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Abstract

When minimizing a nonlinear least-squares function, the Levenberg-Marquardt algorithm can suffer from
a slow convergence, particularly when it must navigate a narrow canyon en route to a best fit. On
the other hand, when the least-squares function is very flat, the algorithm may easily become lost in
parameter space. We introduce several improvements to the Levenberg-Marquardt algorithm in order to
improve both its convergence speed and robustness to initial parameter guesses. We update the usual
step to include a geodesic acceleration correction term, explore a systematic way of accepting uphill steps
that may increase the residual sum of squares due to Umrigar and Nightingale, and employ the Broyden
method to update the Jacobian matrix. We test these changes by comparing their performance on a
number of test problems with standard implementations of the algorithm. We suggest that these two
particular challenges, slow convergence and robustness to initial guesses, are complimentary problems.
Schemes that improve convergence speed often make the algorithm less robust to the initial guess, and
vice versa. We provide an open source implementation of our improvements that allow the user to adjust
the algorithm parameters to suit particular needs.

Keywords:

1. Introduction

A common computational problem is that of minimizing a sum of squares

C(θ) =
1

2

M∑
m=1

rm(θ)2, (1)

where r : RN → RM is an M -dimensional nonlinear vector function of N parameters, θ, where M ≥ N .
The Levenberg-Marquardt algorithm is perhaps the most common method for nonlinear least-squares
minimization. In this paper, we discuss a number of modifications to the Levenberg-Marquardt algorithm
designed to improve both its success rate and convergence speed. These modifications are likely to be
most useful on large problems with many parameters, where the usual Levenberg-Marquardt routine
often has difficulty.

Least-squares minimization is most often used in data fitting, in which case the function rm(θ) takes
the form

rm(θ) =
y(tm, θ)− ym

σm
, (2)

where y(t, θ) is a model of the observed data, ym, that depends on a set of unknown parameters, θ, and
one or more independent variables t. The deviation of the model from observation is weighted by the
uncertainty in observed data, σ. The terms in Eq. (2) are known as the residuals and may be augmented
by additional terms representing Bayesian prior information about the expected values of θ. We refer
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to the function in Eq. (1) as the cost function. The cost corresponds to the negative log-likelihood of
parameter values given the data assuming Gaussian errors. The parameter values that minimize C(θ)
are known as the best fit parameters.

The Levenberg-Marquardt algorithm[1, 2, 3, 4] is is a modification of the Gauss-Newton method,
which is is based on a local linearization of the residuals

rm(θ + δθ) ≈ rm(θ) + Jmµδθ
µ, (3)

where J is the Jacobian matrix Jmµ = ∂rm/∂θµ. The Gauss-Newton method then iterates according to

δθ = −(JTJ)−1∇C = −(JTJ)−1JT r. (4)

The Gauss-Newton method will usually converge quickly if it begins sufficiently near a minimum of C.
However, the matrix JTJ is often ill-conditioned, with eigenvalues often spanning a range of six orders
of magnitude or more. Therefore, unless the initial guess is very good, the Gauss-Newton method takes
large, uncontrolled steps and will fail to converge. This is illustrated explicitly in figure 1, where far from
the best fit the Gauss-Newton direction is nearly orthogonal to the direction the algorithm ought to take.

To remedy the shortcomings of the Gauss-Newton method, Levenberg and Marquardt each suggested
damping the JTJ matrix by a diagonal cutoff[1, 2]. The Levenberg-Marquardt algorithm therefore steps
according to

δθ = −
(
JTJ + λDTD

)−1∇C. (5)

where DTD is a positive-definite, diagonal matrix representing the relative scaling of the parameters and
λ is a damping parameter adjusted by the algorithm. When λ is large, the method takes a small step in
the gradient direction. As the method nears a solution, λ is chosen to be small and the method converges
quickly via the Gauss-Newton method.

Often, models with many parameters exhibit universal characteristics known as sloppiness which pose
particular challenges to the fitting process. The behavior of sloppy models is determined by only a few stiff
(relevant) parameter combinations, while most other parameter combinations are sloppy (irrelevant)[5,
6, 7, 8, 9]. Fitting difficulties arise when algorithms are lost in regions of parameter space where the
model behavior is insensitive to changes in the parameters, i.e. a plateau on the cost surface in parameter
space as in Fig. 1. A common occurrence is that while lost on the plateau, algorithms push parameters
to infinite values without finding a good fit, a phenomenon known as parameter evaporation[10, 11].
Although these solutions correspond to fixed points of the cost, i.e. ∇C = 0, and are therefore either
local minima or saddle points at infinity, these solution are unsatisfactory since they often correspond to
bad fits to the data and the parameters, being infinite, have little meaning. The algorithm must then
be guided by hand in order to find a better fit. This problem can sometimes be avoided by augmenting
the cost function with penalty terms to keep the parameter within a reasonable range as suggested in
reference[11]. However, this is not always possible, and penalty terms will move the location of the
minimum. One would therefore like the algorithm itself to be less sensitive to parameter evaporation.

In addition to parameter evaporation, the algorithm becomes sluggish when it must follow a narrow
canyon to find the best fit, as in Fig. 1. It is common for the aspect ratio of the canyon to be greater
than 1000 : 1 for problems with ten or more parameters[8, 9], which requires the algorithm to take very
small steps as it inches along the bottom of the trough. The difficulty in data fitting is exacerbated by
the fact that solutions to the two principal problems (parameter evaporation and slow convergence) are
often at odds with one another. Methods which speed up convergence in the canyon usually increase the
probability of parameter evaporation and vice versa.

Because it is can tune λ as needed, the Levenberg-Marquardt method is well-suited for dealing with the
difficulties in nonlinear least-squares minimization. By properly adjusting the damping term, the method

2



Figure 1: The cost surface in parameter space for least-squares problems often forms a hierarchy of narrow, winding
canyons surrounded by plateaus. Algorithms are easily lost on the plateaus, often evaporating parameters (pushing them
to infinity) while searching for a canyon. We see here that the Gauss-Newton direction in the plateau region is nearly
orthogonal to the ideal direction. Having found the canyon, algorithms can become sluggish while following it to the best
fit. This simple model, y = e−θ1t + e−θ2t, fit to three data points has a plateau when the parameters become very large[10].
It also exhibits a symmetry when parameter are permuted.
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can interpolate between gradient descent, for avoiding parameter evaporation, and the Gauss-Newton
algorithm for quickly converging along a canyon. One of the challenges for the Levenberg-Marquardt
method is in choosing a suitable scheme for updating the damping parameter λ that successfully interpo-
lates between the two regimes. Many such schemes exist and although some are more suited for avoiding
parameter evaporation and others are more adept at navigating the canyon, the Levenberg-Marquardt
method is generally robust to the specific method used.

