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Construction of Minimal Linear State-Variable
Models from Finite Input-Output Data

ANTHONY J. TETHER

Abstract—An algorithm for constructing minimal linear finite-
dimensional realizations (a minimal partial realization) of an un~
known (possibly infinite~dimensional) system from an external
description as given by its Markov parameters is presented. It
is shown that the resulting realization in essence models the
transient response of the unknown system. If the unknown system
is linear, this technique can be used to find a smaller dimensional
linear system having the same transient characteristics. If the un-
known system is nonlinear, the technique can be used either 1) to
determine a useful nonlinear model, or 2) to determine a linear
model, both of which approximate the transient response of the
nonlinear system,

I. InTRODUCTION

HEN ONE designs a new system, the performance
requirements of the system, as given by an input-
output description, must be specified. The design is com-
pleted when the specification is met by connecting some
physical components, resulting in a state desecription.
Furthermore, if one has a system and wishes to derive a
mathematical model (state description), the externally
observed data input—output deseription must also be used.
The translation of one description into another is an
important problem which, while noted and discussed in
the late 1950°s, first became clear when Kalman [5] proved
a theorem which showed that the input-output deseription
reveals only the controllable and observable part of a
dynamical system, and that this part is 2 dynamical system
with the smallest state-space dimension among systems
having the same input—output relations. Henceforth, the
determination of an internal description from an input-
output deseription became known as the minimal realiza-
tion problem.

The minimal realization, problem was first solved by
Gilbert [2] who, with the restriction that each element
of the transfer-funetion matrix has distinet poles, gave an
algorithm for computing the map, i.e., transfer-function
matrix to state-variable differential equations. At the same
time, Kalman [67] gave an algorithm for this same problem
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which reduced the state space of 2 nonminimal realization
until it became minimal.

Ho and Kalman [4] approached this problem from a new
viewpoint. They showed that the minimal realization prob-
lem is equivalent to a representation problem involving an
infinite sequence of real matrices ¥;, 72 = 1, - -+, known as
the Markov parameters. They then gave an algorithm for
computing the map

{Y:}1<i< — state-variable differential equations.
However, this algorithm has three implicit assumptions.

1) The transfer function is known exactly.

2) There are an infinite number of Markov parameters
available.

3) The underlying system is finite dimensional.

Since a transfer function can be represented as a power
series in the Markov parameters [4], e.g., in the continuous
case Z(8) = > i1® s Y+, where s is the complex number,
assumptions 1) and 2) are equivalent. Also, if 3) is true,
then 2) ean be removed, since a finite number of Markov
parameters is sufficient to determine a realization for a
finite-dimensional system.

In this paper it will be assumed that only partial infor-
mation about the system is available in the form of a
finite sequence of Markov parameters {Yy,«++, Y}, ¥ =
HF=1@G. This will be called the partial realization problem,
i.e., the realization of all systems whose first N, Markov
parameters are equal to the given sequence. The deter-
mination of realizations with the smallest state-space
dimension whose first Ny Markov parameters are equal to
the given sequence will be called the minimal partial
realization problem.

The solution of the minimal partial realization problem
will be discussed in Section VIII. The following claims can
be made for this solution.

1) From the computational standpoint, the solution is
attractive, since only simple numerical operations are
needed.

2) Given experimental input-output data, there is no
reason to assume the underlying system is finite-dimen-
sional. If the dimension is finite, the solution will give an
exact realization with the correct dimension as more
information is obtained.
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II. GENERAL BACKGROUND MATERIAL

It is well known [8] that a real finite-dimensional linear
constant dynamieal system has an internal deseription
given by the state-variable equations

x(t+ 1) = Fz(t) + Gu(®), y(@) = Hz() (1)
for the discrete-time ease and
de/dt = Fx + Gu, y = Hzx (2)

for the continuous-time case, where ¢ is the time, x(n X 1),
u(p X 1), and y(m X 1) are real vectors, and F, G, and H
are matrices with real elements with sizes n X n, n X p,
and m X n, respectively. The dimension of the system is
equal to the size of F.

The external description of a linear system may be
stated in either the time domain or in the transform
domain. For system (1), the time-domain description is

given by the pulse-response function
t—> Y, = HFG, t =12+ (3)

while the transform-domain description is given by the
transfer function

z2— T(2) = H(eI — F)'G, z = complex number. (4)
For system (2), the impulse-response function is
t—>W({) = He*'G, { = real number > 0 (5)
and the transfer function is
s—Z(s) = H(sI — F)~'(. (6)

Definition 1: The systems described by (1) and (2)
will be denoted by the triple

=~ {F,GH}.

