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Construction of Minimal Linear State-Variable 
Models from Finite Input-Output Data 

ANTHOiYY J. TETHER 

Absfruct-An algorithm  for  constructing minimal linear h i t e -  
dimensional  realizations  (a  minimal  partial  realization) of an un- 
known (possibly infinite-dimensional) system  from  an external 
description as  given by its  Markov  parameters  is presented. It 
is shown that  the  resulting realization in essence models the 
transient  response of the unknown system. If the unknown system 
is linear, this technique can  be  used  to  6nd a smaller dimensional 
linear  system having the  same  transient characteristics. If the un- 
known system  is nonlinear, the technique  can be  used  either 1) to 
determine a useful nonlinear  model, or 2) to  determine a linear 
model, both of which approximate the  transient  response of the 
nonlinear  system. 

W 
I. INTRODVCTION 

HEX OKE designs a new system, t.he performance 
requirements of the system, as given by  an  input- 

output descript.ion, must  be specified. The design is com- 
pleted when the specification is met  by connecting  some 
physical  conlponents,  resulting in a state description. 
Furthermore, if one has a syst,em and n-ishes to derive  a 
mathematical model (stat,e description) , the externally 
observed data.  input-output descript,ion must also be used. 

The translation of one description into  another is an 
import,ant  problem which, while noted  and discussed in 
t.he late 1930’~~ first became clear when Kalman [5] proved 
a  theorem which showed that  the  input-output description 
reveals  only  t,he cont.rollable and observable part of a 
dynamical  system,  and  that  this  pa.rt  is a dynamica,l system 
1vit.h the snmllest  state-space dimension among  syst,ems 
having the  same  input-output relations.  Henceforth, the 
determination of an  internal description  from a.n input- 
output description became known as  the minimal realiza- 
tion  problem. 

The minimal  realization,  problem was first solved by 
Gilbert [ Z ]  who, with the restriction that each  element 
of the t,ransfer-function  matrix  has  distinct poles, ga,ve an 
algorithm  for  computing the map, i.e., transfer-function 
matrix t.0 stat,e-va.riable  differential  equations. At  the same 
t,ime, Kalman [SI gave  an  algorithm  for this same  problem 
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which reduced the  state space of a  nonminimal  realization 
until it became minimal. 

Ho  and  Ihlman [4] approached this problem from  a new 
viewpoint. They showed tha,t  the minimal  realization prob- 
lem  is  equivalent to a  representation  problem  involving an 
infinite sequence of real  matrices Y;, i = 1 , - - a ,  known  as 
the  Markov  parameters.  They  then gave a.n algorithm  for 
computing the  map 

{ YiJISiS, + sta.te-variable  differential  equations. 

However, this algorithm  has  three  implicit  assumptions. 

1) The transfer  function  is knom-n exactly. 
2 )  There a.re an infinite  number of Markov  paranleters 

3) The underlying  system is finit,e dimensional. 
available. 

Since  a  tra.nsfer  function  can  be  represented as a power 
series in the Alarkov parameters [4], e.g., in the continuous 
case Z ( s )  = Ci=lX where s is bhe complex number, 
assumptions 1) and 2) are  equivalent. Also, if 3) is true, 
then 2) can  be removed, since a  finite  number of Markov 
parameters is sufficient to determine  a  realization for a 
finite-dimensional system. 

In  this  paper i t  mill be assumed that only partial infor- 
mat,ion about  the syst.em is available  in  t,he  form of a 
finite sequence of Markov  parameters ( YI, - - - , I7~v0)  , Yi = 

HFi-’G. This will be called t,he partial realization  problem, 
Le., the realization of all  systems whose first N o  Markov 
parameters  are equal to  the given sequence. The deter- 
minat,ion of realizat,ions with the smallest sta.te-space 
dimension whose first N o  Markov  parameters  are  equal to 
the given sequence will be called the minimal partial 
realization problem. 

The solution of the minimal partial realization  problem 
will be discussed in  Section VIII. The following cla.ims can 
be  made  for  this  solution. 

1) From  the  computational  standpoint,  the solution  is 
attmctive, since only simple  numerical  operations are 
needed. 

2) Given  experimental  input-output data,  there is no 
reason to assume the underlying  system  is finite-dimen- 
sional. If the dimension is finite, the solution will give an 
exact  realization  with the correct dimension as more 
information  is  obtained. 
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11. GENERLL BACKGROUND M A ~ R I A L  Proof: See [4]. 
It is lTell hol?l that a real finite-dmensional linear Therefore, if we are given a sequence of Markov  param- 

constant dynamical system has an internal description eters { Yil , the rela,tionships (3)-(6) are  completel~ deter- 
given by  the sta.te-variable equa.tions mined. In  other words, the  external description of a  real 

finite-dimensional linear  constant  dynamical  system,  either 

for  the discrete-time case and 

dxldt = FX + Gu, y = H X  (2) 

for  the continuous-time case, where t is the time, R: (?z X 1) , 
u(p X l ) ,  and y(m X 1) are  real vectors, and F ,  G, and H 
are  matrices  with real elements  with sizes n X n ,  72 X p ,  
and m X 71 ,  respectively. The dimension of the  system  is 
equal to  the size of F.  