Its relative success notwithstanding, the Levenberg-Marquardt algorithm may still fail to converge if
it begins far from a minimum and will converge slowly if it must inch along the bottom of a canyon. Given
the ubiquitous role of nonlinear least-squares minimization in mathematical modeling, and considering
the trend to use increasingly large and computationally expensive models in all areas of science and
engineering, any improvements that could be made to the Levenberg-Marquardt algorithm would be
welcome. In this paper we discuss several such improvements.

This paper is organized as follows: In section 2 we summarize the key elements of the Levenberg-
Marquardt algorithm. We then explore how the existing methods can be improved by including the
so-called geodesic acceleration[10, 11] in section 3 and a modified acceptance criterion due to Umrigar
and Nightingale[12] in section 4. We then discuss how a rank-deficient update to the Jacobian matrix
can reduce the number of times it must be evaluated in section 5. An open source implementation of the
Levenberg-Marquardt algorithm with our proposed improvements is available in FORTRAN[13].

In each of the following sections we compare the performance of the algorithm with the suggested
improvements on a set of several test problems drawn from the Minpack-2 project[14] and the NIST
statistical reference datasets[15]. Because most of these problems are of small or moderate size, most are
much easier than the larger, more difficult fitting problems that motivated our work. In order to make
these problems more difficult, we test the algorithm for an ensemble of starting points drawn from a broad
distribution. We find that for a sufficiently diverse set of starting points, these problems can be made of
comparable difficulty to larger, more challenging problems. We also explore the algorithms’ performance
on several large test problems drawn from recent research. Because the Minpack-2 and NIST problems
can be evaluated quickly, they make ideal test problems provided the more difficult starting positions
are used. These problems are summarized in Appendix A. We find that our proposed improvements
consistently improve the performance of the algorithm on these problems.

2. The Levenberg-Marquardt algorithm

In this section we describe the basic concepts of the Levenberg-Marquardt algorithm. Our implemen-
tation of the Levenberg-Marquardt algorithm consists of iteratively repeating the following five steps:

1. Update the function and Jacobian values (if necessary) based on the current parameter values.

2. Update the scaling matrix DTD and damping parameter λ.

3. Propose a parameter step, δθ, and evaluate the function at the new parameter values, θ + δθ.

4. Accept or reject the parameter step depending on whether the cost has decreased at the new
parameters.

5. Stop if the algorithm has met any of the desired convergence criteria or has exceeded the limit of
function evaluations or iterations.

The only ambiguities in this method are in the method for selecting λ and the scaling matrix DTD. We
discuss specific methods for selecting λ in section 2.1 and in section 2.2 we discuss how to select DTD.
Finally we discuss convergence and stopping criteria in section 2.3.

In later sections we discuss how to modify the other aspects of the Levenberg-Marquardt algorithm.
These improvements represent our contribution to the algorithm, and we find that these improvements
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can offer drastic improvements to its speed and stability. In particular, as mentioned above, we modify
the proposed parameter step, δθ, in section 3 to include a second order correction that we call the geodesic
acceleration; in section 4 we modify how the algorithm accepts the proposed step; and in section 5 we
modify how the Jacobian matrix is updated.

2.1. Choosing the damping parameter

The basic strategy behind choosing the damping term uses the observations that the square of the step
size ∆2 = δθTDTDδθ is a monotonically decreasing function of λ in Eq. (5). Therefore, for a sufficiently
large value of λ, the algorithm will take an arbitrarily small step in a descent direction. If a proposed
step is unacceptable, one need only increase the damping term until a smaller, more acceptable step has
been found. Because choosing λ is equivalent to choosing the step size, the Levenberg-Marquardt method
can be considered a trust-region method. There are two broad classes of methods for determining the
appropriate damping. This can be done by either adjusting λ directly, or, by first choosing an acceptable
step size ∆ and then finding a λ such that |δθ| ≤ ∆ (note that reference [3] describes how λ may be
efficiently found for a given ∆). We will refer to these two types of schemes as direct and indirect methods
respectively.

Many schemes have been developed to efficiently adjust λ or ∆. In our experience, the simple method
originally suggested by Marquardt (with a slight modification described shortly) is usually adequate. In
this scheme, if a step is accepted, then λ is decreased by a fixed factor, say 10. If a step is rejected
then λ is appropriately raised by a factor of 10. As explained in reference [11], the qualitative effect of
the damping term is to modify the eigenvalues of the matrix JTJ + λDTD to be at least λ. Often, the
eigenvalues of JTJ are well spaced on a log-scale; it is therefore natural to choose the factor by which λ is
either raised/lowered to be comparable to the eigenvalue spacing of JTJ . We have much greater success
using a factor of 2 or 3 on most problems. Additionally, we find that lowering λ by a larger factor than it
is raised also produces more beneficial results. For many moderate sized problems decreasing by a factor
of 3 and raising by a factor of 2 is adequate. For larger problems, decreasing by a factor of 5 and raising
by a factor of 1.5 is better. This scheme is known as delayed gratification, and its motivation is described
in [11, section VIII]. This basic strategy can also be applied to an indirect method by systematically
increasing/decreasing ∆ by a multiplicative factor instead of λ.

We compare the relative performance of these methods for selecting λ, together with more complicated
schemes describe by Nielson [16] and Moré [3] on the problems in Appendix A. In our experiments,
no single method consistently outperforms all other methods on all the test problems, with the results
depending very strongly on which problem one considers. We present our results of these tests in Appendix
B.2.

By inspecting the results in Appendix B.2 more closely, we find there are problems for which indirect
methods collectively outperform the direct methods and vice versa. We can understand these trends by
considering the problems individually. For example, the relative success of indirect methods on problems
B and C can be understood by considering the eigenvalues of the of the Hessian matrix JTJ near the best
fit, as in figure 2. Notice that although the eigenvalues span many order of magnitude, they tend to collect
near 103 and 101. As we argued above, λ should be turned based on the spacing of these eigenvalues. In
order to be effective, an algorithm would therefore need to carefully tune λ while it was near 103, but
then change very quickly while between 101 and 103. The direct methods described above cannot do this,
however, the indirect methods that tune ∆ rather than λ seem to accomplish this naturally.

The relative success of direct methods on other problems can be understood by a similar argument.
In these problems there are regions of parameter space in which the step size must be finely tuned and
other regions in which must change by large amounts. It seems for these problems the direct methods
that tune λ rather than the step size are more efficient.
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Figure 2: The eigenvalues of of the Hessian matrix for problem C. Although the eigenvalues span nearly eight order of
magnitude, they are not evenly spaced over this range. There are two large collections are eigenvalues near 1000 and
between 1 and 10. This clumping helps explain why indirect update methods are superior for this problem.

