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PREFACE

Ceci n’est pas une pipe.
Ren�e Magritte, Belgian painter, 1898-1967.

The last 30 years or so, system identification has matured from Eykhoff’s ’bag of
tricks’, over the impressive Ljungian theory for the user of so-called prediction-error
methods, to Willems’ behavioral framework. Many papers have been written, several
excellent textbooks have appeared and hundreds of workshops and conferences have
been organized. Specifically for the identification of linear dynamic time-invariant
models from given input-output data, the collection of available methods has become
immense.

So why write yet another book about this, by now, almost classical problem? Well,
to start with, the problem is important! There is a growing interest in manageable
mathematical models for all kinds of applications, such as simulation, prediction,
fault diagnosis, quality and safety monitoring, state estimation, signal processing
(direction-of-arrival algorithms (SDMA)) and last but not least, model-based control
system design. And sure enough, linear models are very popular because of their
utmost simplicity (at least at first sight).

In this book, we do not really solve a new problem. Indeed, the goal is to find
dynamical models from input-output data that were generated by so-called combined
deterministic-stochastic linear systems. Said in other words, data that are generated by
a linear, time-invariant, finite-dimensional, dynamic system, with both deterministic
and stochastic input signals (including several special cases).

What is new in this book, are the methods and algorithms for solving this ’classical’
problem. The insights that will be developed, originate in a mixture of ideas, facts and
algorithms from system theory, statistics, optimization theory and (numerical) linear
algebra. They culminate in so-called ’subspace’ methods, the name of which reflects
the fact that linear models can be obtained from row and column spaces of certain
matrices, calculated from input-output data. Typically, the column space of such data
matrices contains information about the model, while the row spaces allow to obtain

xi
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a (Kalman filter) state sequence, directly from input-output data (i.e.without knowing
the model a priori)�. Another important aspect of this book is the development of a
unifying framework, in which almost all existing subspace methods that have appeared
in the literature of the last 10 years or so, have found their place.

Apart from these conceptual contributions, there are other advantages to subspace
methods. For instance, there is no need for an explicit model parametrization, which,
for multi-output linear systems is a rather complicated matter. A second numerical
advantage is the elegance and computational efficiency of subspace algorithms. The
dimension and numerical representation of the subspaces mentioned before, are calcu-
lated using the QR- and the singular value decomposition. These are well-understood
techniques from numerical linear algebra, for which numerically robust and efficient
algorithms are widely available.

Of course, we should never forget that a (mathematical) model is not the real system
(think of Magritte). Even though there are still missing links in the question of guar-
anteed optimality of subspace methods, it is now widely accepted that they prove very
useful in many applications, in which they often provide excellent models and because
of their utmost user-friendliness (limited number of user-choices to deal with). They
also provide (often excellent) initial guesses for non-linear iterative optimization algo-
rithms which are used in prediction-error methods, L�-optimal system identification,
neural nets, etc� � �

Finally, we have paid special attention to the development of easy accessible and user-
friendly software packages, which are described in Chapter 6 (Xmath� ISID II) and
Appendix B (which describes Matlab files and several demos). This book goes with a
diskette that contains all of these .m files and examples.

�Have a look at Theorems 2, 8 and 12 of this book.
�A product of Integrated Systems Incorporated, Santa Clara, CA, USA.



Preface xiii

Mister Data, there’s a subspace communication for you.
Quote from Star Trek, the Next Generation.

This book emanates from the authors’ PhD theses at ESAT, the department of Electrical
Engineering of the Katholieke Universiteit Leuven in Belgium. Bart’s 1988 thesis
contained the initial concepts and ideas for subspace identification (of course inspired
by the work of many others), linking ideas from system theory (realization algorithms),
linear algebra (orthogonal projections and intersections of subspaces) to numerical
issues (QR and singular value decompositions). Peter’s 1995 thesis, which forms the
basis of this book, contains the detailed unification of all these insights, culminating in
some robust subspace identification methods, together with other results such as model
reduction issues, relations with other identification algorithms, etc� � �

The work reported on in this book would have been impossible without the support,
both financial and moral, from many institutions and people.
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Our gratitude also goes to the many people, who, in one way or another, directly or indi-
rectly, have contributed to this work: Lennart Ljung and Tomas McKelvey (Link�oping
University, Sweden), Stephen Boyd, Thomas Kailath and Gene Golub (Stanford Uni-
versity, USA), Bj�orn Ottersten, Bo Wahlberg and Anders Lindquist (Royal Institute of
Technology, Stockholm), Mats Viberg (Chalmers University of Technology, Sweden),
Okko Bosgra, Paul Van den Hof (Technical University Delft, The Netherlands), Man-
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Wally Larimore (ADAPTX, USA), Vasile Sima (Research Institute for Informatics,
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en Informatica, The Netherlands), Michel Verhaegen (Delft University of Technology,
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1
INTRODUCTION, MOTIVATION

AND GEOMETRIC TOOLS

“The development of Subspace Methods
is the most exciting thing

that has happened to system identification
the last 5 years or so � � �”

Professor Lennart Ljung from Link�oping, Sweden
at the second European Research Network

System Identification workshop
Louvain-la-Neuve, October 2, 1993.

In this Chapter, we summarize the main contributions of the book. In Section 1.1, we
first give a short motivation for dealing with the multivariable system identification
problem. In Section 1.2, we discuss in some more detail the main contributions which
make that subspace identification algorithms are excellent tools to work with in an
industrial environment. We also provide some historical background and compare our
achievements to previously existing approaches to find black box mathematical models
of systems. Notes on the organization of the book and a Chapter by Chapter overview
can be found in Section 1.3. Finally, Section 1.4 introduces the main geometric and
statistical tools, used for the development of, and the insights in subspace identification
algorithms.

1.1 MODELS OF SYSTEMS AND SYSTEM IDENTIFICATION

A dynamic model, pictorially described in Figure 1.1, covers almost all physical,
economical, biological, industrial, technical, etc� � �phenomena. One could distinguish

1
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�

�

System �

uk

vk

yk

Figure 1.1 A dynamic system with deterministic inputs uk , outputs yk and disturbances
vk (see below). All arrows represent vector signals and k is the discrete time index. The
user can control uk but not vk. In some applications, either uk or vk can be missing. The
measured (input and) output signals provide useful information about the unknown system.

between mental, intuitive or verbal models, or graphically oriented approaches such
as graphs and tables, but we will mainly be interested in mathematical models. Such
models are described as differential (continuous time) or difference (discrete time)
equations. They describe the dynamic behavior of a system as a function of time.
Mathematical models exist in all scientific disciplines, and, as a matter of fact, form
the heart of scientific research itself. They are used for simulation, operator training,
analysis, monitoring, fault detection, prediction, optimization, control system designs,
quality control, etc� � �. Typically, models are highly useful in those situations in which
experimenting with the real system is too expensive, too dangerous, too difficult or
merely impossible. Last but not least, mathematical models are used for control and
feedback.

Basically, there are two main roads to construct a mathematical model of a dynamic
system. Physicists will be interested in models (physical laws) that carefully explain
the underlying essential mechanisms of observed phenomena and that are not falsified
by the available experiments. The necessary mathematical equipment is that of non-
linear partial differential equations. This is the analytic approach, which rigorously
develops the model from first principles.

For engineers however, this framework is often much too involved to be really use-
ful. The reason is that engineers are not really interested in the exact model as such,
but more in the potential engineering applications of models. In this perspective, a
mathematical model is only one step in the global design of a system. The quality
of a model is dictated by the ultimate goal it serves. Model uncertainty is allowed as
long as the robustness of the overall system is ensured. Engineers -in contrast with
mathematical physicists- are prepared to trade-off model complexity versus accuracy.



Introduction, Motivation and Geometric Tools 3

A complex model will lead to a complex design, while a simplistic model will deteri-
orate overall performance and robustness of the final implementation. As an example,
the best model for simulation (for instance a set of partial differential equations which
accurately models the system’s behavior) is not the best one for control, because, as
a generic property of control system design, the complexity of the controller and the
degree of difficulty associated with its implementation, are proportional to the model
complexity. Therefore engineers will typically use system identification techniques to
build their models. This is the field of modeling dynamical systems from experimental
data: Experiments are performed on a system, a certain parameterized model class is
predefined by the user and suitable numerical values are assigned to the parameters so
as to fit as closely as possible the recorded data. In this sense, system identification is
the dynamic extension of curve fitting. Finally there is a validation step, in which the
model is tried out on experimental data which were not used in the system identification
experiment.

In Chapter 6, we describe an industrial process which perfectly illustrates the funda-
mentally different point of view between the two modeling approaches. The glass-tube
manufacturing process described there could in principle be characterized completely
using the laws of physics (in this case the laws that govern the behavior of solidifying
glass). But, not only would this be a formidable task -if practically possible at all-,
but even if there was such a model, it would be impossible to derive an appropriate
control action to regulate the system, because of the complexity of the model. How-
ever, in Chapter 6, it will be shown how a relatively simple state space model, obtained
from measurements as in Figure 1.2 and by application of the mathematical methods
described in this book, allows for the design of a high quality minimum variance
controller. The quality improvement induced by this controller is illustrated in Figure
1.3.

The message is that system identification provides a meaningful engineering alter-
native to physical modeling. Compared to models obtained from physics, system
identification models have a limited validity and working range and in some cases
have no direct physical meaning. But, they are relatively easy to obtain and use and
even more importantly, these models are simple enough to make model-based control
system design mathematically (and also practically) tractable. Of course, there are
still problems such as the choice of an appropriate model structure, the fact that many
systems are time-varying and the often largely underestimated measurement problems
(appropriate sensors, sampling times, filters, outlier detection, etc� � �).
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Figure 1.2 Data set used for the identification of the glass tube production process of
Chapter 6. The process is excited using pseudo-binary noise sequences as inputs (top two
signals). The diameter and the thickness of the produced glass tubes (bottom two signals) are
recorded. Solely based on this information, and using the subspace identification algorithms
described in this book, a mathematical model of the glass-tube manufacturing process is
derived. This mathematical model is then used to design an optimal control strategy.
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Figure 1.3 Illustration of the quality improvement. The top two figures show a histogram
of the deviation from the setpoint for the tube diameter and thickness without the optimal
controller installed. The reference setpoint for production corresponds to zero (the vertical
line). Clearly, both diameter and thickness are too large (on average). Especially the
diameter does not satisfy the production specifications. The bottom two figures show the
histograms of the controlled system. The variance on the diameter is a factor two smaller.
The mean diameter is exactly at its reference. The variance of the thickness is not reduced
(not important in the specifications). However the mean value is right at the specification
now. This Figure illustrates the benefits of subspace identification and of model-based
control design.
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1.2 A NEW GENERATION OF SYSTEM IDENTIFICATION

ALGORITHMS

This Section contains a description of the central ideas of this book. First of all, in
Subsection 1.2.1, we describe the central importance of state space models, which is the
type of models that is delivered by subspace identification algorithms. In Subsection
1.2.2 we explain how subspace identification algorithms work. In Subsection 1.2.3,
we highlight the main innovations of subspace identification algorithms with respect
to existing “classical” approaches. Subsection 1.2.4 situates the development of
subspace identification algorithms in an historical context by indicating that some of
the concepts used in their development are more than 100 years old (besides more
modern insights of course).

1.2.1 State space models are good engineering models

It goes without saying that there is an infinite collection of mathematical models. In
this book, we have restricted ourselves to discrete time, linear, time-invariant, state
space models. From the number of epitheta used, this might seem like a highly
restricted class of models (especially the fact they are linear), but, surprisingly enough,
many industrial processes can be described very accurately by this type of models.
Moreover, by now, the number of control system design tools that are available to
build a controller based on this type of models, is almost without bound (for example
[BB 91] [FPW 90]). Especially for this reason, this model class is a very interesting
one.

Mathematically, these models are described by the following set of difference equations�:

xk�� � Axk �Buk � wk � (1.1)

yk � Cxk �Duk � vk � (1.2)

with

E�

�
wp
vp

��
wTq vTq

�
� �

�
Q S
ST R

�
�pq � � � (1.3)

In this model, we have

vectors: The vectors uk � Rm and yk � Rl are the measurements at time instant k of
respectively the m inputs and l outputs of the process. The vector xk � Rn is the
state vector of the process at discrete time instant k and contains the numerical

�E denotes the expected value operator and �pq the Kronecker delta.
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values of n states. These states do not necessarily have a direct physical interpre-
tation but they have a conceptual relevance. Of course, if the system states would
have some physical meaning, one could always find a similarity transformation of
the state space model to convert the states to physically meaningful ones. vk � Rl

and wk � Rn are unmeasurable vector signals. It is assumed that they are zero
mean, stationary, white noise vector sequences.

matrices: A � Rn�n is called the (dynamical) system matrix. It describes the
dynamics of the system (as completely characterized by its eigenvalues). B �
R
n�m is the input matrix which represents the linear transformation by which

the deterministic inputs influence the next state. C � Rl�n is the output matrix
which describes how the internal state is transferred to the outside world in the
measurements yk. The term with the matrix D � Rl�m is called the direct
feedthrough term. In continuous time systems this term is most often 0, which
is not the case in discrete time systems due to the sampling. The matrices
Q � Rn�n , S � Rn�l and R � Rl�l are the covariance matrices of the noise
sequenceswk and vk. The matrix pair fA�Cg is assumed to be observable, which
implies that all modes in the system can be observed in the output yk and can thus
be identified. The matrix pair fA� � B Q��� �g is assumed to be controllable,
which in its turn implies that all modes of the system are excited by either the
deterministic input uk and/or the stochastic input wk.

A graphical representation of the system can be found in Figure 1.4. Let us comment
in some detail why it is often a good idea to try to fit experimental (industrial) process
data to the model just described.

First of all, for multiple-input, multiple output systems, the state space represen-
tation is the only model that is convenient to work with in computer aided control
system design (CACSD). Most optimal controllers can be effectively computed
in terms of the state space model, while for other system representations (such as
e.g. matrix fractional forms [Kai 80]) the calculations are not so elegant.

Observe that we have collected all dynamics in one matrix A, that is to say that
the eigenvalues of the matrix A will describe all the dynamical modes that have
been measured, whether they come from the real system, from stochastic dynamic
disturbances, from measurement sensors or the dynamics of the input actuators.
This is quite unusual as compared to approaches that are described in the literature,
in which one always carefully distinguishes between e.g. deterministic models
(such as models for the “real” system and sensor and actuator dynamics) and noise
models for stochastic disturbances (as is for instance the case in the Box-Jenkins
approach [BJ 76]). The point here is that more often than not, we do not care
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� B � g� � � � C � g� �
�

D�

�A

�

ukm

wk

xk�� xk

vk

ykm

Figure 1.4 This picture is the same as the one in Figure 1.1. But here, we have restricted
ourselves to finite dimensional linear time invariant systems to be identified. The (circled)
vector signals uk and yk are available (measured) while vk , wk are unknown disturbances.
The symbol � represents a delay. Note the inherent feedback via the matrix A (which
represents the dynamics). Sensor or actuator dynamics are completely contained in A too.
It is assumed that uk is available without measurement noise.

about the precise origin of the dynamic modes, since, if they are important, they
will certainly influence the controller action, independent of their origin. There
is a modern trend in CACSD to define what is called a standard plant (see e.g.
[BB 91]), which contains the model of all disturbances, all sensors and the system
model in one general state space description, which exactly corresponds to the
model we will use.

A crucial question is of course why linearity would apply to everyday processes,
since we know that most phenomena are intrinsically non-linear. One reason
is the experience that many industrial processes are really well approximated
by linear finite dimensional systems and that sometimes, complex behavior can
be captured by choosing the order n high enough. In order to cope with non-
linearities, two measures are possible: Either the non-linearity is dealt with by
identifying a time-varying system using a recursive updating of the model. This
corresponds to a local linearization of the nonlinear system. A second possibility
is provided by the observation that (mild) nonlinearities do not matter as they
can be incorporated in the control design (robustness for dynamic uncertainties).
Moreover, it is well known that a controller effectively linearizes the behavior of
a system around a working point. Finally, we recall that the design of a controller
is relatively easy for linear finite dimensional systems. As a matter of fact, this is
the only class of systems for which CACSD is actually tractable in full generality
and for which there is a complete rigorous theory available.
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We are now ready to state the main mathematical problem of this book:

Given input and output measurements u�� � � � � us� and
y�� � � � � ys. Find an appropriate order n and the system
matrices A�B�C�D�Q�R� S.

1.2.2 How do subspace identification algorithms work ?

The goal of this Subsection is to provide a verbal description of the main principles
on which subspace identification algorithms are based. The fine mathematical details
and proofs will be treated in the next Chapters.

Subspace identification algorithms are based on concepts from system theory, (nu-
merical) linear algebra and statistics, which is reflected in the following table that
summarizes the main elements:

System Geometry Algorithm

High order Projection QR-decomposition
state sequence (orthogonal or oblique)
Low order Determine finite (Generalized) singular
state sequence dimensional subspace value decomposition
System matrices Linear relations Least squares

The main conceptual novelties in subspace identification algorithms are:

The state of a dynamical system is emphasized in the context of system identifi-
cation, whereas “classical” approaches are based on an input-output framework.
The difference is illustrated pictorially in Figure 1.5. This relatively recent in-
troduction of the state into the identification area may come as a surprise since
in control theory and the analysis of dynamical systems, the importance of the
concept of state has been appreciated for quite some time now. So an important
achievement of the research in subspace identification is to demonstrate how the
Kalman filter states can be obtained from input-output data using linear algebra
tools (QR and singular value decomposition). An important consequence is that,
once these states are known, the identification problem becomes a linear least
squares problem in the unknown system matrices. This implies that one possible
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�

�
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�

System matrices

Kalman state
sequence

input-output
data uk�yk

Kalman states

System matrices

Least
squares

Orthogonal or
oblique projection

Classical
identification
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filter

Figure 1.5 System identification aims at constructing state space models from input-output
data. The left hand side shows the subspace identification approach : first the (Kalman filter)
states are estimated directly from input-output data, then the system matrices can be obtained.
The right hand side is the classical approach : first obtain the system matrices, then estimate
the states.

interpretation of subspace identification algorithms is that they conditionally lin-
earize the problem, which, when written in the “classical” form of prediction error
methods [Lju 87], is a highly nonlinear optimization problem. Yet another point
of view is that subspace identification algorithms do not identify input-output
models, but they identify input-state-output models.

The subspace system identification approach of this book makes full use of
the by now well developed body of concepts and algorithms from numerical
linear algebra. While classical methods are basically inspired by least squares,
our methods use “modern” algorithms such as the QR - decomposition, the singu-
lar value decomposition and its generalizations, and angles between subspaces.

Our approach provides a geometric framework, in which seemingly different mod-
els are treated in a unified manner. As will be illustrated at the end of Chapter 4,
the deterministic (Chapter 2), stochastic (Chapter 3) and combined deterministic-
stochastic (Chapter 4) system identification problem can all be treated with the
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same geometric concepts and algorithm. We think that the conceptual and algo-
rithmic simplicity of subspace identification algorithms is a major advantage over
the classical prediction error approach [Lju 87].

The conceptual straightforwardness of subspace identification algorithms trans-
lates into user-friendly software implementations. To give only one example:
Since there is no explicit need for parametrizations in our geometric framework,
the user is not confronted with highly technical and theoretical issues such as
canonical parametrizations, and hence, at the level of possible choices to be of-
fered by the software. This will be illustrated in Chapter 6, where we describe the
graphical user interface (GUI) software ISID that was developed by the authors
of this book. It will also become clear from the Matlab files which implement the
algorithms of this book.

1.2.3 What’s new in subspace identification ?

The mathematical engineering field of system identification has begun to blossom
some 15 years ago with the work of �Astr�om [AE 71] [AW 84], Box & Jenkins [BJ 76],
Eykhoff [Eyk 74], Ljung [Lju 87] (and many others, see e.g. [Nor 86] [SS 89]). So it
is a relatively young branch of research, the industrial spin-offs of which become only
gradually visible now. In this Subsection, we confront the innovations in subspace
identification with the properties of these “classical’ approaches”.

Parametrizations: When viewed as a data fitting problem, it becomes clear that
system identification algorithms require a certain user-specified parametrization.
In subspace identification algorithms we use full state space models and the only
“parameter” is the order of the system. For classical algorithmic approaches
however, there has been an extensive amount of research to determine so-called
canonical models, i.e. models with a minimum number of parameters (see e.g.
[GW 74] [Gui 75] [Gui 81] [HD 88] [Kai 80] [Lue 67] [VOL 82]). There are
however many problems with these minimal parametrizations:

They can lead to numerically ill-conditioned problems, meaning that the
results are extremely sensitive to small perturbations.

There is a need for overlapping parametrizations, since none of the existing
parametrizations can cover all possible systems.

Only minimal state space models are really feasible in practice. If there
are for instance uncontrollable but observable (deterministic) modes, this
requires special parametrizations.



12 Chapter �

The subspace identification approach does not suffer from any of these inconve-
niences. The only parameter to be user-specified is the order of the model, which
can be determined by inspection of certain singular values.

Convergence: When implemented correctly, subspace identification algo-
rithms are fast, despite the fact that they are using QR and singular value decom-
positions. As a matter of fact, they are faster than the “classical” identification
methods, such as Prediction Error Methods, because they are not iterative (see
also the applications in Section 6.4). Hence there are also no convergence prob-
lems. Moreover, numerical robustness is guaranteed precisely because of these
well-understood algorithms from numerical linear algebra. As a consequence,
the user will never be confronted with hard-to-deal-with-problems such as lack
of convergence, slow convergence or numerical instability.

Model reduction: Since one of our main interests lies in using the models in a
computer aided control system design environment and because, when using
linear theories, the complexity of the controller is proportional to the order of the
system, one is always inclined to obtain models with as low an order as possible.
In subspace identification, the reduced model can be obtained directly, without
having to compute first the high order model, and this directly from input-output
data. This is illustrated in Figure 1.6. The interpretation is straightforward within
Enns’s [Enn 84] weighted balanced reduction framework as will be shown in
Chapter 5.

We would like to end this Subsection with a note of Ljung [Lju 91a] “� � �it remains to
be established what these signal subspace methods have to offer and how they compare
to conventional approaches � � �”. We hope that with this book we have bridged a little
bit of this gap, a hope which is partially confirmed by the 1993 quote at the beginning
of this Chapter.

1.2.4 Some historical elements

In this Subsection, we give an historical survey of the several concepts that are present
in subspace identification and that make it to be one of the most powerful and sophis-
ticated identification frameworks that is presently available.

Table 1.1 summarizes in a schematic way the different hallmark contributions and
mathematical elements that have lead to and/or are incorporated in some way or
another in subspace identification�. The idea is twofold: First of all, this table teaches

�We apologize a priori for omissions (and mistakes) in this table. It is not always easy to find the
“historical truth”.
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Reduced model

High order model
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Classical
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reduction

Figure 1.6 System identification aims at constructing state space models from input-output
data. When a reduced order model is required, in some classical approaches (to the right),
one first identifies a high order model and then applies a model reduction technique to obtain
a low order model. The left hand side shows the subspace identification approach: Here,
we first obtains a “reduced” state sequence, after which one can identify directly a low order
model.

us that certain concepts, such as e.g. angles between subspaces (Jordan, 1875) or
the singular value decomposition (Beltrami, Jordan, Sylvester, 1880’s) need a long
incubation period before they are applied in mathematical engineering. Secondly, it
shows how clever combinations of seemingly unrelated concepts and techniques may
lead to powerful algorithms, such as subspace identification. Of course, space does
not permit us here to discuss these contributions in detail.

Let us now summarize the main direct sources of inspiration for this work on subspace
identification . First of all, subspace identification algorithms are the input-state-output
generalizations of the classical realization theory and algorithms of the seventies,
which identify a state space model from impulse responses (Markov parameters), such
as [DMK 74a] [DKM 74b] [HK 66] [Kun 78] [Lju 91b] [Moo 81] [MR 76] [Sil 71]
[ZM 74]. The insights obtained in these works have really enhanced the understanding
of the structure of linear systems and their identification. The first papers on obtaining
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models from input-output data which have influenced this work are [Bud 71] [Gop 69]
[LS 77] but more recently, also the work by Willems [Wil 86] was influential for the de-
terministic parts. Meanwhile, there were other insights obtained in a more statistically
oriented context, such as the work by Akaike [Aka 74] [Aka 75], which introduced
canonical correlations in the stochastic realization framework. Other influential work
was done in [Aok 87] [AK 90] [Cai 88] [DP 84] [DKP 85] [Fau 76]. Related ideas
on the combined deterministic-stochastic problem can be found in [Lar 90] [Lar 83]
[VD 92] [Ver 91].

Good recent overview papers that contain on overview of the whole class of subspace
algorithms (more than is presented in this book) are [VDS 93] [RA 92] [Vib 94].

Year Name Contribution Discipline Refs.

1809 Gauss Least Squares Statistics [Gau 1857]
1873 Beltrami SVD Algebra [Bel 1873]
1874 Jordan SVD Algebra [Jor 1874]
1875 Jordan Angles between subspaces Algebra [Jor 1875]
1883 Gram QR Algebra [Gra 1883]
1885 Sylvester SVD Algebra [Syl 1889]
1907 Schmidt QR Algebra [Sch 07]
1913 Autonne SVD Algebra [Aut 13]
1936 Eckart SVD Physics (!) [EY 36]
1936 Hotelling Canonical correlations Statistics [Hot 36]
1960 Kalman Kalman Filter System Theory [Kal 60]
1965 Golub/Kahan SVD-algorithms Numerical lin.alg. [GVL 89]
1966 Ho/Kalman Realization System Theory [HK 66]
1974 Zeiger/McEwen SVD & Realization System Theory [ZM 74]
1974 Akaike Stochastic Realization Statistics [Aka 74,75]
1976 Box-Jenkins Box-Jenkins models Statistics [BJ 76]
1976 Faure Stochastic linear systems System Theory [Fau 76]
1978 Kung Realization theory System theory [Kun 78]
1986 Willems Behavioral framework System Theory [Wil 86]
1987 Ljung Prediction Error System Theory [Lju 87]

Table 1.1 Schematic summary of the different hallmark contributions and mathematical
elements that have lead to and/or are incorporated in some way or another in subspace
identification. This table teaches us that certain concepts, such as e.g. angles between
subspaces (Jordan, 1875) or the singular value decomposition (Beltrami, Jordan, Sylvester,
1880’s) need a long incubation period before they are applied in mathematical engineering.
It also shows how clever combinations of seemingly unrelated concepts and techniques may
lead to powerful subspace algorithms.
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This book came about as the logical consequence of the evolution of subspace iden-
tification algorithms from a purely deterministic context [DMo 88] [MDMVV 89], to
the purely stochastic problem [VODM 93a]. In this book we combine the two ap-
proaches in one unifying combined deterministic-stochastic framework [VODM 95a].
Note also that this book has lead to software implementations [AKVODMB 93]
[VODMAKB 94], which have been applied to real industrial processes [FVOMHL 94]
[DMVO 94] [VVDVOV 94] [VODM 93c] [ZVODML 94] [VODMAKB 94] [VO 94].

1.3 OVERVIEW

When confronted with a sizeable amount of research material and results, there are
different ways of organizing it. In this Section we motivate the organization of this
book�. A Chapter by Chapter overview is also given.

A first possible organization is to start with the most general and thus most
complicated system identification algorithm. The simpler identification problems
are then presented as special cases of the general problem. The advantage of this
organization is that the overlap between different Chapters is minimal. The major
disadvantage however, is that the reader is immediately confronted with the most
complicated case, which can be rather confusing.

The second (chronological) organization consists of a gradual increase of com-
plexity of the problem to be solved in each Chapter. In this way, the reader is
introduced slowly to the concepts and has the time to assimilate them before the
more complicated cases are treated. This is also the (natural) way the research
work came about. The disadvantage of this order of presentation is that there will
always be a certain amount of overlap between the different Chapters. However,
we found the advantage of increased readability to outweigh this disadvantage,
and thus have chosen the chronological presentation.

The Chapters of this book are organized as follows (see also Figure 1.7):

Chapter 1
contains the introduction and the motivation for linear system identification in
general and for subspace identification more specifically. This Chapter also con-
tains the origin and the innovative features of subspace identification algorithms.
Finally the geometric and statistical tools are introduced.

�We believe this motivation increases the readability.
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Chapter 1
Introduction &

Motivation

� �
Chapter 2

Deterministic
Identification

Chapter 3
Stochastic

Identification

Chapter 4
Combined

Identification

�

Model
Reduction

Chapter 5
Identification &

Model Reduction

Classical
Identification�

�
Chapter 6

Implementation
Xmath - Matlab

Chapter 6
Applications

�

Theory

Implementation

Application

Figure 1.7 Chapter by Chapter overview of the book: Theory - Implementation - Appli-
cation. The dotted boxes indicate related research work contributing to the results of certain
Chapters.
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Chapter 2
introduces the (simple) problem of the subspace identification of deter-
ministic systems, where both the process noise wk and the measurement noise vk
are identically zero:

wk � � �

vk � � �

Even though many results had been obtained in this area already, we treat this
problem for two reasons:

Most of the conceptual ideas and geometric concepts, which will also be
used in the Chapters to follow, are introduced by means of this simple
identification problem.

We treat the problem from a different point of view as in the literature,
which makes it easier to assimilate it as a special case in the Chapters to
follow. Similarities between the presented algorithm and the literature are
indicated.

The core of this Chapter is a main Theorem indicating how the states can be
recovered from given input-output data.

Chapter 3
treats the case of the subspace identification of stochasticsystems, with no external
input uk:

uk � � �

The properties of stochastic systems are summarized and are then used to de-
vice stochastic subspace system identification algorithms. The main Theorem
indicates how the Kalman filter states can be recovered from the given output
data. By means of this Theorem, three identification algorithms are presented.
The connections with existing algorithms are indicated. Finally, the important
problem of positive real covariance sequences is addressed and solved.

Chapter 4
treats the general problem of the subspace identification of combined
deterministic-stochastic systems. The central part of this Chapter is again a
main Theorem showing how the Kalman filter states can be recovered from the
given input-output data. The Theorem leads to two algorithms, of which one is
simple but asymptotically biased and the other more complicated but asymptoti-
cally unbiased. This last algorithm is further refined to make it suitable and robust
for practical (industrial) applications. We also show how the presented theory ties
in with the results in the literature.
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Each of the preceding Chapters contains one main Theorem. These main Theo-
rems state for each problem how the (Kalman filter) states can be recovered from
the (input)-output data. At the end of Chapter 4 we indicate how the stochastic
and deterministic Theorems can be considered as special cases of the combined
deterministic-stochastic Theorem.