For later results, it will be useful to define the notion of
equivalence. Two systems are normally said to be equiva-
lent if and only if they have the same output response for
all inputs. For systems described by (1) and (2) this can
be formalized by the following definition.

Definition 2: Two systems Z; and Z, are equivalent if
and only if they have the same 1) impulse-response func-
tion for the continuous case, and 2) pulse-response function
for the discrete-time case, i.e.,

1) HleF“Gl = H26F2tG2,
2) HyF171Gy = HoFo' Gy,

forallt > 0

i =1,2,0--.

However, it can be shown that there exists a commonal-
ity by which both continuous- and discrete-time systems
can be deseribed, namely, the infinite sequence of matrices
Y.} = {HF-'G}, i = 1,2,-++. The matrices {Y:} are
called the Markov parameters of the system due to their
similarity to certain classical results (1).

Proposttion 1: A real finite-dimensional system = (either
continuous- or discrete-time) is completely determined by
the Markov parameters of the system ¥V; = HF'(G, ¢ =
1,2, ..
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Proof: See [4].

Therefore, if we are given a sequence of Markov param-
eters { Y}, the relationships (8)—(6) are completely deter-
mined. In other words, the external deseription of a real
finite-dimensional linear constant dynamiecal system, either
continuous- or discrete-time, is given by a sequence of
Markov parameters.

Hence a new definition of equivalent system, which will
be used for the remainder of this paper, follows from these
results.

Definition 3: Two systems Z; and 2. are equivalent if
and only if they have the same Markov parameters.

III. TeE REALIZATION PROBLEM

As shown in the previous section, the input-output
description of both eontinuous- and discrete-time systems
are completely specified by the Markov parameters (Defi-
nition 1), which are in turn explicitly defined by the
matrices {#,G,H}, which completely describe the internal
description of both continuous- and discrete-time systems
(1), (2). Therefore, the minimal realization problem can
be stated (for either continuous- or discrete-time systems)
in terms of the Markov parameters.

Minimal Realization Problem

Given a sequence of m X p constant matrices {¥;}1 <
1 < o, find a triple {F,G,H} of constant matrices such
that

Y, =HF7G, 7=1,2,---

where the size of F' is as small as possible. From Proposition
1, we see that this is equivalent to finding a minimal sys-
tem 2= given input-output data in the form of the Markov
parameters. '

Implicit in the realization problem is the question of
determining when the sequence {¥;} (or Z) has a finite-
dimensional realization and, if so, the corresponding
minimal (smallest) dimension. The following results give
necessary and sufficient conditions for {¥;} (or =) to have
a finite-dimensional realization and a method for deter-
mining the minimal dimension. The proofs will not be
given here but can be found elsewhere [87]. First, it is
necessary to state some definitions.

Definition 4: Given a sequence of real m X p matrices
{¥,}, 7 = 1,2,-- -, the generalized Hankel matrix H, ; is
defined as s

Yyi Y. .. Y,

Hyp=|Y, T3 Y ((ml X pl).

Y Yin Yoo

If the ¥; are 1 X 1 matriees, then Hy,; is the classical
Hankel matrix, which is symmetric. In the general case,
the matrix Hy,; is symmetric if and only if all ¥; are
symmetric m X m maftrices.
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Definition 5: Let ¢ denote the shift operator so that if
Hy 1 is defined as in Definition 4, then

Yiig Youx Yur
oEHp ;= Yoor Yok Yiga |(ml X pl).
Yie Yiirn Yijrga
Proposition 2: The sequence of m X p Markov param-

eters {V;}, 1 < 7 < o, has afinite-dimensional realization
if and only if there exist integers N’,N such that

pHNI’N = PHA"’+1',N+J' = TNo, p FAN rank of

for all ¢ = 0,1,2,---, 7 = 0,1,2,---. If so, the integers N’
and N are each separately less than or equal to n,.

Proposition 3: Assume the sequence {Y;}, 1 <7< o,
has a finite-dimensional realization and let N',N be integers
satisfying Proposition 2. Then the minimal dimension of
a realization of {¥;}, 1 <7 < 0, is equal to

no = pHy' 5

Assuming that 1) there is an infinite number of Markov
parameters available and 2) the unknown system is finite-
dimensional, we can determine a minimal realization
{F,G,H}. This can be accomplished using an algorithm
which has become known as Ho’s algorithm. This will be
stated here but not proved. The proof can be found else-
where [4]].

Ho’s Algorithm

1) Form Hy: x, where N’ and N satisfy Proposition 2.
2) Find nonsingular matrices P,Q such that

I, 0

PHNI'NQ = = (]uoUnn = J

0 0

where 7, ng X 7g unit matrix, ne = pHxy x, and

is an
I -~
(N'm X 1o}, Ung = [Lny 07 (no X N,).

