictionmodel correspondingto the identi� ed
minimum-order state-space model realization is

x̄(k + f ) = ( Ā f + M̄Ō ) x̄(k) + (C̄ + M̄T̄ )u f (k)

+ (C̄d + M̄T̄d )d f (k) ¡ M̄yf (k) (29)

where Ō is the q f £ n system observabilitymatrix calculated from
Ā and C̄ , C̄ is the n £ m f system controllability matrix calculated
from Ā and B̄, and T̄is the q f £ m f Toeplitz matrix calculatedfrom
Eq. (5) using the identi� ed system Markov parameters. Note that
Eq. (29) is valid for any value of f and any matrix M̄. The term on
the right-hand side that contains df (k) is unknown, and in contrast
to the previous development, we wish to extract this disturbance
informationrather than making this term vanish.Therefore,we seek
only to eliminate x̄(k) from Eq. (29) by � nding an n £ q f matrix M̄
that satis� es the condition

Ā f + M̄Ō = 0 (30)

Because Ō is full column rank (only the system’s observable sub-
space can be identi� ed), such an M̄ can be found from

M̄ = ¡ ( Ā) f (Ō)+ (31)

if f is chosen such that q f ¸ n. We can even choose f to be p for
convenience. This choice of M̄ will eliminate explicit dependence
on the state variable x̄(k) in Eq. (29), but the disturbanceeffect will
appear explicitly as an additive term in the model. Substituting M̄
given in Eq. (31) into Eq. (29) and reordering terms yield

x̄(k + f ) = ¡ M̄y f (k) + (C̄+ M̄T̄ )u f (k) + (C̄d + M̄T̄d )d f (k)
(32)

Shifting the time index back by f time steps, and premultiplying
Eq. (32) by C̄ produce

y(k) = ¡ C̄M̄y f (k ¡ f ) + C̄(C̄ + M̄T̄ )u f (k ¡ f )

+ C̄(C̄d + M̄T̄d )d f (k ¡ f ) (33)

where

yf (k ¡ f ) =
é
êêêë

y(k ¡ f )

y(k ¡ f + 1)
...

y(k ¡ 1)

ùúúúû
, u f (k ¡ f ) =

é
êêêë

u(k ¡ f )

u(k ¡ f + 1)
...

u(k ¡ 1)

ùúúúû

d f (k ¡ f ) =
é
êêêë

d(k ¡ f )

d(k ¡ f + 1)
...

d(k ¡ 1)

ùúúúû
The last term on the right-hand side of Eq. (33) is a linear combina-
tion of f samples of the periodic disturbance and is, therefore, also
periodic with a common period N . With this periodic term denoted
as g (k), Eq. (33) becomes

y(k) = ¡ C̄M̄yf (k ¡ f ) + C̄(C̄ + M̄T̄ )u f (k ¡ f ) + g (k) (34)
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In the form of an ARX model, we now have

y(k) = ¯a 1 y(k ¡ 1) + ¯a 2 y(k ¡ 2) + ¢ ¢ ¢ + ¯a f y(k ¡ f ) + ¯b 1u(k ¡ 1)

+ ¯b 2u(k ¡ 2) + ¢ ¢ ¢ + ¯b f u(k ¡ f ) + g (k) (35)

where the coef� cients are given by

[ ¯a f , ¯a f ¡ 1, . . . , ¯a 1] = ¡ C̄M̄

[ ¯b f , ¯b f ¡ 1, . . . , ¯b 1] = C̄(C̄ + M̄T̄ ) (36)