2.2. Damping Matrix

We now describe how to choose an effective damping matrix DTD. Levenberg originally suggested
an additive damping strategy, corresponding to DTD = δ, the identity. It has since been suggested that
a multiplicative damping strategy in which DTD is a diagonal matrix with entries equal to the diagonal
entries of JTJ would more accurately capture the scaling of the several parameters. This method for
choosing parameter scaling has the property that the algorithm is invariant to rescaling parameters, which
is to say if the parameters of the model were replaced by the parameters θ̃i = λiθi for some scaling factors
λi, then the sequence of iterates, i.e. values of the cost function, produced by the algorithm would be left
unchanged.

The problem with a method that preserves scale invariance is that it greatly increases the susceptibility
to parameter evaporation. In particular, if a parameter begins to evaporate, the model becomes less
sensitive to the parameter, so it’s corresponding entry on the diagonal of JTJ becomes small, in turn
decreasing the damping of this parameter. This, however, is exactly the wrong behavior for dealing with
parameter evaporation. Indeed, as argued previously[11] the role of the damping matrix is to introduce
parameter dependence to the step, so a choice that is scale invariant is somewhat counter productive. On
the other hand, we find that using the Marquardt scaling can greatly speed up the algorithm when it is
in the region of a canyon, when scale independence is crucial.

The popular implementation of Levenberg-Marquardt found in Minpack uses a similar but superior
method described in reference [3]. It chooses DTD to be diagonal with entries given by the largest
diagonal entries of JTJ yet encountered. This method also preserves invariance under rescaling but is
more robust at avoiding parameter evaporation, however, it is still more prone to parameter evaporation
than Levenberg scaling. This is because initial parameter guesses may lie in regions that do not produce
enough damping.

A good compromise is to specify a minimum value of the damping terms in DTD. This prevents the
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damping from being too small, either if they begin far from the canyon or as they parameters evaporate,
but allows the algorithm to fine tune the scaling as it follows the canyon. We find that this method is
both robust to parameter evaporation and efficient at finding good fits.

2.3. Convergence Criteria

Finally, we discuss criteria for the algorithm to stop searching for a best fit. It is important to
distinguish between convergence criteria and stopping criteria. The former are criteria indicating that
the algorithm has indeed found a local minimum of the cost, while the latter are criteria indicating
that the algorithm is, in effect, giving up. In our comparison of the several algorithms, we consider the
convergence rate as one measure of the algorithm’s performance (see Appendix B.1). This rate is the
fraction of times the algorithm claimed to have successfully found a minimum.

An elegant convergence criterion proposed by Bates and Watts originated in the geometric interpre-
tation of the least-squares problem[17]. This method monitors the angle between the residual vector and
the tangent plane, which we denote by φ. In particular, the cosine of the angle in data space is given by

cosφ =
|P T r|
|r|

, (6)

where P T is a projection operator that projects into the tangent plane of the model manifold. Given a
singular value decomposition of the Jacobian matrix J = UΣV T , then P T = UUT . The algorithm can
then be stopped when cosφ is less than some quantity, say 10−2 or 10−3.

This method provides a dimensionless convergence criterion that indicates how near one is to the
minimum. It also has a statistical interpretation in terms of the accuracy of the solution in terms of
the statistical uncertainty in the parameters. This method has a serious deficiency, however, when the
model manifold has narrow boundaries as described in references[10, 11]. If the best fit happens to
have evaporated parameters, a likely scenario for large models fit to noisy data, then cosφ may be large
although the algorithm has in fact converged.

As parameters evaporate, the model becomes less sensitive to that particular parameter combination
and the Jacobian matrix has a singular value that becomes vanishingly small. (Note that the singular
values correspond to the square root of the eigenvalues of JTJ .) When it is sufficiently small we should
consider these parameter directions to lie in the null space of J . Although the singular value may be
formally nonzero, for computational purposes we understand that the algorithm will not make any more
progress by moving the parameters in these directions and they should not contribute to the tangential
component of the residuals.

To remedy this situation, we replace the projection operator P T = UUT in Eq. (6) with P T = Ũ ŨT

where Ũ is a matrix of left singular vectors of J for which the corresponding singular value is larger than
some threshold. If the function is evaluated to precision ε, then we find that ignoring the directions with
singular values less than

√
εmax Σ, where max Σ is the largest singular value, works well. An alternative

solution is to use a convergence criteria when the gradient of the cost falls below a certain threshold.
In addition to the convergence criterion described above, the algorithm should have a number of

stopping criteria. In our implementation we provide stopping criteria for when a maximum number of
residual and Jacobian evaluations have been reached, in addition to a maximum number of iterations of
the algorithm. We also provide stopping criteria for when the gradient of the cost has fallen to some
threshold, when the change in parameter values becomes sufficiently small, the damping term becomes
too large, and when cost itself has reached some acceptable value.
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3. Geodesic Acceleration

In order to improve the efficiency of the Levenberg-Marquardt method, we propose modifying the
step to include higher order corrections. To derive this correction, consider the minimization problem of
finding the best residuals with a constrained step-size. We write the dependence of the residual on the
shift δθ as

r(θ + δθ) = r + Jδθ + 1/2 δθTKδθ + · · · , (7)

where J and K are the arrays of first and second derivatives respectively. We wish to minimize

min
δθ

(
r + Jδθ + 1/2 δθTKδθ

)2
(8)

with the constraint that δθTDTDδθ ≤ ∆2. After introducing a Lagrange multiplier λ for the constraint
in the step size, the minimization becomes

min
δθ

(
r + Jδθ + 1/2 δθTKδθ

)2
+ λδθTDTDδθ. (9)

By varying δθ we find the normal equations:

Jmµrm + (JmµJmν + rmKmµν + λDmµDmν) δθ
ν + (JmνKmµα + 1/2 JmµKmνα) δθνδθα = 0, (10)

where we have explicitly included all the indices to avoid any ambiguity and used the convention that all
repeated indices are summed. Since we constrain the step size, it is natural to assume that δθ is small,
and we seek a solution of Eq. (10) as a perturbation series around the linearized equation:

δθ = δθ1 + δθ2 + · · · . (11)

Let δθ1 be a solution of the linearized equation:

δθ1 = −(JTJ + rTK + λDTD)−1JT r

≈ −(JTJ + λDTD)−1JT r,

where in the second line we have made the usual Gauss-Newton approximation. It will turn out that this
neglected term will help to cancel out a higher order correction. We therefore assume

δθ1 = −(JTJ + λDTD)−1JT r. (12)

is the usual Levenberg-Marquardt step.
With this definition of δθ1, Eq. (10) becomes

(JmµJmν + rmKmµν + λDmµDmν) δθ
ν
2 + 1/2 JmµKmναδθ

ν
1δθ

α
1 + (rmKmµα + δθν1JmνKmµα) δθα1 = 0. (13)

to second order, with the term rmKmµαδθ
α
1 the previously neglected term.