3) Let £,, be the block matrix
Zn On 0n]{m X mN")
and E, be
LI, 0, 0,] (p X Ny).
Then
F = Ua[JP(cHy ) QJ U,
G = U, [JPHy ~E,']
H = E[Hy: xQJ Uy, (7

Finally, there is one property of minimal realization
which will be used later and is, in itself, one of the most
interesting and important results discovered in realization
theory.
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Proposition 4: Two minimal systems 2, ~ {Fy,G,H1}
and Z:{F.,Gs,H,} are equivalent if and only if there exists
T, det T = 0, such that

= TFQT_I
G, = TG
= HgT—l.

IV. Tue CoNCEPT OF PARTIAL REALIZATIONS

Ho's algorithm, specifically, and the other results of
Sections IT-and III depend heavily on the assumption that
the input-output map has a finite-dimensional realization
and/or there are an infinite number of Markov parameters
available.

However, if we have an infinite sequence of m X p
Markov parameters Y,,Ys,--., which does not have a
finite-dimensional realization, i.e., Proposition 2 is not
satisfied for any N’,N, is it possible to approximate this
infinite-dimensional system with a finite-dimensional sys-
tem in the following sense; the first Ny Markov parameters
of a finite-dimensional approximation are equal to the first
N, Markov parameters of the infinite-dimensional system?
Alternately, if we have only a finite sequence of Markov
parameters available initially, is it possible to find a finite-
dimensional linear constant dynamiecal system whose first
N, Markov parameters are equal to the given finite
sequence?

Anticipating the partial realization description of sys-
tems, it is necessary to introduce some terminology.

Definition 6: = ~ {F,G,H} is said to be a partial realiza-
tion of order Ny of an input—output map if and only if
{Y;} = {HF~'G} holds for ¢ = 1, +,N,.

Definition7: Z ~ {F,G,H} is said to be a minimal partial
realization of order N, if and only if the size of F in 2 is
minimal among all other ' ~ {F',G",H’} satisfying Defi-
nition 6.

The determination of a realization, if there exists any,
which satisfies Definition 6 will be called the partial
realization problem. The determination of a realization
satisfying Definition 7 will be called the minimal partial
realization problem.

V. TuE PArTiaL REALIZATION CONCEPT FOR
DiscrETE SYSTEMS

Let Z be a discrete-time system (1) of dimension m
(m may be infinite). Assuming zero initial conditions, the
output of X, (1), is related to the inputs u(z) via the
Markov parameters by the formulas

y(1) = Yu(0)
¥(2) = Yu(0) + Yuu(1)

y(No) = Yuu(0) +-+++ Yu(0), )

Let Z* be a partial realization of order N, of =. Then
we can state the following result.
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Proposition 5: The output of Z*, y*(7), is equal to the
output of Z, y(7), for the first N time values for any input
w(7), 7= 0,++,Ny — 1.

Proof: The result is obvious from (8).

This proposition shows that if we have a discrete-time
system and if only the output is desired (the states of the
system are truly abstract quantities) for a finite number
of time values, & partial realization, if there exists one,
models the original system exactly for the first N, time
values.

If we are given the transform-domain description 7'(z)
(4) of a discrete-time system, we can consider 7'(z) as a
power series expansion (see Proposition 1)

2—=T(z) =2 Y
=1
Here a partial realization of order N, is equivalent to
matching the first Ng terms of T'(2)

Yiel4+ Yoz 2o+ YNOZ_NO.

V1. Tur PARTIAL REALIZATION CONCEPT FOR
ConNTINUOUS SYSTEMS

If we are given the transfer function Z(s) (6), or the
impulse-response function W(¢) (5) of a continuous-time
system, we can consider these as power series expansions
(Proposition 1)

s—Z(s) = 2 Yis_i
=1

1=

t—= Wi =2 Y=t/ — 1)!
i=1
respectively. Therefore, the partial realization concept of
continuous-time systems is clearly equivalent to matching
the first Ny terms of Z (s) or W (¢)

Vist et Vs
or

Yi+4 Yol +eeed Yu o/ (Ng — DL

VII. EXISTENCE OF PARTIAL REALIZATIONS

That there always exists a partial realization of order
Ny which satisfies Definition 6 is shown by the following
lerama.

Lemma 1

Every finite sequence of Nym X p matrices {Vi,+++, Y}
admits an extension sequence {¥wgi1,+++} for which a
completely controllable and observable partial realization
Z ~ {F,G,H} of order N, exists via Ho’s algorithm.

Proof: See [8].