The external description of a  linear  system  may  be 
stated  in  either  the  time  domain or in  the  transform 
domain. For system (1) , the time-domain  description  is 
given by  the pulse-response  function 

t -+ Yt = HFt--'G, t = 1,2, (3) 

while t,he transform-domain  description is given by  the 
transfer  function 

z + T ( z )  = H ( z I  - F)-lG, z = complex number. (4) 

For  system ( 2 )  , the impulse-response  function is 

t 4 W ( t )  = HeP'G, t = real  number 2 0 ( 5 )  

Markov  parameters. 
Hence a new definition of equivalent  system,  which will 

be  used for the  remainder of this paper, follows from  these 
results. 

DeJinition 3: Two  systenls Z1 a.nd Z? are  equivalent if 
and only if they  have  the  same  Markov  parameters. 

111. THE REALIZATION PROBLEM 

As shown in  the previous  section, the  input-output 
description of both continuous-  and  discrete-time  systems 
are completely specified by  the  Narkov  parameters (Defi- 
nition I ) ,  which  are in turn explicitly defined by  the 
matrices { F,G,H 1, which  completely describe the  internal 
description of both continuous- and  discrete-time  systems 
(I), (2) .  Therefore, the minimal  realization  problem  can 
be stat,ed (for either  continuous-  or discrete-time systems) 
in  terms of the  Markov  parameters. 

Minimal Rea.Zization Problem 
Given  a  sequence of rn X p constant  matrices { Y i )  1 5 

i 5 ~0, find a. triple {F,G,H} of constant  matrices  such 

For  later results, it will be useful to define the  notion of 
equiva.lence. Two  systems a.re norma,lly said to be equiva- 
lent if and only if they  have  the  same  output response for 
all inputs. For systems  described by (1) and (2) this  can 
be formalized by  the following definition. 

Dejnition 2: Two systems Z1 and Z2 are  equivalent if 
and only if they  have  the  same 1) impulse-response  func- 
tion  for the continuous ca.se, a.nd 2 )  pulse-response  function 
for the discrete-time case, i.e., 

1) HlePl'G~ = H?eF"Gt, for all t 2 0 
2 )  HlF1'-'G1 = H2Ftt-'GZ, i = 1,2,. . .. 
However, it can  be shou-n that  there exists a  commonal- 

ity by which both continuous- and discrete-time systems 
can  be described, namely, the infinite sequence of ma.trices 
{ Yi}  = {HFi-'G), i = 1,2,- e .  The matrices { Y k ]  are 
called the Markov parameters of the  system  due  to  their 
similarity to certain classical results ( 1 ) .  

Proposition 1 : A real finite-dimensiona,l system Z (either 
continuous- or discrete-time) is conlpletely determined  by 
the  Markov  pa.rameters of the system Yi = HFj-lG, i = 
1,2,. .. 

parameters. 
Implicit  in  the  realization problem  is the  question of 

determining  when  the sequence { Y ; )  (or Z )  has  a finite- 
dimensional  realization and, if so, the corresponding 
minimal  (smallest)  dimension.  The following results  give 
necessary and sufficient conditions for { Yi )  (or Z) to  have 
a finite-dimensional realization and a method for deter- 
mining the minimal  dimension. The proofs will not  be 
given  here but can  be  found  elsewhere [SI. First,  it is 
necessary to  state some definitions. 

Dejinition 4:  Given  a  sequence of real nz X p matrices 
{ 17i},  i = 1,2,- - -, the generalized Hankel  matrix H L , , ~  is 
defined as 

If the Yi  are 1 X 1 matrices,  then H P , Z  is  the classical 
Hankel  matrix,  which  is  symmetric. In  the general case, 
the  matrix is symmetric if and only if all Yi are 
symmetric X ?TI. matrices. 



De.finition 5: Let uK denote  the  shift  operator so tha,t if 
H z ,  is defined as  in Definition 4, then 

I: Yl+K Y2+K ' '  ' 

U ~ H ~ ~ , Z  = Y ~ + R  Y ~ + K  * ' * Y:z1 j(d X p l ) .  

l'lf+K YZ'+K+1 * ' ~'Z'+Z+K--I 

Proposition 2: The sequence of n 2 .  X p Markov  param- 
eters { Yi 1, 1 _< i 5 0~ , has  a finite-dimensional realization 
if a.nd only if there exist integers N',N such that 

P H . ~ . , ~ ~  = pHp+i,N+j = n o ,  p p rank of 

for  all i = 0,1,2, ., j = 0,1,2, - - .. If so, the  integers hr' 
and N are each sepa,rat,ely less than or  equal  to no. 

fiopositwn 3: Assume the sequence { Yi} ,  1 5 i _< ~0 , 
has  a finite-din1ensiona.l rea.lization and  let N',N be  integers 
sa.t.isfying Proposition 2. Then  the minimal  dimension of 
a  realization of { I'i} , 1 _< i < 00, is  equal  to 

120 = PH,VJ,N. 

Assuming that. 1) there is a.n infinite number of Mwkov 
paramet.ers availa,ble and 2) the unknown  system is finite- 
dimensiona.1, me can  deternine a minima.1 realization 
{ F , G , H ) .  This  can  be accomplished  using an  algorithm 
n-hich has  become  known as  Hots algorithm. This will be 
stated  here  but,  not  proved.  The proof can  be  found else- 
where [4]. 