We now turn our attention to the second term in parentheses in Eq. (13). Using the definition of
δθ1 = −(JTJ + λDTD)−1JT r, we can write

rmKmµα + δθν1JmνKmµα = rmKmµα − rmJmβ(JTJ + λDTD)βνJnνKnµα

= rm
(
δmn − Jmβ(JTJ + λDTD)βνJnν

)
Knµα.

We now make an appeal to geometric considerations by noting that δmn−Jmβ(JTJ+λDTD)βνJnν = PN
mn

is a matrix that projects vectors perpendicular to the tangent plane of the Model Graph as described in
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reference[11]. If the curvature of the model graph is small, then PNK ≈ 0 and this term can be neglected.
Furthermore, as the algorithm nears the best fit, the residuals are very nearly orthogonal to the tangent
plane (regardless of whether |r| is small), so that PNr ≈ 0 also. We therefore assume that this term is
negligible compared to other corrections.

Returning to Eq. (13), after ignoring the last term in parentheses, we find

δθ2 = −1/2
(
JTJ + rTK + λDTD

)−1
JT r′′

≈ −1/2
(
JTJ + λDTD

)−1
JT r′′,

where we have used the directional second derivative r′′m = Kmµνδθ
µ
1 δθ

ν
1 and in the second line made the

usual approximation to the Hessian, giving the formula originally presented in [10]. This formula was
originally interpreted as the second order correction to geodesic flow on the model graph, and so we refer
to this correction as the geodesic acceleration correction. By analogy, we refer to the first order correction
as the velocity:

δθ = δθ1 + δθ2 ≡ vδt+ 1/2 aδt2. (14)

It is surprising how good the small-curvature approximation turns out to be. As shown in reference
[11], the extrinsic curvature of the model manifold should under many circumstances be very small
compared the largest step size an algorithm can take, which is limited by the so-called parameter-effect
curvature. When Bates and Watts first introduced measures of parameter-effects curvature, they noted
that for every problem they considered the parameter-effects curvature was larger (often much larger)
than the extrinsic curvature[18]; explicit examples in [11] show parameter-effects curvature with up to
six order of magnitude larger extrinsic radii of curvature compared to the allowed step sizes. Although
there are assuredly counter examples, it is reasonable to expect that for most problems of interest,
this approximation will be excellent, and the geodesic acceleration will capture most of the next-order
correction in the cost.

The geodesic acceleration depends on the second derivative of the model, but perhaps surprisingly,
the only dependence is on the directional second derivative oriented along the first order correction, δθ1.
This result is significant, as calculating the full array of second derivatives would likely be prohibitively
expensive for large models. However, a directional second derivative has a small computational cost,
comparable to a single evaluation of r(θ), and in fact a finite-difference estimate can be found with only
one additional evaluation of r. In contrast, for large models, most of the computational cost of minimizing
least-squares problems comes from evaluating the Jacobian matrix. In these cases, the additional cost of
evaluating the second order correction is negligible.

One benefit of including the geodesic acceleration comes when the algorithm is navigating a narrow
canyon toward the best fit as illustrated in Figure 3. By approximating the path with a parabola, the
geodesic acceleration method can more accurately follow the path of a winding canyon toward the best
fit.

In order to utilize the geodesic acceleration as an addition to the Levenberg-Marquardt algorithm, it
is necessary to make one other small addition. We require acceptable steps to satisfy the condition

2|δθ2|
|δθ1|

≤ α (15)

where α is some number of order 1 that is set by the user and whose optimal value may vary from
problem to problem. The motivation for this requirement is that the proposed step represents a truncated
perturbation series and so the terms ought to be decreasing in magnitude to guarantee convergence. For
most problem we find that α = 0.75 is a good guess. Problems for which convergence is difficult, α = 0.1
is an effective choice.
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Figure 3: When navigating a canyon toward the best fit, the geodesic acceleration indicates in which direction the canyon
is curving. By approximating the path with a parabola, the best fit can be found in fewer iterations.
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We note that for a given value of α one can always find a suitable value of λ such that Eq. (15) is
satisfied as long as the second derivative is reasonably well behaved. In particular, if λ is very large, then
(JTJ + λDTD)−1,≈ 1

λ
(DTD)−1, and

δθ1 ≈ −
1

λ
(DTD)−1∇C. (16)

We define u = λδθ1 which is (asymptotically) independent of λ, so that r′′m = Kmµνδθ
µ
1 δθ

ν
1 ≈ 1

λ2
Kmµνu

µuν .
Then it follows that

2δθ2 ≈
1

λ3
(
DTD

)−1
JT
(
uTKu

)
. (17)

Therefore, as long as uTKu is bounded, Eq. (15) can be satisfied by selecting a sufficiently large value of
λ.

Without the requirement in Eq. (15), the resulting algorithm may be unpredictable and will often take
large, uncontrolled steps and become lost. This phenomenon is closely related to parameter evaporation
that gives so much trouble to the standard algorithm. The additional requirement in Eq. (15) helps the
geodesic algorithm avoid parameter evaporation, increasing its likelihood of convergence. In figure 4 we
show that adding geodesic acceleration with the requirement in Eq. (15) can improve the behavior of teh
standard Levenberg-Marquardt algorithm.

Figure 4: Here we minimize the problem in figure 1 in log parameters. When the algorithm starts on a plateau, it can
take large, uncontrolled steps, that although they decrease the cost, they may move the algorithm farther from the best
fit. In this example the standard algorithm without acceleration becomes stuck in a very flat region where ∇C ≈ 0 within
numerical precision; however, this point is a poor fit to the data and not a local minimum. By including acceleration and
enforcing Eq. (15), the algorithm recognizes that these steps are too large to be trusted since |δθ2| > |δθ1|. It therefore
takes smaller steps, which allow it to ultimately find the best fit.

In section 2.2 it was noted that for a suitable choice of DTD the iterates produced by the Levenberg-
Marquardt algorithm are invariant to a change of scale of the parameters. It is interesting to note that
this result is unchanged by including the geodesic acceleration. It is also important to note that by
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including the geodesic acceleration, the step size is no longer a monotonically decreasing function of λ.
Furthermore, including the geodesic acceleration makes it computationally unreasonable to calculate λ
for a specified step size ∆. Rather, in our implementation, we implement indirect methods by selecting
λ so that |δθ1| = ∆. With this convention, the Levenberg-Marquardt method with geodesic acceleration
is a type of hybrid method between a trust region and line search method. In particular, the choice of
damping, λ, can be considered a trust region in δθ1. Having selected the first order correction δθ1, the
second order correction explores the model behavior in the chosen direction and diverts and dampens the
step as appropriate.