This result proves that there always exists a partial
realization. However, it has not been shown if there always
exists a minimal partial realization (Definition 7). Intui-
tively, at least, the existence of minimal partial realizations
is obvious. Since there always exist partial realizations
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(Lemma 1) there exists at least one which has a smaller
dimension than the others. This can be seen by noting
that according to Lemma 1 there always exists a partial
realization of finite dimension n’. Since the set of dimen-
sions less than or equal to #’ is finite, the miniroum will
be attained.

However, what are the properties of minimal partial
realizations? Are they unique in the sense of Proposition 4?
Can we calculate the minimal dimension in a similar
manner as in Proposition 37 Can we construet a minimal
partial realization directly from the given data? These are
the questions which have yet to be answered. This is the
problem we intend to solve and whose complete solution
will be found in the following sections.

VIII. TuE MiNviMaL PARTIAL REALIZATION PROBLEM

In Section III, the minimal realization problem for
real finite-dimensional linear constant dynamical systems
was discussed and a solution (Ho’s algorithm) was given.
In Sections IV-VII, the partial realization problem (Defi-
nition 6) was stated and solved (Lemma 1). However, we
wish to solve the minimal partial realization problem
in Definition 7 in the sense of Sections V and VI for
discrete- and continuous-time dynamical systems. From
Sections V and VI, we see that the minimal partial realiza-
tion problem is the same for both discrete and continuous
time in the following sense: given a sequence of Ny Markov
parameters, find a triple {F,G,H} such that Definition 7
holds. Therefore, we do not have to make a distinction
between continuous- and discrete-time systems. In fact,
we do not even have to consider the N, sequence of matrices
as Markov parameters, but only as matrices. Hence we can
state the minimal partial realization problem in a purely
mathematical framework.

Mintmal Partial Realization Problem

Given a finite sequence { Y1, +,Yx,} of m X p matrices
with real elements, find a triple {F,G,H} such that

1) ¥, = HF\@G, i=1,--+-,Ng
2) size ¥ = minimum.

IX. UNiQUENESS OF EXTENSIONS OF
A PARTIAL SEQUENCE

In this paper, we wish to find a minimal partial realiza-
tion using Ho’s algorithm. Assume we have found a mini-
mal partial realization = ~ {F,G,H}. X is unique (in the
sense of Proposition 4) if and only if the extension sequence
defined by ¥; = HF1G, i = Ny + 1,+++, is unique. In
other words, if there exist two extension sequences
Y, V. i=No+1,---, which give us two minimal real-
izations (2,Z) by Ho’s algorithm (both of which satisfy
Definition 7), then = and £ are not unique in the sense of
Proposition 4.

Therefore, our first problem is determining if and/or
when minimal partial realizations can be nonunique. First,
it is necessary to prove the following results. (The proofs
can be found in the Appendix.)
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Lemma 2

Given the matrices A (p X p’), B(p X 7),and C (s X p’)
such that

A
p(4) = p(4 | B) = p[-— (9a)
C
there exists, at most, one matrix D(s X 7) for which
4B _ A
p|——i—-| = p(A | B) = p|-—]| = p(4). (9b)
ciD c

This result will be used later in determining the unique-
ness of elements in the extension sequence {Yw 41, }
of a partial sequence {Y;+++,Yx,}. The following is an
obvious corollary of this result.

Corollary 1

Given a finite sequence of 1 X p matrices { Y1, ++, V)
satisfying

PHN’ N = PHN’—i—I,N = PHN',NJA

for some N,N’ such that N’ 4+ N = N,, the extension of
the sequence {Y1,°--,¥we} to {Yi . Ynou¥nern-e,
Yipmr,c++}, 1 < K < «, for which

pHm’ m = PHN',N
where m’ + m = N, 4 k, is unique.

X. ReavizaBiLiry CRITERION

The following result gives conditions for the existence
of a unique minimal partial realization of a partial sequence
{YI:' ")YNO}'

Let {¥1,--+,Y¥5,} be an arbitrary finite sequence of
m X p real matrices and let H, ;, ¢ + j < N, be a corre-
sponding Hankel matrix. Then a minimal partial realiza~
tion = given by Ho’s algorithm is unique (modulo a change
in basis) and realizes the sequence up to and including the
term N, if and only if there exist positive integers N',N
such that

1) N' + N =N,
2) PHN’,N = PHN’-i-l,N = PHN’,N+1-
Remark

This result is a consequence of Ho’s algorithm for the
following reasons. If 1) and 2) are satisfied for a finite
sequence {Y3,--+,Yx,}, then Ho’s algorithm can be em-
ployed with

Mo = PHN’,N
l— }71 }7}\/'
Hyy =1 : :
| Y Yve
Y, eev Yap
cHy oy = : :
_YN’+1 YNQ
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The resulting minimal partial realization = ~ {F,G,H}
clearly satisfies Definition 7. The realization is unique (in
the sense of Proposition 4) since the extension sequence
Y;=HF~'G,7 = Ny + 1,---, generated by it will sat-
isty

PHN’+1',N+j = PHN’.N

for all 7,7 > 0. By Corollary 1 the extension sequence must
be unique. Therefore, by Definition 3 and Proposition 4,
the realization is unique.