Chapter 5
treats the connections between subspace identification algorithms and model re-
duction. It is shown how the state space basis in which the models are calculated
is uniquely determined by the spectrum of the inputs and by user defined weights.
The main observation in this Chapter is that there exists a connection between
subspace system identification and frequency weighted model reduction. The
interpretation of the results leads to more insight in the behavior of subspace
identification algorithms, and has consequences for the low order identification
problem.

Chapter 6
treats the numerical implementation of the subspace identification algorithms.
This implementation has been carried out in a graphical user interface envi-
ronment. The concepts and new ideas behind this implementation are briefly
sketched. The resulting commercial toolbox contains, apart from the subspace
identification algorithms, a whole scale of processing, classical identification and
validation algorithms.

The toolbox is used to identify an industrial glass tube manufacturing process.
Based on the resulting model, an optimal controller for the process is designed,
which significantly reduces the variations of the production parameters of the
process.

Finally, we give an overview of the application of the Matlab files accompanying
this book (implementing the subspace identification algorithms) to ten different
practical (industrial) examples. These results show that the developed algorithms
work well in practice.

Chapter 7
contains the conclusions of the presented work. Since the research in subspace
identification algorithms is far from being a closed area, the major open problems
that were spotted during our research are also listed.
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1.4 GEOMETRIC TOOLS

Subspace identification algorithms are often based on geometric concepts: As will
be shown in the Chapters to follow, some system characteristics can be revealed by
geometric manipulation of the row spaces of certain matrices. In Subsections 1.4.1
through 1.4.3 we introduce the main geometric tools used throughout the book. They are
described from a linear algebra point of view, independentlyof the system identification
framework we will be using in the next Chapters. Subsection 1.4.4 gives a geometric
interpretation of the major statistical assumption used in subspace identification, while
Subsection 1.4.5 (re-)defines the geometric operations in a statistical framework.

In the following Subsections we assume that the matrices A � Rp�j � B � Rq�j and
C � Rr�j are given. The elements of a row of one of the given matrices can be
considered as the coordinates of a vector in the j-dimensional ambient space. The
rows of each matrixA�B�C thus define a basis for a linear vector space in this ambient
space. In Subsection 1.4.1 through 1.4.3 we define three different geometric operations
that can be performed with these row spaces. It should be noted that these geometric
operations can be easily implemented using an RQ decomposition. We will not pursue
this any further in this Chapter, but refer the reader to Section 6.1 for the numerical
implementation issues.

1.4.1 Orthogonal projections

	B denotes the operator that projects the row space of a matrix onto the row space of
the matrix B � Rq�j :

	B
def
� BT �
BBT �y�B �

where �y denotes the Moore-Penrose pseudo-inverseof the matrix �. A�B is shorthand
for the projection of the row space of the matrix A � Rp�j on the row space of the
matrix B:

A�B
def
� A�	B

� ABT �
BBT �y�B �

The projection operator can be interpreted in the ambient j-dimensional space as
indicated in Figure 1.8. The RQ decomposition is the natural numerical tool for this
orthogonal projection as will be shown in Section 6.1.

Note that in the notation A�B the matrix B is printed bold face, which indicates that
the result of the operation A�B lies in the row space of B. We will adhere to this
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B

Figure 1.8 Interpretation of the orthogonal projection in the j-dimensional space (j � �
in this case). A�B is formed by projecting the row space of A on the row space of B.
A�B� on the other hand is formed by projecting the row space of A on the orthogonal
complement of the row space ofB. Note the boldface notation for the row space onto which
one projects.

convention, also for the geometric operations to follow, which improves the readability
of the formulas.

	B� is the geometric operator that projects the row space of a matrix onto the orthog-
onal complement of the row space of the matrix B:

A�B� def
� A�	B� �

where:
	B� � Ij �	B �

Once again these projections can be interpreted in the j-dimensional space as indicated
in Figure 1.8. The combination of the projections 	B and 	B� decomposes a matrix
A into two matrices of which the row spaces are orthogonal:

A � A�	B �A�	B� �

Alternatively, the projections decompose the matrix A as linear combination of the
rows of B and of the rows of the orthogonal complement of B. With:

LB �B
def
� A�B �

LB� �B
� def

� A�B� �

where B� is a basis for the orthogonal complement of the row space of B, we find:

A � LB �B � LB� �B
� �

which is indeed a decomposition of A into a sum of linear combinations of the rows
of B and of B�.
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1.4.2 Oblique projections

Instead of decomposing A as linear combinations of two orthogonal matrices (B and
B�), it can also be decomposed as linear combinations of two non-orthogonalmatrices
B and C and of the orthogonal complement of B and C. This is illustrated in Figure
1.9. The rows of a matrix A are decomposed as linear combinations of the rows of B
andC and of the rows of a third matrix orthogonal to B andC. This can be written as:

A � LB �B � LC �C � LB��C� �

�
B
C

��
�

The matrix LC �C is defined� as the oblique projection of the row space of A along the
row space of B on the row space of C:

A�
B
C

def
� LC �C �

Figure 1.9 illustrates the oblique projection in the j-dimensional space. The name
oblique refers to the non-orthogonal projection direction. The oblique projection
can also be interpreted through the following recipe: Project the row space of A
orthogonally on the joint row space of B and C; and decompose the result along the
row space of C. Mathematically, the orthogonal projection of the row space of A on
the joint row space of B and C can be stated as:

A�

�
C
B

�
� A

�
CT BT

�
�

�
CCT CBT

BCT BBT

�y
�

�
C
B

�
�

Decomposing this expression along the row spaces of B and C leads to the following
definition for the oblique projection:

Definition 1 Oblique projections

The oblique projection of the row space ofA � Rp�j along the row space ofB � Rq�j

on the row space of C � Rr�j is defined as:

A�
B
C

def
� A

�
CT BT

�
�

��
CCT CBT

BCT BBT

�y�
first r columns

�C � (1.4)

�Note that this intuitive definition of LB and LC is only unique when B and C are of full row rank and
when the intersection of the row spaces of B and C is empty. A unique definition is presented in Definition
1.
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Figure 1.9 Interpretation of the oblique projection in the j-dimensional space (j � � in
this case). The oblique projection is formed by projecting the row space of A along the row
space of B on the row space of C.

Some properties of the oblique projection are:

B�
B
C � � � (1.5)

C�
B
C � C � (1.6)

Actually, as indicated in [BK 79], these two properties can be used to define the oblique
projection i.e. any operation that satisfies (1.5)-(1.6) is an oblique projection. From
(1.5)-(1.6) it can now be easily shown that an equivalent definition of the oblique
projection is:

Corollary 1 Oblique projections

The oblique projection of the row space ofA � Rp�j along the row space ofB � Rq�j

on the row space of C � Rr�j can also be defined as:

A�
B
C �

�
A�B�

�
�
�
C�B�

�y
�C � (1.7)

Note that when B � � or when the row space of B is orthogonal to the row space of
C (B�CT � �) the oblique projection reduces to an orthogonal projection:

A�
B
C � A�C �

This fact will be used when unifying the three main Theorems of Chapter 2, 3 and 4 in
Section 4.5.
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a� � b�

a�

��

A

B�� � � b�

Figure 1.10 Interpretation of principal angles and directions in the j-dimensional space
(j � � in this case). The unit vectors a� � b� indicate the first principal directions. The
angle �� between them is the first principal angle and is in this case equal to zero (�� � �).
Zero principal angles imply a non-empty intersection between the row spaces of A and B.
The corresponding principal directions can be chosen as a basis for this intersection. The
second principal angle �� is the angle between the unit vectors a� and b�. Since a� and b�
have to be orthogonal to a� � b� , these vectors lie in a plane orthogonal to the intersection
of the planes A and B.

1.4.3 Principal angles and directions

The principal angles between two subspaces are a generalization of an angle between
two vectors as illustrated in Figure 1.10 (the concept goes back to Jordan [Jor 1875]).
Suppose we are given two matricesA � Rp�j andB � Rq�j . The first principal angle
�� (the smallest one) is obtained as follows: Choose unit vectors a� � row space A
and b� � row space B and minimize the angle between them. This is the first principal
angle and the unit vectors a� and b� are the first principal directions. Next choose a
unit vector a� � row space A orthogonal to a� and b� � row space B orthogonal to
b� and minimize the angle �� between them. These are the second principal angle
and directions. Continue in this way until min
p� q� angles have been found. Figure
1.10 illustrates this in a three dimensional space. This informal description can also
be formalized:
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Definition 2 Principal angles and directions

The principal angles �� � �� � � � � � ��� between the row spaces of A and B of
two matrices A � Rp�j and B � Rq�j and the corresponding principal directions
ai � row space A and bi � row space B are defined recursively as:

cos �k � max
a�row space A � b�row space B

aT �b

� aTk �bk �

subject to kak � kbk � 
 and for k � 
, aT �ai � � for i � 
� � � � � k�
 and bT �bi � �
for i � 
� � � � � k � 
.

In the following we present two alternative definitions for the principal angles and
directions. These definitions are a little more practical since they allow for an easy
computation of the angles and directions.

Definition 3 Principal angles and directions

Given two matrices A � Rp�j and B � Rq�j and the singular value decomposition:

AT �
AAT �y�ABT �
BBT �y�B � USV T �

then the principal directions between the row spaces ofA andB are equal to the rows
ofUT and the rows of V T . The cosines of the principal angles between the row spaces
of A and B are defined as the singular values (the diagonal of S). The principal
directions and angles between the row spaces of A and B are denoted as :

�A � B�
def
� UT �

�A � B�
def
� V T �

�A � B�
def
� S �

An alternative definition to compute the principal angles and directions is given in
[AK 90] [Pal 82]:

Definition 4 Principal angles and directions

The principal angles and directions between the row spaces ofA andB of two matrices
A � Rp�j and B � Rq�j can be found through the singular value decomposition of
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(where ���� denotes any square root of a matrix):


AAT ������
ABT ��
BBT ����� � USV T � (1.8)

as:

�A � B� � UT �
AAT ������A �

�A � B� � V T �
BBT ������B �

�A � B� � S �

This definition is very appealing, since when A and B are just vectors (p � q � 
),
equation (1.8) reduces to:

A�BT

p
AAT �

p
BBT

� S �

which is the classical definition of the cosine between two row vectors.

1.4.4 Statistical tools

In this Subsection we relate statistical assumptions to geometric properties. These
properties will be used throughout the book in the proves of, and insights in the main
Theorems. They lie at the heart of the reason why subspace identification algorithms
work well for large data sets.

Consider two given sequences ak � Rna and ek � Rne , k � �� 
 � � � � j. The sequence
ek is a zero mean sequence, independent of ak:

E�ek� � � �

E�ake
T
k � � � �

In subspace identification we typically assume that there are long time series of data
available (j � �), and that the data is ergodic. Due to ergodicity and the infinite
number of data at our disposition, we can replace the expectation operatorE (average
over an infinite number of experiments) with the different operator Ej applied to the
sum of variables (average over one, infinitely long, experiment). For instance for the
correlation between ak and ek we get:

E�ake
T
k � � lim

j��
�



j

jX
i��

aie
T
i �

� Ej�

jX
i��

aie
T
i � �
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with an obvious definition of Ej:

Ej��� def
� lim

j��




j
��� �

These formulas lie at the heart of the subspace approach. Consider for instance ak to
be the sequence of inputs uk and ek to be a disturbance. If we now assume that we
have an infinite number of data available (a large set of data samples) and that the data
are ergodic and that uk and ek are independent, we find that:

Ej�

jX
i��

uie
T
i � � � � (1.9)

Putting the data into row matrices:

u
def
�

�
u� u� � � � uj

�
�

e
def
�

�
e� e� � � � ej

�
�

we find with (1.9) that:
Ej�u�e

T � � � �

which implies that the input vector u is perpendicular to the noise vector e. So
geometrically (and for j � �) we can state that the row vectors of disturbances are
perpendicular to row vectors of inputs (and to other variables not correlated with the
noise). This property is used in subspace identification algorithms to get rid of the noise
effects. For instance by projecting the noise on the input�, the noise is annihilated:

Ej� ke�uk � � � �

This last formula is illustrated numerically in Figure 1.11. From this it should be clear
that subspace identification algorithms are, in general, not well suited for short data
records.

More ideas about geometric properties of noise can be found in [DMo 93]. Note also
that the idea is closely related to the instrumental variable approach [Lju 87], as also
indicated in the papers of Viberg & Ottersten [VOWL 93] [Vib 94].

�See Section 1.4.5 for a statistical definition of the projection.
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Figure 1.11 Norm of the projected noise sequence e�u, where e and u are
vectors with j samples. The norm goes to zero with a factor ��

p
j as can

be seen from the Figure. When j is large enough and e is a zero mean
white noise sequence, e and u can be considered perpendicular to each other
( k e�uk � �). This illustrates why subspace algorithms work well, even in the pres-
ence of noise (when a large number of samples is available).

1.4.5 Geometric tools in a statistical framework

In the statistical (stochastic) framework we define the covariance �	A�B
 between two
matrices A � Rp�j and B � Rq�j as:

�	A�B

def
� Ej�A�B

T � �

We can now extend the geometric tools introduced above in the deterministic frame-
work to the stochastic framework, i.e. for ease of notation and to facilitate the theo-
retical derivations we re-define the geometric operations in a stochastic context. This
re-definition simply consists of the following substitution in all definitions:

A�BT 	 �	A�B
 �
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In a statistical framework, we thus get:

A�B � �	A�B
��
y
	B�B
�B �

A�B� � A��	A�B
��
y
	B�B
�B �

A�
B
C �

�
�	A�C
 �	A�B


�
�

��
�	C�C
 �	C�B


�	B�C
 �	B�B


�y�
first r columns

�C

� �A�B����C�B��y�C �

and the principal angles and directions from the SVD of:

�
����
	A�A
��	A�B
��

����
	B�B
 � (1.10)

as:

�A � B� � UT ��
����
	A�A
�A � (1.11)

�A � B� � V T ��
����
	B�B
�B � (1.12)

�A � B� � S � (1.13)

We use the same notation for the deterministic and stochastic geometric operations
since, when implementing the algorithms the number of measurements will always be
finite� (j 
��) and we approximate �	A�B
 as:

�	A�B
 � 


j
ABT �

Thus the two slightly different definitions in the deterministic and stochastic framework
coincide. For instance, for the orthogonal projection:

A�B � �	A�B
��
y
	B�B
�B

� �



j
ABT ���




j
BBT �yB

� ABT ��BBT �y�B �

which is exactly the same definition as in the deterministic setting. It should be clear
from the context which definition is implied, however the deterministic definition is
typically used in Chapter 2, while in Chapters 3 and 4 the stochastic definition is
implied.

�For many theoretical derivations in the stochastic framework, we will however assume that j ��.
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1.5 CONCLUSIONS

In this Chapter we have motivated the need for mathematical models. We have
also provided an overview of the advantages of subspace identification algorithms,
as an overview of the major differences with classical identification methods. The
mathematical tools have been put in an historical perspective. Finally, we have given
an overview of the different Chapters.

In the last Section, we have introduced some geometric tools: orthogonal and oblique
projections and principal angles and directions. To solve the stochastic and combined
deterministic-stochastic identification problem, these concepts have been extended to
the statistical framework.
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2
DETERMINISTIC IDENTIFICATION

In this Chapter we treat the subspace identification of purely deterministic systems,
with no measurement nor process noise (vk � wk � � in Figure 1.4). We treat this
problem for two reasons:

Most of the conceptual ideas and geometric concepts, which will also be used
in the Chapters to follow, are introduced by means of this simple identification
problem.

We treat the problem from a different point of view as in the literature, which makes
it easier to assimilate it as a special case in the Chapters to follow. Similarities
between the presented algorithm and the literature are pointed out.

In Section 2.1 we state the deterministic (subspace) identification problem mathemati-
cally and introduce the notation. Section 2.2 contains the main Theorem, which is the
backbone of this Chapter. The Theorem allows for the extraction of the states directly
from input-output data. Relations to other algorithms in the literature are treated in
Section 2.3. Finally, Section 2.4 describes how the results of the main Theorem lead to
two algorithms that compute the system matrices. Section 2.5 contains the conclusions.
Appendix B describes the software implementation of the algorithms in this Chapter.

Before we start the treatment of purely deterministic system identification, it should
be noted that most real-life measurements are corrupted by noise. This makes the
identification of deterministic systems a fairly academic issue. We refer the reader to
Subsection 2.3.3 for a short treatment of the noise effects and to Chapter 4 for the
more practical combined deterministic-stochastic identification problem, where the
measurements are corrupted by additive noise.

31
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Deterministic identification problem:

Given: s measurements of the input uk � Rm and the out-
put yk � Rl generated by the unknown deterministic system of
order n:

xdk�� � Axdk �Buk � (2.1)

yk � Cxdk �Duk � (2.2)

Determine:

The order n of the unknown system

The system matrices A � Rn�n � B � Rn�m � C �
Rl�n � D � Rl�m (up to within a similarity transformation).

Figure 2.1 The deterministic subspace identification problem.

2.1 DETERMINISTIC SYSTEMS

2.1.1 Problem description

Deterministic subspace identification algorithms compute state space models from
given input-output data. Figure 2.1 states the deterministic� (subspace) identification
problem. The unknown deterministic system is represented in Figure 2.2.

Several solutions to this problem have been presented in the literature [DMV 87]
[DMo 88] [DMVMVVM 88] [DMMVV 88a] [DMMVV 88b] [DMMVV 88c]
[MDMVV 89] [MDMV 91] [MDM 92] [VODMS 91] [VD 92]. In this Chapter we
present a new Theorem that unifies all these approaches into one general framework.
As will be shown in Section 2.3, all methods are closely related. The reason for
presenting a new Theorem, is that it fits nicely into the framework of combined sys-
tem identification of Chapter 4, and thus adds to the general consistency of the work
presented in this book.

�Note that the superscript “d” in all the variables stands for “deterministic”.
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� B � g � � � C � g �
�

D�

�A

�

ukm xdk�� xdk ykm

Figure 2.2 A linear time-invariant deterministic system with inputs uk, outputs yk and
states xdk , described by four matrices A�B�C and D. The symbol � represents a delay.
Note the inherent feedback via the matrixA (representing the dynamics). In the deterministic
identification problem, the circled signals (input uk and output yk) are known. The state
is unknown, but will be determined as an intermediate result in the subspace identification
algorithms.

2.1.2 Notation

Block Hankel matrices and state sequences

In this Subsection we introduce the notation for block Hankel matrices and for system
related matrices.

Block Hankel matrices play an important role in subspace identification algorithms.
These matrices can be easily constructed from the given input-output data. Input block
Hankel matrices are defined as:



34 Chapter �

j

	BBBBBBBBBB


u� u� u� � � � uj��
u� u� u� � � � uj
� � � � � � � � � � � � � � �
ui�� ui ui�� � � � ui�j��
ui ui�� ui�� � � � ui�j��
ui�� ui�� ui�� � � � ui�j
� � � � � � � � � � � � � � �
u�i�� u�i u�i�� � � � u�i�j��

�CCCCCCCCCCA

i+1

i-1

"past"

"future"

def
�

�
U�ji

Ui��j�i��

�
def
�

�
U�
p

U�f

�

	BBBBBBBBBB


u� u� u� � � � uj��
u� u� u� � � � uj
� � � � � � � � � � � � � � �
ui�� ui ui�� � � � ui�j��
ui ui�� ui�� � � � ui�j��
ui�� ui�� ui�� � � � ui�j
� � � � � � � � � � � � � � �
u�i�� u�i u�i�� � � � u�i�j��

�CCCCCCCCCCA
U�j�i��

def
�

i

"past"i

j

"future"

def
�

�
U�ji��

Uij�i��

�
def
�

�
Up
Uf

�

def
�

where:

The number of block rows (i) is a user-defined index which is large enough i.e.
it should at least be larger than the maximum order� of the system one wants
to identify (see below). Note that, since each block row contains m (number of
inputs) rows, the matrix U�j�i�� consists of �mi rows.

The number of columns (j) is typically equal to s � �i � 
, which implies that
all given data samples are used. Throughout the book, for statistical reasons (see

�Theoretically, the number of block rows should only be larger than the largest observability index, but
since this index is unknown we assume that i � n.
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also Subsection 1.4.4), we will often assume that j� s � �. For deterministic
(noiseless) systems this will not be necessary.

The subscripts of U�j�i��� U�ji��� U�ji denote the subscript of the first and last
element of the first column in the block Hankel matrix. The subscript “p” stands
for “past” and the subscript “f” for “future”. The matrices Up (the past inputs)
and Uf (the future inputs) are defined by splitting U�j�i�� in two equal parts of i
block rows. The matrices U�

p and U�f on the other hand are defined by shifting
the border between past and future one block row down�.

Note that the distinction between past and future is somewhat loose, since both
the matrices Up and U�

p are denoted by “past inputs”. These loose notations are
however useful when explaining concepts intuitively. Note also that the past and
future inputs have many elements in common. For instance the input ui can be
found in Up as in Uf . However, the corresponding columns of Up and Uf have
no elements in common, and thus the distinction between past and future.

The output block Hankel matrices Y�j�i��� Yp� Yf � Y �
p � Y �f are defined in a similar

way. Following the notation of Willems [Wil 86], we define the block Hankel matrices
consisting of inputs and outputs as W�ji��:

W�ji��
def
�

�
U�ji��

Y�ji��

�
�

�
Up
Yp

�
� Wp �

Similarly as before, W�
p is defined as:

W�
p �

�
U�
p

Y �
p

�
�

State sequences play an important role in the derivation and interpretation of subspace
identification algorithms. The (deterministic) state sequence Xd

i is defined as:

Xd
i

def
�
�
xdi xdi�� � � � xdi�j�� xdi�j��

� � R
n�j �

where the subscript i denotes the subscript of the first element of the state sequence.

�The superscript “�” stands for “add one block row” while the superscript “�” stands for “delete one
block row”.
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Analogous to the past inputs and outputs, we denote the past state sequence byX d
p and

the future state sequence by Xd
f :

Xd
p � Xd

� � Xd
f � Xd

i � (2.3)

System related matrices

Subspace identification algorithms make extensive use of observability and controlla-
bility matrices and of their structure. The extended (i � n) observability matrix �i
(where the subscript i denotes the number of block rows) is defined as:

�i
def
�

	BBBB

C
CA
CA�

� � �
CAi��

�CCCCA � R
li�n � (2.4)

We assume the pair fA�Cg to be observable, which implies (see for instance [Kai 80])
that the rank of �i is equal to n. The reversed extended controllability matrix �d

i

(where the subscript i denotes the number of block columns) is defined as:

�d
i

def
�
�
Ai��B Ai��B � � � AB B

� � R
n�mi �

We assume the pair fA�Bg to be controllable. The controllable modes can be either
stable or unstable. The lower block triangular Toeplitz matrix H d

i is defined as:

Hd
i

def
�

	BBBB

D � � � � � �
CB D � � � � �
CAB CB D � � � �
� � � � � � � � � � � � � � �

CAi��B CAi��B CAi��B � � � D

�CCCCA � R
li�mi �
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2.2 GEOMETRIC PROPERTIES OF DETERMINISTIC

SYSTEMS

In this Section we investigate the geometric properties of deterministic systems. In
a first Subsection 2.2.1 we introduce the matrix input-output equations, which lead
to the main Theorem for deterministic system identification in Subsection 2.2.2. The
Theorem allows the extraction of the state sequence directly from given input-output
data. The geometrical interpretation is given in Subsection 2.2.3.

2.2.1 Matrix input-output equations

The following Theorem states how the linear state space relations of formula (2.1)-(2.2)
can be reformulated in a matrix form. The Theorem was introduced in [DMo 88], and
is very useful in many proofs of, and insights in subspace identification algorithms.

Theorem 1 Matrix input-output equations

Yp � �iX
d
p �Hd

i Up � (2.5)

Yf � �iX
d
f �Hd

i Uf � (2.6)

Xd
f � AiXd

p ��d
iUp � (2.7)

The proof follows directly from the state space equations (2.1)-(2.2). The geometric
interpretation of equation (2.5) is illustrated in Figure 2.3.

2.2.2 Main Theorem

Before stating the main deterministic identification Theorem, the following remark that
emphasizes the symmetry between the different Chapters is in order: For each of the
separate identification problems (Chapter 2, 3 and 4) we present a main Theorem which
states how the state sequence and the extended observability matrix can be extracted
from the given input-output data. After having treated the three Theorems for the
three different cases (deterministic, stochastic and combined deterministic-stochastic
identification), it will become clear that they are very similar�. These similarities will
be treated in Section 4.5. We mention this fact early in the book, before the Theorems

�Note that these similarities are no coincidence. Chapter 2 and 3 are written with “fore-sight” towards
Chapter 4.
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��
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���

�
�
�
�
�
��

�

Yf

�i�X
d
f

Hd
i �Uf

Figure 2.3 Vectors in the row space of the block Hankel matrix Yf are obtained as a
sum of linear combinations of vectors in the row space of the state sequence Xdf and linear
combinations of vectors in the row space of the block Hankel matrix Uf .

are introduced, so that the synthesis in Section 4.5 will be anticipated by the attentive
reader.

The consequences of the deterministic identification Theorem are twofold:

The state sequenceXd
f can be determined directly from the given data uk and yk,

without knowledge of the system matrices A�B�C�D.

The extended observability matrix �i can be determined directly from the given
input-output data.

In Section 2.4, we will then describe how the the system matrices A�B�C�D can
be extracted from these intermediate results Xd

f and �i. An overview of the overall
deterministic identification procedure is presented in Figure 2.4.

In the main deterministic identification Theorem, we introduce two weighting matrices
W� and W�. The interpretation and significance of these matrices is postponed until
Section 2.3 and Chapter 5. Suffices to state here that specific choices of the matrices
lead to different identification algorithms of the literature and that the choice of the
weights determines the state space basis in which the final model is obtained (see
Chapter 5).

In the main Theorem we will also use the concept of persistency of excitation. We
adopt the definition of Ljung [Lju 87]:
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input-output
data uk � yk

Xd
f �i

system matrices
A�B�C�D

� �

�

Theorem 2

Subsection 2.4.2Subsection 2.4.1

Figure 2.4 An overview of the deterministic subspace identification procedure. Through
the main Theorem 2 the state sequence Xdf and the extended observability matrix �i
are determined. The system matrices are then extracted using any of the two algorithms
described in Sections 2.4.1 or 2.4.2.

Definition 5 Persistency of excitation

The input sequence uk � Rm is persistently exciting of order �i if the input covariance
matrix

Ruu def
� �	U�j�i���U�j�i��


has full rank, which is ��m�i.

Theorem 2 Deterministic identification

Under the assumptions that:

1. The input uk is persistently exciting of order �i (Definition 5).

2. The intersection of the row space of Uf (the future inputs) and the row space of
Xd
p (the past states) is empty.
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3. The user-defined weighting matrices W� � Rli�li and W� � Rj�j are such that
W� is of full rank and W� obeys: rank 
Wp� � rank 
Wp�W��, where Wp is the
block Hankel matrix containing the past inputs and outputs.

And with Oi defined as the oblique projection:

Oi
def
� Yf�

Uf
Wp � (2.8)

and the singular value decomposition:

W�OiW� �
�
U� U�

�� S� �
� �

��
V T
�

V T
�

�
(2.9)

� U�S�V
T
� � (2.10)

we have:

1. The matrix Oi is equal to the product of the extended observability matrix and
the states:

Oi � �i�X
d
f � (2.11)

2. The order of the system (2.1)-(2.2) is equal to the number of singular values in
equation (2.9) different from zero.

3. The extended observability matrix �i is equal to�:

�i �W��
� U�S

���
� �T � (2.12)

4. The part of the state sequence Xd
f that lies in the column space of W� can be

recovered from:

Xd
fW� � T���S

���
� V T

� � (2.13)

5. The state sequence Xd
f is equal to:

Xd
f � �yi �Oi � (2.14)

�With T � Rn�n an arbitrary non-singular similarity transformation.
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The proof of the Theorem is fairly simple and leads to some insight in how subspace
identification results are typically derived. That is the reason why it is presented in
the main body of this book and not in an Appendix�. We will first present the proof,
after which interpretations of the fine details of the Theorem will be stated as a series
of remarks.

Proof

From formulas (2.5) and (2.7), we find that X d
f can be written as a linear combination

of the past inputs Up and outputs Yp as follows:

Xd
f � AiXd

p ��d
iUp

� Ai � � �yiYp � �yiH
d
i Up � � �d

iUp

� � �d
i �Ai�yiH

d
i � Up � � Ai�yi � Yp

� Lp � Wp � (2.15)

with:
Lp �

�
�d
i �Ai�yiH

d
i Ai�yi

�
�

With (2.15), formula (2.6) can be rewritten as:

Yf � �i�Lp�Wp �Hd
i �Uf �

From this formula and using (1.7), the first claim of the Theorem can be proven as
follows:

Yf � �i�Lp�Wp �Hd
i �Uf �

Yf	U�
f

� �i�Lp�Wp�	U�
f
�Hd

i � Uf	U�
f� 
z �

��

�

Yf�U
�
f � �i�Lp�Wp�U

�
f �h

Yf�U
�
f

i
��Wp�U

�
f �
y �Wp� 
z �

�Oi

� �i� Lp�Wp� 
z �
�Xd

f

�

Oi � �i�X
d
f �

where we have used the fact that �Wp�U
�
f ���Wp�U

�
f �
y�Wp �Wp. This is not trivial,

since Wp�U
�
f is rank deficient for purely deterministic systems (see for instance

[MDMVV 89]) which implies that �Wp�U
�
f ���Wp�U

�
f �
y is different from the identity.

�Future proofs will be presented in the Appendices.
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However, by imposing the first two conditions of Theorem 2, it is possible to prove
that (see Appendix A.1):

�Wp�U
�
f ���Wp�U

�
f �
y�Wp �Wp � (2.16)

The other claims of Theorem 2 are easy to prove: The second claim follows from the
fact that the matrixW�OiW� is equal to the product of two matricesW��i (n columns)
and Xd

fW� (n rows). Since both matrices are of rank n (W� is of full rank and the
productXd

f �W� is of rank n due to assumption 3 of the Theorem), their product is also
of rank n. Equation (2.10) can be split into two parts (where T � Rn�n is an arbitrary
non-singular matrix representing a similarity transformation):

W��i � U�S
���
� �T �

Xd
fW� � T���S

���
� V T

� �

which leads to claim 3 and 4 of the Theorem. Claim 5 easily follows from the first
claim.