Before discussing the performance of the geodesic acceleration, we offer a few remarks about evaluating
the directional second derivative. As is always the case, analytic derivatives are preferable to finite
difference estimates. If an analytic expression can be found for the first derivatives, in principle one could
also find an expression for the directional second derivative, although the resulting expression may be
very complicated, especially for large models. (With code often being generated by computer algebra
systems, it may not be unreasonable in some cases.) Automatic differentiation also might make exact
evaluations of the second derivative feasible.

In cases where a directional second derivative cannot be evaluated analytically, one can always use a
finite difference approximation. The usual formula for the directional second derivative is

Kmµνδθ
µδθν ≈ rm(θ + hδθ1)− 2rm(θ) + rm(θ − hδθ1)

h2
, (18)

for some finite-difference step size, h. When evaluating Eq. (18), note that the algorithm will already have
evaluated r(θ), leaving two additional function evaluations necessary for the estimate. The algorithm has
also previously evaluated the Jacobian matrix. Using this information one can find a finite difference
estimate with just a single additional function evaluation:

Kmµνδθ
µδθν ≈ 2

h

(
rm(θ + hδθ1)− rm(θ)

h
− Jmµδθµ1

)
. (19)

In practice, the finite difference estimate may be sensitive to h, particularly if the problem is poorly
scaled. We find in practice that choosing a large finite-difference step size, giving something analogous
to a secant estimation, is less dangerous than a step that is too small. In general, choosing h = 0.1, so
the step is about 10% of the first order step seems to work reasonably well.

We now consider how the geodesic acceleration affects performance, detailed results are presented in
Appendix B.3. In our experiments, including geodesic acceleration correction improved the algorithm’s
ability to converge to good fits and to do so with less computational cost. On some problems, the geodesic
acceleration converged with an average of a factor of 70 fewer Jacobian evalautions! Perhaps the most
significant benefit gained from geodesic acceleration, however, is in the improved success rate and fit
quality. We attribute this improvement to the modified acceptance criterion given in Eq. (15). For many
cases the algorithm could be improved further by a smaller choice of α (the results in Appendix B.3 are
for α = 0.75), although this comes at a cost in convergence speed (more Jacobian evaluations).

4. Uphill steps

It is necessary for the algorithm to have some way to distinguish whether a proposed step should be
accepted or rejected. The standard choice in the Levenberg-Marquardt method is to accept all steps that
decrease the cost and reject all steps that increase the cost. Although this is a natural and safe choice,
it is often not the most efficient, as we demonstrate in this section.
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When an algorithm must follow a narrow canyon to the best fit, if the aspect ratio of the canyon is
very large, then there will be only a small sliver of steps that decrease the cost. Uphill moves, akin to the
path followed by a bobsled racer, allow more rapid progress toward the best fit. Accordingly we modify
the acceptance criterion following a method proposed by Umrigar and Nightingale[12], such that downhill
moves are always accepted, but uphill moves only conditionally. To determine whether an uphill move is
accepted at each iteration i, we compute

βi = cos(δθnew
1 , δθold

1 ), (20)

which denotes the cosine of the angle between the proposed velocity δθnew
1 and the velocity of the last

accepted step δθold
1 . The idea is to accept uphill moves if the angle arccos βi is acute, with increasing

acceptance as the angle more nearly vanishes. To be specific, we accept an uphill move if

(1− βi)bCi+1 ≤ Ci, (21)

or more conservatively if
(1− βi)bCi+1 ≤ min(C1, . . . , Ci), (22)

where min(C1, . . . , Ci) is the smallest cost yet found. Reasonable choices for the value of b are 1 or 2,
with b = 2 allowing higher uphill moves than b = 1. In combination with either one of the Eqs. (21) or
(22), this yields four possible variants of the algorithm. This method for accepting steps was originally
developed by Umrigar and Nightingale[12] in 1994 and has been employed by them for optimizing many-
body wave functions used in quantum Monte Carlo calculations. We refer to this method of accepting
steps as the “bold” acceptance criterion.

In addition to frequently reaching minima in a smaller number of optimization steps, we find that on
average better minima are found, for systems with multiple minima, when uphill moves are allowed. The
reason is that by not following the valley floor closely the optimization avoids getting trapped in some of
the potholes it encounters along the way.

We now investigate how the bold acceptance criterion affects the algorithms’ performance, with de-
tailed comparisons given in Appendix B.4. While the results vary from problem to problem, it appears
that for many cases the bold acceptance can speed up the performance of the algorithm, in some cases
by a factor of 30. Unfortunately, this increase in speed comes at a cost in the stability of the algorithm;
in many cases the success rate of the algorithm drops when the bold method is used. This should be
expected, however. If the standard algorithm is prone to get lost on flat regions of the cost surface by
taking uncontrolled steps, then allowing the method to move uphill should produce even less constrained
steps.

The effect of lower success rates when using bold acceptance can be partially mitigated by including
the geodesic acceleration correction and enforcing Eq. (15). By reducing the value of α the algorithm can
usually be made more successful at the expense of a slower algorithm. The trade-off between a stable
algorithm and a fast algorithm seems to be an inherent feature of this problem.

We note that in our experiments, we have used relatively difficult starting points on many of the test
problems. If we had used the standard starting points supplied by the Minpack-2 or NIST versions of
problems A - N, the success rate and fit quality would have been much higher. This result is a reflection
of that fact that there is no guarantee for convergence when uphill moves are accepted. On the other
hand, in our experience if a problem is chosen such that there is little chance of the algorithm becoming
lost or not converging, then accepting uphill moves can greatly reduce the time to find good fits. This
is most likely to be useful for fitting problems that either start in a narrow canyon or can easily find the
canyon but become sluggish en route to the best fit. If the problem is difficult because it is hard to find
a canyon, then accepting uphill moves are not likely to improve the search.
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5. Updating the Jacobian Matrix

When comparing algorithm performance, we have assumed that the most computationally intensive
part of the Levenberg-Marquardt algorithm is an evaluation of the Jacobian matrix of first derivatives.
If this is done using finite difference then for a model of N parameters the Jacobian matrix is N times
as expensive as a residual evaluation. If analytic formulas are available, it may be more efficient than a
finite difference approximation, but for large N Jacobians will still occupy the bulk of the computer time.
Much of the discussion of this paper has revolved around reducing the number of Jacobian evaluations
necessary for convergence.

Typically, the algorithm will evaluate the Jacobian after each accepted step in order to calculate the
gradient ∇C = JT r and the matrix g = JTJ + λDTD. Broyden suggested a quasi-Newton root finding
method that evaluates the Jacobian only on the first iteration and subsequently updates the Jacobian
with a rank-1 update[19]. Thus, given the Jacobian at the previous iterate, Ji−1, the Jacobian at the
current parameter values Ji is estimated to be

Ji = Ji−1 +
∆ri − Ji−1∆θi
|∆θi|2

∆θTi , (23)

where ∆ri = ri−ri−1 is the change in the residual vector and ∆θi = θi−θi−1 is the change in the parameter
space vector between iterations. In principle this method can be applied to the Levenberg-Marquardt
method to eliminate the need to evaluate J at each step.