Ho's  Algorithm 
1) Form HX? ,AT, where N' and N satisfy  Proposition 2. 
2 )  Find nonsingula,r ma.trices P,Q such that 

PHN. ,AT& = [ t o  :] = u n o u n o  = J 

where I,, is an 170 X 710 unit  matrix, n.0 = ~ H . V , X ,  and 

3) Let E, be the block matrix 

[I, 0, * * Om](m x mN')  
and E,  be 

[ I ,  0, * . *  0,l ( p  x N , ) .  

Then 

F = C ~ , [ J P ( ~ H N , , N ) Q J ] U ~ ~  

G = ~, , [JPHX~, ,VE, 'J  

H = E p ~ H ~ - ~ , ~ 4 ? J ] u n o .  (7) 
Finally,  there is one  property of minimal  realization 

which will be used later  and is, in itself, one of the  most 
interesting  and  important  results discovered in  realization 
theory. 

Propositioi2. 4: Two  minimal system 2 1  - {FI,Gl,H1} 
and Z(F2,G2,H2)  are  equivalent if and only if t.here exists 
T, det T # 0, such that 

Fl = TF2T-I 

GI = TGZ 

HI = H2T-l. 

IV. THE COWCEPT OF PARTIAL REALIZATIONS 
Ho's  algorithm, specifically, and  the  other  results of 

Sections I1 and I11 depend  heavily  on the  assumption  that 
the  input-output  map  has  a finite-dimensional realization 
and/or  there a.re an infinite number of Markov  parameters 
amilable. 

However, if we have  an infinite sequence of nz X p 
Ma.rkov parameters Y1,Y2,. - -, which  does not  have a 
finite-dimensional realization, i.e., Proposition  2  is  not 
satisfied for  any hT',N, is it possible to  approximate  this 
infinite-dimensiona.1 system nith a finite-dimensional sys- 
tem  in  the follosving sense; the first No Markov  parameters 
of a finite-dimensional approximation  are  equal to  the  first 
N o  Markov  parameters of the infinit,e-dimensional system? 
Alternately, if  we have only a finite  sequence of Markov 
parameters  available  initially, is it possible to find a finite- 
dimensional  linear  constant. dynanlica.1 system  whose first 
N o  3larltov  parameters a,re equal  to  the given  finite 
sequence? 

Anticipating  the part.ia1 realization  description of sys- 
t e m ,   i t  is necessa.ry to  introduce some  terminology. 

DeJin.itwn 6:  2 - { F,G,H} is said to  be  a  partial realiza- 
tion of order hTo of a.n input-output  map if and  only if 
{ Yi}  = {HFi-lG} holds for i = 1, * - -,hro. 

Dejinitim. 7 : B - { F,G,H} is  said to  be  a minima.1 partial 
realization of order N o  if and only if the size of F in 2 is 
minimal  among  all other Z' - { F',G',H'} satisfying Defi- 
nition 6. 

The  determination of a realization, if there exists any, 
which satisfies Definition 6 will be called the  partial 
realization  problem. The determination of a realization 
satisfying Definition 7 trill  be called the minimal partial 
realization  problem. 

T:. THE PARTIAL REALIZATION COKCEPT FOR 
DISCRETE SYSTEMS 

Let Z be a discrete-time system (1) of dimension m 
( rn  may  be  infinite). Assuming zero initial conditions, the 
output of 2, y(i) ,  is related to  the  inputs u( i )  via  the 
Markov  parameters  by t.he formulas 

y(1) = Y l U ( 0 )  

y(2) = Ym(0)  + YlU(1)  

g ( N 0 )  = YN,U(O) f a - . +  YlU(0). (8 )  

Let Z* be  a partial  realization of order No of 2. Then 
me can  state  the following result. 
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Proposition. 5 :  The  output of I:*, y*(i), is equal to  the 
output of 8, y (i), for the first N O  time  values for any  input 
u( i ) ,  i = O , . .  . , N o  - 1. 

Proof: The result is obvious  from (8). 
This proposition shows that if we have  a  discrete-time 

system  and if only the  output  is desired (the sta.tes of t.he 
system  are  truly  abstract  quantities)  for a  finite  number 
of time  values, a partial realization, if there exists one, 
models the original syst.em exactly  for the first N o  time 
values. 

If we are given the transform-domain  description “(2) 

(4) of a  discrete-time  system, sF’e can consider T ( z )  as a 
power series expansion (see  Proposition 1) 

2 -+ T ( 2 )  = Yjz-i. 
i=l 

(Lemma 1) there exists a t  least one which has a. smaller 
dimension than  the others.  This ca.n be  seen by  noting 
t,hat  according to Lemma 1 there always exists a partial 
realizat.ion of finit.e dimension 71‘. Since the  set of dimen- 
sions less than or equal to 72’ is finite, t,he  minimum will 
be  attained. 

Hou-ever, what  are  the properties of minimal partial 
realizations?  Are they  unique  in  the sense of Proposition 4? 
Can \\-e calculate the minimal dimension in a  similar 
manner  as  in Proposition 3? Can we construct  a  minimal 
partial realization  directly from  the given data? These  are 
the quest.ions n-hich have  yet  to  be answered. This  is  the 
problem 11-e intend  to solve and u-hose complete  solution 
will be  found  in the follouing  sections. 