�

Remarks & comments

1. The important formula (2.15) (see also for instance [MDMVV 89]) shows that
the states Xd

f are lying in the row space of the past input and outputs Wp . It is
worth noting, even at this stage, that a similar observation will be made in the
next two Chapters for the stochastic and combined identification problems, where
the states will also be found as linear combinations of the “past”. Theorem 2 can
algebraically be summarized as follows:

rank 
Yf�
Uf
Wp� � n

row space 
Yf�
Uf
Wp� � row space 
Xd

f �

column space 
Yf�
Uf
Wp� � column space 
�i�

This summary is the essence of why these algorithms are called subspace al-
gorithms: they retrieve system related matrices as subspaces of projected data
matrices.
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2. Note that the Theorem is very similar to the unifying Theorem presented in
[VODM 94b]. It is however different, since in [VODM 94b] purely deterministic
systems are excluded, and only combined deterministic-stochastic systems with
a strictly non-zero stochastic component are discussed.

3. Note also that the reader who is familiar with the literature of deterministic system
identification, may find the presentation of this Theorem a little awkward. The
results for deterministic system identification can indeed be presented in many
different ways. We choose this (new) presentation, since it generalizes nicely to
the stochastic and the combined deterministic-stochastic identification of the next
two Chapters. In Section 2.3.1 and 2.3.2 we will indicate how the algorithms of
the literature tie in with Theorem 2.

4. The study of the effect of the weighting matrices W� and W� is postponed to
Section 2.3 and Chapter 5. Suffices to say, that both W� and W� determine the
state space basis in which the identified model will be identified.

5. Some comments on the similarity transformation T . It is introduced to make
the recovered observability matrix �i and state sequence Xd

f exactly (number-
wise) equal to the original Xd

f (2.3) and �i (2.4). The similarity transformation
is a function of W� and W�, so we should write T 
W��W�� but this would
overload the notation. However it is not necessary to recover number-wise the
original matrices A�B�C�D from which the input-output data was generated, as
long as the identified set of state space matrices is equivalent within a similarity
transformation to the original set of state space matrices. This implies that we
can just as well put the similarity transformation T equal to In. In doing so,
when using different weighting matrices W� and W�, “different�” observability
matrices and state space sequences will be obtained from Theorem 2. However,
each set of quantities will lead to a set of state space matrices that is equivalent
(up to a similarity transformation) to the original set of system matrices.

6. A Final note concerns the case where the input uk is zero everywhere, except
at time i � 
 where it is equal to 1: ui�� � 
. The state xk is also zero for
k � �� � � � � i� 
. This implies that yk is an impulse response shifted over i time
steps. Consider for simplicity a single-input system. In that case, we find that the
state sequence Xd

f is equal to:

Xd
f �

�
B AB A�B � � � Aj��B

�
�

�In a sense that the numbers in the matrices are different, because the choice of basis in the state space
is different.
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Yf

Oi � �i�X
d
f

Hd
i �Uf

Wp

Figure 2.5 Graphical illustration of Theorem 2. The oblique projection decomposes the
future outputs Yf along the future inputs Uf and the past inputs and outputs Wp.

So, the oblique projection (2.8) then reduces to:

Oi �

	BB

C
CA
� � �

CAi��

�CCA�
B AB A�B � � � Aj��B

�
�

which shows that in this case the deterministic identification problem becomes
equivalent to the realization problem [Kun 78] [ZM 74], with i block rows and j
columns.

2.2.3 Geometric interpretation

Figure 2.5 shows a graphical interpretation of Theorem 2. From the Figure we see that
the oblique projection decomposes the future outputs (Yf ) into its two components:
One part is due to the future inputs (Hd

i �Uf ); the other part is due to the past inputs and
outputs. This part is rank deficient due to the finite dimensional system that generated
the data: Only an n-dimensional subspace of the row space spanned by Wp is needed
to reconstruct the future.

2.3 RELATION TO OTHER ALGORITHMS

In this Section we investigate the similarities between deterministic subspace identi-
fication algorithms of the literature and the new deterministic identification Theorem
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2. Two classes of deterministic algorithms are treated: intersection and projection
algorithms.

2.3.1 Intersection algorithms

A first class of identification algorithms are the intersection algorithms of
[DMo 88] [DMVMVVM 88] [DMMVV 88a] [DMMVV 88b] [DMMVV 88c]
[MDMVV 89] [MDMV 91] [MDM 92] [Wil 86], where the row space of the state
sequence Xd

f is computed as the intersection between the row space of the past inputs
and outputs and the row space of the future inputs and outputs:

row space Xd
f � row space

�
Up
Yp

�
� row space

�
Uf
Yf

�
�

In [MDMVV 89] it is shown that this intersection is n dimensional, and indeed rep-
resents a valid state sequence. It can easily be shown that the state sequence Xd

f

computed in Theorem 2 (2.14) lies in the same intersection. Indeed, from (2.8) and
(2.14), we find that the state sequence is formed as a linear combination of the rows of
Wp:

Xd
f � �yi �Yf�

Uf
Wp �

From (2.6), we find that the state sequence Xd
f can also be written as:

Xd
f � �yi �Yf � �yi �H

d
i Uf �

which proves that the state sequenceXd
f is also lying in the sum of the row space of the

future inputs (Uf ) and outputs (Yf ). The state sequence of the intersection algorithms
thus corresponds to the state sequence computed in Theorem 2.

Different ways to compute the intersection have been proposed. A first way, pre-
sented in [MDMVV 89] [MDMV 91] [MDM 92], is by making use of a singular value
decomposition of a concatenated Hankel matrix:�

U�j�i��

Y�j�i��

�
�

A second way [DMo 88] [DMMVV 88b] is by taking as a basis for the intersection
the principal directions between the row space of the past inputs and outputs and the
row space of the future inputs and outputs. Indeed, from Figure 1.10 it can be seen
that a non-empty intersection between two subspaces is characterized by a number of
principal angles equal to zero, and that the principal directions corresponding to these
zero angles form a basis for the row space of the intersection.
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The Matlab function intersec.m contains a Matlab implementation of this algo-
rithm. See also Section 6.1 and Appendix B.

2.3.2 Projection algorithms

In the literature, several projection algorithm have been described [CXK 94a] [DMV 87]
[DMo 88] [Liu 92] [SROK 92] [VODMS 91] [VD 92]. An outline of these algorithms
is very simple: When multiplying equation (2.6):

Yf � �i�X
d
f �Hd

i �Uf

from the right with 	U�
f

, we find:

Yf�U
�
f � �i�X

d
f �U

�
f � (2.17)

The main observation of the projection algorithms is that the system order and the
extended observability matrix can be extracted from a singular value decomposition
of (2.17): Its rank
 is equal to n and its column space coincides with that of �i. Note
that to compute the left hand side of (2.17), only input-output data is required. This
class of algorithms can be completely incorporated into the framework of Theorem 2.
It suffices to take:

W� � Ili �

W� � 	U�
f
�

which leads, with formula (2.9) and (1.7) to the singular value decomposition of:

W�OiW� � �Yf�U
�
f ���Wp�U

�
f �
y��Wp�U

�
f �

� �Yf�U
�
f ���Wp�U

�
f �

T �
Wp�U
�
f ��
Wp�U

�
f �

T �y��Wp�U
�
f �

� �Yf�U
�
f ��		Wp�U�f 
 (2.18)

� �Yf�U
�
f � � (2.19)

The last step is due to the fact:

Yf�U
�
f � �iX

d
f �U

�
f � �i�Lp�Wp�U

�
f �

which indicates that the row space ofYf�U�f is a subspace of the row space ofWp�U
�
f .

Projecting the row space of Yf�U�f on the row space of Wp�U
�
f will thus have no

	Note that through assumptions 1 and 2 of Theorem 2 it is guaranteed that Xdf �U
�
f is of rank n.
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effect, and results in Yf�U�f . We thus conclude that the singular value decompositions
of (2.17) used in the projection algorithms and of (2.18) used in Theorem 2 are singular
value decompositions of the same matrix, which illustrates that there is no difference
between the classical formulation of the projection algorithms and the formulation of
Theorem 2.

The Matlab function project.m contains a Matlab implementation of this algo-
rithm. See also Section 6.1 and Appendix B.

2.3.3 Notes on noisy measurements

In this Subsection we will shortly treat the behavior of the different algorithms in the
presence of noise. The main question is the one of asymptotic unbiasedness, i.e. when
given an infinite amount of noisy data generated by an unknown linear system, does
the algorithm compute the exact linear system ?

For the intersection algorithm of Subsection 2.3.1 it was proven in [MDMVV 89] that
the exact linear system is retrieved when both the inputs and outputs are corrupted by
additive spatially and temporary white noise sequences of equal covariance�. When
this assumption is violated, it is possible to alter the algorithm by introducing weights
based on the knowledge of the noise correlation. This is described in [MV 90].
However the a-priori knowledge of the noise correlation is a severe restriction on the
application of this algorithm (since in most practical cases the noise correlation is not
known).

For the projection algorithms of Subsection 2.3.2, it was proven in [VD 92] that the
algorithms are asymptotically unbiased when the outputs are corrupted by additive
spatially and temporary white noise. In [SROK 92] it was described how to reduce the
finite sample variance by introducing extra weights.

Finally, for the algorithms based on the results of Theorem 2, it will be proven in
Chapter 4, that the algorithms compute asymptotically unbiased estimates when the
outputs are corrupted by additive (white or) colored noise.

So, even though the intersection algorithms, the projection algorithms and the algo-
rithms based on Theorem 2 have been proven to be equivalent in the purely deterministic
case, they behave differently in the presence of noise. This short discussion should
provide an extra motivation for the algorithms presented in this book, since most of


A sequence is spatially white when there is no correlation between the different channels. It is temporary
white when there is no correlation between different time samples.
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the practical identification problems can be brought back to the case where the outputs
are corrupted by additive colored noise.

We illustrate the differences between the different algorithms with a small example.
Consider the system:

xk�� � ����xk � ���uk �

yk � ����xk � ��
uk �

The input is the sum of a zero mean white noise sequence (variance 
) filtered with
a second order Butterworth filter (cutoff 0.3 times the Nyquist frequency, sampling
time T � 
) and a zero mean white noise sequence of variance ���
. We performed
��� Monte Carlo experiments (j � 
���� i � �) with the same input. Three different
algorithms were considered to retrieve the matrix A from input-output data:

Intersection: The algorithm as described in Subsection 2.3.1 and [MDMVV 89].

Projection: The algorithm as described in Subsection 2.3.2 and [VD 92]. The matrix
A is determined from �i in the “least squares” way as described on page 53.

Theorem 2: The algorithm based on the results of Theorem 2 as described in Figure
2.8 (see further).

The data were distorted in three different ways:

White noise on outputs: A white noise sequence of variance ���
 was added to the
output.

White noise on inputs and outputs: Both inputs and outputs were corrupted by
adding an independent white noise sequence of variance ���
 to them.

Colored noise on outputs: The outputs were corrupted by a colored noise sequence
that was generated by sending a white noise sequence ek of variance 
 through
the linear filter:

H
z� �
����z � ����


z � ����
�

The Matlab file det_sim1.m contains a Matlab implementation of this example.
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Figure 2.6 Each of the plots shows as a dotted line the ��� Monte Carlo estimates of
the A matrix. The mean of these ��� experiments is plotted as a dashed dotted horizontal
line, while the exact value of the A matrix (��	
) is plotted as a full horizontal line. The
three columns represent the three algorithms that were used: intersection, projection and
the algorithm based on Theorem 2. The three rows represent the different experimental
conditions: In the first row white noise is added to the outputs, in the second row white
noise is added to the inputs and outputs and in the third row colored noise is added to the
outputs. From this Figure it can be clearly seen which algorithms compute asymptotically
unbiased estimates for which experimental conditions (full line and dashed dotted line
coincide). The intersection algorithms are unbiased for white noise distorted inputs and
outputs, the projection algorithms are unbiased for white noise distorted outputs, while the
algorithms based on Theorem 2 are unbiased for white and colored noise distorted outputs.
This Figure was generated using the Matlab file det sim1.m.
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2.4 COMPUTING THE SYSTEM MATRICES

In this Section, we explain how the system matrices A�B�C and D can be computed
from the results of Theorem 2 in two different ways. A schematic overview of both
algorithms can be found in Figures 2.7 and 2.8. Note that the first steps of both
algorithms are the same and coincide with the steps described in Theorem 2. For the
implementation related issues we refer to Section 6.1.

2.4.1 Algorithm 1 using the states

From Theorem 2, we find:

The order of the system from inspection of the singular values of equation (2.9).

The extended observability matrix �i from equation (2.12).

The state sequence Xd
i (� Xd

f ) from equation (2.14).

Through a similar reasoning and proof as in Theorem 2, it is easy to show that the
following holds:

Oi��
def
� Y �f �

U�
f

W�
p

� �i���X
d
i�� �

It is also easy to check that if we strip the last l (number of outputs) rows of �i
(calculated from 2.12), we find �i��:

�i�� � �i �

where �i denotes the matrix �i without the last l rows. Now Xd
i�� can be calculated

as:
Xd
i�� � �yi��Oi�� �

At this moment, we have calculated Xd
i and Xd

i��, using only input-output data. The
matrices A�B�C�D can be solved from:�

Xd
i��

Yiji

�
� 
z �

known

�

�
A B
C D

��
Xd
i

Uiji

�
� 
z �

known

� (2.20)
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where Uiji� Yiji are block Hankel matrices with only one block row of inputs respec-
tively outputs. This set of equations can be easily solved in a linear least squares
sense��. Note the symmetry in the way A�B�C and D appear in equation (2.20), i.e.
all matrices are solved from the set of equations in one step. This is in contrast with
the second algorithm (see below) where first A and C are determined, after which B
and D are determined in a separate step. Figure 2.7 summarizes the steps of this first
deterministic algorithm.

The Matlab function det_stat.m contains a Matlab implementation of this algo-
rithm. See also Section 6.1 and Appendix B.

2.4.2 Algorithm 2 using the extended observability matrix

The system matrices are determined in two separate steps: As a first step, A and C are
determined from �i; In a second step B and D are computed. From Theorem 2, we
find:

The order of the system from inspection of the singular values of equation (2.9).

The extended observability matrix �i from equation (2.12).

Determination ofA andC

The matrices A and C can now be determined from the extended observability matrix
in different ways. All the methods, make use of the shift structure of the matrix �i,
which implies that (see [Kun 78]):

�i�A � �i �

where �i denotes �i without the first l (number of outputs) rows. This equation can
be solved in many different ways:

Least squares: ��

A � �i
y��i �

��Note that when there is no noise, this set of equations is consistent and there is no need for a least
squares solution.
��The names “least squares” and “total least squares” are not very meaningful in the case of purely

deterministic systems, since there is no noise. However, in the next Chapters (where the data are corrupted
by noise), we will refer to these methods again. At that point, the names do make sense, and that is why we
already introduce them here.
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Deterministic algorithm 1:

1. Calculate the oblique projections:

Oi � Yf�
Uf
Wp �

Oi�� � Y �f �
U�
f

W�
p �

2. Calculate the SVD of the weighted oblique projection:

W�OiW� � USV T �

3. Determine the order by inspecting the singular values in S
and partition the SVD accordingly to obtain U� and S�.

4. Determine �i and �i�� as:

�i �W��
� U�S

���
� � �i�� � �i �

5. Determine Xd
i and Xd

i�� as:

Xd
i � �yiOi � Xd

i�� � �yi��Oi�� �

6. Solve the set of linear equations for A�B�C and D:�
Xd
i��

Yiji

�
�

�
A B
C D

��
Xd
i

Uiji

�
�

Figure 2.7 A schematic overview of the first deterministic identification algorithm. See
Section 6.1 for implementation issues. This algorithm has been implemented in the Matlab
function det stat.m.
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Total least squares: By making use of the singular value decomposition of the con-
catenated matrix [DMo 88]�

�i ��i
�
� USV T �

and by partitioning the matrix V � R�n��n as:

V �

� n n

n V�� V��
n V�� V��

�
�

we find the total least squares solution as:

A � V���V
��
�� �

Stable A: In many applications, it is known in advance that the dynamical system
matrix A should be stable. As was shown in [Mac 94], the following procedure
will always compute a stable matrix Astable:

Astable � �yi �

�
�i
�

�
�

where � represent l rows of zeros. This trick however introduces a bias in the
solution for A. The dynamical system matrix will only be recovered exactly
when A is indeed stable and when i � �. In this case, the extra zeros added
at the bottom do not introduce an error (limi�� CAi � �). In practice this
trick should be used with care, especially when the system has lightly damped
modes (or unstable modes). Indeed, the poles associated with these modes will
be “pushed” closer to the origin in theZ-plane to preserve stability. This can lead
to significant errors in the identified models.

Optimally: In [OV 94] it is described how the poles of theAmatrix can be determined
trough fitting a matrix containing the coefficients of the characteristic polynomial
of A to the null-space of �i. With this method it is also possible to take the finite
sample statistics of �i into account, and thus obtain a statistical optimal estimate
of A. We refer to [OV 94] for more details.

The matrix C can be determined from the first l rows of �i.



54 Chapter �

Determination ofB andD

After the determination ofA andC, the system matricesB andD have to be computed.
Here we will only sketch one possible way to do so, since for the purely deterministic
case, independent of the method used, the resulting B and D are exactly the same��.
In Chapter 4, we will indicate how to extract B and D in the case of a finite number of
noisy data��.

From the input-output equation (2.6), we find that:

��i �Yf � ��i �H
d
i �Uf � (2.21)

where ��i � R�li�n��li is a full row rank matrix satisfying ��i ��i � �. Observe that
with known matrices A�C���i � Uf and Yf this equation is linear in B and D. To
enable an easy extraction of the matrices B and D, we multiply (2.21) with U yf from
the right hand side. This leads to:

��i �Yf �U
y
f� 
z �

�R�li�n��mi

� ��i�
z�
�R�li�n��li

� Hd
i�
z�

�Rli�mi

�

For simplicity of notation, we denote the left hand side of the equation with M and
��i with L. This equation can then be rewritten as:� M� M� � � � Mi

�
�

� L� L� � � � Li
�




	BBBB

D � � � � � �
CB D � � � � �
CAB CB D � � � �
� � � � � � � � � � � � � � �

CAi��B CAi��B CAi��B � � � D

�CCCCA �

whereMk � R�li�n��m and Lk � R�li�n��l . This can be rewritten as:	BBB

M�

M�

...
Mi

�CCCA
� 
z �
�Ri�li�n��m

�

	BBBB

L� L� � � � Li�� Li
L� L� � � � Li �
L� L� � � � � �
� � � � � � � � � � � � � � �
Li � � � � � �

�CCCCA
� 
z �

�Ri�li�n��li

�
Il �
� �i

�
� 
z �
�Rli��l�n�

�
D
B

�
�

��Once A and C are fixed, the state space basis of the system is fixed and thus B and D are uniquely
defined.
��In this case, different methods give different results, and it is thus important to choose the right method.
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which is a set of linear equations in the unknownsB and D which is typically overde-
termined (when i
li � n� � 
l � n�). It could for instance be solved using least
squares��.

The Matlab function det_alt.m contains a Matlab implementation of this algo-
rithm. See also Section 6.1 and Appendix B.

2.5 CONCLUSIONS

In this Chapter we have treated the subspace identification of purely deterministic
systems. By using geometric operations on the input-output block Hankel matrices, a
new general deterministic identification Theorem has been derived. This enables the
computation of the state sequences and of the extended observability matrix through an
oblique projection, directly from input-output data. Connections with published deter-
ministic subspace algorithms have been indicated. Finally, two complete algorithms
have been presented.

There are many more interesting properties of block-Hankel matrices and deterministic
identification (see [DMo 88] [MDMVV 89] for instance), which we have not summa-
rized since we only wanted to stress the results that are important in the context of the
following Chapters.

��When there is no noise, this set of equations is consistent, and no least squares solution is needed.
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Deterministic algorithm 2:

1. Calculate the oblique projection:

Oi � Yf�
Uf
Wp �

2. Calculate the SVD of the weighted oblique projection:

W�OiW� � USV T �

3. Determine the order by inspecting the singular values in S
and partition the SVD accordingly to obtainU�� U� and S�.

4. Determine �i and ��i as:

�i �W��
� U�S

���
� � ��i � UT

� W� �

5. Determine A from �i as A � �i
y�i or from any other

method described on page 53. Determine C as the first l
rows of �i.

6. With: � M� M� � � � Mi

�
� ��i �Yf �U

y
f �� L� L� � � � Li

�
� ��i �

solve B and D from:	BBB

M�

M�

...
Mi

�CCCA �

	BBBB

L� L� � � � Li�� Li
L� L� � � � Li �
L� L� � � � � �
� � � � � � � � � � � � � � �
Li � � � � � �

�CCCCA



�
Il �
� �i

��
D
B

�
�

Figure 2.8 A schematic overview of the second deterministic identification algorithm.
See Section 6.1 for implementation issues. This algorithm has been implemented in the
Matlab function det alt.m



3
STOCHASTIC IDENTIFICATION

In this Chapter, we treat the subspace identification of purely stochastic systems with
no external input (uk � �). The stochastic identification problem thus consists of
computing the stochastic system matrices from given output data only. We show how
this can be done using geometric operations.

This Chapter is organized as follows. In Section 3.1 we mathematically state the
stochastic (subspace) identification problem and introduce the major properties and
notation. Forward and backward innovation models play an important role, as does the
concept of positive real sequences. One key result is the non-iterative formula for the
non-steady state Kalman filter state estimate. Section 3.2 contains the main Theorem
for stochastic subspace identification. It allows for the extraction of the non-steady
state Kalman filter states directly from the output data. Relations to other algorithms
are discussed in Section 3.3. Finally, Section 3.4 shows how the system matrices can
be computed in three different ways. Section 3.5 contains the conclusions. Appendix
B describes the software implementation of the algorithms in this Chapter.

3.1 STOCHASTIC SYSTEMS

3.1.1 Problem description

Stochastic subspace identification algorithms compute state space models from given
output data. Figure 3.1 states the stochastic (subspace) identification problem. The
unknown stochastic system is represented in Figure 3.2.

57
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Stochastic identification problem:

Given: s measurements of the output yk � Rl generated by
the unknown stochastic system of order n:

xsk�� � Axsk � wk � (3.1)

yk � Cxsk � vk � (3.2)

with wk and vk zero mean, white vector sequences with covari-
ance matrix:

E�

�
wp
vp

�

 wTq vTq �� �

�
Q S
ST R

�
�pq � (3.3)

Determine:

The order n of the unknown system

The system matrices A � Rn�n � C � Rl�n up to within a
similarity transformation and Q � Rn�n � S � Rn�l � R �
Rl�l so that the second order statistics of the output of the
model and of the given output are equal.

Figure 3.1 The stochastic subspace identification problem.

The contributions of this book to the solution of the stochastic identification problem
are the following (see also [VODM 91a] [VODMS 91] [VODM 91b] [VODM 93a]):

Since the pioneering papers by Akaike [Aka 75], canonical correlations (which
were first introduced by Jordan [Jor 1875] in linear algebra and then by Hotelling
[Hot 36] in the statistical community) have been used as a mathematical tool
in the stochastic realization problem. We have shown how the approach by
Akaike [Aka 75] and others (e.g.[AK 90] [Lar 83] [Lar 90]) boils down to apply-
ing canonical correlation analysis to two matrices that are (implicitly assumed
to be) double infinite (i.e. have an infinite number of rows and columns). A
careful analysis reveals the nature of this double infinity and we manage to reduce
the canonical correlation approach to a semi-infinite matrix problem, i.e. only
the number of columns needs to be very large while the number of block rows
remains sufficiently small. This observation is extremely relevant with respect
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g� � � � C � g� �

�A

�

wk

xsk�� xsk

vk

ykm

Figure 3.2 A linear time-invariant stochastic system with outputs yk and states xs
k

, de-
scribed by the matricesA�C and the covariance matricesQ�S�R. The symbol� represents
a delay. In the stochastic identification problem, only the output is measured. The state
is unknown, but will be determined as an intermediate result of the subspace identification
algorithms.

to (for instance) the use of updating techniques. We have also shown how the
canonical correlation algorithm is just a special case of a more general class of
algorithms.

In order to find the state space model, we derive a finite-dimensional vector
sequence which, in the case of double infinite block Hankel matrices, would be
a valid state sequence of the stochastic model. This sequence would correspond
to the outputs of an infinite number of steady state Kalman filters with an infinite
number of output measurements as inputs. For the semi-infinite matrix problem,
the sequence corresponds to the output of an infinite number of non-steady state
Kalman filters that have only used a finite number of output data as input. These
state sequences are obtained directly from the output data, without any need for
the state space model. The state space model is then derived from these sequences
by solving a least squares problem. Figure 1.5 illustrates the difference between
this approach and the classical one.

A largely underestimated problem in stochastic subspace system identification
is that of positive real sequences. Indeed, for an identified covariance sequence
to be physically meaningful, it should be a positive real sequence. Almost all
subspace algorithms presented in the literature [Aka 75] [Aok 87] [AK 90] do
not guarantee this property, which implies that the spectral factor of the identified
covariance sequence does not exist. We recognize this problem and present a
variation to one of the algorithms so it computes a slightly asymptotically biased
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solution (the bias decreases when the number of block rows increases), but the
positive realness of the solution is guaranteed (if the identified system matrix A
is stable).

We have derived a numerically robust square root algorithm (i.e. it does not
square up the matrices), that mainly uses the QR-decomposition and the Quotient
Singular Value Decomposition (QSVD) of the triangular factors and is completely
data driven instead of covariance driven. The fact that only one of the dimensions
of the matrices involved needs to go to infinity is very important since then
updating techniques can be used. This algorithm is described in [VODM 93a].

3.1.2 Properties of stochastic systems

In this section, we summarize the main properties of linear time invariant stochastic
processes, including the non-uniqueness of the state space description.

It is assumed that the stochastic process is stationary, i.e.:

E�xsk� � � �

E�xsk
x
s
k�
T �

def
� �s � (3.4)

where the state covariance matrix �s is independent of the time k. This implies that
A is a stable matrix (all of its poles are strictly inside the unit circle). There are
many representations of stochastic state space models. All of the representations are
equivalent, in the sense that the second order statistics of the output generated by
the models is the same, i.e. the covariance sequence of the output is identical. We
introduce the forward model, the backward model, the forward innovation model and
the backward innovation model.

Forward model

First we will develop some (well-known) structural relations for linear time-invariant
stochastic processes. Since wk and vk are zero mean white noise vector sequences,
independent of xsk, we know that:

E�xskv
T
k � � � �

E�xskw
T
k � � � �

Then we find the Lyapunov equation for the state covariance matrix �s (3.4):

�s � E�xsk���
x
s
k���

T �
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� E�
Axsk � wk��
Ax
s
k � wk�

T �

� AE�xsk
x
s
k�
T �AT �E�wkw

T
k �

� A�sAT �Q � (3.5)

Defining the output covariance matrices as:

�i
def
� E�yk�i�y

T
k � �

we find for ��:

�� � E�yk�y
T
k �

� E�
Cxsk � vk��
Cx
s
k � vk�

T �

� CE�xsk
x
s
k�
T �CT �E�vkv

T
k �

� C�sCT � R � (3.6)

Defining

G
def
� E�xsk���y

T
k �

� E�
Axsk � wk��
Cx
s
k � vk�

T �

� AE�xsk
x
s
k�
T �CT �E�wkv

T
k �

� A�sCT � S � (3.7)

we get (for i � 
� �� � � �):

�i � CAi��G � (3.8)

��i � GT 
Ai���TCT � (3.9)

This last observation, indicates that the output covariances can be considered as Markov
parameters of the deterministic linear time invariant system A�G�C���. This is an
important observation, that will play a major role in the derivation of stochastic sub-
space identification algorithms. The properties of the forward model are summarized
in Figure 3.3.

Forward innovation model

The model (3.1)-(3.2) can be converted into a so-called forward innovation model (see
e.g. [Pal 82]). The forward innovation model is obtained by applying a Kalman filter
to the stochastic system (3.1)-(3.2):

xfk�� � Axfk �Kfefk �

yk � Cxfk � efk �
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The forward stochastic model:

xsk�� � Axsk � wk �

yk � Cxsk � vk �

E�

�
wp
vp

�

 wTq vTq �� �

�
Q S
ST R

�
�pq �

E�xsk
x
s
k�
T � � �s � A�sAT �Q �

E�yky
T
k � � �� � C�sCT �R �

E�xsk��y
T
k � � G � A�sCT � S �

Figure 3.3 The forward stochastic model.

E�efk
e
f
k�
T � � 
�� � CPCT � �

Here Kf is the (forward) Kalman gain:

Kf � 
G�APCT �
�� � CPCT ��� �

andP is the forward state covariance matrix, which can be determined as the stabilizing
solution of the forward Riccati equation:

P � APAT � 
G�APCT �
�� � CPCT ���
G�APCT �T � (3.10)

In order to solve this Riccati equation, we have the following Theorem.

Theorem 3 Forward Riccati equation

The solution to the Riccati equation (3.10) can be found from the generalized eigenvalue
problem�

AT � CT���� GT �
�G���� GT In

��
W�

W�

�
�

�
In �CT���� C
� A�G���� C

��
W�

W�

�
� �

(3.11)
as P � W�W

��
� . � contains the n stable (i.e. inside the unit circle) eigenvalues of

the generalized eigenvalue pencil.
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Laub [Lau 79] presented a robust algorithm for solving the Riccati equation based
on the Schur decomposition. The properties of the forward innovation model are
summarized in Figure 3.4.

The Matlab function solvric.m contains a Matlab implementation of this Riccati
solver. See also Appendix B.

The forward innovation model:

xfk�� � Axfk �Kfefk �

yk � Cxfk � efk �

E�efk
e
f
k�
T � � 
�� � CPCT � �

E�xfk
x
f
k�
T � � P �

P � APAT �
G�APCT �
���CPCT ���
G�APCT �T �

Kf � 
G�APCT �
�� � CPCT ��� �

Figure 3.4 The forward innovation stochastic model.