If 1) and 2) are not satisfied, then a minimal partial
realization, if one exists, may not be unique for the follow-
ing reason. In order to use Ho’s algorithm in this ease, new
matrices { Y1, * +, Ypo} must be specified until pH 3,3 =
oH ey a0 = pHarr 3141, where M’ 4+ M = P,. However,
these matrices may be completely or partially arbitrary.
Since F, G, and H are functions of Ywg41,+++,Yp, (Ho's
algorithm), they may not be unique.

XI. DETERMINATION OF THE MINIMAL DIMENSION

The first step in computing a minimal partial realization
is the computation of the minimal dimension. If the
sequence satisfies the realizability criterion, its minimal
dimension is clearly

Ng = pHNI N

Therefore, assume that the realizability eriterion is not
satisfied and consider the incomplete Hankel array associ-
ated with a given partial sequence { Yy, ++,Yn}

Y: Y, Ys Ywee Ywes Y
Y, Yy Yy Yyer Y, #
Ys Y, Ys Yo * %
(10)
Ynes Yner Yawg * * N
Yvea Yu, % “ee ¥ # «
| Yo * % . * % -

where the positions indicated by the asterisks are left
blank, since no data is available. Obviously, a lower bound
for the dimension of any extension can be obtained by
counting the number of linearly independent rows (or
columns) already in (10), since their number cannot
decrease when the asterisks are filled in. Since the row rank
of a matrix is equal to its column rank, it is sufficient to
count the linearly independent rows.

Lemma 3

Let {¥y,++-,Y~,} be afinite sequence of m X p matrices
with real elements and let £ be a partial realization whose
first No Markov parameters are equal to the given sequence.
Then the dimension of a minimal partial realization
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min dim Z satisfies the following inequality:
min dim £ > n(No) = pHiwo + (pHovg—1 — pHinvp1)
+eeet (PHNo.l - PHNQ—I,I)

No No
=2 pHijvei — 2 pHjni.
=1 =1

Proof: See the Appendix.

Therefore, n(N,) is the lower bound of the dimension of
the minimal realization for any extension of the partial
sequence {Yyi,-++,Yn,}.

However, as of yet, we have not proven the existence of
extensions for which n(N,;) is the dimension of the resulting
realization. It does turn out that this lower bound ean be
achieved for suitably chosen extensions.

Definition 8: Let N'(N,) equal the first integer such
that every row of the block row [Ya awpsinc++,Yw,] is
linearly dependent on the rows of the Hankel matrix
Hywoyen o

Let N (N,) equal the first integer such that every column
of the block column °

I:YN(NO) +1}
Yo

is linearly dependent on the columns of Hy~ywo.xyevo-
Finally, with the help of the following lemma, the main
result can be stated and proved.

Lemma 4

Let n(Ny) ,N'(Ny),N (N,) be as defined in L.emma 3 and
Definition 8. Then any extension {Yxygy1,+-+} of {¥i,¢--,
Y.} whose realization achieves the minimal lower bound
n{No) for its dimension also satisfies

sHywovweo = pHy vonnwey = pHy oo vwon

for that extension.

Proof: See the Appendix.

The preceding lemma also shows that for any extension
Ywop1,-+-, if there exists any, whose realization achieves
the lower bound #n(N,), N'(N,) and N(N,) are true
invariants. Note that N'(Ny) and N(N,) are related to
the controllability and observability properties of the
realization. Therefore, a realization satisfying Lemma 4
has the property that

oG FG,- -« FN1] = n(N,)
H
p HF = n(Ny).

For discrete-time systems, this means that all states in the
state space can be reached in N time values for some
control input {ug,--+,ux—1} and all states can be deter-
mined (observed) after N’ observations of the output are
made [9].
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Note that the ranks of G and H are clearly related to
N and N’. Since N’ and N are constant over all partfial
realizations with dimension 7 (N,) (if there exist any), the
ranks of G and H should also remain constant and therefore
be invariants.

XII. Tee MiNIMAL PARTIAL REALIZATION THEOREM

Theorem 1!