VIII. THE A ~ I N I M A L  PARTIAL REALIZATIOK PROBLEM 

Here  a  partial realization of order N o  is equivalent to In  Section 111, the minimal  realization  problem for 
matching  the first N o  terms of T ( z )  real finite-dimensional linear  constant dynamical  systenls 

was discussed and a  solution  (Ho’s  algorithm) was given. 
Y12-’ + Y2z-2 + * - * + YXg-A-0. In Sections  Ilr-VII, the  partial realization  problem  (Defi- 

VI. THE PARTIAL REALIZATIOK CONCEPT FOR 

CONTIhXOUS SYSTEMS 

If we are given the transfer  function Z(s)  (6) ,  or the 
impulse-response function W ( t )  (5) of a  continuous-time 
system, we can consider these  as power series expansions 
(Proposition 1) 

s + Z(s) = Yis-i 
m 

i=l 

m 

t --f V ( t )  = Y i P / ( i  - l)!  
i=l 

respectively. Therefore, the  partial realization concept of 
continuous-t,ime systems  is  clearly  equivalent to matching 
the first, ATo ternls of 2 (s) or W ( t )  

Y1s-1 + . - + YN,s-A’-o 

nition 6) was stated  and solved (Lemma 1 ) .  However, we 
wish to solve the m.inimal pa.rtia1 realization  problem 
in  Definition 7 in the sense of Sections  V and  VI for 
discrete- and continuous-time  dynamical system.  From 
Sect,ions V and  VI, \\-e see that  the minimal  part,ial realiza- 
t,ion problem is the same  for both discrete and continuous 
time  in the  follo~ing sense:  given a. sequence of No Narkov 
parameters, find a  triple (F,G,H) such that Definition 7 
holds. Therefore, n-e do not ha.ve to  make a distinction 
betx-een continuous- and discrete-time systenw. In  fact, 
we do not even  have to consider the No sequence of matrices 
as  Markov  parameters, but only  as  matrices.  Hence we can 
state  the minimal partial  realbation problem  in  a  purely 
mathematical framexvorlr. 

3lini.lnal Pal,tiad  Realiza,tl:on  Pyoblenz 
Given a  finite sequence { Y I ,  - , Y A ~ , }  of nz X p matrices 

n-ith  real  elements, find a  triple {F,G,H} such tha.t 

VII. EXISTEKCE OF PARTIAL REALIZATIOKS 
That  there always exists a partial realization of order 

No n-hich satisfies Definition 6 is  shown  by the following 
lemma. 

Lemma 1 

Every finite  sequence of N o  nz X p matrices { Yi, - -, Y N ~ }  
admits  an ext.ension sequence { Y x ~ + ~ ,  - 1 for n-hich a 
completely  controllable and observable partial realization 
I: - {F,G,H}  of order N o  exists via HoJs algorit.hm. 
Proof: See [SI. 
This result  proves that  there always exists a  part,ial 

realization.  However, it  has  not been shown if there  ah-ays 
exists a minimal partial realization  (Definition 7). Intui- 
tively,  at.  least, the existence of minimal partial realizations 
is obvious. Since there always  exist partial realizations 

IX. UNIQUENESS OF EXTENSIONS OF 
A PARTIAL SEQUENCE 

In this  paper, we wish to find a minimal partial realiza- 
tion using Ho’s algorithm. Assume we have  found a mini- 
mal partial realization % - { F,c,n). % is  unique  (in the 
sense of Proposition 4) if and only if the extension sequence 
defined by Yi = HFi-lG, i = No + 1, - - , is unique. In  
other words, if there exist, two  extension  sequences 
Yi,pi, i = No + 1 , -  - - ?  which give us two  minimal real- 
izations (I:$) by HoJs algorithm (both of which satisfy 
Definition 7) ,  then Z and 5 a.re not unique in  the sense of 
Proposition 4. 

Therefore,  our  first  problem is determining if and/or 
when minimal partial rea.lizations can  be  nonunique. First, 
i t  is necessary to prove the following results. (The proofs 
can  be found in  the Appendix.) 
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Lemma 2 

Given t.he matrices A ( p  X p’) , B ( p  X r )  , and C ( S  X p’) 
such that 

p(A)  = p(A \ B )  = p ---- [:I (9%) 

there exists, a t  most,  one  matrix D ( s  X r )  for which .p-!] = p ( A  1 B )  = p = p(A) .  (9b) 

This result nil1 be used later  in determining the unique- 
ness of elements in the extension sequence { 1’.v0+1,* - - } 
of  a. partial sequence { Yi,. -,17h-o}, The following is an 
obvious corollary of this result,. 

Corollary 1 

C [ D  [:I 
Given a finite sequence of m X p ma.trices { YI ,  - - , YJvo} 

satisfying 

pHA-1 ,AT = PHX~+~.A- = ~ H x ~ , A ~ + I  

for some N,N‘ such  t.hat N’ + N = No,  the extension of 
the sequence { YI,.--,YN~J to { Yl,...,Y~~-o,I’p,r~l,..., 
YhYeix, - 1, 1 I K 5 cc , for which 

pHmlsm = pHx1 ,x 

where 7n‘ + m = N o  + k, is  unique. 