Backward model

Associated with every forward model (3.1)-(3.2), there is a backward� model with
the same second order statistics as the forward model. This backward model can be
obtained as follows. Define the estimate� of xsk based on xsk�� as:

	
xsk jxsk��� def
� E�xsk
x

s
k���

T �
E�xsk��
x
s
k���

T ����xsk�� �

We now have:

xsk � 	
xskjxsk��� � 
xsk �	
xsk jxsk����
� E�xsk
x

s
k���

T �
E�xsk��
x
s
k���

T ����xsk�� � 
xsk �	
xsk jxsk����
� E�xsk
x

s
k���

T �
�s���xsk�� � 
xsk �	
xsk jxsk����
� E�xsk

x

s
k�
TAT � wTk ��
�

s���xsk�� � 
xsk �	
xskjxsk����
� �sAT 
�s���xsk�� � 
xsk �	
xsk jxsk���� �

�Backward means that the iterative state space formulas of the model are running backward in time.
�For Gaussian signals this is the minimum variance estimate [Pap 84].
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Now define the backward state zsk��
def
� 
�s���xsk, then

zsk�� � AT zsk � wbk (3.12)

where:

wbk
def
� 
�s���
xsk �	
xsk jxsk���� �

Note that wbk is independent of xsk�� and thus also of zsk. Note also that the covariance
of the state of the backward model is given as:

E�zsk��
z
s
k���

T � � 
�s���E�xsk
x
s
k�
T �
�s���

� 
�s��� �

For the output equation, we obtain in a similar way:

yk � 	
ykjxsk��� � 
yk �	
ykjxsk����
� E�yk
x

s
k���

T �
E�xsk��
x
s
k���

T ����xsk�� � 
yk �	
ykjxsk����
� E�
Cxsk � vk�

x

s
k�
TAT � wTk ��
�

s���xsk�� � 
yk �	
ykjxsk����
� 
C�sAT � ST �
�s���xsk�� � 
yk �	
ykjxsk����
� GT zsk � vbk �

with vbk
def
� 
yk �	
ykjxsk����. Once again vbk is independent of xsk�� and thus also

of zsk. Figure 3.5 summarizes the remaining properties of the backward model which
can be derived in a similar way as the corresponding properties of the forward model.

Backward innovation model

Associated with the general backward model (3.12)-(3.12) is the backward innovation
model, which is obtained by applying a (backward) Kalman filter to the system (3.12)-
(3.12):

zbk�� � AT zbk �Kbebk �

yk � GT zbk � ebk �

E�ebk
e
b
k�
T � � 
�� �GTNG� �

Here Kb is the (backward) Kalman gain:

Kb � 
CT �ATNG�
�� �GTNG��� �

and N is the backward state covariance matrix, which can be determined from the
backward Riccati equation:

N � ATNA� 
CT �ATNG�
�� �GTNG���
CT �ATNG�T � (3.13)

In order to solve this Riccati equation, we have the following Theorem.
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The backward stochastic model:

zsk�� � AT zsk � wbk �

yk � GT zsk � vbk �

E�

�
wbp
vbp

�

 
wbq�

T 
vbq�
T �� �

�
Qb Sb


Sb�T Rb

�
�pq �

E�zsk
z
s
k�
T � � 
�s��� � AT 
�s���A�Qb �

E�yky
T
k � � �� � GT 
�s���G�Rb �

E�zsk��y
T
k � � CT � AT 
�s���G� Sb �

Figure 3.5 The backward stochastic model.

Theorem 4 Backward Riccati equation

The solution of the Riccati equation (3.13) can be found from the generalized eigenvalue
problem�

A�G���� C �
�CT���� C In

��
W�

W�

�
�

�
In �G���� GT

� AT � CT���� GT

��
W�

W�

�
� �

as N � W�W
��
� . � contains the n stable (i.e. inside the unit circle) eigenvalues of

the generalized eigenvalue pencil.

Laub [Lau 79] presented a robust algorithm for solving the Riccati equation based
on the Schur decomposition. The properties of the backward innovation model are
summarized in Figure 3.6.

The Matlab function solvric.m contains a Matlab implementation of this Riccati
solver. See also Appendix B.

It is well known that the stochastic model for the data yk is not unique. Not only can
we introduce an arbitrary similarity transformation for the state (xsk � Txsk) as with
all state space models. In addition, there is a whole set of possible state covariance
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The backward innovation model:

zbk�� � AT zbk �Kbebk �

yk � GT zbk � ebk �

E�ebk
e
b
k�
T � � 
�� �GTNG� �

E�zbk
z
b
k�
T � � N �

N � ATNA�
CT�ATNG�
���GTNG���
CT�ATNG�T �

Kb � 
CT �ATNG�
�� �GTNG��� �

Figure 3.6 The backward innovation stochastic model.

matrices and covariance matrices Q�R and S that give the same second order output
covariance matrices �i. This fact was described in detail by Faurre [Fau 76] and we
provide here only a summary of some interesting results:

Theorem 5 Faurre’s Theorem

The set of forward and backward stochastic models that generate the output covariance
matrices �i is characterized as follows.

1. The matrices A, C and G are unique up to within a similarity transformation.

2. The set of all forward state covariance matrices�s is a closed convex and bounded
set: P � �s � N�� where P and N are the solutions of the forward (3.10)
respectively backward (3.13) Riccati equations�. Alternatively, the set of all
corresponding backward state covariance matrices is given by the closed convex
and bounded set: N � 
�s��� � P��

3. For every state covariance matrix �s satisfying these bounds, the matrices R�S
and Q associated to the forward stochastic model follow from the equations
Q � �s � A�sAT , S � G � A�sCT and R � �� � C�sCT . The matrices
Rb� Sb and Qb associated to the backward stochastic model follow from Qb �

�s��� �AT 
�s���A, Sb � CT �AT 
�s���G andRb � �� �GT 
�s���G.

�Inequalities are to be interpreted in the sense of nonnegative definiteness.
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Definition 6 Balanced stochastic realization

A stochastic model will be called balanced if the solutions to the forward and backward
Riccati equations are diagonal and equal.

3.1.3 Notation

Most of the notation will be drawn from the previous Chapter (Section 2.1.2). In this
Section, we only introduce the new notation used in this Chapter.

Block Hankel matrices

Since there are no external inputs for purely stochastic systems, we will not use any
input block Hankel matrices. The output block Hankel matrices are defined as in
the previous Chapter. Since stochastic systems require a certain amount of statistical
analysis, we will in this Chapter assume that j � � for all theoretical derivations.
For notational convenience, we define the shorthand notation� Yp� Y �

p and Yf � Y
�
f :

i

i

j

"past"

"future"

def
�

�
Y�ji��
Yij�i��

�
def
�

�
Yp
Yf

�
	BBBBBBBBBB


y� y� � � � yj��
� � � � � � � � � � � �
yi�� yi�� � � � yi�j��
yi�� yi � � � yi�j��
yi yi�� � � � yi�j��
yi�� yi�� � � � yi�j
� � � � � � � � � � � �
y�i�� y�i � � � y�i�j��

�CCCCCCCCCCA
Y�j�i��

def
�

�Note that, as before, the superscripts � and� refer to the size of the matrices. A matrix with superscript
“�” has l�i� �� block rows, while a matrix with superscript “�” has l�i� �� block rows.
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j

"past"

"future"

def
�

i-1

i+1

def
�

�
Y�ji

Yi��j�i��

�
def
�

�
Y �
p

Y �f

�
	BBBBBBBBBB


y� y� � � � yj��
� � � � � � � � � � � �
yi�� yi�� � � � yi�j��
yi�� yi � � � yi�j��
yi yi�� � � � yi�j��
yi�� yi�� � � � yi�j
� � � � � � � � � � � �
y�i�� y�i � � � y�i�j��

�CCCCCCCCCCA

System related matrices

The extended (i � n) observability matrix �i was already defined in Section 2.1.2.
The pair fA�Cg is assumed to be observable. The reversed extended stochastic
controllability matrix �c

i (where the subscript i denotes the number of block columns
and the superscript “c” stands for “covariance”) is defined as:

�c
i

def
�
�
Ai��G Ai��G � � � AG G

� � R
n�li � (3.14)

We assume the pair fA�Q���g to be controllable. This implies that all dynamical
modes of the system are excited by the process noise. It is indeed impossible to identify
un-excited modes. We also assume all modes of A to be stable. The block Toeplitz
matrices Ci and Li are constructed from the output covariance matrices as:

Ci
def
�

	BBBB

�i �i�� � � � �� ��

�i�� �i � � � �� ��

�i�� �i�� � � � �� ��

� � � � � � � � � � � � � � �
��i�� ��i�� � � � �i�� �i

�CCCCA � R
li�li � (3.15)

Li
def
�

	BBBB

�� ��� ��� � � � ���i

�� �� ��� � � � ���i

�� �� �� � � � ���i

� � � � � � � � � � � � � � �
�i�� �i�� �i�� � � � ��

�CCCCA � R
li�li � (3.16)

An important remark concerns the estimation of the output covariance matrices. Hereto
we assume that they can be estimated as (see Subsection 1.4.4 for a definition of Ej
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and Subsection 1.4.5 for a definition of �	A�B
):

�i � Ej�

j��X
k��

yk�iy
T
k �

� �	Yiji�Y�j�
 �

From this observation it easily follows that (see also [VODM 94a]):

Ci � �	Yf �Yp
 � (3.17)

Li � �	Yp�Yp
 (3.18)

� �	Yf �Yf 
 � (3.19)

3.1.4 Kalman filter states

In the derivation of the subspace identification algorithms for stochastic system iden-
tification, the Kalman filter plays a crucial role. In this Subsection, we introduce a
closed form equation for the forward and backward non-steady state Kalman filter
state estimate. We also introduce a bank of non-steady state Kalman filters generating
a sequence of state estimates. In the main Theorem of this Chapter (Section 3.2.1), we
then indicate how this state sequence can be recovered directly from the output data
yk.

In the following we indicate the state estimates by a hat i.e. �xk for the forward Kalman
filter estimate and �zk for the backward state estimate.

Theorem 6 Forward non-steady state Kalman filter

Given:

The initial state estimate: �x� � �

The initial covariance of the state estimate P� � E��x���xT� � � �

The output measurements y�� � � � � yk��

then the non-steady state Kalman filter state estimate �xk defined by the following
recursive formulas:

�xk � A�xk�� �Kk��
yk�� � C�xk��� � (3.20)
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Kk�� � 
G�APk��C
T �
�� � CPk��C

T ��� � (3.21)

Pk � APk��A
T � 
G�APk��C

T �



�� � CPk��C
T ���
G�APk��C

T �T � (3.22)

can be explicitly written as:

�xk � �c
k�L

��
k �

	BBB

y�
y�
...

yk��

�CCCA � (3.23)

The explicit solution of the covariance matrix Pk is equal to:

Pk � �c
k�L

��
k �
�c

k�
T � (3.24)

The proof in Appendix A.2 is a proof by induction. It is a little different from the
proof presented in [VODM 93a], to make it similar to the proofs presented in the next
Chapter. Appendix A.3 contains some notes on the form of the Kalman filter equations
(3.20)-(3.22). From this last Appendix, we find that the covariance matrix of the state
error ePk is given by: ePk � E� 
xsk � �xk��
x

s
k � �xk�

T �

� �s � Pk �

from which we conclude that:

The assumption P� � � is the same as the assumption eP� � �s. This means that
at time zero, the covariance of the state error is equal to the covariance of the state
xsk itself.

When we let time go to infinity (k � �), we find that Pk � P , where P is the
solution of the forward algebraic Riccati equation (3.10). This implies that the
covariance matrix of the state error is equal to eP� � �s � P . As proven by
Faure [Fau 76], this is indeed the smallest state error covariance matrix that can
be obtained.

This also implies that when the original model was in forward innovation form
(�s � P ), then eP� � �. This means that the state will be estimated exactly
when an infinite amount of output data is available.
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The significance of Theorem 6 is that it indicates how the Kalman filter state estimate�xk
can be written as a linear combination of the past output measurements y�� � � � � yk��.
This observation allows for the definition of the forward Kalman filter state sequence
(that will be recovered by the stochastic subspace identification algorithms) as:

bXi �
�
�xi �xi�� � � � �xi�j��

�
� �c

i �L
��
i �Yp � (3.25)

This state sequence is generated by a bank of non-steady state Kalman filters working in
parallel on each of the columns of the block Hankel matrix of past outputs Yp. Figure
3.7 illustrates this concept. The bank of Kalman filters runs in a vertical direction
(over the columns). It should be noted that the Kalman filters only use partial output
information. For instance, the 
q � 
�th column of bXi can be written as:

�xi�q � �c
i �L

��
i �

	B
 yq
...

yi�q��

�CA �

which indicates that the Kalman filter generating the estimate of �xi�q only uses i
output measurements yq� � � � � yi�q��, instead of all the output measurements up until
time i� q � 
: y�� � � � � yi�q�� (as would be expected).

Finally note that for the backward stochastic model, a dual Theorem can be derived:

Theorem 7 Backward non-steady state Kalman filter

Given:

�z� � � �

N� � E��z��z
T
� � � � �

and the output measurements y�� � � � � y�k��, then the non-steady state Kalman filter
state estimate �z�k defined by the following recursive formulas:

�z�k � AT �z�k�� �K�k��
y�k�� � C�z�k��� � (3.26)

K�k�� � 
CT �ATN�k��G�
�� �GTN�k��G�
�� � (3.27)

N�k � ATN�k��A� 
CT �ATN�k��G�



�� �GTN�k��G�
��
CT �ATN�k��G�

T � (3.28)
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� � �
�

bX� �

P� � �

� � � � � � � � �

Yp

y� yq yj��

yi�� yi�q�� yi�j��

...
...

...

bXi bxi � � � bxi�q � � � bxi�j��

Kalman
Filter

Figure 3.7 Interpretation of the sequence bXi as a sequence of non-steady state Kalman
filter state estimates based upon i measurements of yk. When the system matrices
A�C�Q�R� S would be known, the state bxi�q could be determined from a non-steady
state Kalman filter as follows: Start the filter at time q, with an initial state estimate 0.
Now iterate the non-steady state Kalman filter over i time steps (the vertical arrow down).
The Kalman filter will then return a state estimate bxi�q . This procedure could be repeated
for each of the j columns, and thus we speak about a bank of non-steady state Kalman
filters. The major observation in the main Theorem 8 of this Chapter will be that the system
matrices A�C�Q�R� S do not have to be known to determine the state sequencebXi. It can
be determined directly from output data through geometric manipulations (see Theorem 8).

can be written as:

�z�k � �Tk �L
��
k �

	BBB

y�
y��

...
y�k��

�CCCA � (3.29)

The explicit solution of the covariance matrix Nk is equal to:

Nk � �Tk �L
��
k ��k � (3.30)

Analogous to the definition of the forward Kalman filter state sequence bXi, we can
define the backward Kalman filter state sequence bZi as:

bZi def
�

�
�zi�� �zi � � � �zi�j��

�
� �Ti �L

��
i �Yf � (3.31)
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3.1.5 About positive real sequences

In this Section we introduce a last important property of stochastic systems. An
arbitrary sequence �i can not always be considered as a valid output covariance
sequence. It has to satisfy the positive real conditions for which we introduce several
equivalent tests.

The covariance sequence �k should be a positive real sequence. We present the
following equivalent statements to check the positive realness of a sequence. The
statements are borrowed from [Fau 76].

Definition 7 Positive real sequences

The following statements are equivalent:

A sequence �i generated by the matrices A�G�C��� is a positive real sequence.

The double infinite matrix L� is positive definite:

L� �

	BB

�� ��� ��� � � �
�� �� ��� � � �
�� �� �� � � �
� � � � � � � � � � � �

�CCA � � �

The Z transform of the sequence �k (the power spectrum) is a positive definite
(Hermitian) matrix for all z � ej� on the unit circle:�

C
zIn �A���G��� �GT 
z��In �AT ���CT
�
z�ej�

� � � (3.32)

The algebraic Riccati equations (3.10) and (3.13) have a positive definite solution.

The covariance matrix of the process and measurement noise is positive definite:�
Q S
ST R

�
� � �

When the covariance sequence is a positive real sequence, it is possible to calculate
a spectral factor by solving the Riccati equation (3.10) or (3.13). However, when the
sequence is not positive real, the set of possible Markovian realizations is empty, and
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we are not able to compute a forward or backward innovation model, let alone any
other model. In other words, it is highly necessary to identify a covariance sequence
(determined by the matrices A�G�C���) that is positive real. We will elaborate on
this fact when presenting the algorithms (see Subsection 3.4.3).

3.2 GEOMETRIC PROPERTIES OF STOCHASTIC SYSTEMS

In this Section we present the main Theorem for the stochastic subspace identification
problem. The geometric interpretation of the Theorem in the j-dimensional space is
also presented.

3.2.1 Main Theorem

Just as for the deterministic identification (Section 2.2.2), we present a main Theorem
for the stochastic identification problem. This Theorem allows for the computation
of the row space of the state sequence bXi and the column space of the extended
observability matrix �i directly from the output data, without any knowledge of the
system matrices. The system matrices can then be extracted from bXi or �i. An
overview of the general stochastic identification procedure is presented in Figure 3.8.

Note that just as in the deterministic main Theorem 2 we introduce two user-defined
weighting matrices W� and W�. The interpretation and use of these matrices will
become clear in Section 3.3 and Chapter 5.

Finally note that the presentation of this general stochastic identification Theorem is
different from the treatment in the literature. Actually, as will be shown in Section 3.3,
this new Theorem encompasses all published algorithms.

Theorem 8 Stochastic identification

Under the assumptions that:

1. The process noise wk and the measurement noise vk are not identically zero.

2. The number of measurements goes to infinity j ��.
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output
data yk

bXi �i

system matrices
A�G�C���

system matrices
A�C�Q� S�R

�

Subsection 3.4.3 � �

�

Theorem 8

Subsection 3.4.2Subsection 3.4.1

Figure 3.8 An overview of the stochastic subspace identification procedure. Through
the main Theorem 8 the state sequence bXi and the extended observability matrix �i are
determined. The system matrices are then extracted using any of the three algorithms
described in Sections 3.4.1, 3.4.2 or 3.4.3.

3. The user-defined weighting matrices W� � Rli�li and W� � Rj�j are such that
W� is of full rank andW� obeys: rank 
Yp� � rank 
Yp�W��, where Yp the block
Hankel matrix containing the past outputs.

And with Oi defined as:

Oi
def
� Yf�Yp � (3.33)

and the singular value decomposition:

W�OiW� �
�
U� U�

�� S� �
� �

��
V T
�

V T
�

�
� U�S�V

T
� � (3.34)

we have:

1. The matrix Oi is equal to the product of the extended observability matrix and
the forward Kalman filter state sequence:

Oi � �i� bXi � (3.35)
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2. The order of the system (3.1)-(3.2) is equal to the number of singular values in
equation (3.34) different from zero.

3. The extended observability matrix �i and the associated extended controllability
matrix �c

i are equal to:

�i � W��
� U�S

���
� �T � (3.36)

�c
i � �yi ��	Yf �Yp
 � (3.37)

4. The part of the state sequence bXi that lies in the column space of W� can be
recovered from:

bXiW� � T���S
���
� V T

� � (3.38)

5. The forward state sequence bXi and the associated backward state sequence bZi
are equal to: bXi � �yi �Oi � (3.39)bZi � �Ti ��

��
	Yf �Yf 


Yf � (3.40)

The proof of this Theorem can be found in Appendix A.4.

Remarks & comments

1. Theorem 8 can algebraically be summarized as follows:

rank 
Yf�Yp� � n

row space 
Yf�Yp� � row space 
 bXi�

column space 
Yf�Yp� � column space 
�i�

This summary is the essence of why these algorithms are called subspace al-
gorithms: they retrieve system related matrices as subspaces of projected data
matrices.

2. Note that a dual Theorem can be formulated when replacingOi by Bi, where Bi
is the projection of the past outputs on the future outputs:

Bi � Yp�Yf � 
�c
i �
T � bZi � (3.41)
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One could wonder whyOi (3.33) and Bi (3.41) are not both included in Theorem
8. One could indeed calculate a singular value decomposition of Oi and Bi.
From the first SVD, �i and bXi could be determined as in Theorem 8. From the
second SVD, the backward states bZi and the extended controllability matrix �c

i

could be determined through (3.41). The problem with this procedure is that the
matrices �i� bXi and �i� bZi determined in this way will not be in the same state
space basis. This leads to problems when determining the system matrices from
these quantities, since the matrices determined from �i and/or bXi will not be in
the same state space basis as the matrices determined from �c

i and/or bZi.
3. The study of the effect of the weighting matrices W� and W� is postponed to

Section 3.3 and Chapter 5. Suffices to say, that both W� and W� determine the
state space basis in which the identified model will be identified.

4. The same remarks on the similarity transformationT hold as for the deterministic
Theorem (Remark 5 on page 43). This implies that we can put the similarity
transformation T equal to In. In doing so, when using different weighting
matrices W� and W�, “different�” observability and controllability matrices and
different state space sequences will be obtained from Theorem 8. However, each
set of quantities will lead to a set of state space matrices that is equivalent (up to
a similarity transformation) to the original set of matrices.

3.2.2 Geometrical interpretation

Formula (3.33) indicates that the row space of the forward states bXi can be found by
orthogonally projecting the row space of the future outputs Yf , onto the row space
of the past outputs Yp. Alternatively, Formula (3.41) shows that the row space of the
backward states bZi is equal to the orthogonal projection of the row space of the past
outputs onto the row space of the future outputs. These concepts are illustrated in
Figure 3.9.

3.3 RELATION TO OTHER ALGORITHMS

In this Section, we show how special cases of Theorem 8 (special choices of the
weights W� and W�) correspond to algorithms described in the literature: Principal
componentPC, Unweighted principal componentUPC and Canonical variate analysis

�In a sense that the numbers in these matrices are different, because the choice of basis in the state space
is different.
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Oi � �i� bXi

Bi � �c
i �
bZi

Yp

Figure 3.9 Graphical illustration of Theorem 8. The orthogonal projection of the future
outputs Yf on the past outputs Yp determines the forward state sequence bXi. Alternatively,
the orthogonal projection of the past outputs Yp on the future outputs Yf determines the

backward state sequence bZi.
W� W�

PC Ili Y T
p ��

����
	Yp�Yp


�Yp

UPC Ili Ij

CVA �
����
	Yf �Yf 


Ij

Table 3.1 Overview of the special choices of W� and W� to obtain the published algo-
rithms PC, UPC and CVA.

CVA. The name, abbreviation and description of the algorithms presented in this
Section correspond to the conventions in [AK 90].

In this Section we show how through a specific choice of the weighting matrices W�

and W�, published algorithms are recovered. The results are summarized in Table 3.1.

3.3.1 The principal component algorithm (PC)

The principal component algorithm (see also [Aok 87] [AK 90]) determines the prin-
cipal components of the cross-covariance Toeplitz matrix Ci, which can be estimated
from the data as in (3.17):

Ci � �	Yf �Yp
 �
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From the fact that (see Appendix A.4):

Ci � �i��
c
i �

we find that a singular value decomposition of the estimated matrix Ci will reveal the
order of the system, the column range of �i and the row range of�c

i . For more details,
we refer to [Aok 87] [AK 90]. A nice side result is that the resulting realization of
A�G�C will be balanced� in the deterministic sense when [Moo 81].

The principal component algorithm fits into the framework of Theorem 8 by simply
taking the following weighting matrices:

W� � Ili �

W� � Y T
p ��

����
	Yp�Yp


�Yp �

It is easy to show, that in this case the weighted projection (3.34) becomes equal to:

W�OiW� � �	Yf �Yp
��
����
	Yp�Yp


�Yp �

The singular values and the left singular vectors of the weighted projection W�OiW�

are now exactly equal to the singular values and the left singular vectors of the matrix
Ci, since:

Ej

�

W�OiW���
W�OiW��

T
�

� �	Yf �Yp
��
����
	Yp�Yp


��	Yp�Yp
��
����
	Yp�Yp


��	Yp�Yf 


� �	Yf �Yp
��	Yp�Yf 


� Ci�C
T
i �

Thus we have shown how the principal component algorithms fits in the framework of
Theorem 8.

3.3.2 The unweighted principal component algorithm (UPC)

In the unweighted principal component algorithm (UPC), the extended observability
matrix is determined from the range of the left singular vectors of [AK 90]:

CiL
��
i CT

i � U�S
�
�U

T
� �

The extended observability matrix is then determined as:

�i � U�S
���
� �

�Note that the system is only exactly balanced when i��. For finite i the system is very near to being
balanced.
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Once again, this algorithm can be easily fitted in the framework of Theorem 8 by
taking:

W� � Ili �

W� � Ij �

Since in this case, the weighted projection W�OiW� � Oi has a covariance matrix
Oi�OT

i equal to CiL
��
i CT

i , and thus has the same left singular vectors as CiL
��
i CT

i .
We conclude that, once again, by the proper choice of the weights W� and W� the
UPC algorithms can be fitted in the framework of Theorem 8.

For this case, it is shown in [AK 90] that the forward innovation model is balanced in
the deterministic sense�.

3.3.3 The canonical variate algorithm (CVA)

In this Section we show how a certain choice of weighting matrices W� and W�

corresponds to the canonical variate algorithm of [Aka 74] [Aka 75] [AK 90] or the
principal angles and direction algorithm of [VODM 93a].

The canonical variate algorithm of for instance [AK 90] [VODM 93a] computes the
principal angles and directions between the row spaces of the past outputs Yp and the
future outputs Yf . This can be brought back to Theorem 8 by choosing the following
weights:

W� � �
����
	Yf �Yf 


�

W� � Ij �

We then find for the covariance matrix of the weighted projection:


W�Oi�
W�Oi�
T � �

����
	Yf �Yf 


��	Yf �Yp
�
��
	Yp�Yp


��	Yp�Yf 
��
����
	Yf �Yf 


� U�S
�
�U

T
� �

By comparing this expression with equation (1.10), we see that the diagonal of S�
contains the cosines of the principal angles. For this choice of the weights, and with
U�� S�� V� the singular value decomposition of the weighted projection of Theorem 8:

W�Oi � �
����
	Yf �Yf 


Oi

�Note that the system is only exactly balanced when i��. For finite i the system is very near to being
balanced.
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� �
����
	Yf �Yf 


��	Yf �Yp
��
��
	Yp�Yp


�Yp

� U�S�V
T
� �

and with (1.11)-(1.13) it can be easily shown that:

�Yp � Yf � � V T
� � (3.42)

�Yp � Yf � � UT
� ��

����
	Yf �Yf 


Yf � (3.43)

�Yp � Yf � � S� � (3.44)

Furthermore, we find from Theorem 8 that:

�i � �
���
	Yf �Yf 


�U��S
���
� �

�c
i � S

���
� ��	V T

� �Yp
 �

and that the forward and backward state sequences can be expressed as:bXi � S
���
� �V T

� �bZi � S
���
� �UT

� ��
����
	Yf �Yf 


Yf �

By comparing these expressions with (3.42)-(3.44), we find that the state sequencesbXi and bZi are equal to S���
� times the principal directions in Yp respectively Yf . This

is exactly the claim of for instance [VODM 93a].

It can be shown (see for instance [AK 90]) that the resulting model is stochastically
balanced
 for this choice of weights (see also Chapter 5). Finally, it should be noted
that the idea of forward and backward states is not restricted to the principal angles and
directions (as is sometimes mistakingly thought). Theorem 8 indicates indeed that for
each choice ofW� andW� a forward and a backward state sequence can be calculated.

3.3.4 A simulation example

In this Subsection we explain how the system order can be determined from the singular
values of W�OiW�, and this for the three different choices of W� and W� presented
in this Section (PC, UPC and CVA). We consider the system in forward innovation
form:

xfk�� �

	
 ��� ��� �
���� ��� �

� � ���

�Axfk �

	
 ��
���
���
���
������

�A efk �

yk �
�
�����
 �����
 �����


�
xfk � efk �

	Note that the system is only exactly balanced when i��. For finite i the system is very near to being
balanced.
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and:
E�efk �
e

f
k�
T � � ������ �

An output sequence yk of ���� points was generated using this model. The number
of block rows i is taken equal to 
�. For each j between 
�� and ����, the singular
values of W�OiW� were calculated (with W� and W� as described in this Section),
and plotted. This is illustrated in Figure 3.10. On this Figure, the convergence in
function of j can clearly be observed.

The Matlab file sto_sim1.m contains a Matlab implementation of this example.

3.4 COMPUTING THE SYSTEM MATRICES

In this Section we illustrate how the system matrices A�C and Q�S�R (or G���) can
be computed from Theorem 8 in three different ways.

A schematic overview of the three algorithms can be found in Figures 3.11 through 3.13.
For the implementation of the algorithms we refer to Section 6.1 and [VODM 93a].
Note that the first steps of all three algorithms are the same and coincide with the steps
described in Theorem 8.

3.4.1 Algorithm 1 using the states

From Theorem 8, we find:

The order of the system from inspection of the singular values of equation (3.34).

The extended observability matrix �i from equation (3.36) and the extended
controllability matrix �c

i from (3.37).

The state sequences bXi.

Through a similar reasoning and proof as in Theorem 8, it can be shown that the
following holds:

Oi��
def
� Y �f �Y �

p

� �i��� bXi�� �
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Figure 3.10 The order determining singular values (or principal angles) in function of the
number of block columns j for the three algorithms presented in this Section: Principal
component (PC), Unweighted principal component (UPC) and Canonical variate analysis
(CVA). For each of the three plots, the system order (three) can be easily be determined.
The convergence of the singular values in function of j can also be observed. For the first
two plots all singular values go to zero, except three. For the last plot, all principal angles
go to 
� degrees, except three. This Figure was generated using the Matlab file sto sim1.m.
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So, Oi�� can be easily calculated from the given output data. It is also easy to check
that if we strip the last l (number of outputs) rows of �i calculated from (3.36), we find
�i��:

�i�� � �i �

where �i denotes the matrix �i without the last l rows. Now bXi�� can be calculated
from: bXi�� � �yi���Oi�� �

At this moment, we have calculated bXi and bXi��, using only the output data. We can
now form the following set of equations:� bXi��

Yiji

�
� 
z �

known

�

�
A
C

�� bXi

�
� 
z �
known

�

�
�w
�v

�
� 
z �
residuals

� (3.45)

where Yiji is a block Hankel matrix with only one row of outputs. This set of equations
can be easily solved for A�C. Intuitively, since the Kalman filter residuals �w� �v (the
innovations) are uncorrelated with bXi, it seems natural to solve this set of equations
in a least squares sense (since the least squares residuals are orthogonal and thus
uncorrelated with the regressors bXi). In [VODM 93a] it is shown that the least squares
solution indeed computes an asymptotically unbiased estimate of A and C as:�

A
C

�
�

� bXi��

Yiji

�
� bXy

i � (3.46)

The matrix G can be determined as the last l columns of �c
i . The matrix �� finally

can be determined as a sample covariance matrix of the output. For instance:

�� � �	Yiji�Yiji
 �

With the weights W� and W� as described for the CVA algorithm (see Section 3.3.3),
this algorithm corresponds to the algorithm described in [VODM 93a]. More interpre-
tations in terms of principal angles and directions can also be found in that paper. An
interesting implementation of this algorithm using the quotient singular value decom-
position (QSVD) is also described in [VODM 93a]. Figure 3.11 summarizes the steps
of the algorithm.