In practice, after many such updates, the matrix J may become a very poor approximation to the
actual Jacobian, resulting in a poor estimate of the gradient direction. If the algorithm’s performance
suffers as a result, it may be necessary to reevaluate the whole Jacobian matrix and begin the update
scheme anew. We therefore reevaluate the Jacobian after a few proposed steps have been rejected by the
algorithm. Typically, reevaluating after one or two rejections works well.

When the geodesic acceleration is included, then each iteration has the information of two function
evaluations and one can construct a rank-2 update to the Jacobian. We accomplish this as follows: if a
step is proposed with velocity δθ1 = v and acceleration δθ2 = a/2, then we first assume a step was taken
corresponding to δθ = v/2 and residuals ri + 1

2
Jiv + 1

8
vTKiv. Notice this expression for the residuals

involves the directional second derivative which has been evaluated to calculate the geodesic acceleration.
A rank-1 Broyden update is then performed for this step. It is then assumed that a second step is taken
corresponding to δθ = 1

2
(v + a) and another rank-1 update is performed corresponding to this step.

In practice there is little performance gain from using the rank-2 update instead of the rank-1 update
suggested by Broyden. This is most likely because the velocity and the acceleration are often nearly
collinear, as described in [11]. However, as there are cases in which a rank-2 update can be beneficial, we
include it in our implementation.

The details of our tests using rank-deficient updates is given in Appendix B.5. We find that, when
successful, the Broyden update scheme can dramatically speedup the algorithm, requiring many fewer
evaluations of the Jacobian matrix. However, the algorithm also appears to be more likely to get lost.
We understand the lower success rates and fit quality as a direct consequence of using an approximate
Jacobian matrix, resulting in an inaccurate gradient direction.

By using a rank-2 update with the geodesic acceleration, the success rate of the algorithm is not
improved significantly. It is likely that a more sophisticated scheme for deciding when the Jacobian
should be reevaluated could improve the method’s robustness against becoming lost. We recommend
using this Jacobian update scheme only when there is very little chance that the algorithm will become
lost or when the Jacobian is so expensive that evaluating it multiple times is not possible.

Particularly for large problems, the relative cost of a Jacobian evaluation to a function evaluation
reflects the relative information content of the two. For small problems the rank-1 update contains a
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significant fraction of the information available in the Jacobian. However, for larger problems the Broyden
update becomes an increasingly bad approximation. In these cases, the authors speculate significant
performance gains could be obtained by updating the Jacobian with a few strategically chosen function
evaluations or directional derivatives rather than updating the entire Jacobian.

6. Conclusion

The computational problem of minimizing a sum of squares is a common problem, particularly in data
fitting, that can be notoriously difficult. The difficulties often fall into one of two categories: algorithms
easily become lost on broad flat plateaus or become sluggish as they must follow narrow canyons to the
best fit. In this paper we have discussed several modifications to the standard least-squares minimizer,
the Levenberg-Marquardt algorithm, to help address these difficulties.

We have derived the “geodesic acceleration” correction to the Levenberg-Marquardt step, by including
second order corrections in the Taylor approximation of the residuals and assuming that the extrinsic
curvature on the model graph as described in reference [10, 11] is small. This correction can be computed
at each step with minimal additional computational cost. We have find that this correction helps the
algorithm be both more robust to initial conditions, resulting in higher success rates, as well has decreasing
the computational cost of finding the best fit as measured by the number of Jacobian evaluations.

We have also suggested that accepting uphill steps in a controlled manner can also speed up the
algorithm. When an algorithm is susceptible to becoming lost in parameter space, accepting uphill
moves may exacerbate this problem, but when the algorithm must follow a narrow canyon to the best
fit, the potential speed up of the bold method can be enormous. We have also suggested that providing a
rank-deficient update to the Jacobian matrix can further reduce the computational cost of the Levenberg-
Marquardt algorithm. Although the resulting algorithm has a tendency to become lost, it can be much
more efficient when following a canyon to the best fit.

The performance of our several suggested improvements is summarized in figure 5. Notice that
including geodesic acceleration has the tendency to improve success, fit quality, and speed (see Appendix
B.1 for a definition of these measurements). Including the bold acceptance and using Broyden’s update
can be even more effective for speeding up the algorithm, although on some problems, particularly
those with difficult start points, these algorithms are more likely to become lost. Which variation of
the algorithm is most effective is likely to vary from problem to problem and whether the user is more
concerned with fit quality or convergence speed. A good implementation of the Levenberg-Marquardt
method should be flexible enough to allow the user to adapt the method to their specific needs.

We have provided an open source (FORTRAN) version of the Levenberg-Marquardt algorithm to-
gether with our suggested improvements[13]. Our implementation provides a simple way for each addition
to be turned on or off, in addition to choosing among several schemes for updating the damping term λ.
In this way, users have the tools to optimize the fitting process to more quickly and robustly find best
fits based upon the needs of their individual models.
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Figure 5: Performance of several algorithms The relative success rate (a), fit quality (b), and inverse NJEV (c) of
several algorithms. The rates are each relative to the same algorithm without geodesic acceleration, bold, or a Broyden
update. Columns represent different algorithms, with red dots denoting the λ2/3 method while green triangles represent
the ∆2/3 method on each of the 17 test problems. The label A indicates that geodesic acceleration was including, B
denotes uphill steps were accepted with the bold acceptance criterion, and C indicates that the Jacobian was updated with
Broyden’s method.
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Appendix A. Test Problems

In order to gauge the relative effectiveness of the improvements described in this paper, we use 17 test
problems (denoted by the letters A-Q throughout this work) which we take from the Minpack-2 project
[14] and the NIST Statistical Reference datasets [15] and some of our own research and that of Umrigar
and Nightingale. We summarize these problems in this appendix.

Although we use several standard test problems, we emphasize that we do not use the standard start-
ing points for these problems. For each of these problem, we choose starting points from a Gaussian
distribution centered at one of the suggested starting points for each problem. The width of the Gaus-
sian is manually adjusted until one of the standard algorithms begins to show a noticeable variation in
performance among the points. This method of choosing the starting points makes many of the test
problems much harder than they otherwise would have been. It is fortunate that by choosing starting
points in this way the easy problems can be made of comparable difficulty to the more realistic problems.
In particular, the ease and quick evaluation of the smaller problems make them ideal test cases provided
they can be made sufficiently difficult to imitate more realistic problems. In addition to making the
problems more difficult, by considering the performance from several starting points, we can avoid the
complication that an algorithm may perform well by accident for a particular starting point. We provide
the specific starting points for each algorithm in addition to source code that runs each problem[13].