It is important to realize that for periodic unknown disturbances
both the model given by Eq. (17) and the one given by Eq. (35)
are equally correct. Assuming noise-freemeasurements, both mod-
els will � t the response data perfectly. In the case of Eq. (17), the
disturbance effect is entirely embedded in the model coef� cients
along with the system dynamics. In the case of Eq. (35), the model
has been partitioned so that the disturbance effect appears as an
additive periodic term g (k), and the coef� cients include only the
system disturbance free dynamics. Once Eq. (36) is used to deter-
mine the minimum realization ARX model coef� cients ¯a i and ¯b i ,
i = 1, 2, . . . , f , the disturbance effect g (k) for k ¸ f is given by

g (k) = y(k) ¡ ¯a 1 y(k ¡ 1) ¡ ¯a 2 y(k ¡ 2) ¡ ¢ ¢ ¢ ¡ ¯a f y(k ¡ f )

¡ ¯b 1u(k ¡ 1) ¡ ¯b 2u(k ¡ 2) ¡ ¢ ¢ ¢ ¡ ¯b f u(k ¡ f ) (37)

Calculating the Steady-State Disturbance Response
and Feedforward Control Signal

Once g (k) and the ARX model coef� cients ¯a i and ¯b i have been
determined,we have complete informationto determineboth a feed-
forward control signal that cancels the disturbance effect and the
steady-state response of the system to the unknown disturbances.
This is done as follows. With u f (k) denoted as the feedforward
control to be applied to the system, the model of Eq. (35) becomes

y(k) = ¯a 1 y(k ¡ 1) + ¯a 2 y(k ¡ 2) + ¢ ¢ ¢ + ¯a f y(k ¡ f ) + ¯b 1u f (k ¡ 1)

+ ¯b 2u f (k ¡ 2) + ¢ ¢ ¢ + ¯b f u f (k ¡ f ) + g (k) (38)

From this expression,the feedforward control signal that makes the
steady-state system response equal zero must satisfy

¯b 1u f (k ¡ 1) + ¯b 2u f (k ¡ 2) + ¢ ¢ ¢ + ¯b f u f (k ¡ f ) + g (k) = 0
(39)

The needed feedforward control signal is simply the steady-state
solution to Eq. (39). Various ways of calculating the feedforward
control signal are discussed in Ref. 7. Whether a feedforward con-
trol signal exists that can exactly cancel the disturbances depends
on several factors. If the disturbancescause the output to have a fre-
quency componentat which the control input has no in� uence (e.g.,
the input-output transfer function equals zero at this frequency),
then this component cannot be canceled by feedforward control. In
addition,providedthe controlcan in� uence the system output, if the
number of independentinputs is equal to or greater than the number
of outputs, then a feedforwardcontrol exists that exactly cancels the
disturbanceresponse.Otherwise, a perfectcancellationis in general
not possible.

From Eq. (35), in the absence of the input u(k), the system re-
sponse to the unknown disturbances yd (k) is given by

yd (k) = ¯a 1 yd (k ¡ 1) + ¯a 2 yd (k ¡ 2) + ¢ ¢ ¢ + ¯a f yd (k ¡ f ) + g (k)
(40)

Knowing g (k) and ¯a i , i =1, 2, . . . , f , the estimated disturbance
response yd (k) can be solved for from Eq. (40), which will match
the actual disturbance response in the steady state.

Analysis of Disturbance-Corrupted Model
In the absence of noise, the Hankel matrix H (0) will have pre-

ciselyn nonzerosingularvalues, the same number as the true system
order. In the presence of noise, however, model reduction by exam-

ining the singular values of the Hankel matrix H (0) is generally
dif� cult because H (0) tends to appear full rank. This limitation can
be overcome by recognizing that the identi� ed model of Eq. (17)
can be converted to a modal state-space form from which analy-
sis can be carried out to determine each respective mode of the
model. In general, they include true identi� able dynamic modes of
the system, uncontrollable disturbance modes, and uncontrollable
modes due to overparameterization. In the following we discuss
ways by which one can distinguish these modes from the identi� ed
model.