Note that a dual algorithm could be derived using the backward projections Bi and
states bZi. In that case, first the states bZi and bZi�� are determined from the data. By
solving a set of least squares equations, we find the matrices AT and GT . The matrix
C can be recovered from the first row of �i. Finally the matrix �� is determined as a
sample covariance as before.
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Finally, note also that the covariance sequence generated by the identified matrices
A�G�C��� is not guaranteed to be positive real, as will be illustrated in Subsection
3.4.4. The third algorithm (Subsection 3.4.3) will take care of this problem.

The Matlab function sto_stat.m contains a Matlab implementation of this algo-
rithm. See also Section 6.1 and Appendix B.

3.4.2 Algorithm 2 using the extended matrices

Similar to the second deterministic identification algorithm of Chapter 2, the stochastic
matrices A�G�C can also be determined from the extended observability and control-
lability matrices. From Theorem 8, we find:

The order of the system from inspection of the singular values of equation (3.34).

The extended observability matrix �i from equation (3.36) and the extended
controllability matrix �c

i from (3.37).

The matrixC can be taken equal to the first l rows of�i. The dynamical feedback matrix
A is determined from �i in the same way as it was determined for the deterministic
case (see page 53). The matrix G can be determined as the last l columns of �c

i .
Finally, the matrix �� is determined as a sample covariance matrix:

�� � �	Yiji�Yiji
 �

These steps are summarized in Figure 3.12. Note that, once again, this algorithm is not
guaranteed to compute a setA�G�C��� leading to a positive real covariance sequence.
The next Subsection deals with this problem.

The Matlab function sto_alt.m contains a Matlab implementation of this algo-
rithm. See also Section 6.1 and Appendix B.

3.4.3 Algorithm 3 leading to a positive real sequence

An important observation is that the identified covariance sequence determined by
A�G�C��� should be a positive real sequence. If this is not true, a spectral factor can
not be computed, and the set of forward (or backward) realizations of the covariance
sequence is empty. It turns out that if one starts from raw data, even when it was
generated by simulation of a linear stochastic system, the positive real condition of the
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Stochastic algorithm 1:

1. Calculate the projections:

Oi
def
� Yf�Yp �

Oi��
def
� Y �f �Y �

p �

2. Calculate the SVD of the weighted projection:

W�OiW� � USV T �

3. Determine the order by inspecting the singular values in S
and partition the SVD accordingly to obtain U� and S�.

4. Determine �i and �i�� as:

�i �W��
� U�S

���
� � �i�� � �i �

5. Determine bXi and bXi�� as:

bXi � �yiOi � bXi�� � �yi��Oi�� �

6. Solve for A and C as:�
A
C

�
�

� bXi��

Yiji

�
� bXy

i �

7. Determine G as the last l columns of �c
i :

�c
i � �yi ��	Yf �Yp
 �

8. Compute �� as:

�� � �	Yiji�Yiji
 �

Figure 3.11 A schematic overview of the first stochastic identification algorithm. See
Section 6.1 for implementation issues. This algorithm has been implemented in the Matlab
function sto stat.m
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Stochastic algorithm 2:

1. Calculate the projection:

Oi
def
� Yf�Yp �

2. Calculate the SVD of the weighted projection:

W�OiW� � USV T �

3. Determine the order by inspecting the singular values in S
and partition the SVD accordingly to obtainU�� U� and S�.

4. Determine �i as:

�i �W��
� U�S

���
� �

5. Determine A from �i as A � �i
y�i or from any other

method described on page 53. Determine C as the first l
rows of �i.

6. Determine G as the last l columns of �c
i :

�c
i � �yi ��	Yf �Yp
 �

7. Compute �� as:

�� � �	Yiji�Yiji
 �

Figure 3.12 A schematic overview of the second stochastic identification algorithm. See
Section 6.1 for implementation issues. This algorithm has been implemented in the Matlab
function sto alt.m.
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identified covariance sequence is hardly ever satisfied. This is due to either the finite
amount of data available or to the fact that real data is often not generated by a linear
stochastic time invariant system.

This practical problem is rarely addressed in the literature. Aoki ([Aok 87, page 124])
mentions it once for a single-input single-output system of order one, and Vaccaro
addresses the problem for a single-input single-output system in [Vac 87] and for
general multiple-input multiple-output systems in [VV 93], where he scales a Riccati
equation until it has a positive definite solution. Other interesting results on the
covariance extension problem in the context of stochastic subspace identification can
be found in [LP 93] [LP 94].

In this Subsection, we introduce an alternative way to ensure positive realness of the
estimated covariance sequence. Unfortunately, this computation does not lead to an
asymptotically unbiased estimate (unless the number of block rows in the Hankel
matrices goes to infinity: i � �). In practice however, the (small) bias which is
a function of the convergence of the non-steady state Kalman filter, is a prize worth
paying for the guaranteed positive realness of the resulting covariance sequence.

We alter the first stochastic identification algorithm so that it will always identify a
positive real covariance sequence. The calculation of A and C proceeds as before
through the least squares solution of equation (3.45). However, the calculation of
G and �� is altered as follows. We can recover the covariance of the process and
measurement noise from the residuals �w and �v of equation (3.45) as:

Ej�

�
�w
�v

�
�
�
�Tw �Tv

�
� �

�
Qi Si
STi Ri

�
�

The subscript i here indicates that the estimated covariances are not the steady state
covariances as introduces in (3.3), but are the non-steady state covariance matrices of
the non-steady state Kalman filter equation:

Pi�� � APiA
T �Qi �

G � APiC
T � Si �

�� � CPiC
T �Ri �

When i � �, which is upon convergence of the Kalman filters, we have that Qi �
Q�Si � S�Ri � R. As a simple approximation we can however putQ � Qi� S � Si
and R � Ri. As stated, this introduces a bias when i 
� �. However, in return for
this bias, we get a guaranteed positive real covariance sequence. This is easily seen
from the fact that (by construction):�

Q S
ST R

�
� Ej�

�
�w
�v

�
�
�
�Tw �Tv

�
� � � �
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which coincides with the fifth condition for positive realness in Section 3.1.5. The
quintuplet of matrices A�C�Q� S�R found in this way thus always leads to a positive
real covariance sequence. The matricesG and �� can be extracted from the quintuplet
by first solving the Lyapunov equation for �s:

�s � A�sAT �Q �

after which G and �� can be computed from:

G � A�sCT � S �

�� � C�sCT �R �

Finally, the model can be converted to a forward innovation form by solving the Riccati
equation (3.10) for the matrixP . The Kalman gain can then be easily computed. Figure
3.13 summarizes the algorithm.

The Matlab function sto_pos.m contains a Matlab implementation of this algo-
rithm. See also Section 6.1 and Appendix B.

This algorithm can be seen as an algorithm that estimates A and C asymptotically
unbiased, but introduces a small perturbation on G and ��. An alternative algorithm
that only modifies �� until the resulting covariance sequence is positive real can be
found in [VODM 91a]. The modification of�� is based on a level set algorithm similar
to the algorithm used to compute the H� norm presented in [BB 90].

We conclude this Section with the following interesting observation (see also the sim-
ulation example in Subsection 3.4.4): Algorithm 1 and 2 identify the stochastic system
asymptotically unbiased, but they can not guarantee positive realness of the identified
covariance sequence. Algorithm 3 will always identify a positive real sequence, but
it is not asymptotically unbiased (for a finite number of block rows i). An interesting
question is if it is possible to find an algorithm that is asymptotically unbiased and
always identifies positive real sequences. This is still an open problem.

3.4.4 A simulation example

In this Subsection we illustrate the properties of the three algorithms of Figure 3.11,
3.12 and 3.13 with a simple example. We will especially investigate the asymptotic
unbiasedness in function of the number of block rows i (to illustrate the asymptotic
bias of algorithm 3), and the positive realness of the computed covariance sequence.

We consider the stochastic first order system in forward innovation form:

xfk�� � �����xfk � �����efk �
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Stochastic algorithm 3:

1. Repeat steps 1 through 5 of the first stochastic identification algo-
rithm.

2. Solve the set of linear equations for A and C:� bXi��

Yiji

�
�

�
A
C

�� bXi

�
�

�
�w
�v

�
�

3. Determine Q�S and R from:�
Q S
ST R

�
� Ej�

�
�w
�v

�
�
�
�Tw �Tv

�
� �

4. Determine �s� G and �� from:

�s � A�sAT �Q solve for �s (Lyapunov) �

G � A�sCT � S solve for G �

�� � C�sCT �R solve for �� �

5. Determine P and Kf of the forward innovation model by solving
the Riccati equation:

P � APA
T � �G�APC

T ���� �CPC
T ����G�APCT �T �

K
f � �G�APC

T ���� � CPC
T ���

�

6. The identified forward innovation model is given by:

xfk�� � Axfk �Kfefk �

yk � Cxfk � efk �

E�efk
e
f
k�
T � � R �

Figure 3.13 A schematic overview of the third stochastic identification algorithm. This
algorithm always computes a positive real covariance sequence. See Section 6.1 for imple-
mentation issues. This algorithm has been implemented in the Matlab function sto pos.m.
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yk � ��
���xfk � efk �

with:
E�efk �
e

f
k�
T � � ������ �

For each i between � and 
�, we generated 
�� output sequences yk, which were
then used to identify 
�� stochastic models using the algorithms described in this
Section (j � 
���). The average eigenvalue (A) and zero of the covariance sequence
(A�G���� C) are plotted in Figure 3.14. The bias on the zeroA�G���� C for the third
algorithm is clearly visible. It can also be seen from the Figure that for algorithm 1 and 2
the identified covariance sequence was not always positive real for small i. The decision
whether a system A�G�C��� is positive real or not is based on the distance of the
eigenvalues of the Hamiltonian (3.11) to the unit circle. When this distance is smaller
than 
���� for one of the eigenvalues, the system is labeled “not positive real”. Another
way to check this is by inspecting the positivity of expression (3.32). This returned
exactly the same results. Note that when checking this last equation, the deviation
from positivity was often very large as is illustrated in Figure 3.15. From Figure 3.14,
one could deduce that algorithm 1 and 2 estimate positive covariance sequences for
larger i. This is however misleading, as is illustrated in Figure 3.16 (same experiment,
with the system: A � ����� C � ��������Kf � �������E�efk�
e

f
k�
T � � ������).

The Matlab files sto_sim2.m and sto_sim3.m contain a Matlab implementa-
tion of these examples.

3.5 CONCLUSIONS

In this Chapter we treated the subspace identification of purely stochastic systems. A
survey of properties of stochastic systems was introduced, among which the positive
real condition for covariance sequences. The concept of a bank of non-steady state
Kalman filters lead to the new and general main stochastic identification Theorem.
This indicates how the Kalman filter state sequence can be extracted directly from the
output data. Existing stochastic identification techniques proved to be a special case of
this Theorem. Application of the Theorem led to three algorithms of which the first two
were asymptotically unbiased, while the third algorithm guaranteed positive realness
of the identified covariance sequence.
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Figure 3.14 Illustration of the properties of the three algorithms presented in this Section.
The expected value of the eigenvalue (row 1) and zero of A�G���

� C (row 2) are plotted.
The third row contains the percentage of identified positive real covariance sequences during
the ���Monte Carlo experiments. The first row illustrates that the three algorithms estimate
the dynamical system matrix A asymptotically unbiased. From the second row, we see that
the third algorithm returns asymptotically biased estimates of the zero of the covariance
sequence, which is due to the bias on G and ��. However, the third row illustrates the
advantage of the third algorithm. The covariance sequence is always positive real. One
could mistakenly deduce from the first and second plot of the third row that the first and
second algorithm compute positive real sequences for large i, however Figure 3.16 illustrates
that this is not always the case. This Figure was generated using the Matlab file sto sim2.m.
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Figure 3.15 Z-transform of one of the identified “non-positive” covariance sequences
(see (3.32)). When the covariance sequence would be positive real, its Z-transform would
have been positive. This Figure indicates the severe violation of the positivity constraint for
some of the identified sequences.
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Figure 3.16 Percentage identified positive real sequences for 100 Monte Carlo experi-
ments, for a different system as in Figure 3.14. This Figure illustrates that for algorithm 1
and 2, the identified covariance sequence is not always positive real, even for larger i. This
Figure was generated using the Matlab file sto sim3.m.
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4
COMBINED

DETERMINISTIC-STOCHASTIC
IDENTIFICATION

In this Chapter we describe the subspace identification of combined deterministic-
stochastic systems. For these systems, both the external input uk and the process
and measurement noise wk and vk are different from zero. We use the results and
ideas of the two previous Chapters to derive the main Theorem, which indicates how
the combined deterministic-stochastic Kalman filter states can be extracted from the
input-output data.

In this Chapter we also derive an “industrially robust” combined deterministic-
stochastic subspace identification algorithm.

At the end of the Chapter, we indicate how the two previous Chapters can be considered
as special (limiting) cases of the combined algorithms presented in this Chapter. We
found this to be an important observation, since it implies that most of the subspace
algorithms published in the literature (deterministic, stochastic and combined), can be
unified and are in essence the same.

This Chapter is organized as follows. In Section 4.1 we mathematically state the
combined deterministic-stochastic (subspace) identification problem and introduce the
notation. We also show how the combined non-steady state Kalman filter states can be
computed from a non-iterative formula. Section 4.2 contains a projection Theorem and
the main Theorem. The combination of both Theorems allows for the computation of
the non-steady state Kalman filter sequence directly from the input-output data, without
knowledge of the system matrices. Section 4.3 discusses the relation between the main
Theorem and some published algorithms. Three algorithms are described in Section
4.4. Finally Section 4.5 indicates the similarities between the three main Theorems
of Chapters 2, 3 and 4. The conclusions can be found in Section 4.6. Appendix B
describes the software implementation of the algorithms in this Chapter.
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Combined identification problem:

Given: s measurements of the input uk � Rm and the out-
put yk � Rl generated by the unknown combined system of
order n:

xk�� � Axk �Buk � wk � (4.1)

yk � Cxk �Duk � vk � (4.2)

with wk and vk zero mean, white vector sequences with covari-
ance matrix:

E�

�
wp
vp

�

 wTq vTq �� �

�
Q S
ST R

�
�pq � (4.3)

Determine:

The order n of the unknown system

The system matrices A � Rn�n � B � Rn�m � C �
Rl�n � D � Rl�m up to within a similarity transformation
and the matrices Q � Rn�n � S � Rn�l � R � Rl�l so that
the second order statistics of the output of the stochastic
subsystem and of the stochastic part of the given output are
equal.

Figure 4.1 The combined subspace identification problem.

4.1 COMBINED SYSTEMS

4.1.1 Problem description

Combined subspace identification algorithms compute state space models from given
input-output data. Figure 4.1 states the combined (subspace) identification problem.
The unknown combined system is represented in Figure 4.2.

The contributions of this book to the solution of the combined deterministic-stochastic
identification problem are the following (see also [VODMS 91] [VODM 92]
[VODM 93b] [VODM 94a] [VODM 94b] [VODM 94c] [VODM 95a]):
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� B � g� � � � C � g� �
�

D�

�A

�

ukm

wk

xk�� xk

vk

ykm

Figure 4.2 A linear time-invariant combined deterministic-stochastic system with inputs
uk, outputs yk and states xk, described by the matrices A�B�C�D and the covariance
matrices Q�S�R. The symbol � represents a delay. In the combined identification
problem, the input and output signals are measured. The state is unknown, but will be
determined as an intermediate result of the subspace identification algorithms.

We have derived two new algorithms that solve the combined deterministic-
stochastic identification problem. These algorithms can be very nicely interpreted
in the framework of the non-steady state Kalman filter sequences. It is proven
that, just as for the purely stochastic case, these Kalman filter sequences can be
determined directly from the input-output data, without knowing the system.

We have studied the asymptotic behavior of the algorithms and proved through
the connections with the Kalman filter theory, that the first algorithm computes
asymptotically unbiased estimates of the system matrices, while the solutions of
the second simpler algorithm are proven to be slightly biased. We also showed
that this bias is a function of the convergence rate of the non-steady state Kalman
filter to a steady state Kalman filter.

We have shown that through the right choice of user defined weighting matrices,
algorithms previously described in the literature (N4SID [VODM 94a], MOESP
[Ver 94], CVA [Lar 90]) can be recovered easily from the general Theorems pre-
sented in this Chapter. Often the proofs and/or interpretations of these algorithms
were incomplete in the literature. However, through the link between our results
and the results in the literature, this problem has been solved. The possibility of
choosing certain weights also leads to a whole new class of combined subspace
identification algorithms.
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From our experience with practical industrial data sets, we have derived a “user-
robustified” combined identification algorithm. The word “robust” here indicates
that the algorithm computes good models for almost all practical cases.

Finally, we have shown how the algorithms can be efficiently implemented us-
ing the connections between the geometric interpretations and numerical linear
algebra tools.

4.1.2 Notation

Most of the notation will be drawn from the previous Chapters (Section 2.1.2 and
3.1.3). In this Section, we only introduce the new notation used in this Chapter.

We require the pair fA�Cg to be observable since only the modes that are observed can
be identified. Furthermore, we require the pair fA� �B � Q���

�g to be controllable.
This implies that all modes are excited by either the external input uk or the process
noise wk.

The deterministic and stochastic subsystem

The system (4.1)-(4.2) is split in a deterministic and a stochastic subsystem, by splitting
the state (xk) and output (yk) in a deterministic (�d) and stochastic (�s) component:

xk � xdk � xsk �

yk � ydk � ysk �

The deterministic state (xdk) and output (ydk) follow from the deterministic subsystem,
which describes the influence of the deterministic input (uk) on the
deterministic output:

xdk�� � Axdk �Buk � (4.4)

ydk � Cxdk �Duk � (4.5)

The controllable modes of fA�Bg can be either stable or unstable. The stochastic
state (xsk) and output (ysk) follow from the stochastic subsystem, which describes the
influence of the noise sequences (wk and vk) on the stochastic output:

xsk�� � Axsk � wk � (4.6)

ysk � Cxsk � vk � (4.7)

The controllable modes of fA� 
Qs����g are assumed to be stable. The deterministic
inputs (uk) and states (xdk) and the stochastic states (xsk) and outputs (ysk) are assumed
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to be quasi-stationary (as defined in [Lju 87, page 27]). Note that even though the
deterministic subsystem can have unstable modes, the excitation (uk) has to be chosen
in such a way that the deterministic states and output are finite for all time. Also note
that since the systems fA�Bg and fA� 
Qs����g are not assumed to be controllable
(only the concatenation of the deterministic and stochastic subsystem as a whole should
be controllable), the deterministic and stochastic subsystem may have common as well
as completely decoupled input-output dynamics.

Block Hankel matrices

The block Hankel matrices U�j�i�� and Y�j�i�� are defined as in Section 2.1.2. The
block Hankel matrices Y d

�j�i�� and Y s
�j�i�� are defined in a similar way using the

deterministic respectively stochastic output. For notational convenience we use (just
as in Chapter 2, Section 2.1.2) the shorthand notation Wp� Yf � Uf and W�

p � Y
�
f � U�f .

The state sequence is defined as:

Xi
def
�
�
xi xi�� � � � xi�j�� xi�j��

� � R
n�j �

The deterministic state sequenceXd
i and stochastic state sequence Xs

i are defined as:

Xd
i

def
�

�
xdi xdi�� � � � xdi�j�� xdi�j��

� � R
n�j �

Xs
i

def
�

�
xsi xsi�� � � � xsi�j�� xsi�j��

� � R
n�j �

In a similar way as in Section 2.1.2, the past and future deterministic and stochastic
state sequences are defined as:

Xd
p � Xd

� , Xd
f � Xd

i �

Xs
p � Xs

� , Xs
f � Xs

i �

Note that these are not the key state sequences for combined system identification.
The introduction of the more important Kalman filter state sequence is postponed until
Section 4.1.3.
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System related matrices

For the deterministic subsystem (4.4)-(4.5) we adhere to the notation introduced in
Section 2.1.2. We will use the extended observability matrix�i, the (reversed) extended
controllability matrix �d

i and the lower triangular block-Toeplitz matrix with Markov
parametersHd

i . We also define the following covariance and cross covariance matrices
(which exist due to the quasi stationarity of uk and xdk, see above):

Ruu def
� �	U�j�i���U�j�i��


�

�
�	Up�Up
 �	Up�Uf 


�	Uf �Up
 �	Uf �Uf 


�
�

�
Ruu
p Ruu

pf


Ruu
pf �

T Ruu
f

�
�

Sxu
def
� �	Xd

p �U�j�i��


�
�
�	Xd

p �Up

�	Xd

p �Uf 


�
�

�
Sxup Sxuf

�
�

�d
def
� �	Xd

p �X
d
p 

�

For the stochastic subsystem (3.1)-(3.2) we use the notation of Section 3.1.3. We will
use the the (reversed) extended controllability matrix�c

i (3.14), and the block-Toeplitz
matrices Ci and Li (3.15)-(3.16).

4.1.3 Kalman filter states

In the derivation of the subspace identification algorithms for combined deterministic
- stochastic system identification, the Kalman filter plays a crucial role. In this
Subsection, we introduce a closed form equation for the non-steady state Kalman filter
state estimate for the combined system. We also introduce a bank of non-steady state
Kalman filters generating a sequence of state estimates. In the main Theorem of this
Chapter (Section 4.2.3), we then indicate how this state sequence can be recovered
directly from the input-output data.

Just as in Chapter 3 we indicate the state estimate by a hat: �xk.
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Theorem 9 Combined non-steady state Kalman filter

Given:

The initial state estimate: �x�

The initial estimate of the matrix: P�

The input and output measurements u�� y�� � � � � uk��� yk��

then the non-steady state Kalman filter state estimate �xk defined by the following
recursive formulas:

�xk � A�xk�� �Buk �Kk��
yk�� � C�xk�� �Duk��� � (4.8)

Kk�� � 
G�APk��C
T �
�� � CPk��C

T ��� � (4.9)

Pk � APk��A
T � 
G�APk��C

T �



�� � CPk��C
T ���
G�APk��C

T �T � (4.10)

can be explicitly written as:

�xk �
�
Ak ��k�k �d

k ��kH
d
k �k

�
	BBBBBBBB


�x�
u�
� � �
uk��
y�
� � �
yk��

�CCCCCCCCA
� (4.11)

where:

�k
def
� 
�c

k �AkP��
T
k �
Lk � �kP��

T
k �
�� � (4.12)

The explicit solution of the matrix Pk is equal to:

Pk � AkP�
A
T �k�
�c

k�AkP��
T
k �
Lk��kP��

T
k �
��
�c

k�AkP��
T
k �

T � (4.13)

The proof in Appendix A.5 is one by induction. Just as for purely stochastic systems,
it can be proven (see for instance Appendix A.3) that the covariance matrix of the state
error ePk is given by: ePk � E� 
xk � �xk��
xk � �xk�

T �

� �s � Pk �
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From this we conclude that the covariance of the initial error on the state estimate is
given by eP� � �s�P�. This indirectly implies that P� should be negative definite (or
smaller than �s at least�). The other two remarks that can be drawn from the above
formula are the same as for the stochastic Kalman filter on page 70.

The significance of Theorem 9 is that it indicates how the Kalman filter state estimate
�xk can be written as a linear combination of the past inputs and output measurements
u�� y�� � � � � uk��� yk�� and of the initial state estimate �x�.

This observation allows the definition of the state sequence that will be recovered by
the combined deterministic-stochastic subspace identification algorithms as (with bX�

the sequence of initial states):

bXi �
�
�xi �xi�� � � � �xi�j��

�
�

�
Ai ��i�i �d

i ��iH
d
i �i

�	
 �X�

Up
Yp

�A
�

�
Ai ��i�i

�
�d
i � �iH

d
i �i

� �� �X�

Wp

�
� (4.14)

This state sequence is generated by a bank of non-steady state Kalman filters, working
in parallel on each of the columns of the block Hankel matrix of past inputs and outputs
Wp. Figure 4.3 illustrates this concept. The bank of Kalman filters run in a vertical
direction (over the columns). Just as for the stochastic Kalman filter sequence, this
state sequence only uses partial input-output information.

Contrary to the Kalman filter state sequence as defined for the purely stochastic case
in the previous Chapter, the Kalman filter state sequence as defined by (4.14) is not
unique. Indeed, the sequence depends on the choice of the initial state sequence bX�

(which was taken to be zero in the stochastic case) and the initial matrixP� (which was
also taken equal to zero in the stochastic case). The reason why for the combined case
these quantities are not taken equal to zero is that the sequence recovered through the
combined subspace identification algorithms is a Kalman filter sequence with bX� 
� �
and P� 
� �. Note also that (as would be expected) the results of the stochastic
Kalman filter Theorem 6 can be recovered from the results of Theorem 9 by putting
�x� � �� P� � � and uk � �.

�It would just as well have been possible to substitute Pk by �Pk, which would have led to ePk �
�s � Pk, which seems intuitively more logical. The reason why this is not done is partially historical: In
the stochastic framework, the Riccati equations have always been presented as in the book; and partially
practical: Changing the sign of Pk in the Riccati equations would also change the sign of the limiting
solution when k��. This would imply a negative definite limiting solution �P at infinite k.
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� � �

�

P� � bX� � bxi� � � � bxiq � � � bxij��
u� uq uj��

ui�� ui�q�� ui�j��
Wp �

�
Up

Yp

� ...
...

...

y� yq yj��

yi�� yi�q�� yi�j��

...
...

...

bXi bxi � � � bxi�q � � � bxi�j��

Kalman
Filter

Figure 4.3 Interpretation of the sequence bXi as a sequence of non-steady state Kalman
filter state estimates based upon i measurements of uk and yk. When the system matrices
A�B�C�D�Q�R� S would be known, the state bxi�q could be determined from a non-
steady state Kalman filter as follows: Start the filter at time q, with an initial state estimatebxiq (the superscript “i” is introduced to distinguish the estimated bxq from the initial bxiq) and
initial error covariance matrix �s�P�. Now iterate the non-steady state Kalman filter over
i time steps (the vertical arrow down). The Kalman filter will then return a state estimatebxi�q . This procedure could be repeated for each of the j columns, and thus we speak about
a bank of non-steady state Kalman filters. The major observation in subspace algorithms
is that the system matrices A�B�C�D�Q�R� S do not have to be known to determine the
state sequence bXi. It can be determined directly from input-output data (see Theorem 12).

In what follows we will encounter different Kalman filter sequences (in the sense
of different initial states bX� and initial matrices P�). Therefore we will denote the
Kalman filter state sequence with initial state bX� and initial matrix P� as:

bXi	bX��P�

�
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4.2 GEOMETRIC PROPERTIES OF COMBINED SYSTEMS

4.2.1 Matrix input-output equations

The matrix input-output equations for the combined system (similar to the matrix input
output equations of Section 2.2.1) are defined in the following Theorem:

Theorem 10 Combined matrix input-output equations

Yp � �iX
d
p �Hd

i Up � Y s
p � (4.15)

Yf � �iX
d
f �Hd

i Uf � Y s
f � (4.16)

Xd
f � AiXd

p ��d
iUp � (4.17)

The Theorem is easy to prove by recursive substitution into the state space equations.

4.2.2 A Projection Theorem

In this section, we introduce the projection of the future outputs onto the past and
future inputs and the past outputs. Through this projection, the Kalman filter states
can be related to the data. Contrary to the two previous Chapters, for the combined
case there are two main Theorems. The first one is presented in this Section while the
second Theorem (which is very similar to the main Theorems of the previous Chapters)
will be presented in Subsection 4.2.3.

It is tedious though straightforward to prove the following Theorem which relates the
Kalman filter state sequences to the input-output data.

Theorem 11 Orthogonal projection

Under the assumptions that:

1. The deterministic input uk is uncorrelated with the process noise wk and the
measurement noise vk (see also Subsection 1.4.4).

2. The input uk is persistently exciting of order �i (Definition 5).

3. The number of measurements goes to infinity j ��.
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4. The process noise wk and the measurement noise vk are not identically zero.

Then:

Zi def
� Yf�

�
Wp

Uf

�
� �i bXi �Hd

i Uf � (4.18)

with:

bXi
def
� bXi	bX��P�


� (4.19)

bX� � Sxu�
Ruu����

�
Up
Uf

�
� (4.20)

P� � ���d � Sxu�
Ruu����
Sxu�T � � (4.21)

A proof can be found in Appendix A.6. The importance of Theorem 11 is that it reveals
one way in which the Kalman filter state sequence bXi relates to given input-output
data. The projected matrix Zi can indeed be computed from the given data, without
knowing the system matrices. It may come as no surprise that the state sequencebXi shows up in this projection. Indeed, the projection Zi could be considered as an
optimal prediction of the future output data Yf , given the past input and output data
Wp and the future input data Uf (see also Section 4.2.4).

Examining the formulas for the initial state sequence bX� (4.20) and the initial matrix
P� (4.21) a little closer, leads to the following interesting formulas:

bX� � Xd
p�

�
Up

Uf

�
� (4.22)

P� � ���
Xd
p�

�
Up

Uf

��
�Xd

p�

�
Up

Uf

��� � (4.23)

First note that the “real” initial state would be Xd
p � Xs

p . Just as for the stochastic
case, the statistical part of the initial state Xs

p is impossible to estimate and is thus set

to zero (in the previous Chapter bX� was indeed taken equal to zero). This explains
why Xs

� does not appear in (4.22). The deterministic part X d
p of the real initial state

however enters (4.22). Note that the row space of bX� has to lie in the combined row
spaces of Wp and Uf (since Zi is constructed by a projection on the combined row
space). From (4.22) we can see that bX� is the best estimate of Xd

p lying in the row
space of past and future inputs.
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From formula (4.23) we find that the covariance eP� of the error on the initial state
estimate is given by:eP� � �s � P�

� �s ���
Xd
p�

�
Up

Uf

��
�Xd

p�

�
Up

Uf

���
� �

	�Xs
p�X

d
p ��bX���Xs

p�X
d
p ��bX�


�

which is positive definite. The last equation indicates that the error on the initial state
is given by the variance of the part of the real initial state Xd

p �Xs
p that does not lie

in the combined row space of Up and Uf .

Both equations (4.20) and (4.21) can thus be explained intuitively. The initial state
estimate is the best estimate of the real initial state, lying in the combined row space
of Up and Uf . The initial state error covariance is the covariance of the difference
between the real initial state and the estimated initial state bX�. Finally note that when
the inputs uk are white noise the initial state bX� � �. Since in this case, there is no
correlation between the real initial state Xd

p �Xs
p and the inputs Up and Uf .