X. R.EALIZABILITY CRITERIOK 
The follo-\xjng result gives conditions for the existence 

of a  unique minimal partial realization of a partial sequence 

Let { Y 1 ,  - *,Y,vo] be  an  arbitmry finite sequence of 
772 X p real  matrices and  let Hi,j ,  i + j _< NO, be  a corre- 
sponding  Hankel  matrix. Then a minimal partial realiza- 
tion 2 given by Ho’s algorithm  is  unique  (modulo a change 
in  basis) and realizes the sequence up to and  including the 
term N o  if and only if t.here exist positive  integers N’,N 
such tha.t 

{Yl , -**,Yxo}.  

1) N ’  + N = IcTo 

2) pHxT,s = pHn-l+1,N = ~ H N J , N + I .  

Rem ark 
This  result is a consequence of HO’S algorithm for the 

following reasons. If 1) and 2) are sat,isfied for  a finit,e 
sequence { Yl,. - - ,YAY, ] ,  then Ho’s algorit.hn1 can  be em- 
ployed with 

110 = pHxp ,x [ k; - * .  ’;” ] 
i 1 .  

H.v,N = 
YAP - * * Y N e 1  

Y2 YN+l 

Yx.+1 * - .  j’so 

- 

43 1 

The resulting minimal partia.1 realization Z - { F,G,H] 
clearly satisfies Definition 7. The realization  is  unique (in 
the sense of Proposit,ion 4) since the extension sequence 
Yi = HFi-’G, i = N o  + 1, - - -, generat,ed  by it will sat- 
isfy 

PHh-f+i,N+j = pHs* .X 
for all i,j 2 0. By Corollary 1 the extension sequence must 
be unique.  Therefore,  by Definit,ion 3 and Proposit,ion 4, 
the realiza.tion is  unique. 

If 1) and 2) are  not satisfied, then a minimal partial 
realization, if one exists,  may not be  unique  for the follow- 
ing  reason. In  order to use HO’S algorithm  in this case, new 
matrices { Y.vel, - - - , Ypo] must be specified until p H w  ,M = 

pH.lft+l,Alf = ~ H W , X + ~ ,  where N ’  + 1lg = Po. However, 
these  matrices  may be completely or partially  arbitrary. 
Since F ,  G, and H a.re functions of YAv0+l,. - -, Ypo (Ho’s 
algorithm),  they  may  not  be unique. 

XI. DETERMINATION OF THE MINIMAL DIMEKSION 
The first  step  in  computing  a minima.1 partial realization 

is  the computat.ion of the minimal dimension. If the 
sequence satisfies the realizability  criterion, its minimal 
dimension is clearly 

110 = pH.v, ~ 7 .  

Therefore, assume that  the realizability  criterion is not 
satisfied a.nd consider t,he incomplete  Hankel array associ- 
at,ed  with  a given pa.rtia1 sequence { 1’1, - - - , Yx,}  

where the positions  indicated by  the asterisks ase left 
blank, since no data is available. Obviously, a lower bound 
for the dimension of any ext,ension can  be obt.ained  by 
counting the number of linearly  independent r o m  (or 
columns)  already  in (IO), since t.heir number  cannot 
decrease when the asterisks  are filled in. Since the row rank 
of a  matrix  is  equal  to its column rank,  it is sufficient t,o 
count  the linearly  independent rows. 

Lemma 3 
Let { Yl, * -, YK,}  be  a  finite sequence of m X p matrices 

with rea.1 elements and  let 2 be a partial realization whose 
first N o  Alarkov  para.meters are  equal  to  the given sequence. 
Then  the dimension of a minimal partial realization 
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min dim 2 satisfies the following  inequa.lity: 

min  dim Z 2 n.(No) = pH1.xo + (pH2,xo--I - p H l , X o - l )  

-k * + (pHhTo.l - pH.vo-l,l) 

NO H 0 

= C PHj,xo+l-j - C P H j . h r 0 - j -  
+I j=1 

Proof: See t.he Appendix. 
Therefore, n(N0) is  the lower  bound of the dimension of 

the minimal  realization  for  any  extension of the partia.1 
sequence { YI, - - - , Y N ~  ] . 

However,  as of yet, we have  not  proven  the existence of 
extensions for which n.(No) is the dimension of the  resulting 
realization. It does turn  out  that  this lower  bound ca.n be 
achieved for suitably chosen extensions. 

DeJiniiion 8: Let N’(hr0) equal  the  first  integer  such 
that every row of the block row [YjvJ(,vo)+l,- - ,YAvo] is 
linearly  dependent  on  the rows of the  Hankel  matrix 

Let N ( N o )  equal  the first integer  such that every  column 
H A -  (N 0) ,x @-x 8 (X  0) . 

of the block  column 

is linearly  dependent  on the columns of H.v~-.v(.v~),~v(N~). 

result  can  be  stated  and  proved. 

h m n a  4 

Finally,  with  the help of the following lemma,  the  main 

Let 11 ( N o )  ,N’ ( N o )  ,N ( N o )  be as defined in  Lemma 3 and 
Definition S. Then  any extension { Y&-,+, - * - } of { Y1, - - , 
Yx0}  Ivhose realization  achieves  the  minimal lower bound 
n(No) for it.s dimension also satisfies 

PHN<(N,,) , A T ( N ~ )  = P H N ~ ( N ~ ) + I , x ( N ~ )  = PHN,(NO) . N ( N ~ ) + I  

for that extension. 
P,-oof: See the Appendix. 
The preceding  lemma a.lso  shows that for  any extension 

Ys\rel, e ,  if t,here exists any, whose  realization  achieves 
the lower bound 1t ( N o ) ,  Rr‘(No) and N ( N 0 )  are  true 
invariants.  Kote  that N’ ( N o )  and N ( N o )  are  related t.o 
the controllability  and  observability  properties of the 
rea.lization. Therefore, a realization  satisfying  Lemma 4 
has  the  property  that 

For discrete-time systems,  this  means that all states  in  the 
&ate  space  can be  reached in N time  values  for  some 
control  input {%,- - . ,u~-~f  and  all  states  can  be  deter- 
nlined  (observed) after AT’ observations of the  output  are 
made [ S I .  