The disturbance modes comprise the uncontrollablesubspace of
the ARX model that generates the disturbance effect g (k). In the
ideal noise-free case, these modes are easy to identify. They con-
tribute to model’s response prediction,but cannot be excited by the
control input. In addition,because their contributionto the response
prediction includes only sinusoidal components at the disturbance
frequencies, these modes have zero damping. Identifying the dis-
turbance modes allows the unknown disturbance frequencies to be
determined. Over-parameterization modes result because in prac-
tice it is necessary to select a model order p much larger than that
required by Eq. (14) for several reasons. This is because the true
(or effective) order of the system is not known exactly and neither
are the number of distinct disturbance frequencies. Therefore, the
model order must be selected so that suf� cient degrees of freedom
are available to absorb the identi� able dynamics and disturbance
effect given these uncertainties. Additionally, for accurate results,
the model order must be further increased to reduce the effects of
measurement and process noise. This situation will be illustrated
later by an example.

In thepresenceof noise, to properlycategorizethemodel’s modes,
it is necessary to obtain identi� cation results for several values of
p and, hence, for several different levels of model overparame-
terization. As the model order increases, the damping of the true
system modes converge to nonzero positive values (for a stable sys-
tem), whereas the disturbance mode damping drops to near zero.
The disturbance mode damping may either be positive or nega-
tive with equal likelihood. Because of this, it is not unusual for
the disturbance-corrupted model to contain unstable modes that
restrict how it can be used without further processing. The over-
parameterizationmodes also have positive damping, and they gen-
erally constitute an easily recognizable band of modes distributed
over the entire frequency range.

Besides modal damping, the other important discrimination cri-
terion is the contribution of a mode to the model’s input–output
mapping or the system pulse response. Using the method to be de-
scribed enables the modal pulse responsecontributionsto be ranked
in orderfrom themost signi� cant to least signi� cant.Observinghow
the contribution factors and rankings change as the model order p
increases provides a powerful tool for modal discrimination. If the
system is identi� ed when the disturbances are not present the situ-
ation is simple. The overparameterizationmodes have the smallest
contribution factors, and the dominant dynamics have the largest.
As p increases the rankings change little, except some weakly con-
trollable or weakly observable dynamic modes may move up as
they become better resolved. The overparameterizationmodes can
be discarded if a reduced-order model is desired because they do
not contribute signi� cantly to the input–output mapping. Dynamic
modes that are weakly controllable,weaklyobservable,or both have
rankings in between and can also be discarded with minimal effect.
When disturbances are present, the disturbance modes may appear
to have large contribution factors. However, as p increases they
diminish toward zero. In addition, the contribution factors for the
dominant system dynamics will in general increase and ultimately
converge to some constant value.

To compute the modal contribution factors, the identi� ed ARX
model is converted to a canonical state-space form and then to the
modal form

w (k + 1) = K w(k) + C u(k), y(k) = X w(k) (41)

where the dimension of the state vector w(k) is qp £ 1, where q is
the numberof outputsand p is theassumedorderof the input–output
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model. The system matrix K is a block diagonal matrix constructed
from the system real and complex eigenvalues,

K = diag{k (1)
r , k (2)

r , . . . , [ r (1)
c ¡ x (1)

c

x (1)
c r (1)

c
] , [ r (2)

c ¡ x (2)
c

x (2)
c r (2)

c
] , . . .}

(42)

and the output and input in� uence matrices are

X = [c(1)
r , c(2)

r , . . . , c(1)
c , c(2)

c , . . . ], C =

é
êêêêêêêêë

b(1)
r

b(2)
r
...

b(1)
c

b(2)
c
...