4.2.3 Main Theorem

Just as for the deterministic and stochastic identification (Section 2.2.2 and 3.2.1),
we present a main Theorem for the combined identification problem. This Theorem
allows for the calculation of the row space of a Kalman filter state sequence and of the
column space of the extended observability matrix �i directly from the input-output
data, without any knowledge of the system matrices. The system matrices can then
afterwards be extracted from the state sequence bXi or from �i. An overview of the
general combined identification procedure is presented in Figure 4.4.

Note that just as for the deterministic main Theorem 2 and the stochastic main Theorem
8 we introduce two weighting matrices W� and W�. The interpretation and use of
these matrices will become clear in Section 4.3 and Chapter 5.

Theorem 12 Combined identification

Under the assumptions that:

1. The deterministic input uk is uncorrelated with the process noise wk and mea-
surement noise vk (see also Section 1.4.4).
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input-output
data uk � yk

bXi ( eXi) �i

system matrices
A�B�C�D�Q� S�R

� �

�

Theorems 11 and 12

Subsections 4.4.1, 4.4.2, 4.4.4

Figure 4.4 An overview of the combined deterministic-stochastic subspace identification
procedure. Through the Theorems 11 and 12 the state sequence bXi ( eXi) and the extended
observability matrix �i are determined. The system matrices are then extracted using any
of the three algorithms described in Sections 4.4.1, 4.4.2 and 4.4.4.

2. The input uk is persistently exciting of order �i (Definition 5).

3. The number of measurements goes to infinity j ��.

4. The process noise wk and the measurement noise vk are not identically zero.

5. The user-defined weighting matrices W� � Rli�li and W� � Rj�j are such that
W� is of full rank and W� obeys: rank 
Wp� � rank 
Wp�W��, where Wp is the
block Hankel matrix containing the past inputs and outputs.

And with Oi defined as the oblique projection:

Oi
def
� Yf�

Uf
Wp � (4.24)

and the singular value decomposition:

W�OiW� �
�
U� U�

�� S� �
� �

��
V T
�

V T
�

�
� U�S�V

T
� � (4.25)
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we have:

1. The matrix Oi is equal to the product of the extended observability matrix and
the Kalman filter state sequence eXi:

Oi � �i� eXi � (4.26)

with:

eXi
def
� bXi	bX��P�


�bX� � Xd
p�
Uf
Up � (4.27)

P� � ���d � Sxu�
Ruu����
Sxu�T � � (4.28)

2. The order of the system (4.1)-(4.2) is equal to the number of singular values in
equation (4.25) different from zero.

3. The extended observability matrix �i is equal to:

�i � W��
� U�S

���
� �T � (4.29)

4. The part of the state sequence eXi that lies in the column space of W� can be
recovered from: eXiW� � T���S

���
� V T

� � (4.30)

5. The state sequence eXi is equal to:eXi � �yi �Oi � (4.31)

The proof of this Theorem can be found in Appendix A.7.

Remarks & comments

1. Theorem 12 can algebraically be summarized as follows:

rank 
Yf�
Uf
Wp� � n

row space 
Yf�
Uf
Wp� � row space 
 eXi�

column space 
Yf�
Uf
Wp� � column space 
�i�
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This summary is the essence of why these algorithms are called subspace al-
gorithms: they retrieve system related matrices as subspaces of projected data
matrices.

2. It should be noted that the state sequence eXi recovered through this Theorem
differs from the state sequence bXi that was introduced in Theorem 11. The two
sequences are different due to their different initial state bX�:

For Theorem 11: bX� � Xd
p�

�
Up

Uf

�
� (4.32)

For Theorem 12: bX� � Xd
p�
Uf
Up � (4.33)

This difference in initial states will play a crucial role in the derivation of the
algorithms in Section 4.4. Finally note that even though their initial state sequence
is different, both sequences bXi and eXi are generated by a bank of non-steady
state Kalman filter sequences.

3. The study of the effect of the weighting matrices W� and W� is postponed to
Section 4.3 and Chapter 5. Suffices to say, that both W� and W� determine the
state space basis in which the identified model will be identified.

4. The same remarks on the similarity transformationT hold as for the deterministic
and stochastic main Theorem (Remark 5 on page 43). This implies that we can
put the similarity transformation T equal to In. In doing so, when using different
weighting matrices W� and W�, “different�” observability matrices and different
state space sequences will be obtained from Theorem 12. However, each set of
quantities will lead to a set of state space matrices that is equivalent (up to a
similarity transformation) to the original set of matrices.

4.2.4 Intuition behind the Theorems

In this Subsection we present some intuition behind the different projections of Theorem
11 and 12. More intuitive explanations can be found in [VODM 95a] [VODM 94b]
[VODM 94c].

�In a sense that the numbers in these matrices are different, because the choice of basis in the state space
is different.
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The goal of an identification procedure is to find a model of which the input-output
behavior approximates that of the process under consideration. This goal is classically
solved by minimizing a “prediction error criterion” which expresses the “prediction
performance” of the model on the given data set. The minimizing solution is designated
as the optimal model (see for instance [Lju 87]). In the framework of subspace
identification, the identification goal is attained by solving two subsequent problems:

Optimal Prediction: As stated above we want to find a model that will predict the
behavior of the process sufficiently accurate. This can be formulated as: predict
the future outputs (Yf ) as accurately as possible, using all the information that
can be obtained from the past (Wp), and using the knowledge of the inputs that
will be presented to the system in the future (Uf ).

Inspired by the linearity of the system, we propose to combine the past (Wp) and
the future inputs (Uf ) linearly to predict the future outputs (Yf ). We denote the
linear combinations respectively with Lp andLu. The quality of the prediction is
measured in the Frobenius norm. Mathematically, the first part of the identification
goal thus becomes:

min
Lp�R

li��m�l�i

Lu�R
li�mi

kYf �
�
Lp Lu

�� Wp

Uf

�
k�F � (4.34)

The projection Zi of Theorem 11 is exactly equal to this linear combination of
Wp and Uf :

Zi �
�
Lp Lu

�� Wp

Uf

�
�

The optimal combination of the past (Wp) to predict the future is Lp�Wp, which
is exactly equal to the oblique projection of Theorem 12:

Oi � Lp�Wp �

Complexity Reduction: Apart from the fact that we want to find a model that can
predict the future, we also want the order of this model to be as low as possible. Or
equivalently, we want to reduce the complexity of the amount of “information” of
the past that we need to keep track of to predict the future. We thus need to reduce
the complexity of Oi. Since the rows of Oi span an li dimensional subspace in
the j dimensional ambient space, we can introduce a complexity reduction by
reducing the subspace dimension to n (the order of the system). Intuitively, this
implies that we only have to remembern different directions of the past to predict



Combined Deterministic-Stochastic Identification 111

the future. Mathematically, the second step can be formulated:

min
R�Rli�j

kW� �Oi �R� W�k�F � (4.35)

subject to: rank 
R� � n �

The user defined weighting matrices W� and W� determine which part of the
“information” of Oi is important to retain. A more rigorous interpretation of the
weighting matrices is presented in Chapter 5. It is easy to show [VODM 95a] that
R is determined through the singular value decomposition (4.25) as:

R �W��
� U�S�V

T
� W

y
� �

Note that R � Oi when all the assumptions of Theorem 12 are satisfied exactly
(which however is never the case with real data). In that case,R is merely a basis
for the row space of Oi. However, when j 
� � or when the data generating
system is not linear, the singular values of W�OiW� (4.25) are all different from
zero. In that case, the row space of Oi is of dimension li, and the order has to
be chosen equal to the number of “dominant” singular values. The complexity
reduction step is then truly a reduction of the dimension of the row space of Oi,
and the weights W� and W� play an important role in determining which part of
the original row space of Oi is retained.

4.3 RELATION TO OTHER ALGORITHMS

In this Section we indicate how three subspace algorithms of the literature
(N4SID, MOESP and CVA) are special cases of Theorem 12 with for each of the
algorithms a specific choice of the weighting matricesW� andW�. These results were
drawn from [VODM 94b], to which we refer for the detailed proofs.

In this Section we show how through a specific choice of the weighting matrices W�

and W�, published algorithms are recovered. The results are summarized in Table 4.1.
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W� W�

N4SID Ili Ij

MOESP Ili 	U�
f

CVA �
����

	Yf�U�f �Yf�U
�
f



	U�
f

Table 4.1 Overview of the special choices of W� and W� to obtain the published algo-
rithms N4SID, MOESP and CVA.

4.3.1 N4SID

The acronym N4SID stands for “Numerical algorithms for Subspace State Space
System IDentification” and is pronounced as a Californian license plate: enforce it.
The algorithm of [VODM 94a] determines the order of the system and �i directly from
the singular value decomposition of the oblique projection (the superscript n stands
for “n4sid”):

Oi �
�
Un
� Un

�

�� Sn� �
� �

��

V n

� �
T


V n
� �

T

�
� (4.36)

The order is equal to the number of non-zero singular values in Sn
� . The observability

matrix is taken equal to:
�i � Un

� �
S
n
� �

��� � (4.37)

The algorithm of [VOWL 93] calculates the singular value decomposition of �G (ad-
justed to our notation):

�G � �
�Yf �

�
Wp

Uf

�



���
�

�
Wp

Uf

�
�

�
Wp

Uf

�



����

�
I�m�l�i �

� �

�
���

�

�
Wp

Uf

�
�

�
Wp

Uf

�



���� �

(4.38)

It is easy to show that (see [VODM 94b]):

�G� �GT � �	Yf�U�f �Wp�U�f 
 � ��	Wp�U�f �Wp�U�f 
�
�� � �	Wp�Wp


� ��	Wp�U�f �Wp�U�f 
�
�� � �	Wp�U�f �Yf�U

�
f

 �

which is exactly equal toOiOT
i (use formula (1.7)). This implies that both algorithms

[VODM 94a] and [VOWL 93] calculate the same singular values Sn� and the same left
singular space Un

� , and thus determine the order n and �i in exactly the same way.
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Note that in [VOWL 93] an interpretation of the algorithm is given in an instrumental
variable framework.

It is now easy to see that the algorithms of [VODM 94a] [VOWL 93] correspond to
Theorem 12 with the weights:

W� � Ili �

W� � Ij �

A consequence of W� � Ij is that we do not need formula (4.31) to determine the
states eXi, but that they can be determined simply from the singular value decomposition
(4.36) (using (4.30)) as: eXn

i � 
Sn� �
���
V n

� �
T � (4.39)

In the next subsections, it will become clear that for the other two algorithms, the
determination of the state sequence eXi requires the use of formula (4.31).

4.3.2 MOESP

The acronym MOESP stands for “Multivariable Output-Error State sPace”. Verhae-
gen considers in [Ver 94] the following LQ decomposition [Ver 94, page 12] (adapted
to our notation): 	
 Uf

Wp

Yf

�A �

	
 L�� � �
L�� L�� �
L�� L�� L��

�A	
 QT
�

QT
�

QT
�

�A � (4.40)

With the singular value decomposition (the superscript m stands for “moesp”):

L�� �
�
Um
� Um

�

�� Sm� �
� �

��

V m

� �T


V m
� �T

�
� (4.41)

Verhaegen proves that the system order can be retrieved from the number of singular
values of Sm� different from zero. He also proves that a possible choice for �i is:

�i � Um
� �
Sm� ���� � (4.42)

It is proven in [VODM 95a] that the algorithm of [Ver 94] corresponds to Theorem 12
with the following weights:

W� � Ili �

W� � 	U�
f
�
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Note that, sinceW� is not of full rank, we do not recover the full state from the singular
value decomposition of L��Q�. According to formula (4.30), we only recover the
projection of the state: eXm

i �W� � eXm
i �	U�

f
�

The state could be determined through formula (4.31). However, since MOESP does
not use state sequences, we will not elaborate on this any further.

4.3.3 CVA

Larimore considers in [Lar 90] the canonical correlations between, on the one hand the
past Wp conditional to the future inputs Uf , and on the other hand the future outputs
Yf conditional to the future inputs Uf . In formulas, this means that he considers the
principal angles and directions between Wp�U

�
f and Yf�U�f . He denotes his class of

algorithms by CVA which stands for “Canonical Variate Analysis”.

In [VODM 95a] it is shown that the number of principal angles in
�Wp�U

�
f � Yf�U

�
f � different from ��� is equal to the model order. The way we

understand it, Larimore defines a “memory”M by making linear combinations of the
rows of the past inputs and outputs Wp: With

�Wp�U
�
f � Yf�U

�
f � � Lc � Wp�U

�
f �

the “memory”M in [Lar 90] is defined as:

M � Lc � Wp �

Note that this “memory” is different from the principal directions in the projected past
�Wp�U

�
f � Yf�U

�
f �. In [VODM 95a] it is shown that the algorithm of [Lar 90]

corresponds to Theorem 12 with the following weights:

W� � �
����

	Yf�U�f �Yf�U
�
f


�

W� � 	U�
f
�

From this we conclude that applying the above weighting matrices to the results of
Theorem 12 leads to a principal direction analysis between the past inputs and outputs
orthogonalized to the future inputs Wp�U

�
f and the future outputs orthogonalized to

the future inputs Yf�U�f . The singular values of (4.25) correspond to the cosines of
the principal angles. Furthermore, it is shown in [VODM 95a] that the “memory” as
defined by Larimore corresponds to the states as defined in equation (4.31). The partial
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states recovered from (4.30) are equal to the principal directions �Wp�U
�
f � Yf�U

�
f �.

This proves formally that the principal directions are no states, but projected states:

�Wp�U
�
f � Yf�U

�
f � � eXc

i �U
�
f �

An additional point concerning the CVA method is that Larimore claims that the
weighting used in this method is optimal for state order determination from finite
sample sizes. This has been shown by example in [Lar 94] but has never been proven.
A last remark concerns the sensitivity to scaling. While the two algorithms N4SID
and MOESP are sensitive to scaling of the inputs and/or outputs, the CVA algorithm
is insensitive. This is because only angles and normalized directions are considered in
the CVA algorithm.

Note that the general framework proposed in [Lar 90] corresponds to a generalization
of principal directions and angles. In this framework, the matrix

W� � �
����

	Yf�U�f �Yf�U
�
f


�

is replaced by another weighting matrix

W� � ����� �

which still falls into the unifying approach of Theorem 12.

4.3.4 A simulation example

In this Subsection, we illustrate the behavior of the three algorithms of this Section
(N4SID, MOESP and CVA) with a simple example. Consider the following combined
system in forward innovation form:

xk�� �

	
 ��� ��� �
���� ��� �

� � ���

�Axk �

	
 
��
�

������

����
�

�Auk �

	
 �
�
���
�
�����
���
���

�A efk �

yk �
� ������� ������� ������

�
xk � ������uk � efk �

and:
E�efk �
e

f
k�
T � � ������ �

An output sequence yk of ���� data points was generated using this model. The input
sequence consisted of the sum of a zero mean, Gaussian, white noise signal (variance

) filtered with a second order Butterworth filter (cutoff at ��� times the Nyquist
frequency, T � 
), and a zero mean, Gaussian, white noise signal with variance ���
.
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Figure 4.5 The order determining singular values (or principal angles) in function of the
number of block columns j for the three algorithms presented in this Section: N4SID,
MOESP and CVA. For each of the three plots, the system order three can be be determined
(even though it is the most obvious for the CVA algorithm). The convergence of the singular
values in function of j can also be observed. For the first two plots all singular values go
to zero, except three. For the last plot, all principal angles go to 
� degrees, except three.
This Figure was generated using the Matlab file com sim1.m.

The number of block rows i is taken equal to 
�. For each j between 
�� and ����, the
singular values of W�OiW� were plotted in Figure 4.5. The convergence in function
of j can be clearly observed.

The Matlab file com_sim1.m contains a Matlab implementation of this example.
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4.4 COMPUTING THE SYSTEM MATRICES

In this Section we explain how the system matrices A�B�C�D and Q�S�R can be
computed from Theorem 11 and/or 12 in two different ways. A schematic overview of
the two algorithms can be found in Figures 4.6 and 4.7. Note that the first part of the
two algorithms are the same and coincide with the steps described in Theorem 12. At
the end of the Section, we present variations and optimizations of the first algorithm,
which are motivated from a practical rather than from a theoretical point of view, and
lead to the “robust” algorithm of Figure 4.8.

4.4.1 Algorithm 1: unbiased, using the states

From Theorem 12, we find:

The order of the system from inspection of the singular values of equation (4.25).

The extended observability matrix �i from equation (4.29) and the matrix �i��
as �i.

The following side result of Theorem 11 can easily be proven. By shifting the border
between “past” and “future” one down, we obtain the matricesW �

p � U
�
f and Y �f . The

same projection as in Theorem 11 can now be performed with these matrices. This
leads to the sequence Zi�� and the Kalman filter states bXi��:

Zi�� � Y �f �

�
W�

p

U�f

�
(4.43)

� �i�� bXi�� �Hd
i��U

�
f � (4.44)bXi�� � bXi��	bX��P�


� (4.45)

with bX� and P� given by equations (4.20)-(4.21). Since the corresponding columns
of bXi (equation (4.19)) and of bXi�� (equation (4.45)) are state estimates of the same
non-steady state Kalman filters at two consecutive time instants�, we can write with
(4.8): bXi�� � A bXi �BUiji �Ki
Yiji � C bXi �DUiji� � (4.46)

It is also trivial that:

Yiji � C bXi �DUiji � 
Yiji � C bXi �DUiji� � (4.47)

�The Kalman filters are the same in the sense that they have the same initial statebX� and the same initial
error covariance eP�.
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It is now easy to prove (see [VODM 94a]) that the row space of Yiji � C bXi �DUiji

is orthogonal to the row spaces of Wp� Uf and bXi. This result can also be intuitively
proven by noticing that the innovations (Yiji � C bXi � DUiji) of a non-steady state

Kalman filter are uncorrelated with the states bXi, the past inputs and outputs Wp and
the future inputs Uf . We thus have:

Ej

���
Yiji � C bXi �DUiji��

	
 Wp

UfbXi

�AT
��� � � �

This implies that (4.46)-(4.47):� bXi��

Yiji

�
�

�
A B
C D

�� bXi

Uiji

�
�

�
�w
�v

�
� (4.48)

where the row spaces of �w and �v are orthogonal to the row space of Wp, Uf andbXi. If we would now be able to compute the state sequences bXi and bXi�� from
the input-output data, we would (as in the previous Chapters) solve equation (4.48)
in a least squares sense for the system matrices A�B�C�D. Unfortunately, it is not
possible to determine the state sequences bXi and bXi�� directly from the input-output
data�. However, from (4.18) and (4.44) we can determine bXi and bXi�� as:

bXi � �yi � �Zi �Hd
i �Uf � � (4.49)bXi�� � �yi�� � �Zi�� �Hd

i���U
�
f � � (4.50)

In these formulas the only unknowns on the right hand side areH d
i andHd

i��, sinceZi
andZi�� can be determined as a projection of the input-output block Hankel matrices
and �i and�i�� are determined through Theorem 12. Substitution of (4.49) and (4.50)
into (4.48) leads to:�

�yi���Zi��
Yiji

�
�

�
A
C

�
� 
z �
term 1

��yi �Zi � K�
z�
term 2

�Uf �

�
�w
�v

�
� 
z �

term 3

� (4.51)

where we defined:

K def
�

� �
B �yi���H

d
i��

��A��yi �H
d
i�

D �
�� C��yi �H

d
i

�
� (4.52)

�For all clarity, Theorem 12 determines the state sequence eXi directly from the input-output data. This

sequence is different from bXi, in a sense that the initial conditions of the Kalman filter are different (see
(4.32) and (4.33)). We will use the sequence eXi in the second algorithm.



Combined Deterministic-Stochastic Identification 119

Observe that the matrices B andD appear linearly in the matrixK. We can now solve
equation (4.51) in a least squares sense for A,C and K. Since the row spaces of �w
and �v have been shown to be orthogonal to the row spaces of Zi and Uf and since
the least squares solution computes residuals that are orthogonal to the regressors, the
least squares solution will compute asymptotically unbiased estimates of the system
matrices (see [VODM 94a]). From (4.51) we find in this way (term by term):

term 1. The system matrices A and C.

term 2. The matrixK from whichB andD can be computed. This is done in a similar
way as described in Section 2.4.2. Define (and compute, since all quantities at
the right hand side are known at this moment):

L def
�

�
A
C

�
��yi � R

�n�l��li

�

� L�j� L�j� � � � L�ji
L�j� L�j� � � � L�ji

�
�

M def
� �yi�� � R

n�l�i���

�
� M� M� � � � Mi��

�
�

K �

� K�j� K�j� � � � K�ji

K�j� K�j� � � � K�ji

�
�

where L�jk�Mk � Rn�l , K�jk � Rn�m , L�jk � Rl�l and K�jk � Rl�m .
Through similar manipulations as in Section (2.4.2), Equation (4.52) can then be
rewritten as: 	BBBBBBBBBBBBBBBB


K�j�

K�j�

K�j�
...
K�ji

K�j�

K�j�

K�j�
...
K�ji

�CCCCCCCCCCCCCCCCA
� N

�
D
B

�
� (4.53)

with:
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N �

	BBBBBBBBBBBB


�L�j� M� �L�j� � � � Mi�� �L�ji�� Mi�� � L�ji
M� �L�j� M� �L�j� � � � Mi�� � L�ji �
M� �L�j� M� �L�j� � � � � �

� � � � � � � � � � � � � � �

Mi�� � L�ji � � � � � �

Il � L�j� �L�j� � � � �L�ji�� �L�ji
�L�j� �L�j� � � � �L�ji �
�L�j� �L�j� � � � � �
� � � � � � � � � � � � � � �

�L�ji � � � � � �

�CCCCCCCCCCCCA
�

�
Il �
� �i��

�
� Ri�n�l���n�l�

� (4.54)

Formula (4.53) is an overdetermined set of linear equations in the unknowns B
and D, which could for instance be solved using least squares.

term 3. The covariances Q�S and R can be approximated from the residuals �w and
�v in a similar way as in Section 3.4.3 (stochastic identification algorithm 3):�

Q S
ST R

�
� Ej�

�
�w
�v

�
�
�
�Tw �Tv

�
� �

As indicated in Section 3.4.3, the approximation is due to the fact that the bank of
Kalman filters is not in steady state for finite i. As i grows larger, the approxima-
tion error grows smaller. For infinite i and j the stochastic system is determined
asymptotically unbiased. The stochastic subsystem however always leads to a
positive real covariance sequence (just as in Section 3.4.3), since the covariance
matrix is always positive definite.

The Matlab function com_alt.m contains a Matlab implementation of this algo-
rithm. See also Section 6.1 and Appendix B.

4.4.2 Algorithm 2: biased, using the states

Algorithm 1 computes unbiased estimates of the system matrices A�B�C and D.
However, compared to the algorithms based on the state sequences of the previous
Chapters, Algorithm 1 is quite complicated (especially the extraction of B and D).
One could wonder if there does not exist an algorithm that has the same simplicity
for the combined identification case. The answer is yes, but this algorithm calculates
asymptotically biased solutions (see also [VODM 94a]).
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Combined algorithm 1:

1. Calculate the oblique and orthogonal projections:

Oi � Yf�
Uf
Wp �

Zi � Yf�

�
Wp

Uf

�
�

Zi�� � Y �f �

�
W�

p

U�f

�
�

2. Calculate the SVD of the weighted oblique projection:

W�OiW� � USV T �

3. Determine the order by inspecting the singular values in S
and partition the SVD accordingly to obtain U� and S�.

4. Determine �i and �i�� as:

�i �W��
� U�S

���
� � �i�� � �i �

5. Solve the set of linear equations for A�C and K:�
�yi���Zi��

Yiji

�
�

�
A
C

�
��yi �Zi �K�Uf �

�
�w
�v

�
�

6. Determine B and D from K� A� C��i��i�� through equa-
tion (4.53).

7. Determine Q�S and R from the residuals as:�
Q S
ST R

�
� Ej�

�
�w
�v

�
�
�
�Tw �Tv

�
� �

Figure 4.6 A schematic overview of the first combined deterministic-stochastic identi-
fication algorithm. See Section 6.1 for implementation issues. This algorithm has been
implemented in the Matlab function com alt.m.
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As stated before, the state sequence bXi can not be calculated directly from the data.
However, from Theorem 12 we find that the states eXi can be determined from the data.
From a similar reasoning as in Theorem 12, we find that:

Oi�� � Y �f �
U�
f

W�
p

� �i��� eXi�� �

And we thus find eXi and eXi��. The problem however is that this new Kalman filter
sequence eXi�� has a different initial state as the sequence eXi. Indeed, we have:

Initial state for eXi: Xd
p�
Uf
Up.

Initial state for eXi��: Xd
p�
U�
f

U�
p .

So, we can not write a formula similar to (4.48) with bXi� bXi�� replaced by eXi� eXi��.
It can be proven however (see [VODM 94a]) that the difference between bXi and eXi is
zero when at least one of the following conditions is satisfied:

i � �. The difference between bXi and eXi goes to zero at the same rate the
non-steady state Kalman filter converges to a steady state Kalman filter. This is
intuitively clear, since by the time the Kalman filter is in steady state, the effect
of the initial conditions has died out. In [VODM 94a] a rigorous proof is given.

The system is purely deterministic. This is the case treated in Chapter 2.

The deterministic input uk is white noise. In this case the deterministic state Xd
p

is uncorrelated with Up and Uf . This implies that the initial state sequences ofbXi� bXi��� eXi and eXi�� are all equal to zero (and are thus equal to each other).

When either one of these conditions is satisfied, we can replace bXi and bXi�� in (4.48)
with eXi and eXi��, and solve for A�B�C and D in a least squares sense. The details
of this simple algorithm are summarized in Figure 4.7. If none of the above conditions
is satisfied, this second algorithm will return biased estimates of the system matrices
(since the states are replaced by approximations). In [VODM 94a] an expression for
this bias is derived. When one of the three above condition is satisfied however, the
algorithm is asymptotically unbiased.
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Even though the algorithm is simpler than algorithm 1, it turns out that it should be
used with care in practice. For many practical measurements the input signal uk is
anything but white noise (steps, impulses, � � �). This implies that the algorithm is
biased, and this bias can be significant. See also the practical examples in Section 6.4.

The Matlab function com_stat.m contains a Matlab implementation of this algo-
rithm. See also Section 6.1 and Appendix B.

4.4.3 Variations and optimizations of Algorithm 1

In this Section we introduce some alterations to the first combined identification
algorithm. Using algorithm 1 on practical (finite sample length) data indicated that
it does not always perform well in practice. Especially for badly conditioned input
Hankel matricesU�j�i��, the performance was not satisfactory (see Section 6.4). Since
in practice many input signals are for instance steps (which lead to badly conditioned
input Hankel matrices), this is a significant problem. Before introducing the alterations,
we should note that:

The alterations lead to an increased computational load. However, in most cases
we believe this is a prize worth paying for the increased accuracy.

Many new algorithms can be devised by including one or more alterations in
algorithm 1. Unfortunately, at the current status of the research, it is not clear
which combination of alterations leads to the “best” algorithm. However, at the
end of this Section we will suggest a robust� algorithm that performed well on
all industrial data sets at our disposition (see Section 6.4). It should be taken into
account that when more research results become available, the algorithm is likely
to be the subject of more fine-tuning.

The motivation behind the alterations is not always based on theoretical grounds.
Some of them are motivated heuristically. The heuristics however have their basis
in our practical experience (see Section 6.4).

1. A first alteration comes from the observation that once A and C are determined
from the first term of (4.51), the matrices �i and �i�� can be recomputed.
Indeed, observe that the original �i and �i�� determined from (4.25) are only
approximations� of the exact�i and �i��. Since these matrices play an important

�Robust in the sense that it will perform reasonably well for most practical and industrial conditions.
�As mentioned before, the matrices will be exact when there is an infinite amount of data generated by

a linear time-invariant system available. In practice this is never the case.
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Combined algorithm 2:

1. Calculate the oblique projections:

Oi � Yf�
Uf
Wp �

Oi�� � Y �f �
U�
f

W�
p �

2. Calculate the SVD of the weighted oblique projection:

W�OiW� � USV T �

3. Determine the order by inspecting the singular values in S
and partition the SVD accordingly to obtain U� and S�.

4. Determine �i and �i�� as:

�i �W��
� U�S

���
� � �i�� � �i �

5. Determine the state sequences:

eXi � �yi �Oi �eXi�� � �yi���Oi�� �

6. Solve the set of linear equations for A�B�C and D:� eXi��

Yiji

�
�

�
A B
C D

�� eXi

Uiji

�
�

�
�w
�v

�
�

7. Determine Q�S and R from the residuals as:�
Q S
ST R

�
� Ej�

�
�w
�v

�
�
�
�Tw �Tv

�
� �

Figure 4.7 A schematic overview of the second combined deterministic-stochastic iden-
tification algorithm. This algorithm computes asymptotically biased solutions. See Section
6.1 for implementation issues. This algorithm has been implemented in the Matlab function
com stat.m.
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role in the determination of B and D, it is better to recompute them. In this way,
the matrices B and D that are determined afterwards will be more “compatible”
with A and C.

2. A second alteration of Algorithm 1 consists of a different way of calculating A
andC. Since�i can be easily determined from Theorem 12, the matricesA andC
can be extracted from �i in any of the ways described on page 53. In this way one
could for instance guarantee the stability of A [Mac 94]. In practice, it is often
known in advance that the system is stable, and unstable models are thus very
undesirable, especially when the system identification is running autonomous (for
instance in an on-line application). Unfortunately (until now), it is still an open
problem how stability ofA can be guaranteed when it is calculated as described in
algorithm 1. Once A and C are determined, a new �i and �i�� can be computed.

3. The accuracy of B and D tends to be bad in case of badly condition input Hankel
matrices (see Section 6.4). We believe this is due to the introduction of a large
correlation in the sample error when multiplying with U yf to determine K. It is
clearly better to avoid this step, and thus to computeB andD directly from (4.51)
once the matrices A�C��i and �i�� are determined. This can be done as follows
(from (4.51)):

B�D � arg min
B�D

k
�

�yi���Zi��
Yiji

�
�
�

A
C

�
��yi �Zi� 
z �

known

� K
B�D� � Uf�
z�
known

k�F �

(4.55)
where K
B�D� refers to the linear matrix function defined by formula (4.52).
Since K
B�D� is linear in B and D, the overall optimization problem is convex,
and thus has a unique minimum. The problem can be solved by either using a non-
linear optimization algorithm (which will always converge, due to the convexity),
or by rewriting the function between the norm signs in (4.55) as an explicit linear
combination of B and D and solving this set of equations in a least squares
sense. We will pursue the second way. For simplicity of notation, we define the
following matrices:

P
def
�

�
�yi���Zi��

Yiji

�
�

�
A

C

�
��yi �Zi � R�l�n��j

� (4.56)

Q
def
� Uf � Rmi�j
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�

	BB

Q�

Q�

...
Qi

�CCA �

N�
def
�

�
�L�j� � � � Mi�� � L�ji
Il � L�j� � � � �L�ji

��
Il �
� �i��

�
� 
z �

�R�l�n���l�n�

� (4.57)

N�
def
�

�
M� � L�j� � � � Mi�� � L�ji �
�L�j� � � � �L�ji �

��
Il �
� �i��

�
� 
z �

�R�l�n���l�n�

(4.58)

...