Let {¥y,-++,¥x,} be a fixed partial sequence of m X p
matrices with real coefficients and let n(N,), N (Ny), and
N’(Ny) be the integers defined previously. Then

1) n(N,) is the dimension of the minimal realization =;

2) N(N,) and N'(N,) are (separately) the smallest
integers such that the realizability criterion holds
simultaneously for all minimal extensions;

3) there is a minimal extension of order P(N,) =
N (Ny) + N'(N,) for which n(N,) is the dimension
of the realization computed by Ho’s algorithm, but
which is in general not unique; and

4) every extension which is fixed up to P(N,) is
uniquely determined thereafter.

Proof: If P(N,) < Ny, the sequence {Yi,+++,Yx,} sat-
isfies the realizability criterion and 1)—4) are clearly true.
So we will assume that P(No) > Ny Also, the argument
Nyis dropped from n(+), N'(+), and N(-) for this proof.

If there does exist an extension 3) whose realization has
dimension n, then 1), 2), and 4) are true by Lemmas 3
and 4 and Corollary 1, respectively. Therefore, all we have
to do is show the existence of such an extension. This will
be done by a method by which the extension may actually
be constructed. Consider the Hankel array

» =
Y, cor Yo Yv: Yv  Yin
YA’ o—N Y24 Vo—P—1 YIVQ—? YN —1 YN 0
),N o—N+1 Y2N —P YN o—1 YAYO YN’ o+l
Y}\" —N+2 M y’?N o—P+1 Y.No YN o+l YN o+2
Y cer Yo
| Yy Y, d
(11)
where {Ywg1,Yvgeo,+-+,Y,} are to be chosen so that
ij‘\” N = 7.
Procedure

If a row in the last block row of Hy,-ni1,x is linearly
dependent, we fill in the corresponding row of Yy, in
Hyonyvp 50 as to maintain linear dependence. By
Lemma 2, this determines the elements of that row
unigquely. This process is continued until all linearly
dependent rows of the last block row of Hy, y.1v are
exhausted.

U A similar result was discovered independently and simultane-
ously by Kalman [7].
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Now we pass to the last block row of Hx,x12,n. The
parts of the linearly dependent rows of the last block row
of Hx,—n4+1.x in the last block row of Hy (w25 Will still be
linearly dependent with the previously computed elements
for Y1 because of the special nature of the Hankel pat-
tern. We now consider the linearly dependent rows in
the last block row of Hy,_yis.xy—1 which were linearly
independent in the last block row of Hy, x41,5. The cor-
responding rows of Yy in Hy,niex are filled in to
preserve linear dependence as before. Here these rows of
Y41 could be nonunique since Lemma 2 may not be valid.

If there are still rows in the last block row of Hx_xqa2,5—1
which are independent, we go to the last block row of
Hy,—n4s.n—2 and so on until linear dependence of all rows
is obtdined. This always happens since the last block row
of Hywinen 18 defined to be linearly dependent on
Hy' won. Choosing ¥ in this way does not increase
the minimum rank of Hx+x. In other words, if we used
Lemma 3 on the sequence { Yy, « -, ¥xy, Yao41) the value of
1n(No + 1) would equal n(Ny).

The process now continues by induction until all of the
matrices { Yyo1,++*, Y5} are determined. By virtue of the
way { Yo+, Yo} are determined, n(p) = n(p — 1) =
«+o= n(No) and, therefore, pHy' x = n(No) = pHyry1,5,
where the second equality is true by construction.

By definition of N

pHNo—N,N = pHNo—N,N+1-

The matrix Y, was evaluated such that the number of
independent rows in Hy, ny.1,v are equal to the number
of independent rows in Hy, w1541 Therefore, the in-
crease in rank of the matrix Hy,_ny1,5 over the rank of
Hyonn(pHyo-n11.8 — pHyn.n) is equal to the increase
in rank of Hy,.vi1,541 OVer H Ng——N+1.N+1(PH No-N+1,N+1 —
pHy o\ x11). Hence

pHy o ni1n41 — pHy v w1 = pHyovny — pHy o x
which implies that
pHNn—N+1,N+1 = PHN o-N+1.N-
Continuing by induetion, we obtain
pHy x = pHy i1

Hence we can find a realization = by Ho’s algorithm which
has dimension n(No). It is not unique since some elements
of {¥wee1,+ Y5} may not be unique.
This proves the existence of extensions whose realization
achieves the dimension n(Ny). Q.E.D.
The following example illustrates the use of Theorem 1.