ùúúúúúúúúû

(43)

where c(i )
r and c(i )

c and b(i )
r and b(i)

c are the respectiveoutputand input
in� uence coef� cients associated with real eigenvalues k (i )

r and the
complex (conjugate) eigenvaluepairs r (i)

c § j x ( i)
c . The modal pulse

responses are

P( i)
r (k) = c(i )

r ( k (i )
r )

k ¡ 1
b(i)

r , P (i )
c (k) = c(i)

c [ r (i )
c ¡ x (i)

c

x ( i)
c r (i )

c
]

k ¡ 1

b( i)
c

(44)

and the total system pulse response is

Pt (k) =
nr

î = 1

P( i)
r (k) +

nc

î = 1

P (i)
c (k) =

nm

î = 1

P( i)(k) (45)

where nr is the number of real eigenvalues and nc is the number
of complex-conjugateeigenvaluepairs. For simplicity the two sum-
mations are replaced with a single one, where P (i) (k) is the pulse
response of the i th mode and nm =nr + nc .

The matrix modal contribution factors are given by

S (i) =
L

k̂ = 1

Pt (k) ¢ P (i) (k) (46)

where the S (i) are q £ m matrices and L is the number of pulse
responsesamples. The dot symbol denotes the productevaluatedby
multiplying the correspondingelements of each matrix. To simplify
the discriminationprocess, the scalar modal contributionfactors s (i)

are determined by summing the elements of S (i) ,

s (i) =
q

k̂ = 1

m

l̂ = 1

S (i)
kl (47)

Fig. 1 Flexible truss structure.

Equations(46) and (47) determinequantitiesthat are both a measure
of the correlation between the total and individual modal pulse re-
sponsesand the norm of the individualmodal pulse responsesthem-
selves. Therefore, modes that have a large effect on the response,
and that are strongly correlated with the total pulse response, will
have the largest contribution factors.

Once the disturbance modes have been identi� ed based on their
damping and contribution factors, then a disturbance-free model
can be determined.The reduced-orderstate-spacemodel is obtained
by deleting the states corresponding to the disturbance modes, but
retaining all other modes. This reduced-order model can then be
used to determine the ARX model given in Eq. (35) and to extract
the disturbance effect.

Finally, note that in the presence of noise, the method used to
compute g (k) can be modi� ed to takeadvantageof thenoise� ltering
effect of the identi� ed model as follows. With noise, the identi� ed
model of Eq. (17) will not � t the data perfectly. The least-squares
solution, however, minimizes the Euclidean norm of the error e (k)
between the actual and predicted response over the data record,

e (k) = y(k) ¡ ŷ(k) (48)

where

ŷ(k) = a 1 y(k ¡ 1) + a 2 y(k ¡ 2) + ¢ ¢ ¢ + a p y(k ¡ p)

+ b 1u(k ¡ 1) + b 2u(k ¡ 2) + ¢ ¢ ¢ + b pu(k ¡ p) (49)

The output ŷ(k) is a � ltered version of the original output y(k).
The � ltering action is provided by the overparameterizationof the
one-step-ahead response model.5,6 Therefore, to compute the dis-
turbance effect g (k), one should use

g (k) = ŷ(k) ¡ ¯a 1 y(k ¡ 1) ¡ ¯a 2 y(k ¡ 2) ¡ ¢ ¢ ¢ ¡ ¯a f y(k ¡ f )

¡ ¯b 1u(k ¡ 1) ¡ ¯b 2u(k ¡ 2) ¡ ¢ ¢ ¢ ¡ ¯b f u(k ¡ f ) (50)

where ŷ(k) is used in place of y(k) and the uncontrollable modes
due to overparameterization are retained in ¯a i and ¯b i to � lter the
original data y(k ¡ 1), y(k ¡ 2), u(k ¡ 1), u(k ¡ 2), etc . . ..