Ni
def
�

�
Mi�� � L�ji � � � � � �
�L�ji � � � � � �

��
Il �
� �i��

�
� 
z �

�R�l�n���l�n�

� (4.59)

where L�j��M� were defined in the previous Subsection and Qk � Rm�j . Note
that the rows of the matricesNk are rows of the matrixN , which implies that the
matricesNk satisfy (from (4.53)):� K�jk

K�jk

�
� Nk �

�
D
B

�
�

Equation (4.55) can now be rewritten as:

B�D � arg min
B�D

k P �
iX

k��

Nk

�
D
B

�
Qk k�F � (4.60)

In the following, we will use the equality (see for instance [Bre 78]):

vec 
AXB� � 
BT �A��vec X �

where � denotes the Kronecker product and vec A denotes the vector operation
i.e. stacking the columns of A on top of each other in a vector. This last equality
allows us to rewrite (4.60) as (applying the vector operation on the matrices inside
the norm signs):

B�D � arg min
B�D

k vec P �
�

iX
k��

QT
k �Nk

�
� vec

�
D
B

�
k�F �
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which can now be solved using classical least squares regression as:

vec

�
D
B

�
�

�
iX

k��

QT
k �Nk

�y
� vec P � (4.61)

The problem with this last equation is its size. The matrix that has to be (pseudo-)
inverted is of size j
l � n� 
 m
l � n�. It should be noted however that the
dimension j can be reduced to �i
l�m� by making use of the RQ decomposition
as will be explained in Section 6.1. This reduces the size to �i
l � n�
l �m�

m
l � n�. In the previous Subsection, we only had to invert a matrix (4.53) of
size i
l � n� 
 
l � n�. The difference between the two can become significant
when there are a lot of inputs and/or outputs, since the increase in number of
rows is equal to �
l �m� and the increase in number of columns equals m. The
improved accuracy is (in our opinion) more important though, and we will thus
include this alteration in the robust algorithm at the end of this Section (see also
Section 6.4 for some practical examples).

4. An alternative way (similar to the way mentioned in [McK 94a]) to determine B
and D is by “going back to the data”. Which means that the subspace ideas are
only applied to determinedA and C. The matrices B and D are then determined
by classical least squares regression. Indeed, once A and C are determined, the
overall problem becomes linear in the unknowns B and D. A major drawback
of this solution will become clear in the Section 6.1: It is not possible any more
to compute everything in function of the R factor of the overall RQ factorization,
which thus implies an increased computational complexity.

Simulation error: See also [McK 94a]. The simulated output �yk can be deter-
mined as:

�yk � Duk �

k��X
r��

CAk�r��Bur

� �uTk � Il� � vec D � 


k��X
r��

uTr � CAk�r��� � vec B �

With this last equation, we can findB andD as the solution of the following
minimization criterion:

B�D � arg min
B�D

sX
k��

�
yk � 	uTk � Il
 � vec D � �

k��X
r��

u
T
r � CA

k�r��� � vec B

��
�

which is a linear regression problem in vec D and vec B. An initial state
x� can be easily included.
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Prediction Error: Alternatively, we can bring the Kalman gain K into account
when estimating B and D as follows. First note that in Algorithm 1, B and
D are not required to determine the Kalman gain K. Indeed, K can simply
be determined fromQ�S andRwhich are found from term 3 of (4.48). Once
K is known, the prediction error minimization problem becomes linear in
B and D (and x�). With the steady state Kalman filter we can write the
optimal prediction of the output yk as (with B,D and x� unknown):

�yk � C
A�KC�kx� �Duk �

k��X
r��

C
A �KC�k�r��
B �KD�ur

�

k��X
r��

C
A �KC�k�r��Kyr

� yKk �Mk

	
 x�
vec D
vec B

�A �

with:

y
K
k

def
�

k��X
r��

C�A�KC�k�r��
Kyr �

Mk
def
�

�
C�A�KC�k 	uTk � Il �

Pk��

r��
uTr � C�A�KC�k�r��K


	
Pk��

r��
uTr � C�A�KC�k�r��


�
�

With this last equation, we can find B�D and x� as the solution of the
following minimization criterion:

B�D� x� � arg min
B�D�x�

sX
k��

��yk � yKk �Mk

	
 x�
vec D
vec B

�A��� � (4.62)

which is a linear regression problem in vec D, vec B and x�.

4.4.4 Algorithm 3: a robust identification algorithm

Figure 4.8 contains a robust subspace algorithm for combined deterministic-stochastic
subspace identification. This is the final algorithm we would like to present in this
book. It has (to our experience) proven to work well on practical data (see Section
6.4), and contains several of the alterations mentioned in the previous Subsection.
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Note that:

The weights W� and W� have been chosen equal to respectively Ili and 	U�
f

.
Finding the optimal weights is still a topic of ongoing research.

B andD could be determined through minimization of the prediction error (4.62).
This would lead to a major increase in computational complexity. Furthermore,
the algorithm as it is described in Figure 4.8 can be totally implemented by only
making use of the R factor of the RQ decomposition. This will be illustrated in
Section 6.1. Including the prediction criterion of (4.62) would imply that the not
only the R factor is needed but also the original data.

Finally, it should be noted that unfortunately much of the symmetry and simplicity
of the deterministic and stochastic algorithms is lost. On the other hand the
algorithm of Figure 4.8 works in all practical situations we considered (see Section
6.4).

As indicated, a stable matrixA could be determined from�i. Even though guaran-
teed stability [Mac 94] is a desirable feature in some cases, algorithms enforcing
stability should be used with care. By guaranteeing the stability, even marginally
stable systems (for instance systems containing an integrator or systems with
lightly damped poles) and unstable systems will be identified as stable systems.
Our experience is that for low order models, obtained from “linear” data, the
identified systems are always stable (even without the guarantee), and the extra
zeros introduced in ��i to ensure stability only degenerate the result. On the other
hand, for higher order systems, or for “non-linear” data, it is sometimes desirable
to force the stability, since subspace algorithms tend to compute unstable systems
in these cases. To ensure stability, steps 4 and 5 in Figure 4.8 should be changed
to:

4. Determine �i and ��i as:

�i � U�S
���
� � ��i �

�
�i
�

�
�

5. Determine C as the first l rows of �i and a stable A as
A � �yi ��

�
i . Recompute �i and �i�� from A and C.

We suggest to compute the A matrix without the guaranteed stability. When the
system of the desired order turns out to be unstable, stability could be enforced
as described above.
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The Matlab function subid.m contains a Matlab implementation of this robust
algorithm. See also Section 6.1 and Appendix B.

4.4.5 A simulation example

In this Subsection we investigate the three algorithms presented in this Section. In a
simulation example, we investigate the asymptotic bias in function of the number of
block rows i. For a comparison of the three algorithms on practical data we refer to
Section 6.4. Consider the following first order system in forward innovation form:

xk�� � �����xk � 
�����uk � ������efk �

yk � ������xk � ������uk � efk �

and:
E�efk �
e

f
k�
T � � ����� �

The input uk is the same for all experiments and is equal to the sum of a filtered
(cut off frequency equal to ���� times the Nyquist frequency, T � 
), zero mean,
Gaussian, white noise sequence with variance 
 and a zero mean, Gaussian, white
noise sequence with variance ���
. The number of data used for the identification is
fixed at j � ����. One hundred different disturbances efk were generated. For each of
these sequences and for each i between � and 
�, three models were identified using
the three algorithms of Figures 4.6, 4.7 and 4.8. For algorithm 1 and 2, the weights
were chosen as W� � Ili�W� � Ij . The sample mean of the eigenvalue (A) and the
deterministic zero (A � BD��C) was computed over the hundred experiments. The
results are displayed in Figure 4.9.

The Matlab file com_sim2.m contains a Matlab implementation of this example.

4.5 CONNECTIONS TO THE PREVIOUS CHAPTERS

Since purely deterministic and purely stochastic identification are both special cases of
the general combined identification problem, there must be some connections between
the three Chapters. In this Section we explore these similarities.

Most of the similarities can be found in the main Theorems of the three Chapters.
Theorem 2 for the deterministic case, Theorem 8 for the stochastic case and Theorem
12 for the combined case all look very similar. The differences are:
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Robust combined algorithm:

1. Calculate the oblique and orthogonal projections:

Oi � Yf�
Uf
Wp � Zi � Yf�

�
Wp

Uf

�
� Zi�� � Y �f �

�
W�

p

U�f

�
�

2. Calculate the SVD of the weighted oblique projection:

Oi	U�
f
� USV T �

3. Determine the order by inspecting the singular values in S and partition
the SVD accordingly to obtain U� and S�.

4. Determine �i and �i�� as:

�i � U�S
���
� � �i�� � �i �

5. Solve the set of linear equations for A and C:�
�yi���Zi��

Yiji

�
�

�
A
C

�
��yi �Zi �K�Uf �

�
�w
�v

�
�

Recompute �i and �i�� from A and C.

6. Solve B and D from:

B�D � arg min
B�D

k

�
�yi���Zi��

Yiji

�
�

�
A

C

�
��yi �Zi � K�B�D� � Uf k

�
F �

7. Finally, determine the covariance matrices Q�S and R as:�
Q S
ST R

�
� Ej�

�
�w
�v

�
�
�
�Tw �Tv

�
� �

Figure 4.8 A schematic overview of a robust deterministic-stochastic identification algo-
rithm. In Subsection 6.1.3 the implementation of this robust algorithm is discussed. This
algorithm has been implemented in the Matlab function subid.m.
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Figure 4.9 The stars show the expected value of the pole (row 1) and deterministic zero
(row 2) in function of the number of block rows i. The fill lines show the exact value of pole
and zero. Hundred experiments were performed, of which the sample average is plotted.
Clearly, algorithm 1 and 3 are asymptotically unbiased, while algorithm 2 displays a clear
bias on the zero of the system. This is because the input is a colored noise sequence, and
the process and measurement noise is different from zero. Clearly, as the number of block
rows i increases, the bias grows smaller. This Figure was generated using the Matlab file
com sim2.m.

For the deterministic case, the number of measurements does not have to go
to infinity. This is plausible, since when there is no noise, the system can be
determined exactly from a finite number of data.

For the stochastic case, Wp is replaced by Yp. When we introduce zeros for the
inputs (conceptually), and form the matrices Wp� Yf and Uf as in the combined
(or deterministic) case�, we see that the combined Theorem 12 reduces to the
stochastic Theorem 8.

�The projection �U�
f

is equal to the identity and the oblique projection along Uf boils down to an

orthogonal projection when Uf � � (see Section 1.4).



Combined Deterministic-Stochastic Identification 133

As a conclusion, we can state that for all three cases (with zeros introduced for the
stochastic case), we have:

Oi � Yf�
Uf
Wp

� �i eXi �

with:

eXi � bXi	bX��P�

�bX� � Xd

p�
Uf
Up �

P� � ���d � Sxu�
Ruu�y�
Sxu�T � �

For the deterministic case, these states eXi are equal to the exact deterministic states
Xd
f . For the stochastic case, bX� is equal to zero, just as P�, which corresponds to

Theorem 8 indeed. And finally for the combined identification problem, the above
statements correspond exactly to Theorem 12. As a conclusion, we can state that
the combined Theorem contains the deterministic and stochastic Theorem as special
cases. In any subspace algorithm, it should thus be possible to recognize the oblique
projectionOi as playing an important role.

Following from this, it can also be seen that the first deterministic algorithm the third
stochastic algorithm and the second combined algorithm are virtually the same. All
three algorithms compute two oblique projections, determine �i from a singular value
decomposition and solve the system matrices from a simple set of equations using the
states. Unfortunately, as indicated in Section 4.4.2, the algorithm is asymptotically
biased for the combined case for a finite number of block rows i.

The unbiased combined algorithm on the other hand (and also the robust combined
algorithm), is similar to the second deterministic identification algorithm. It can also
be shown to coincide with the third stochastic identification algorithm (when replacing
zeros for the inputs). As a conclusion, we can state that the unbiased and robust
combined algorithm will work well for all three cases, and boil down to the third
stochastic algorithm for purely stochastic systems and to an algorithm similar to the
second deterministic algorithm for the purely deterministic case.

Finally we note that it is also possible to model combined systems with the stochastic
identification theory of Chapter 3. Therefore, the inputs and outputs of the combined
process are considered as outputs of a stochastic process. After the identification, the
stochastic model is converted to a combined deterministic-stochastic model. See for
instance [DG 76] [NA 81] for more details.
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4.6 CONCLUSIONS

In this Chapter we have treated the subspace identification of combined determinis-
tic-stochastic systems. The concept of a bank of non-steady state Kalman filters
has been extended from the stochastic to the combined case. As in the previous
Chapters, it has been shown in two Theorems how the Kalman filter state sequence
and the extended observability matrix can be extracted directly from input-output
data. Published combined deterministic-stochastic identificationalgorithms have been
shown to be special cases of the main Theorem. An asymptotically unbiased and a
(simpler) asymptotically biased algorithm have been presented. Modifications and
optimizations of the first algorithm have lead to a robust, practical algorithm. Finally,
the connections between the three main Theorems of this book have been indicated.



5
STATE SPACE BASES AND

MODEL REDUCTION

In this Chapter we describe how the state space basis of models identified with subspace
identification algorithms can be determined. It is shown that this basis is determined
by the input spectrum and by user defined input and output weights (the weights
introduced in the three main Theorems of the previous Chapters).

The connections between subspace identification and frequency weighted balancing
are explored in two main Theorems. The state space basis of the subspace identified
models is shown to coincide with a frequency weighted balanced basis. The effects for
reduced order model identification are elaborated on.

In the literature, the choice of the state space bases has been treated for the deterministic
case in [MR 93] in which it is described how for purely deterministic cases a balanced
state space basis can be obtained for i � �. In [AK 90] the problem is treated
for purely stochastic systems. In this Chapter, we show how the state space basis of
combined deterministic-stochastic systems can be determined (see also [VODM 95b]).
The results of [AK 90] and [MR 93] are just special cases of this general treatment.

We show that by a proper choice of the weighting matricesW� andW� in Theorem 12,
the state space basis of the resulting model can be determined beforehand. The choice
of the weighting matrices is illustrated with an example.

This Chapter is organized as follows. In Section 5.2 we introduce some notation.
Section 5.3 introduces the concepts of frequency weighted balancing. In Section
5.4 the two main Theorems are presented. These Theorems connect the frequency
weighted balancing result to the subspace identification result of Theorem 12. Section
5.5 addresses the problem of reduced order identification. Finally Section 5.6 contains
a simulation example and Section 5.7 the conclusions.

135
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5.1 INTRODUCTION

We consider the combined deterministic-stochastic identification as described in Figure
4.1. As was stated before, the state space matrices A�B�C�D�Q� S�R are only
recovered up to within a similarity transformation. Alternatively, one could state that
�i and eXi are only determined up to within a non-singular similarity transformation
T � Rn�n :

�i 	 �iT �eXi 	 T�� eXi �

Inspired by this ambiguity, the following question is raised: In which state space basis
are �i and eXi determined when a subspace method is used to estimate them ? We
have already seen that this basis is a function of the weights W� and W� (Remark 5
on page 43 for Theorem 2 and similar remarks for Theorems 8 and 12), and that by a
proper choice of these weights, the basis can be altered in a user controlled manner,
the elements of which will be explored in this Chapter.

We show that in the framework of Enns [Enn 84], the state space basis corresponds to
an input and output frequency weighted balanced basis. The weights are function of the
input (uk) applied to the system and of the weighting matrices W� and W� introduced
in Theorem 12. By proper choice of these weighting matrices, the state space basis
can be influenced in a frequency specific way. Furthermore, it will be shown that the
singular values S� used to determine the system order have a clear interpretation from
a linear system theoretical point of view.

We present two Theorems that link the state space basis of the identified model to a
frequency weighted balanced basis. These Theorems introduce specific choices for
the weighting matrices, such that the system is identified in a predefined state space
basis. As special cases, we will investigate the algorithms of the literature [Lar 90]
[VODM 93b] [VD 92] [VOWL 93] and we will show which state space basis is used
by these algorithms.

A nice side result is the lower order identification problem. Since the basis in which the
state space matrices are identified is well defined and is frequency weighted balanced,
it is easy to truncate the model after identification to obtain a lower order model. This
corresponds exactly to the technique of frequency weighted model reduction of Enns
[Enn 84]. This observation allows for an easy and straightforward identification of
lower order models directly from input-output data. The weighted H-infinity norm
of the difference between the original model and the reduced order model can be
approximated by two times the sum of the neglected weighted Hankel singular values
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(two times the sum of the “tail”). The usefulness of the Theorems will be illustrated
by a simulation example.

5.2 NOTATION

Most of the notation will be drawn from the previous Chapter (Section 4.1.2). In this
Section we only introduce the new notation.

The model

Throughout the Chapter, we consider the model (4.1)-(4.3) in its forward innovations
form (see also Section 3.3) as:

xk�� � Axk �Buk �Eek � (5.1)

yk � Cxk �Duk � Fek � (5.2)

E�epe
T
q � � Il � �pq �

with E � Rn�l , F � Rl�l , and the innovations ek � Rl . The relation between this
model and the forward innovation model of Figure 3.4 is as follows:

F � 
�� � CPCT ���� �

E � KfF �

On the other hand, to go from this model to the model of Figure 3.4, the following
transformations can be applied:

Kf � EF�� �

E�epe
T
q � � 
FF T � � �pq �

There is no real difference between the two representations. For the intuitive under-
standing of the concepts in this Chapter it is however easier to use (5.1)-(5.2).
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Block Hankel matrices

For shorthand notation, we define (as before, see Subsection 2.1.2):

Up
def
� U�ji�� � Uf

def
� Uij�i�� �

Yp
def
� Y�ji�� � Yf

def
� Yij�i�� �

Ep
def
� E�ji�� � Ef

def
� Eij�i�� �

As before, and somewhat loosely we denote Up as the past inputs and Uf as the future
inputs. Similarly we denote Yp and Yf as the past respectively the future outputs and
Ep and Ef as the past and the future innovations. We assume that j �� throughout
this Chapter. This ensures that we are in the asymptotic regime (in the sense that
covariances can be replaced by sample covariances). As in the previous Chapters, the
user-defined index i should be large enough (larger than the order n of the system).
Even though i is not required to go to infinity for asymptotic consistency reasons as
was explained in the previous Chapters, in this Chapter we will assume that it goes to
infinity for simplicity.

The covariance matrix of the past inputs Ruu
p � Rmi�mi (as defined in Section 4.1.2)

will play an important role in several derivations:

Ruu
p � �	Up�Up


def
� Luup �
Luup �T �

where Luup � Rmi�mi is a lower triangular square root of Ruu
p obtained e.g. via a

Cholesky decomposition of Ruu
p or via a QR decomposition of Up.

The covariance matrix of the past inputs projected on the future inputs will also play
an important role:

Ruu
p�

def
� �	Up�U�f �Up�U

�
f



def
� Luup� �
L

uu
p��

T �

System related matrices

The extended (i � n) observability matrix �i and the reversed extended controllability
matrix �d

i were already defined in Section 2.1.2. The (reversed) stochastic extended
controllability matrix is defined as:

�s
i

def
�

�
Ai��E Ai��E � � � AE E

� � R
n�li �
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The block Toeplitz matrix Hd
i containing the deterministic Markov parameters has

been defined in Section 2.1.2. We also define the block Toeplitz matrices containing
the Markov parameters of the stochastic subsystem as:

Hs
i

def
�

	BB

F � � � � �
CE F � � � �
� � � � � � � � � � � �

CAi��E CAi��E � � � F

�CCA � R
li�li �

The (non-steady state) Kalman filter state sequence eXi was defined in Theorem 12.
The system (5.1)-(5.2) can be considered as a system with m � l inputs (uk and ek)
and l outputs (yk). Just as for the purely deterministic case (see Chapter 2, equations
(2.5)-(2.7)), we can write the Input-Output equations for (5.1)-(5.2) as:

Yp � �iXp �Hd
i Up �Hs

i Ep � (5.3)

Yf � �iXf �Hd
i Uf �Hs

i Ef � (5.4)

Xf � AiXp ��d
iUp ��s

iEp � (5.5)

with:

Xp �
�
x� x� � � � xj��

�
�

Xf �
�
xi xi�� � � � xi�j��

�
� (5.6)

where the xk’s are the states of the forward innovations model (5.1)-(5.2). We will
consider the asymptotic behavior of the subspace algorithms not only when the number
of measurements goes to infinity (j ��), but also when the number of block rows i
goes to infinity. In that case, the bank of Kalman filters becomes a bank of steady-state
Kalman filters and the following Lemma is applicable:

Lemma 1

For i � � and A asymptotically stable, the Kalman filter state sequence eXi can be
rewritten as: eXi � �d

iUp ��s
iEp � (5.7)

Moreover, the sequence eXi becomes a steady state Kalman filter sequence and thuseXi � Xf , where Xf is the forward innovation state sequence (5.6).

The proof of the Lemma can be found in [VODM 95b].
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Transfer and weighting functions

TheZ-transforms ofuk and yk are denoted by respectivelyU
z� � Cm andY 
z� � C l ,
while the spectral factor of ek is denoted byE
z� � C l . From (5.1)-(5.2) we then find:

Y 
z� � G
z�U
z� �H
z�E
z� �

with

G
z� � D � C
zIn �A���B � C
l�m �

H
z� � F � C
zIn �A���E � C
l�l �

The spectral factor ofuk is denoted bySu
z� � Cm�m : U
z�UT 
z��� � Su
z�S
T
u 
z

���
with all poles of Su
z� and S��u 
z� inside the unit circle. For instance when uk is
generated by sending white noise through a stable and inversely stable filter, then the
spectral factor Su
z� is equal to the transfer matrix of this filter. The spectral fac-
tor Su
z� contains information about the energy distribution of uk in the frequency
domain. We define the input and output weighting matrix functions as:

Wu
z�
def
� Du � Cu
zInu �Au�

��Bu � C
m�m �

Wy
z�
def
� Dy � Cy
zIny �Ay�

��By � C
l�l �

From the Markov parameters of these weighting transfer matrices, the weighting
matrices Wu and Wy can be formed:

Wu
def
�

	BBBB

Du � � � � � �
CuBu Du � � � � �

CuAuBu CuBu Du � � � �
� � � � � � � � � � � � � � �

CuA
i��
u Bu CuA

i��
u Bu CuA

i��
u Bu � � � Du

�CCCCA � R
mi�mi �

Wy
def
�

	BBBB

Dy � � � � � �
CyBy Dy � � � � �

CyAyBy CyBy Dy � � � �
� � � � � � � � � � � � � � �

CyA
i��
y By CyA

i��
y By CyA

i��
y By � � � Dy

�CCCCA � R
li�li �

The distinction between the matrix Wu and the transfer matrix Wu
z� should be clear
from the complex argument z and the context.
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�k

ek

yk
�k

uk

H
z�

G
z�

Wy
z�

Wu
z�

Figure 5.1 Cascade system used for the interpretation of frequency weighted balancing.
The weights Wu�z� and Wy�z� are user defined. Note that the noise input ek has no
extra weight, since from an input-output point of view, this weight is indistinguishable from
H�z�.

5.3 FREQUENCY WEIGHTED BALANCING

In this Section we recall the results of Enns [Enn 84] for frequency weighted balancing.
We also show how the frequency weighted Grammians introduced by Enns can be
calculated from the extended observability and controllability matrices and from the
weighting matrices.

Well known in system theory is the notion of balanced realization [Moo 81]. Enns
[Enn 84] developed a frequency weighted extension of this result. The idea is that
input and output frequency weights can be introduced as to enhance certain frequency
bands in the balancing procedure.

The reasoning of Enns goes as follows. Consider the input weighting function Wu
z�
and the output weighting function Wy
z�, and put these functions in series with the
transfer function of the original system (5.1)-(5.2) (see also Figure 5.1). We call the
combined input of this weighted system	k (the input ofWu
z� combined with ek) and
the output of the weighted system 
k. Enns now considers the two following (dual)
questions:

1. What set of states could be part of the state-response to some input 	k (with
k	kk� � 
); with zero initial conditions for the states of the system and of the
input weighting Wu
z�. We call this set X �Wu
z��.

2. What set of initial states could produce an output 
k (with k
kk� � 
); with zero
input and zero initial conditions for the states of the output weighting Wy
z�.
This set will be denoted by X �Wy
z��.
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The solution to these two questions is given by means of the frequency weighted
controllability and observability Grammians.

Definition 8 Frequency Weighted Controllability Grammian

The solution P�� of the Lyapunov equation:�
A BCu
� Au

��
P�� P T

��

P�� P��

��
A BCu
� Au

�T

�

�
BDu E
Bu �

��
BDu E
Bu �

�T
�

�
P�� P T

��

P�� P��

�
(5.8)

is called the Wu
z� weighted controllability Grammian and is denoted by:

P �Wu
z��
def
� P�� �

Note that the weight of the innovations ek is always taken equal to Il (see also Figure
5.1). We thus should write P �Wu
z�� Il� but this would make the notation more
complicated.

Definition 9 Frequency Weighted Observability Grammian

The solution Q�� of the Lyapunov equation:�
A �

ByC Ay

�T �
Q�� Q��

QT
�� Q��

��
A �

ByC Ay

�

�
�
DyC Cy

�T �
DyC Cy

�
�

�
Q�� Q��

QT
�� Q��

�
(5.9)

is called the Wy
z� weighted observability Grammian and is denoted by:

Q�Wy
z��
def
� Q�� �

Enns provided the answer to the questions raised above using these weighted Gram-
mians. The sets X �Wu
z�� and X �Wy
z�� can be described by two ellipsoids as:

X �Wu
z�� � f x � R
n�� such that xT 
P �Wu
z���

��x � 
 g �
X �Wy
z�� � f x � R

n�� such that xTQ�Wy
z��x � 
 g �
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The two weighted GrammiansP �Wu
z�� andQ�Wy
z�� determine the state space basis
uniquely. Just as for the classical balancing procedure, a similarity transformation can
be found that makes both weighted Grammians diagonal and equal to each other. In
that case the system is said to be Frequency Weighted Balanced.

Definition 10 Frequency Weighted Balancing

The system (5.1)-(5.2) is called �Wu
z��Wy
z�� frequency weighted balanced when:

P �Wu
z�� � Q�Wy
z�� � � �

where � � diagonal���� ��� � � � � �n�. The diagonal elements �k are called the fre-
quency weighted Hankel singular values, and will generally be denoted by:

�k�Wu
z��Wy
z�� �

Even though (5.8) and (5.9) are easily solvable forP �Wu
z�� andQ�Wy
z��, we present
a different way to compute these weighted Grammians. These expressions will enable
us to make the connection between subspace identification and frequency weighted
balancing.

Lemma 2

With A asymptotically stable and i��, we have:

P �Wu
z�� � �d
i ��WuW

T
u ��
�

d
i �
T ��s

i 
�
s
i �
T � (5.10)

Q�Wy
z�� � �Ti ��W
T
y Wy���i � (5.11)

A proof can be found in Appendix A.8. FixingP �Wu
z�� andQ�Wy
z�� is equivalent to
fixing the state space basis of the model. In the next Section we show how the weighted
controllability and observability Grammians corresponding to the state space basis of
�i and eXi can be determined from the weights W� and W�.
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Enns

Wu�z��Wy�z�

Theorem 12
W��W�

Theorem 13
N4SID , MOESP

Theorem 14
CVA

� �

W��W� � F�Wu�Wy�

Figure 5.2 Interplay between different Theorems. In Chapter 4 we introduced the main
combined deterministic-stochastic Theorem 12. This Theorem involved two weighting
matrices W� and W�. The theory of Enns on the other hand involves two weighting
matrices Wu�z� and Wy�z�, with which we can relate two matrices of Markov parameters
Wu andWy. In the Theorems of this Chapter (Theorem 13, 14), we described how to choose
W� and W� as a function of the matrices Wu and Wy so that the basis of the identified
system matrices can be interpreted in Enns’s framework. We present two Theorems, since
the first Theorem 13 encompasses the special cases of N4SID and MOESP (and balanced),
while the second Theorem 14 has as a special case the canonical variate algorithm CVA.

5.4 SUBSPACE IDENTIFICATION AND FREQUENCY

WEIGHTED BALANCING

In this Section we consider two Theorems that connect the results of frequency weighted
balancing to the results of subspace identification. We show in these two Theorems
how the weights W� and W� influence the Grammians P �Wu
z�� and Q�Wy
z��

corresponding to the state space basis of �i and eXi.

The two Theorems presented in this Section introduce certain choices of the weighting
matrices W� and W� (see Theorem 12) that lead to a �i and eXi corresponding to a
frequency weighted balanced basis. The reason why there are two Theorems and not
just one is because the N4SID [VODM 93b] and MOESP [VD 92] algorithm fit in the
framework of the first Theorem while the Canonical Variate Analysis algorithm (CVA)
[Lar 90] fits into the framework of the second Theorem. In order to cover the class
of all published combined deterministic-stochastic subspace identification algorithms,
we present both Theorems. See also Figure 5.2 and Table 5.1.
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Th. Section W� W� Wu Wy Wu�z� Wy�z�

N4SID 13 5.4.2 (5.12) (5.13) Luup Ili Su�z� Il�z�

MOESP 13 5.4.2 (5.12) (5.14) Luu
p�

Ili Su�z� (wn) Il�z�

Balanced 13 5.4.2 (5.12) (5.13) Imi Ili Im�z� Il�z�

CVA 14 5.4.4 (5.17) (5.18) Luu
p�

� Su�z� (wn) H���z�

Table 5.1 Overview of the interplay between W�, W� and Wu, Wy and Wu�z�, Wy�z�.
The abbreviation (wn) means that that result is only valid for white noise input signals.