XIII. ExAMPLE

Let
11 [4 3
Y1= y Y2=
0 0 [0 0
10 7 22 15
Y3= s Y4=
11 | 3 3
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Then

1 1 4 3 10 7 22 15
P = pHy4 = 2

14 = PH1,3 =2
006 00 11
1 1 3 10 7]
00 00 1 1
P = pHs3 =4
4 3 10 7 22 15
00 11 3 3]
[1 1 4 3]
0 0 00
P = pH,, =3
4 3 10 7
|0 0 1 1]
T1 1 4 3]
0 0 0 O
4 3 10 7
P = PH3,2 =4
0 0 1 1
10 7 22 15
| 11 3 3]
- 1]
1 1] 0 0
0 0 4 3
4 3 0 0
p = pH3za = pHip = p = 2.
0 0 10 7
10 7 1 1
| 1 1] 22 15
| 3 3
Therefore,
71(4) = pHyo+ (pH3 — PH1,3) + (pHz2 — PH2,2>

+ (pHiy — pHsa)
2+ @4-2)+B3-2)+(2-2)

= 0.
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Hence the minimal dimension is equal to 5. Since pH; 4 =
pHy s and pHy1 = pH;, there exists a Y; and Ye (Theorem
1) such that pH; s = pHi 3 = pHs s After determining the
dependent rows and columns, we choose Y; and Y5 as in
Theorem 1

46 31
Y5 = 3
L1 T

94 63
Ys =

Lo Lo

Notice that there are only two arbitrary elements in Y;
and Y. The system from which the four {¥y,-+-,¥4}
Markov parameters were computed is

010 00
-2 30 00
F=[ 000 10
000 01
| 0 0 0 —2 3]
0 0]
10
1 0001
G=|0 0|, H=
00100
0 0
L1 1]

and the resulting system is

F4 —1 0 0 0
6 —1 0 0 0
F=]1 0 —1 1 0
0 1 .'131—13 4 —6$1+$2+27
0 © 1 0 0 i
._1 1-..
01
1 0 0 00
G=|0 0}, H=
0 0001
00
0 o]

with the characteristic polynomial equal to
(8 —3s+2)((s+1)(s —4)s
+ 8(13 — 21) + 621 — 2 — 27).
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XIV. CoxcrLusion

The realization problem of multiple input—output linear
constant systems when only partial information is available
has been solved in the preceding seetions of this paper.

The problem as formulated and solved matches exactly
the first Ny Markov parameters of a linear constant system,
which is possibly infinite dimensional, to that of a finite-
dimensional linear constant system.

For continuous-time systems, this corresponds to deter-
mining a transfer-function matrix (6) or impulse-response
funetion (5) whose first Ny terms in their respective power
series expansion (Proposition 1) are equal to the given
finite sequence {Yy,-++,Yx,}. This is clearly, at best, a
matching of the high-frequency response, if the transfer
function is considered, or the transient response, if the
impulse-response function is considered, of the system.
However, techniques of this sort have been used in the
past [10, ch. 137] with mixed success. For example, the
well-known time-delay transfer function e~ has been
approximated in essentially this manner in the past using
the Padé theory [117].

For discrete-time systems, the problem corresponds to
determining a transfer-function matrix (4) or impulse-
response function (3) whose first Ny Markov parameters
are equal to the given finite sequence. However, because of
Proposition 5, we can say that the resulting realization is
an excellent approximation of the transient-response for
the first N, time values. Henee the theory developed in
this paper can be used directly in discrete-time problems
where the input-output relationships are of concern for a
finite amount of time.

Also, the unknown system need not be linear for this
theory to apply. If the system under eonsideration (known
or unknown) is truly linear and only the transient (initial)
response is under consideration, the minimal partial realiza-~
tion can be used to reduce the size of the original system.

If the system is nonlinear, the minimal partial realiza-
tion eoncept can be used to obtain a linear model of the
system which approximates the initial or transient response
of the system for a given input. If minimal partial realiza-~
tions are then obtained for various inputs, it may be
possible to :

1) determine a useful nonlinear model of the system by
noting how the individual elements of F, G, and H
vary with the different inputs, or

2) determine a linear model which approximates the
transient response of the unknown system for inputs
of interest.

Some development has been accomplished in this area in
modeling the time behavior of complex nonlinear systems,
For example, this technique has been illustrated on a
simple example and appears to be a potentially very
powerful tool for developing specialized problem-oriented
identification procedures for approximating the transient
responses of boilers and turbines [3].

Another research area which is likely to benefit from the
present method is the building of adaptive systems by
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real-time identification of Z, in which the estimates of F,
@, and H are continuously updated as new data are
received. If the realizability criterion is satisfied, we can
determine what the system was over the previous time
interval. Furthermore, we have conditions for determining
if the system is changing, i.e., until we receive information
for which the realizability criterion no longer holds, the
realization remains constant. If the realizability ecriterion
is not satisfied, or no longer holds, Theorem 1 gives us a
method for determining what class of systems we are now
considering.