IEEE TRAXSACTIOXS ON AUTOUTIC CONTROL, AUGUST 1970 

Sote  that,  the ra.nks of G and H are clearly related to 
hr and hr’. Since hr’ and N are  constant over  all partial 
realizations  with  dimension 11 ( N o )  (if there exist, a,ny),  the 
ranks of G and H should also remain consta,nt, and  therefore 
be  invariants. 

XII. THE ?(JINIMAL  PARTIAL REALIZATION THEOREM 

Theorem 1’ 

Let { Y1, - a ,  Y,v0] be  a fixed partial sequence of m X p 
matrices  with  real coefficients and  let n (No) ,  N (No),  and 
N‘(N0)  be the int.egers defined previously. Then 

1) 1z ( N o )  is the dimension of the minimal  realization E; 
3) N ( N 0 )  and N’(N0) are  (separately)  the  smallest 

integers  such  tha.t the realizability crit.erion holds 
simult.aneously for all  minimal extensions; 

3) there is a  minimal  extension of order P(No)  = 
N ( N O )  + Ar’(N0) for .ir-hich 12 (No) is  the dimension 
of the  realimtion  computed by Ho’s algorithm, but 
which is in general  not  unique;  and 

4) every  extension which is fixed up to P(No)  is 
uniquely det.ern1ined therea.fter. 

Proof: If P(N0) 5 No, the sequence { Y1, - - - ,Yxo] sat- 
isfies the realizability  criterion  and 1 ) 4 )  are clearly true. 
So we will assume that P(N0)  > No. Also, the  argument 

is dropped  from n( .), N‘( - ) ,  and N (  - )  for this proof. 
If there does exist an extension 3) whose realization  has 

dimension n, then I ) ,  2), and 4) are  true  by Lemmas 3 
and 4 and Corollary I, respectively. Therefore, a.11 we have 
to do is  show the existence of such an extension. This will 
be  done by  a  method  by which the extension may  actually 

(11) 
where { Y x ~ I ,   Y X ~ + ~ ,  * - - , Y p }  are  to be  chosen so that 
p H A r t S w  = n. 

Procedure 
If a  row in the  last block row of HA~~-&-+~,-V is  linearly 

dependent, we  fill in  the corresponding row of Y,,, in 
fiNwh7+1,-V+l so as  to ma.intain linear  dependence. By 
Lemma 2, this determines the elements of that row 
uniquely. This process is continued  until a.ll linearly 
dependent ~ O R S  of the  last block row of H N w N + l , N  are 
exha.usted. 

ously by Kalman [7]. 
1 A similar  result was discovered  independently  and  simultane- 
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Now we pass to  the  last block row of Hx,-v+~,A-. The 
parts of the linearly  dependent roxs of the  last block row 
of HATo-A~+l,x in  the  last block row of H2v,,v+,,x will still  be 
linea,rly dependent  with the previously  computed element,s 
for beca.use of Ike special nature of the  Hankel  pat- 
tern. We nom- consider the linearly  dependent rows in 
the  last block row of HAr0-x+2,x-l which were linearly 
independent  in t.he last block row of Hx,.v+~,.v. The cor- 
responding rows of I's,+I in HA-,--Y+?,s a.re filled in  to 
preserve linea,r dependence  as bef0r.e. Here  these rows of 
Ynrdl could be  nonunique  since  Lemma 2 n1a.y not, be valid. 

If there  are still rox-s in  the  last block rou- of H-vO-x+2,x--l 
which are  independent, we go to  the  last block row- of 
H.%r0-A7+3,~-2 and so on  until linear  dependence of all r o ~ s  
is obt&ined. This always  happens  since  the  last block row 
of HTf+1,5-,-p is defined to  be linearly  dependent on 
Hxf,No--N. Choosing Y-ve1 in  this m7a.y does .not increase 
the minimum rank of H p , x .  In  other words, if  we used 
Lemma 3 on t.he sequence { Yll .  - , Yx,, YXo+l}  the value of 
n ( N O  + 1 )  would equal n.(No>. 

The process now continues by  induction  until all of the 
matrices { Y x ~ ~ ,  - a ,  Y p }  are determined. By virtue of the 
way { YATo+l, - . , Y p )  are determined, 12 ( p )  = 11 ( p  - I )  = -. = n.(No) a.nd, therefore, pHp,n; = n(N0)  = ~ H A ~ J + I , A ~ ,  
u-here the second equality  is true  by construction. 

By definition of AT 

~H,v,-v ,A- = PHA-,--V ,N+I. 