Problem A: Isomerization of α-pinene (Direct formulation) taken from the Minpack-2 project, consist-
ing of five parameters and 40 residuals. This model is evaluated as a linear ordinary differential equation
with unknown coefficients.

Problem B: Isomerization of α-pinene (Collocation formulation) taken from the Minpack-2 project,
consisting of 130 parameters and 165 residuals. This is an example of a constrained optimization problem
in which the constraint is implemented as an l2 penalty. In our implementation, we have used the relatively
weak penalty strength of σ = 1000 (as opposed to σ = 106 as suggested in [14]). As the strength of σ
is increased, the algorithm must more closely maintain the constraints at each iteration, making the
algorithm become much slower. Anecdotally, we observe that geodesic acceleration and bold acceptance
can be very helpful in these cases.

Problem C: Coating thickness standardization taken from the Minpack-2 project, consisting of 134
parameters and 252 residuals. This problem is a multiple-response data-fitting problem. Because of its
larger size it is one of the more computationally intensive problems in the set.

Problem D: Exponential data fitting taken from the Minpack-2 Project, consisting of 5 parameters
and 33 residuals. The functional form of this problem is

y(t, θ) = θ1 + θ2e
−tθ4 + θ3 + e−tθ5 . (A.1)

This problem similar to those used in references [10, 11] for which geodesic acceleration was shown to be
very effective.

Problem E: Gaussian data fitting taken from the Minpack-2 Project, consisting of 11 parameters and
65 residuals. The functional form is

y(t, θ) = θ1e
−θ5 + θ2e

−(t−θ9)2θ6 + θ3e
−(t−θ10)2θ7 + θ4e

−(t−θ11)2θ8 . (A.2)

This problem is difficult for starting points far from the minimum.
Problem F: Analysis of thermistor resistance taken from the Minpack-2 Project, also known as the

MGH10 problem from the NIST dataset. This problem consists of 3 parameters and 16 data points. The
functional form of this problem is

y(t) = θ1e
θ2
t−θ3 . (A.3)
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For starting points with large values of θ3, this problem becomes very difficult as the t dependence is lost.
Including a small value of α in the geodesic acceleration acceptance criterion is very helpful to force the
algorithm move toward smaller θ3 in this case.

Problem G: Analysis of enzyme reaction taken from the Minpack-2 Project, also known as the MGH09
problem from the NIST dataset. This problem consists of 4 parameters and 11 data points. This problem
takes the form

y(t, θ) =
θ1 (t2 + tθ2)

t2 + tθ3 + θ4
. (A.4)

Many algorithms have a low success rate because of a local minimizer at infinity. As discussed in [11],
this scenario is likely to be a generic feature of large, ill-conditioned data fitting problems.

Problem H: Chebyshev quadrature taken from the Minpack-2 Project, consisting of 8 parameters
and 11 residuals. This problem exhibits a disparity between the success rate and the fit quality due to
algorithms converging to local minima.

Problem I: Thurber problem from the NIST dataset, consisting of 7 parameters and 37 residuals. This
problem is a rational function of the form

y(t, θ) =
θ1 + θ2t+ θ3t

2 + θ4t
3

1 + θ5t+ θ6t2 + θ7t3
(A.5)

Problem J: BoxBOD problem from the NIST dataset, consisting of 2 parameters and 6 residuals. The
functional form of the problem is

y(t, θ) = θ1
(
1− e−θ2t

)
(A.6)

Problem K: Rat42 problem from the NIST dataset, consisting of 3 parameters and 9 residuals. The
functional form of this problem is

y(t, θ) =
θ1

1 + eθ2−θ3t
(A.7)

Problem L: Eckerle4 problem from the NIST dataset, consisting of 3 parameters 35 residuals. The
functional form of this problem is

y(t, θ) =
θ1
θ2
e

−(t−θ3)
2

2θ22 (A.8)

Problem M: Rat43 problem from the NIST dataset, consisting of 4 parameters and 15 residuals. The
functional form of this problem is

y(t, θ) =
θ1

(1 + eθ2−θ3t)1/θ4
(A.9)

Problem N: Bennett5 problem from the NIST dataset, consisting of 3 parameters and 154 residuals.
The functional form of this problem is

y(t, θ) = θ1 (θ2 + t)−1/θ3 (A.10)

Problem O: A problem from systems biology described in [6]. This model consists of a differential
equation model of 48 parameters, mostly reaction rates and Michaelis-Menten constants fit to 68 data
points. In order to help keep the parameters bounded, we have also introduced weak priors as described
in [11].

Problem P: A problem for fitting a scaling function describing the distribution of avalanche sizes [20].
This model has 32 parameters fit to 398 data points.

Problem Q: A training problem for a feed forward artificial neural network. The network is trained to
data describing the compressive strength of concrete, as described in[21] and available here [22]. In our
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formulation, there are 81 parameters, consisting of the connection weights of the neural networks, and
1030 data points. We also include a weak quadratic prior on the parameters centered at zero in order to
help avoid parameter evaporation. These priors serve the same function as those in Problem O, described
in [11].

Although there are other methods available for training artificial neural networks, they provide a good
test problem for the general least-squares problem. In particular, neural networks have many of the same
properties as other fitting problems and provide an easy framework for varying the amount data, the
number of inputs and outputs of the function as well as the number of parameters. They can also be
evaluated relatively quickly and easily.

Problem R: A problem provided by Umrigar and Nightingale optimizing the Jastrow parameters of a
variational wave function from Quantum Monte Carlo. This problem consists of 27 parameters and 2002
residuals.

Again, the ensembles of initial parameter choices for each problem are provided[13] to facilitate further
comparisons to new algorithms.

Appendix B. Detailed Comparison of Algorithm Performance

Appendix B.1. Measuring Success

We give three measures of an algorithm’s performance for each problem. First, we consider the fraction
of the attempts for which the algorithm claimed to have found a minimum; we refer to this as the success
rate. Since all the algorithms that we compare use the same convergence criterion described in section
2.3, this measure indicates to what extent the algorithm is able to avoid becoming lost in parameter
space. An algorithm with a high success rate was usually able to find a minimum within the alloted
number of iterations. In figure B.6 we plot the average success rate for several standard algorithms.