APPENDIX

Proor oF LEMma 2
Proof: From (9a), it is obvious that there exist two
equivalence classes M = {«;}, with a; equal to a p’ X »
matrix with real elements, and N = {8;}, with 8; equal to
an s X p matrix with real elements, such that

Aa;‘. = B, ﬁ;A =C

respectively.

Let D+ be an s X » matrix which satisfies (9b). Then
there exist matrices oy (p’ X 1), B1(s X p) (not unique)
such that

A B
al —1 —
C D+
B[A | B] = [C | D*]
which separate into

Aoy =B, pA=C

Coy = D¥, B1A = D+,

This implies that for any D* which satisfies (9b), the
corresponding «; and §; are in the classes M and N, respec-
tively. Assume that there exist oo € M and 3. € N such
that

Cag = D, ﬁgB = _D

where D = D+, But
D+ = C’al = BgAcq = ﬁgB = D

Hence, if there exists a D which satisfies (9b), it is unique.
Q.E.D.

Proor or CoroLrLarY 1
Proof: The proof is by induection.
1) k=1,let

Yy
A= HN',N, B =
Yw,

C=[Yyi,-Ynl, D=Ywu

and apply Lemma, 2
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2) assume true for k and assume there exists Yyoixu1
such that

e ]
Hy ik P P Y
p | Yvpr |=p|Hyyrn | ¢
L P Yvex
Yvijgir Yoo | Yores
Hyoirx
=p
| Yorpgrae o« Yuorr
Then apply Lemma 2 with
YN+1
A_ = H.-V'+K,.V, B = .
YN0+K
C= [YN’+K+1" "yYN0+K]’ D= YNo-:-K+1-

QE.D.

Proor oF LEMMA 3
Proof: For any extension of the sequence {Y1,-++,Yx,},
pHyony = pHi v, + (pHawy — pHixy)
Feeot (pHpaxe — pHjwo)
+-o+ (pHwowe — pHyo1,x0)-

But (pH;y1.x, ~— pH;x,) means the increase in rank of
H; w, after a block row is adjoined. This implies

(pH ;11,50 — pHj xp) = 0.
Therefore,
min dim 2 > min pfs v, + - -+ min (pH 1,50 — pHj.v0)
4o+ min (pHwgno — pHygwe-1)-

Obviously, min pH; ~, = pH; 5, since H; x, consists only
of the given sequence. Now consider

min (pHe,x, — pHi,x5,).

Since Y41 is unknown, the smallest inerease oceurs when
the dependent rows of the second block row of Hauw,
remain dependent after the block column

Yx

Y. No+l
is adjoined (9). Clearly, this increase is equal to
(pH2n -1 — pHinpa).
Now consider
min (pHjnng — pHjx).

Again, since in this case Y41, + +, ¥vop; are unknown, the
smallest increase occurs when the dependent rows of the
(J 4+ 1)th block row of H;j; 5, ; remain dependent after
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the matrix
YNe-H—l cen YNb
Yngjpo oo Y’” o+
Y]\;B.{.l Yl\:o-i-:i

is adjoined. Notationally, this increase is equal to
(PH 1 wo-i — pHjno-3).

Note that H;u1.v,-; and H; »,; consist only of the given
sequence of matrices.

Hence
Nop-1
mindim 2 > n(No) = pHin,+ 2 (oHinvei — pH;wo-j)
=1
No Nop-1
= Zij,NQ—(-l—j - E PHJ'.No—J'-
=1 =t

QE.D.

Proor or LEmMma 4
Proof: From the definition of N'(No),N (Vo), we see
that the minimum number of linearly independent rows
(or columns) in (10) can be counted by only considering
the matrix

Y tee Yyewwo cor Yywor Ywwo
Yrowworr +* Yovow@worwaon *o0 Vuy *
. . * B3
. . * ®
. . * ®
4 . .
YN’(NQ)—I pee Y No %% * ;

YN'(NO) N % T * =

where the asterisks, as before, are locations of the unknown
parameters {Y¥w41,++-}. Hence any realization which
achieves the lower bound 7n(N,) must also have the
property that

n(No) = pHyw g vavg-

Now assume that there exists a minimal partial realization
of order N, with dimension 7 (N,). Assume that for this
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extension pHy wos1.8wve > pHy o .vwve. But, by Prop-
ositions 2 and 3, this implies that the dimension of the
realization is greater than n(N,). A similar argument
hOIdS for pHN'(NO) NV o1 > pHNI(ND) NN Hence

PHN’(NO),N(NO) = PHN’(-’\"D)+1.N(N0) = PHN’(ND),N(ND)+1

for any extension whose realization has dimension n(N,).

QE.D.
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