Experimental Results
The � exible lightly damped structure used for the experimental

study is shown in Fig. 1 (Ref. 25). Two accelerometersat one end of
the structure are used as output sensors. Located nearby is a proof-
mass actuator acting as a disturbancesource. Two other proof-mass
actuatorsat the far end of the structure serve as excitation inputs. To
collect data for system identi� cation, random excitation are applied
to the two input actuators, and the two accelerometer responses
are recorded in the presence of a disturbance-containing frequency
componentsat 13.6, 17, 20, and 24 Hz. To test the developedtheory,
we use only excitation input and disturbance-corrupted data in the



GOODZEIT AND PHAN 257

Table 1 System and disturbance identi� cation results

Reference valuesa Model order 90 Model order 60

Frequency, Damping, Contribution Frequency, Damping, Contribution Frequency, Damping, Contribution
Hz % factor Hz % factor Hz % factor

System dynamicsb

13.51 0.99 7.04 13.54 1.21 7.59 13.58 1.98 4.14
17.58 0.87 3.84 17.56 0.89 3.72 17.55 1.44 2.82
15.69 0.64 2.44 15.66 0.61 2.59 15.67 0.62 2.65
24.59 0.98 1.15 24.53 1.07 1.13 24.55 1.10 1.04
48.85 0.87 0.23 48.77 0.79 0.12 48.79 0.84 0.18
7.35 2.73 0.15 7.38 2.24 0.27 7.32 3.20 0.15
49.19 2.45 0.12 49.27 2.17 0.12 49.31 2.22 0.15
28.85 0.94 0.11 28.79 0.93 0.10 28.73 1.46 0.12
8.23 1.39 0.11 8.29 1.45 0.18 8.26 1.20 0.14
11.32 5.15 0.09 11.66 5.40 0.08 11.49 5.49 0.06

Disturbance modes
13.60 0.0 0.0 13.60 ¡ 0.0050 1.87 13.60 ¡ 0.0050 8.76
17.00 0.0 0.0 17.00 0.0013 0.19 16.99 ¡ 0.0006 3.17
20.00 0.0 0.0 20.00 ¡ 0.0012 0.001 20.00 0.0029 0.003
24.00 0.0 0.0 24.00 0.0020 0.003 24.00 0.0018 0.039

aSystem dynamics identi� ed in the absence of the disturbances with model order 60. bTen system modes with the largest pulse response contribution factors.

Fig. 2 Reference pulse response.

identi� cation, and the disturbance input is assumed to be unknown.
The disturbance components at 13.6 and 17 Hz are close to the
truss structuralmodes,which makes the identi� cationproblemmore
dif� cult.Furthermore,the magnitudeof thedisturbanceinput is such
that the disturbance-corrupted response is roughly six times larger
than the response to the excitation input only so that we have a
situation where the identi� cation data is signi� cantly dominated by
the unknown disturbance.

Table 1 summarizes the identi� cation results for assumed ARX
model orders p of 60 and 90. For comparison, results are also given
for a referenceor truth model identi� ed in the absenceof the distur-
bance. In each case 3200 data samples (0.006-s sampling interval)
are used for identi� cation. Table 1 gives the frequencies, damping
ratios, and pulse response contribution factors of the 10 most sig-
ni� cant system modes (as ranked by their contributionfactors). The
same information is given for the modes associated with the un-
known disturbance. Table 1 reveals among other things that with
noise-contaminated measurements, models identi� ed in the pres-
ence of disturbances can have serious defects that may render them
unusable without additional processing. This is why the mode dis-
criminationtechniquedescribedin the precedingsection is essential
to producing high-quality models. To appreciate the problem, con-
sider Fig. 2, which shows the reference model pulse response ob-
tained with the disturbanceturned off. Compare the reference pulse
response to the one in Fig. 3 identi� ed with disturbance-corrupted
dataand p =60. In theorywith noise-freemeasurementstheyshould
be identical, but in practice they are not. In fact, the pulse response
obtained with disturbance-corrupted data is growing slowly due to
the contribution of two identi� ed disturbance modes that turn out
to be slightly unstable. The appearance of possibly unstable distur-

Fig. 3 Disturbance-corrupted pulse response, p = 60.

bance modes should not be a surprise because the correct damping
factor for a disturbance mode is zero, and with noise contaminated
data, the identi� ed damping ratio may turn out to be positiveor neg-
ative for unbiased identi� cation. Moreover, the disturbancemode at
13.6 Hz is not only unstable, it has the largest modal contribution
factor. Recall that with noise-free measurements, the contribution
factors for the disturbance modes are zero. Thus, the presence of
these unstable modes renders this model unusable in its current
form without additional processing.