The  matrix YAtr,l was evaluated  such that  the number of 
independent rows in HK,- - .V+~,~  a.re equal  to  the  number 
of independent r o m  in HXo-.+-+l,hT+l. Therefore, the in- 
crease in  rank of the  matrix HA-O-N+l,,v over the  rank of 
H,v,-x.N ( ~ H X , - ~ + I , X  - pHyo-~-,A7) is  equal to  the increase 
in  rank of Hhyex+l ,X+I over HAT ,,-N+I ,N+I ( pHA+~,-~~+1 ,-?'+I - 
PHX,-.V,X+I). Hence 

pH,veAr+l,x+l - ~HB,--N,N+I = pH,v,-x+l,x - PH.vO-IV-~A~ 

which implies that 

pHxo-x+l,x+l = PHNo-x+l,N. 

Cont.inuing by induction, we obta,in 

pHx-. 9 ~ -  = PHK. ,A~+I. 

Hence n-e can find a realization E by HO'S algorithm which 
has dimension ??.(No).  It is not unique since some  elements 
of { Y.vel1 - - -, Y p ]  may not be unique. 

This proves the existence of extensions whose realization 
achieves the dimension 12 (No)  . Q.E.D. 

The follo\ving example illustrates the use of Theorem 1. 

XIII. EXAMPLE 
Let 

Yl = [: :] , Y?. = [; SJ 
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Then 

1 1 4 3 1 0 7 2 2 1 5  

0 0 0 0  1 1  3 3 

1 1 4 3 1 0 7  

0 0 0 0  1 1  

1 = pHl.4 = 2 

1 = pH1,3 = 2 

= pH?,3 = 4 

P 

- 
1 

0 

4 

0 

10 

1 

P 

1 1  

0 0  

4 3  

0 0  

10 7 

1 1  

4 

0 

10 

1 

22 

3 

1 1' 

0 0  

4 3  

0 0  

10 7 

1 1  

22 15 

3 3. 

= 2. 

Therefore, 
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Hence the minimal dimension is equa.1 to 5 .  Since pH1,I  = 

pH1,3 and pHBs1 = pH3,1, there exists a Y5 and YS (Theorem 
1)  such that pH3,3 = pHBs3 = pH3,4. After  determining the 
dependent rows and columns, we choose Yj and Y6 as in 
Theorem 1 

46  31 94 63 

~ 5 = [ ~ ~  I+ [-, 
Notice  tha.t  there are only two arbitrary  elemenk  in Yj 

and Y6. The system from which the four j Yl ,  - - - ,Y4) 
Markov  parameters Ivere computed is 

- - 
0 1 0  0 0  

- 2 3 0  0 0  

F =  

0 0 0  0 1  

0 0 0  1 0  

- 0 0 0  - 2 3 -  

G =  
1 

0 
H =  [ 

t1 11 
and the resulting system is 

F =  

0 

0 

0 0  

1 0  0 'I 
4 -1 0 0  0 

6 -1 0 0  0 

1 0 - 1 1  0 

0 1 5 1  - 13 4 -651 + 52 + 27 

-0 0 1 0  0 

G =  
1 0  

0 0  
H =  [ 0 

0 O 0 1  "1 
with  the characteristic polynomial equal to 

(s? - 3s + 2) ((8 + 1) ( s  - 4)s 

- . -  . . .- ., . . . . .  . .  . . . " ..-_ c- 

.. . I . ~. . . .  . .  

IEEE TRANS-4CTIONS ON dOTOX4TIC CONTROL, AUGUST 1970 

XIV. COSCLUSIOK 
The realiza,tion problem of multiple  input-output  linear 

const.ant systems when only partial  information is available 
has been solved in  the preceding sections of this  paper. 

The problem as formulated  and solved ma.tches exactly 
the first No Markov  parameters of a linear constant  system, 
which is possibly infinite dimensional, to  that of  a. finite- 
dimensional linear  const,ant  system. 

For continuous-time systems, this corresponds to deter- 
mining a transfer-function matrix (6) or impulse-response 
function (5) whose first No terms  in  their respect,ive power 
series expansion (Proposition 1) are  equal to  the given 
finite sequence { Y1, - - -, YK,) .  This is clearly, a t  best,  a 
matching of the high-frequency response, if the  transfer 
function  is considered, or the  transient response, if the 
impulse-response function  is considered, of the system. 
However, techniques of this  sort  have been used in the 
past [lo, ch. 131 with  nixed success. For example, the 
well-known time-delay transfer  function e-as has been 
approxima.ted in essentially this manner in  the  past using 
the Pad6 theory [ I l l .  

For discrete-time systems, the problem corresponds to 
determining a transfer-function matrix (4) or impulse- 
response function (3) \--hose first No Markov  parameters 
are  equal to  the given finite sequence. However, because of 
Proposition 5, we can  say that  the resulting  realization  is 
an excellent approximation of the transient-response for 
the first No time  values. Hence the  theory developed in 
this  paper  can  be used directly in discrete-time problems 
where the input-output relationships are of concern for a 
finite a,mount of time. 

Also, the unlznon-n system need not be linear  for this 
theory to apply. If the system  under consideration (known 
or unknown) is truly linear  and only the  transient  (initial) 
response is  under consideration, the minimal partial realiza- 
tion  can  be used to  reduce the size of the original system. 