Although an algorithm may claim success, it may have converged by quickly evaporating parameters
and failed to have actually found a good fit. To measure the relative quality of the fits, we define the
factor

Q = exp
(
1− Cfinal/Cbest

)
, (B.1)

where Cfinal is the final cost found by the algorithm and Cbest is the best known cost. (Although not
applicable to any of these problem, a analogous formula for a problem whose solution has zero cost is
Q = exp−Cfinal/T , where T is some tolerance.) This term will be very near one if the algorithm has
found the best fit, and exponentially suppressed otherwise. For many of the problems from the Minpack-
2 and NIST collections, the problems have either one minimum or a few minima with one much less
than the others. In these cases, Eq. (B.1) will evaluate to either 0 or 1 depending on whether the best
minima was found. On the other hand, for many problems, particularly problems O and Q, algorithms
will converge to a variety of local minima with a wide range of final costs. In these cases, the quality
factor, Q, will give partial weight to algorithms who find reasonable but not optimal fits. Figure B.7
displays the average value of this quality factor for each problem and several standard variations of the
Levenberg-Marquardt algorithm. Note that in calculating the average quality factor, we only include
results for which an algorithm claimed success.

Finally, in order to gauge the efficiency with which an algorithm converges to the best fit, we choose
as a measure the number of Jacobian evaluations. The advantage of this measure is that it is easy to
extrapolate results for these simple test problems to larger, more computationally intensive problems
where most of the computer time is spent calculating the Jacobian matrix. Often, an algorithm will
converge quickly to a poor fit. In order to not bias results in favor of algorithms which find poor fits
quickly, we calculate a weighted average of the number of Jacobian evaluations, weighted by the quality
factor Q in Eq. (B.1). As a convention, we plot the inverse of the average number of Jacobian evaluations
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Figure B.6: The average success rates for several direct (a) and indirect(b) methods on each of the 17 test problems.
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Figure B.7: The average quality factor, defined in Eq. (B.1) for several direct (a) and indirect (b) methods on each of the
seventeen test problems.
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so that larger numbers are preferable. The inverse average Number of Jacobian Evaluations (NJEV) for
several standard algorithm variations is shown in figure B.8.

Appendix B.2. Comparison of Standard Methods

The relative performance of the methods for selecting λ described in section 2.1, together with more
complicated schemes describe by Nielson [16] and Moré [3] are summarized in Figs. B.9 - B.11. In these
figures we have labeled direct algorithms with the prefix λ followed by the relative factors by which λ is
lowered and raised. Similarly we have labeled indirect methods by the prefix ∆ followed by the factor by
which ∆ is tuned.

Notice that no algorithm consistently outperforms the all the others on all the problems. The relative
success of any algorithm seems to depend very strongly on the problem. However, there appear to be
classes of problems for which indirect methods collectively outperform direct methods and vice versa.

Appendix B.3. Comparison of methods with acceleration

Figure B.12 summarizes the our test results for including geodesic acceleration. Notice we have
appended the letter A after the algorithm to indicate the it now includes acceleration. We see that,
with a few exceptions, acceleration improves the algorithm’s performance in each of the three measures
we have used. The most dramatic improvement is in the number of Jacobian evaluations necessary for
convergence, where we saw speed ups as large as a factor of 70, with most improvements between a factor
of 2 and 10.

Appendix B.4. Comparison of methods with bold acceptance

Figure B.13 summarizes our test results for including bold acceptance (using Eq. (22) with b = 2) to
the standard methods. Notice that we have appended the letter B to the algorithm name to indicate
that the bold method was used. In figure B.14 we show results for combining geodesic acceleration with
the bold acceptance method, which we denote by the letters AB.

Appendix B.5. Comparison of methods with rank-deficient updates

In figure B.15 we present the performance results for methods with rank-1 updates after accepted
steps. (Note that we distinguish a method using Broyden’s update by the letter C in the algorithm’s
name.) In figure B.16 we present the results of the algorithm that uses a rank-2 update using both
geodesic acceleration and the bold acceptance method.
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Figure B.9: Relative Success Rate of direct (a) and indirect (b) methods of choosing λ. The relative convergence rate is
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and P.
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Figure B.10: Relative Fit Quality of direct (a) and indirect (b) methods of choosing λ. The relative fit quality is found
by dividing each algorithm’s quality factor Q, as described in Appendix A, by the largest quality factor of any method.
Again note the poor fit quality of direct methods on problems B and C.
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Figure B.11: Relative Inverse NJEV of direct (a) and indirect (b) methods of choosing λ. The relative inverse NJEV is
found by dividing an algorithm’s average inverse NJEV by the fewest average inverse NJEV of any algorithm. Since we plot
the inverse relative NJEV, larger numbers imply a more efficient algorithm. Notice how the indirect methods are sluggish
on problems D and L compared to the direct methods.
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Figure B.12: Performance of geodesic acceleration. The relative success rate (a), quality factor (b) and inverse NJEV
(c) of two algorithms using geodesic acceleration. The rates are each relative to each algorithm’s performance without
acceleration. On each plot, points larger than 1 (dashed black line) represent an improvement. Notice that by including
the acceleration the algorithm typically finds better fits more often in less time. Perhaps most dramatically, in some cases
the NJEV have been reduced by a factor of 70!
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Figure B.13: Performance of bold acceptance. The relative success rate (a), fit quality (b) and inverse NJEV (c) of
two algorithms using the bold acceptance criterion corresponding to Eq. (22) with b = 2. The rates are each relative to
each algorithm’s performance while accepting only downhill moves. On each plot, points larger than 1 (dashed black line)
represent an improvement. For many of these problems, accepting uphill moves increases the probability that the algorithm
will become lost. However, when the algorithm does succeed, it may be much faster!
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Figure B.14: Performance with bold moves and acceleration. The relative success rate (a), fit quality (b) and inverse
NJEV (c) of two algorithms using bold acceptance criterion. The rates are each relative to each algorithm’s performance
while accepting only downhill moves. On each plot, points larger than 1 (dashed black line) represent an improvement.
Notice that by including the acceleration we are able to prevent the algorithm from becoming lost when using the bold
acceptance.
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Figure B.15: Performance of Broyden’s Update. The relative success rate (a), fit quality (b) and inverse NJEV (c)
of two algorithms using a rank-1 Broyden’s update. The rates are each relative to each algorithm’s performance without
such an update. On each plot, points larger than 1 (dashed black line) represent an improvement. Including the Broyden
update typically causes the algorithm to be less robust to initial conditions, manifest by a lower success rate and average fit
quality. Without the need to reevaluate the Jacobian after each accepted step, the best fit can often be found much more
quickly. Note that missing points in (c) correspond to points for which the convergence rate and average quality factor was
very near zero so that comparisons do not have any merit.
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Figure B.16: Performance of Broyden’s Update with acceleration and bold moves. The relative success rate
(a), fit quality (b) and inverse NJEV (c) of two algorithms using geodesic acceleration. The rates are each relative to
each algorithm’s performance without acceleration. On each plot, points larger than 1 (dashed black line) represent an
improvement. Notice that by including acceleration and boldness does not have a strong effect on the results of the algorithm
when using Broyden’s udpate.
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