The � rst step to produce a high-quality model is to discriminate
the disturbance modes. This is best accomplished by examining
the modal damping because disturbance modes will have very low
(positive or negative) damping. The disparity between the distur-
bance mode damping and the damping of the other modes can be
seen in Fig. 4 for the case p = 90. The four disturbancemodes have
damping ratios that are more than two orders of magnitude lower
than those of the system dynamics modes and overparameterization
modes (largestpositivedamping ratio of 0.002%for the disturbance
at 24 Hz and model order 90). With increasing p, one obtains a re-
duction in the disturbance mode damping ratios with increasing
model order whereas the system mode damping ratios converge to
nonzero positive values as expected.

In the event that the actual system modes have near-zero damp-
ing, or if the data are very noisy, the disturbance modes can still be
discriminated by examining the modal pulse response contribution
factors. In the noise-free case, disturbance modes have zero contri-
bution factors. This is because, in the input–output transfer func-
tions, the disturbance modes appear along with zeros that cancel
them perfectly. With noisy measurements, the pole-zero cancella-
tions are imperfect,particularlyif a disturbance’s effect is large, that
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Fig. 4 Modal damping vs modal frequency, p = 90.

Fig. 5 Identi� ed and reference pulse response, p = 90.

is, when a disturbance is coincident with a lightly damped system
mode. Therefore, the disturbance mode may appear to have a large
and, perhaps, dominant contribution to the system pulse response
as illustrated in Fig. 3. The contribution factors for the disturbance
modes will, however, decrease toward zero as the selected model
order p increases.This is in contrast to the actual system dynamics,
whose modal factors may increase and ultimately converge to some
nonzero values with increasing model order. As seen in Table 1 the
contribution factor for the disturbance mode at 13.6 Hz drops by
almost a factor of � ve as the model order increases from 60 to 90.
The contribution factor for the disturbancemode at 17 Hz drops by
over an orderof magnitude.In contrast,the contributionfactorof the
true system mode at 13.5 Hz nearly doubles. Overparameterization
modes have inconsistentdamping factors, pulse responsecontribut-
ing factors, and frequencies as p changes; therefore, they can be
easily discriminated.Finally, Fig. 5 shows the pulse response iden-
ti� ed with disturbance-corrupted data (with all disturbance modes
identi� ed and removed) is in close agreement with the reference
pulse response identi� ed with disturbance-freedata.

Conclusions
We have developed an interactionmatrix formulation that shows

how it is possible to identify a system input–output dynamics cor-
rectly in the presence of unknown periodic disturbances. Provided
the order of an assumed model is suf� ciently large, the disturbance
effectwill be completelyabsorbedinto its coef� cients.Furthermore,
thedetailsof theabsorptionare such thatthesysteminput–outputdy-
namics can still be recovered correctly from the altered coef� cients
as if therewerenodisturbancespresent.In additionto identifyingthe
system disturbance-freedynamics correctly, the disturbance effect
can also be extracted from the identi� ed model coef� cients. This
information can be used to calculate a feedforward control signal
and the steady-state response to the disturbances. The formulation
only requires measurements of the control excitation inputs and the
system outputs and is general enough to handle multi-input/multi-

output systems with single or multiple disturbance sources. There
is no need to measure the disturbances, or to know their periods
or pro� les, or to use steady-state data. In addition, the disturbance
periods need not be integer multiples of the sampling interval. Re-
quired to be known, however, are upper bounds on the order of the
system dynamics and the number of frequencies present in the dis-
turbances. When implemented recursively, the developed method
can be adapted to handle systems whose dynamics and disturbance
frequencies are slowly time varying.
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