If the system is nonlinea.r, the minimal partial realiza- 
tion concept can  be used to  obtain a  linear model of the 
system which approximates the initial  or  transient response 
of the system  for a given input. If minimal partial  realim- 
tions  are then obtained for various input,s, it  may  be 
possible to 

1)  determine  a useful nonlinear model of the  system  by 
noting how the individual elements of F ,  G, and H 
vary with the different inputs,  or 

2) determine  a linear model which approximates the 
transient response of the unknowm system for inputs 
of interest. 

Some development has been accomplished in  this  area in 
modeling the  time behavior of complex nonlinear systems. 
For exa.mple, this  technique has been illustrated  on  a 
simple example and a,ppears to be a potentially  very 
powerful tool for developing specialized problem-oriented 
identifica.tion procedures for  approximating the  transient 
responses of boilers and turbines [3]. 

Another resea.rch area. which is likely to benefit from  the 
present  method is the building of adaptive  systems  by 
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real-time  identification of 2, in which the estimates of F ,  
G, and H are continuously  updated  as new data.  are 
received. If the realizability  criterion  is satisfied, we can 
det,ermine what t.he system was over the previous  time 
interval.  Furt.hermore, we have  conditions for deternuning 
if the syst,em is cha.nging, i.e., until we receive infornlation 
for which the realizability  criterion no longer holds, the 
realization  remains  constant. If the realizability  criterion 
is not satisfied, or no longer holds, Theorem 1 gives us a 
method for determining what class of systems we are now 
considering. 

APPENDIX 

PROOF OF LEVMA 2 

Pzoof: From  (9a),  it is  obvious that there  exist  two 
equivalence classes AI = { a i } ,  with ai equal to a p' X r 
matrix  with  real  elements,  and N = ( p i } ,  with  equal  to 
an s X p mat,l-ix with  real  elements,  such t,hat 

Aai. = B, PiA = C 

respectively. 
Let D f  be an s x r matrix which satisfies (9b).  Then 

there exist matrices al(p' X r ) ,  Bl(s X p )  (not  unique) 
such t.hat 

BI[A B ]  = [C D'] 

which separa.te  into 

Aal = B, & A  = C 

CaI = D+, B1A = D+. 

This implies that for  any D+ which satisfies (9b),  the 
corresponding ai and pi are in  the classes ilf and N ,  respec- 
tively. Assume that there exist az M and pz  E N such 
that 

Caz = b, p2B = b 
where fi # D+. But 

D' = Ca1 = &Aal = P2B = B. 
Hence, if t.here exists a. D which satisfies (9b),  it is  unique. 

Q.E.D. 

PROOF OF COROLLARY 1 
P.roof: The proof is by  induction. 
1) k = 1, let 

Yh-;l 
A = Hh-,,N, B = 1 1 

a.nd apply  Lemma 2 
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2 )  assume true for k and assume there exists YhleK+l 

such that 

F 

Since YA-,+, is  unknown, the smallest  increase  occurs when 
the dependent rows of the second block row of H z , x ~  
rema,in dependent  after the block column 

[ Y::] 
is  adjoined (9). Clearly, this increase is  equal to 

(pH2.h-0-1 - ~ H I , N ~ - - I ) .  

Xow consider 

min ( P f f j + l , N o  - p H j , x o ) .  

Aga.in, since in  this case 17,vo+l,. * n ,  Ygo+j are unknown, the 
smallest  increase occurs when the dependent rows of the 
( j + 1) th block row of Hj+l,hrO-j remain  dependent after 
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the matrix 

[ Y.?r o+l yhr& i.] j 

YhT(rj+l * * . 
Yh‘,yj+P * * *  YX&l 

is  adjoined.  Notationa.lly,  this  increase  is  equal to 

(PHj+l.No-j - PHj,hro-j). 

Note  that Hj+l,wo-i and Hj,x0-j consist only of the given 
sequence of matrices. 

Hence 
NIP1 

mindim 2 2 n(No) = pH1,xo + C (PHj+l,NWj - PHj,so-j) 
j=1 

h ’ 0  Ne1 
= p H j . N ~ l - j  - C pHj.No-j. 

j=l +I 

Q.E.D. 

PROOF O F  LENMA 4 

Proof: From  the definition of N’(No),hr(hTO), we see 
that  the minimum  number of linearly  independent rows 
(or columns) in (10) can  be  counted  by only considering 
t,he  matrix 

where the ast.erisks, as before, a.re locations of the  unlaown 
parameters { Y?-&1, * } . Hence any realization x-hich 
achieves the lower bound H (No) must also have the 
property that 

1 )  (A’*) = p H ~ , ( x ~ )  ,N(A-~). 

Now assume that there exists a  minimal part.ia1 realization 
of order hro nit,h dimension 71 ( N o ) .  Assume that for this 
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extension P H X ~ ( W , ) + ~ . A ~ ( S ~ )  > pHhr,(rvO).x(NO). But,  by  Prop- 
osit.ions 2 and 3, this implies that  the dimension of the 
realization  is greater  than n ( N o ) .  A similar argument 
holds for PHA~,(N~) .N(N,)+I > PHP(N~) , . V ( N ~ ) .  Hence 

PH-v,(h-o),.v(n-o) = P~.?r~(-Vo~+l,N(A-o) = PHh-yMo),A-(No)+l 

for any extension whose realization  has dimension n (hr,) . 
Q.E.D. 
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