5.4.1 Main Theorem 1

Theorem 13 - Main Theorem 1

Under the conditions of Theorem 12 and with A asymptotically stable and i��, we
have with:

W� � Wy � (5.12)

W� � UT
p �
R

uu
p ����Wu�
L

uu
p ����Up �	U�p

� (5.13)

or

W� � 
Up�U
�
f �

T �
Ruu
p��

���Wu�
L
uu
p��

���Up�U
�
f �	U�p �U

�
f
� (5.14)

that theWu
z� weighted controllability Grammian andWy
z� weighted observability
Grammian of the state space basis corresponding to �i and eXi are given by (with S�
from equation (4.25)):

P �Wu
z�� � S� � (5.15)

Q�Wy
z�� � S� � (5.16)

A proof of the Theorem can be found in Appendix A.9.

The Theorem implies that the state space basis of �i and eXi for the choice of W� and
W� given by (5.12)-(5.13) or (5.12)-(5.14) is the �Wu
z��Wy
z�� frequency weighted
balanced basis. It also implies that the singular values S�, which are determined
directly from the data, are the �Wu
z��Wy
z�� frequency weighted Hankel singular
values. The consequences of this Theorem for reduced order identification will be
further elaborated on in Section 5.5.
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There are two possible choices for the weighting matrix W� ((5.13) and (5.14)) since
the N4SID algorithm is a special case of the first choice (5.13), while the MOESP
algorithm is a special case of the second choice (5.14), as will be discussed in the next
Subsection.

5.4.2 Special cases of the first main Theorem

Even though the weighting matrices Wu and Wy in the first main Theorem can be
chosen arbitrarily, there are some special cases that lead to algorithms published in the
literature.

N4SID

Corollary 2 - N4SID

The N4SID algorithm described in Subsection 4.3.1 corresponds to the following
choice of weighting matrices in Theorem 13 (use formula (5.12) and (5.13)):

Wu � Luup �

Wy � Ili �

A proof of the Corollary can be found in Appendix A.10. The proof shows that for this
special choice of weights Wu and Wy , the weighting matrices W� � Ili and W� � Ij
are recovered.

It is easy to verify that (for i��) the lower triangular matrixLuup corresponds to the
Toeplitz matrix generated by the Markov parameters of the spectral factor Su
z� of
uk. This implies that the input weight Wu
z� in the balancing procedure corresponds
to the spectral factor Su
z�.

MOESP

Corollary 3 - MOESP

The MOESP algorithm described in Subsection 4.3.2 corresponds to the following
choice of weighting matrices in Theorem 13 (use formula (5.12) and (5.14)):

Wu � Luup� �

Wy � Ili �
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A proof of the Corollary is straightforward (Appendix A.10). The proof shows that
for this special choice of weights Wu and Wy, the weighting matrices W� � Ili and
W� � 	U�

f
are recovered.

Unfortunately, the lower triangular matrix Luup� does not correspond to the Toeplitz
matrix generated by the Markov parameters of the spectral factor Su
z� of uk (Luup�
is not equal to any Toeplitz matrix in the general case). Only for a white noise input
(where Luup � Luup� � Ili) can we state that the matrix Luup� contains the Markov
parameters of Su
z�. The interpretation of the state space basis for the MOESP
algorithm with colored noise inputs is still an open problem.

Balanced Realization

With the weighting matrices Wu � Imi, Wy � Ili we find (use formula (5.12) and
(5.13)):

P �Im
z�� � S� �

Q�Il
z�� � S� �

Now it is easy to verify that P �Im
z�� and Q�Il
z�� are equal to the unweighted
controllability respectively observability Grammian. This implies that the basis of �i
and eXi is the classical balanced basis as described in [Moo 81]. A similar result for
purely deterministic systems had been obtained in [MR 93]. It should be noted that
the result above also holds for purely deterministic systems, and in that sense this is
an extension of the result of [MR 93].

5.4.3 Main Theorem 2

Theorem 14 - Main Theorem 2

Under the conditions of Theorem 12 and with A asymptotically stable and i�� we
have with:

W T
� W� � ���	�YfW����YfW��


� (5.17)

W� � 
Up�U
�
f �

T �
Ruu
p��

���Wu�
L
uu
p��

���Up�U
�
f �	U�p �U

�
f
� (5.18)

that theWu
z�weighted controllability Grammian andH��
z�weighted observability
Grammian of the state space basis corresponding to �i and eXi are given by:

P �Wu
z�� � S� � (5.19)

Q�H��
z�� � S�
In � S���
�� � (5.20)
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A proof of the Theorem can be found in Appendix A.11. The Theorem states that both
P �Wu
z�� and Q�H��
z�� are diagonal (not equal). It thus implies that the state space
basis of �i and eXi is (within a diagonal scaling of the states) the �Wu
z�� H

��
z��
frequency weighted balanced basis. It also implies that the �Wu
z�� H

��
z�� frequency
weighted Hankel singular values can be expressed as (with �k the elements of S�):

�k �Wu
z�� H
��
z�� �

�kp

� ��k

�

The last formula is very suggestive since it only makes sense when �k � 
. It can
indeed be proven (see [VODM 95b]) that the diagonal elements of S� are the cosines
of the principal angles between the row spaces of Wp�W� and Yf �W� (where W� is
given as in Theorem 14):

S� � �Wp�W� � Yf �W�� �

From the fact that these cosines are always smaller than one, we can conclude that
for the specific choice of weights of Theorem 14, the singular values in S� are always
smaller than one.

The consequences of this Theorem for reduced order identification will be further
elaborated on in Section 5.5.

5.4.4 Special cases of the second main Theorem

Corollary 4 - CVA

The canonical variate analysis of Larimore [Lar 90] (see Subsection 4.3.3) corre-
sponds to a the choice of weighting matrix Wu � Luup� in Theorem 14.

The proof of this Corollary can also be found in [VODM 95b]. Just as for the MOESP
algorithm, we can state that when the input is white, the basis in which the CVA method
determines its state space model is the �H��
z�� Su
z�� weighted balanced basis. The
interpretation of the state space basis for the CVA algorithm with colored noise inputs
is still an open problem.

5.4.5 Connections between the main Theorems

Even though the two Theorems are basically different, it is possible to mimic the results
of the second main Theorem by using the appropriate weights in the first main Theorem.
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From (5.4) and Lemma 1 it is easy to show that for i�� andA asymptotically stable,
we have:

R def
� Yf�

�
Wp

Uf

��
� Hs

i Ef �

Knowing this, we can take the weighting matrices of the first main Theorem equal to
(use formula (5.12) and (5.13) or (5.14)):

Wu � Wu �

W T
y Wy � �RRT ��� �

The first equation (which is trivial) states that Wu can be chosen arbitrarily. We then
find straightforwardly that:

P �Wu
z�� � S� � (5.21)

Q�H��
z�� � S� � (5.22)

If we compare (5.19)-(5.20) with (5.21)-(5.22) we find that both results are similar.
Thus the application of these specific weights to the first main Theorem leads to a
model in (almost) the same basis as when we had used the weights of the second
main Theorem. The only difference is a diagonal scaling of the basis and the different
singular values S� that are calculated. It is easy to verify that for this specific choice
of weights, and with S��
� and S���� the singular values calculated by respectively the
first and the second main Theorem, we have for this specific choice of weights:


S�����
� � 
S��
��

�
In � 
S��
��
���� �

5.5 CONSEQUENCES FOR REDUCED ORDER

IDENTIFICATION

In this Section we apply the results of the two main Theorems to the identification of
lower order systems. The connections with frequency weighted model reduction are
exploited.

5.5.1 Error bounds for truncated models

An important consequence of the two main Theorems is the analysis of reduced
order identification. As has been proven in this Chapter, subspace identification
of a model of order n (the exact state space order) leads to a state space system
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that is �Wu
z��Wy
z�� frequency weighted balanced for the first main Theorem and
�Wu
z�� H

��
z�� frequency weighted balanced for the second main Theorem. This
nth order model can then be easily reduced to a model of lower order r by truncating
it as follows:

A �

� r n� r

r A�� A��

n� r A�� A��

�
� B �

� m

r B�

n� r B�

�
�

C �
� r n� r

l C� C�

�
� E �

� l

r E�

n� r E�

�
�

The reduced order model is described by the matrices: A��� B�� C�� D�E�� F . The
reduced transfer functions are denoted by:

bG
z� � D � C�
zIr �A���
��B� �bH
z� � F � C�
zIr �A���
��E� �

Enns [Enn 84] now suggested the following conjecture in his thesis:

Conjecture 1 Enns’s conjecture

When truncating a �Wu
z��Wy
z�� frequency balanced system, the infinity norm of the
weighted difference between the original and the reduced system can be upperbounded
by the neglected weighted Hankel singular values. In the framework of this Chapter
(see also Figure 5.1), this conjecture becomes:

kWy
z� � G
z�� bG
z� �Wu
z� j Wy
z� � H
z�� bH
z� � k�

� �

nX
k�r��

�k �Wu
z��Wy
z���

 � 
� � 
 � � � (5.23)

where 
 is small.

Let us pounder a bit about this conjecture. We have tried to find a simple expression for
an upper bound on 
, but didn’t succeed (as didn’t anyone else as far as we know, even
though the problem has been open since 1984). Even though the result is ambiguous
(
 has never been proven to be bounded, let alone to be small), the heuristic model
reduction technique seems to work very well in practice (see for instance [AM 89]
[WB 92]). In practice it turns out that, even though not a real upper bound, two times
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the sum of the neglected singular values gives a good indication about the size of the
error. In what follows, we will loosely state result (5.23) as:

kWy
z� � G
z�� bG
z� �Wu
z� j Wy
z� � H
z�� bH
z� � k�

� �

nX
k�r��

�k�Wu
z��Wy
z�� � (5.24)

This result very much resembles the result of [AF 87] were the truncation error is given
by two times the sum of the neglected Hankel singular values (two times the “tail”).
We will now apply this to the two main Theorems of this Chapter. We denote the
diagonal elements of S� by �k .

For Theorem 13:

kWy
z� � G
z�� bG
z� �Wu
z� j Wy
z� � H
z�� bH
z� � k� � �

nX
k�r��

�k �

For Theorem 14:

k H��
z� � G
z�� bG
z� �Wu
z� j H��
z� � H
z�� bH
z� � k�

� �

nX
k�r��

�kp

� ��k

� �

nX
k�r��

cotan
�k� �

where cotan
�k� is the co-tangent of the principal angle �k. As indicated before, these
values do not give “hard” bounds, but give an indication of the weighted reduction
error induced by reducing thenth order model to a model of order r. More importantly,
these equations state that the fit of the truncated lower order model will be good where
Wu
z� and Wy
z� (or H��
z�) are large. This implies that by a proper choice of
Wu
z� and Wy
z� the distribution of the error in the frequency domain can be shaped.
We find for the special cases:

N4SID

k � G
z�� bG
z� � Su
z� j � H
z�� bH
z� � k� � �
nX

k�r��

�k �

We can conclude that the error of the model will be small where the frequency content
of the input is large. This is a very intuitive result: much input energy in a certain
frequency band leads to an accurate model in that band. Also note that the error on the
noise model can not be shaped by the user.
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MOESP (white noise inputs)

k � G
z�� bG
z� � j � H
z�� bH
z� � k� � �

nX
k�r��

�k �

This result is restricted to white noise inputs (as indicated in Subsection 5.4.2).

Balanced basis

k � G
z�� bG
z� � j � H
z�� bH
z� � k� � �

nX
k�r��

�k �

Note that for this case the less than or equal sign is justified, since for (unweighted)
balanced model reduction two times the sum of the Hankel singular values is really an
upper bound for the truncation error (see for instance [AF 87]).

CVA (white noise inputs)

k H��
z� � G
z�� bG
z� � j H��
z� � H
z�� bH
z� � k�

� �

nX
k�r��

�kp

� ��k

�

We can conclude that the error will be small in frequency bands where the input to
noise ratio is large (the white noise input has a flat spectrum equal to 1). Also note that
the error on the noise model is a relative error. Again, this result is restricted to white
inputs (see Subsection 5.4.4).

Remarks & comments

For the purely stochastic case (G
z� � �), we see that the result for N4SID
reduces to:

kH
z�� bH
z�k� � �

nX
k�r��

�k �

For G
z� � � we find for N4SID that P �I
z�� � Q�I
z�� � S�, where P �I
z��
indicates the controllability Grammian of the forward innovation model (since
the deterministic part is equal to zero). This means that the forward innovation
model is balanced (in the regular sense [Moo 81]). Indeed, N4SID reduces for
the stochastic case to the UPC algorithm of Subsection 3.3.2 (cfr. the weightings
W� � Ili�W� � Ij), and as was already mentioned in that Subsection, Arun
& Kung [AK 90] showed that the forward innovation model is balanced in the
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deterministic sense. This also implies that we can write (exactly, see the results
of [AF 87]):

kH
z�� bH
z�k� � �

nX
k�r��

�k �

For the purely stochastic case (G
z� � �), we see that the result for CVA reduces
to:

kH��
z��H
z�� bH
z��k� � �

nX
k�r��

�kp

� ��k

� (5.25)

In this case, the weights of Theorem 14 reduce to W� � �
����
	Yf �Yf 


�W� � Ij ,
which are indeed the weights for the stochastic CVA as described in Subsection
3.3.3. This implies that the combined CVA of Subsection 4.3.3 reduces to the
stochastic CVA of Subsection 3.3.3 in this case. Now, we know also that for the
stochastic CVA, the stochastic model is “stochastically balanced” (see Definition
6). In [WS 91] the following result is derived for stochastically balanced models:

kH��
z��H
z�� bH
z��k� � �
nX

k�r��

�k

� �k

� (5.26)

Even though there is a resembles between (5.25) and (5.26), they are not equal.
First, it should be noted that the expression in (5.25) is smaller than the expression
in (5.26) (for �k � 
, which is the case). This means that the bound given by
Enns is too small (recall the factor 
). However, the difference between the two
expressions is smaller than 
�� for �k � ���. Or in other words, when the angles
that were discarded are larger than �� degrees, the unknown alpha factor accounts
for about 
��. More results on the connections between stochastic balancing and
Enns’s theory can be found in [SDM 94].

5.5.2 Reduced order identification

The H-infinity norm bounds stated above were derived for the case where first the nth
order model was identified, after which it was truncated to a model of order r (we
will call this the truncated lower order model, see Figure 5.3). It is very tempting to
extrapolate these results to the case where the rth order model is identified directly by
the subspace algorithm, without first identifying the nth order model. This can easily
be done by truncating U�, S� and V� (in Theorem 12) to an Rli�r , Rr�r and Rj�r

matrix respectively. The resulting rth order model depends on the exact details of how
the system matrices are extracted from �i and eXi (we will call this the identified lower
order model, see Figure 5.3). The identified lower order model and the truncated lower
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input-output
data uk � yk

Identification
Model of order n

Identification
Inspect singular

values

Model reduction
Truncated model

of order r

Identification
Identified model

of order r

Bounds:
Enns’s Conjecture

Bounds:
Open problem

� �

� �

� �

Figure 5.3 The left hand side of the Figure illustrates how first an nth order model is
obtained through identification, after which it is truncated to obtain the truncated lower order
model. The right hand side illustrates how the reduction can be done in the identification
step. This leads to the identified lower order model.

order model will be different (in general). However, we experienced from simulations
that both models are “close”. The H-infinity norm results do not hold any more now
(note that in practical situation they would never hold, since i� j 
� � in practice),
but the norms can be used as guidelines for the choice of Wu
z� and Wy
z� and as a
crude estimate of the size of the errors. This will be further illustrated by an example
in Section 5.6.

We conclude this Section with the remark that the implementation of the algorithms
with the weights W� and W� can easily and computational efficiently be done by
making use of the RQ decomposition as established in Section 6.1.
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5.6 EXAMPLE

In this section a simulation example is presented to illustrate the effect of different
weightings W� and W� for the two main Theorems.

The system under consideration is (in forward innovation form):

A �

	BB

����� ����� � �

������ ����� � �
� � ������ ������
� � ����� ������

�CCA � B �

	BB

������
������
���
�


�������

�CCA �

C �

	BB

�������

����


�������
��
���

�CCA
T

� E �

	BB

�������
��

��
������

���
���

�CCA �

and D � ����
��, F � ������. The innovation sequence ek is a zero mean, unit
variance, Gaussian white noise sequence of 1000 points. The number of block rows
in the block Hankel matrices is chosen equal to 30. 100 different input and innovation
sequences are generated according to the scheme outlined below. With these inputs
the output yk is simulated using Matlab. For each input output pair, a state space
model of order 4 and of order 2 (identified lower order model) is identified using
subspace identification. The model of order 4 is also truncated to order 2 (truncated
lower order model). We define Wlow
z� as the fourth order Butterworth low pass filter
with cut-off frequency equal to ��� times the Nyquist frequency (with Ts � 
, the
Nyquist frequency is equal to ���). Similarly, Whigh
z� is defined as the fourth order
Butterworth high pass filter with the same cut-off frequency. We consider six different
cases (different inputs uk and weighting matrices W� and W�):

Case 1: uk a zero mean, unit variance white noise sequence and W� and W� are
computed from the first main Theorem (5.13) with Wu � Luup and Wy � I��.
This corresponds to N4SID as explained in Section 5.4.2.

Case 2: uk is the sum of a zero mean, unit variance white noise sequence filtered
with Wlow
z� and superposed on that a zero mean, ������ variance white noise
sequence. W� and W� are computed from the first main Theorem (5.13) with
Wu
z� � I�� andWy
z� � I��. This corresponds to a balanced basis as explained
in Section 5.4.2.

Case 3: uk a zero mean, unit variance white noise sequence and W� and W� are
computed from the first main Theorem (5.13) with Wu � Luup and Wy
z� �
Wlow
z�.
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Case 4: uk a zero mean, unit variance white noise sequence and W� and W� are
computed from the first main Theorem (5.13) with Wu � Luup and Wy
z� �
Whigh
z�.

Case 5: uk a zero mean, unit variance white noise sequence and W� and W� are
computed from the second main Theorem with Wu � Luup . This corresponds to
CVA as explained in Section 5.4.4.

Case 6: uk a zero mean, unit variance white noise sequence and W� and W� are
computed from the second main Theorem with Wu
z� �Wlow
z�.

The extraction of the system matrices A�B�C�D�E� F is done as described in Figure
4.8. The average� fourth order identified deterministic and stochastic transfer matrix
was for all cases almost indistinguishable from the original fourth order transfer matrix.
Only for case 2 there was a difference at high frequencies due to the small excitation in
that frequency band (colored input uk). It was also verified that the average weighted
Grammians P and Q of the identified fourth order systems were diagonal. On top
of that, for Case 1-4 the average weighted controllability Grammian was equal to the
average weighted observability Grammian (as predicted by Theorem 13). For Case 5-6
the two Grammians were connected through the relationship (as predicted by Theorem
14):

Q�H��
z�� � P �Wu
z��
I� � P �Wu
z��
���� �

Figure 5.4 shows the average singular values (Case 1-4) and angles (Case 5-6) for the 6
different cases. Clearly these singular values and angles are altered by using different
weighting matrices.

Figure 5.5 shows the exact fourth order model, together with the average identified
second order model and the average truncated second order model (see Section 5.5 for
more details). The effect of the weights is clearly visible.

Table 5.2 shows the errors between the second order identified transfer function and
the original fourth order transfer function. These errors were experimentally computed
from the average over the 100 experiments. An upper bound for the errors was also
predicted from the average weighted Hankel singular values (see also Section 5.5).
Clearly the upper bounds hold for this example.

�All average properties of this example were calculated as the sample mean of the properties of the 100
estimated models. For instance, the average transfer matrix is calculated as the sample mean of the 100
transfer matrices.
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Figure 5.4 The average singular values (Case 1-4) and angles (Case 5-6) that indicate the
model order. For Case 1 and 5, the order is clearly equal to 4 (this is expected, since the
data was generated by a fourth order system). For Case 2,3,4 and 6, the order is less clear.
This is not unexpected, since one of the dynamic modes is filtered out by introducing either
Wlow�z� or Whigh�z�.
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Figure 5.5 Original transfer function (full line), average second order identified transfer
function (dashed line) and average second order truncated transfer function (dotted line).
The choice of weights determines the shape of the second order identified transfer function.
When the weight or input has much energy at low frequencies, the lower resonance is retained
(Case 2,3,6). On the other hand when the weight has more energy at high frequencies (Case
4), the high frequency resonance is retained. The weight used in Case 5 (H���z�) gives
poor results for this example. For case 1,3,4 and 6, the lower order truncated and identified
transfer function are almost equal. For case 2 and 5 there is a difference. For case 2, this
is due to the bad excitation at higher frequencies, and for case 5 it is due to the bad second
order approximation of the original fourth order system.
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Case Norm Exper. Predicted

1 k
G
z�� �G
z��k� 9.2 19.0

2 k
G
z�� �G
z��Wlow
z�k� 1.4 3.6

3 kWlow
z�
G
z�� �G
z��k� 2.7 4.4

4 kWhigh
z�
G
z�� �G
z��k� 2.1 5.3

5 kH��
z�
G
z�� �G
z��k� 13.9 36.7

6 kH��
z�
G
z�� �G
z��Wlow
z�k� 5.1 9.6

Table 5.2 Predicted upper bound from Formula (5.23) with � � � and experimentally
computed H-infinity norms of the difference between the original fourth order transfer
function and the identified second order transfer function.

5.7 CONCLUSIONS

In this Chapter we have shown that the state space basis of the subspace identified
models corresponds to a frequency weighted balanced basis. The frequency weights
are determined by the input spectrum and by user defined input and output weighting
functions. The effect of the weights on reduced order system identification has been
treated. Finally an example was presented to illustrate the main Theorems.
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6
IMPLEMENTATION AND

APPLICATIONS

“Less is more � � �
and my architecture is very little, indeed”

Le Corbusier, 1930
cited by Prof. Stephen Boyd, Stanford University, August 1992

(while referring to GUI’s).

In this Chapter we take the leap from theory to practice, which involves two major
parts:

Implementation: In a first Section 6.1 we describe how standard numerical tools like
the QR and Singular Value decomposition can be used to translate the geometric
operations of Section 1.4 and thus the subspace identification algorithms of this
book.

To use (and test) the algorithms of the preceding Chapters in practice, they should
be implemented. The implementation in Xmath resulted in a commercially avail-
able system identification toolbox ISID�. It contains, apart from the subspace
algorithms described in this book, a whole scale of processing, classical identifi-
cation and validation utilities. The toolbox has, as one of the first, a graphical user
interface GUI, which reduces the user-threshold for novice users significantly.
This is the topic of Section 6.2.

This book also contains the implementation of the subspace algorithms as a
collection of Matlab functions. Since these files do not contain the innovative
features of the GUI of ISID, we postpone the description to Appendix B.

�ISID stands for Interactive System Identification. Xmath is a product of Integrated Systems Inc., CA,
USA.

161
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Application: In Section 6.3 we describe in detail how the GUI driven toolbox ISID
is used to identify a discrete time linear model of a glass tube manufacturing
process, based on which an optimal controller is designed. In Section 6.4 we
present the results of the application of the Matlab implementation of the robust
subspace algorithm to ten practical examples.

6.1 NUMERICAL IMPLEMENTATION

In this Section we describe how the algorithms presented in this book can be im-
plemented in a numerically stable and efficient way. We make use of the RQ and
the singular value decomposition. It would lead us too far to go into the imple-
mentation details of all algorithms presented in this book. Only the robust com-
bined deterministic-stochastic identification algorithm (algorithm 3, Figure 4.8) will
be worked out totally. The implementation of other combined algorithms can be easily
derived from it. Implementing the specific deterministic and stochastic algorithms can
also be done in a similar way. In [VODM 93a] more specific details are given on how
to implement the canonical variate analysis through a quotient singular value decom-
position QSVD. Other specific implementations can be found in for instance [Aok 87]
[DMo 88] [MDMVV 89] [VODM 94a] [VD 92] [VD 91]. We refer the reader to those
papers for further details.

All Matlab files of Appendix B have been implemented using the techniques of this
Section. For technical details we refer to Appendix B and the M-files.

6.1.1 An RQ decomposition

The common factor in the implementation of all the algorithms is the RQ decomposition
of the block Hankel matrix formed of the input and output measurements�:

H def
�


p
j

�
U�j�i��

Y�j�i��

�
� 
z �
�R��m�l�i�j

� R�QT �

�The scalar ��
p
j is used to be conform with the definition ofEj.
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with QT � R��m�l�i�j orthonormal (QTQ � I��m�l�i) and R � R��m�l�i���m�l�i

lower triangular�. This decomposition has several advantages:

The main advantage will only become clear at the end of this Section where it will
be noted that in the final calculations of the system matrices, only the R factor
of this decomposition is needed. This implies that in this first step the Q matrix
should not be calculated�. Since typically j � �
m � l�i, this implies that the
computational complexity and memory requirements are reduced significantly.

As will be indicated in the next Subsection, all geometric operations can be easily
expressed in terms of this RQ decomposition.

The amount of computation needed to obtain the R factor of the factorization is
of the order of magnitude i��j. However, the speed of this factorization can be
drastically improved by making use of the Hankel structure. Indeed, as described
in [CXK 94a] [CXK 94b] [CK 95] [Cho 93] the displacement theory can be used
to obtain a fast decomposition of the block Hankel matrix. We will not go into
the technical details of the procedure, however we would like to note that:

– The computational load reduces from order of magnitude i��j to i�j. This
can be significant.

– A straightforward implementation of the Schur algorithm leads to problems
with rank deficient Hankel matricesH. The matrixH becomes rank deficient
when the data was generated by a purely deterministic system. This is not
often the case in practice. However systems with many outputs can generate
Hankel matricesH that are nearly rank deficient. This is because the outputs
become almost co-linear. Also, heavily colored input signals uk can lead
to nearly rank deficient matrices H. A numerically stable implementation
of block Hankel matrices should thus be pursued. Until then, we suggest to
use any classical RQ decomposition algorithm. This is also why we didn’t
include this fast decomposition in the software accompanying the book,
even though it is illustrated in the examples of Section 6.4.

�Due to historical reasons we use the symbolsR andQ. They should not be confused with the covariance
matrices R and Q. This should pose no problem since the R and Q of the RQ decomposition generally
have a subscript.

�The matrix Q can be viewed as an auxilary matrix needed for the derivations.
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For convenience of notation, the decomposition is partitioned as follows:


p
j

�
U�j�i��

Y�j�i��

�
�


p
j

	BB

Up
Uf
Yp
Yf

�CCA �

p
j

	BB

U�
p

U�f
Y �
p

Y �f

�CCA

� R�QT �

p
j

	BBBBBB


j

mi U�ji��

m Uiji
m
i� 
� Ui��j�i��
li Y�ji��
l Yiji
l
i� 
� Yi��j�i��

�CCCCCCA

�

	BBBBBB


mi m m
i� 
� li l l
i� 
�

mi R�� � � � � �
m R�� R�� � � � �
m
i� 
� R�� R�� R�� � � �
li R�� R�� R�� R�� � �
l R�� R�� R�� R�� R�� �
l
i� 
� R�� R�� R�� R�� R�� R��

�CCCCCCA

	BBBBBB


j

QT
�

QT
�

QT
�

QT
�

QT
�

QT
�

�CCCCCCA �

We will use the shorthand Matlab notationR	���
�	���
 for the submatrix ofR consisting
of block rows � to � and block columns 
 to �, and the shorthandQT

��� in a similar way.
For instance:

R	���
�	���
 �

�
R�� � �
R�� R�� R��

�
�

and also:

R	���
�	���
 �

�
R�� �
R�� R��

�
�

For transposed matrices, the subscript has priority over the transposition:

RT
	���
�	���
 �

�
R	���
�	���


�T
�

QT
��� � �Q����

T
�

6.1.2 Expressions for the geometric operations

In this Subsection we give expressions for the geometric operations introduced in
Section 1.4 in terms of the RQ decomposition of the previous Subsection.
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Orthogonal projections

Orthogonal projections can be easily expressed in function of the RQ decomposition.
We first treat the general case A�B, where A and B consist of any number of rows of
H, which implies that they can be expressed as linear combinations of the matrix QT

as:

A � RAQ
T �

B � RBQ
T �

we thus get:

A�B � �	A�B
��
y
	B�B
�B

� �RAQ
TQRT

B ���RBQ
TQRT

B �
y�RBQ

T

� RAR
T
B ��RBR

T
B �
y�RBQ

T �

In many cases, this can be even further simplified. Consider for instance Zi (4.18):

Zi � Yij�i���

�
U�j�i��

Y�ji��

�
�

We have:

RA � R	���
�	���
 �

RB � R	���
�	���
 �

Assume (for simplicity) that RB is of full row rank. We then get (note that the last two
block columns of RB are zero):

Zi � R	���
�	���
R
T
	���
�	���
�R	���
�	���
R

T
	���
�	���
�

��R	���
�	���
Q
T

� R	���
�	���
R
T
	���
�	���
�R	���
�	���
R

T
	���
�	���
�

��R	���
�	���
Q
T
���

� R	���
�	���
� R
T
	���
�	���
R

�T
	���
�	���
� 
z �

�I

� R��	���
�	���
R	���
�	���
� 
z �
�I

�QT
���

� R	���
�	���
Q
T
��� �

which is a very simple expression for Zi. In a similar way, the projection on the
orthogonal complement of the row space of a given matrix can be computed. For
instance:

	A� � Ij �AT �AAT �yA

� Ij �QRT
A�RAR

T
A�
yRAQ

T

� Q��I��m�l�i �RT
A�RAR

T
A�
yRA��Q

T �
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where the middle matrix (between the square brackets) has “small” dimensions. Once
again this expression can often be simplified. For instance the projection on the
orthogonal complement of U�ji�� can be written as:

	U�
�ji��

� Q��I��m�l�i �
�

RT
��

�

�
�R��R

T
���
��
�
R�� �

�
��QT

� Q��I��m�l�i �
�

Imi �
� �

�
��QT

� Q���Q
T
��� �

Oblique projections

The oblique projection can also be written in function of the RQ decomposition. For
instance with:

A � RAQ
T �

B � RBQ
T �

C � RCQ
T �

we find that:

A�B� � RA�I��m�l�i �RT
B �RBR

T
B �
yRB ��Q

T �

C�B� � RC �I��m�l�i �RT
B �RBR

T
B �
yRB ��Q

T �

and with the orthogonal projection operator being idempotent:

	B� �	B� � 	B� �

we find through formula (1.7) for the oblique projection:

A�
B
C � A�B��

�
C�B�

�y
�C

� RA�I��m�l�i �RT
B �RBR

T
B �
yRB �


 �RC �I��m�l�i �RT
B �RBR

T
B �
yRB �

�y
� RCQ

T � (6.1)

For instance with:

A � Yf � R	���
�	���
Q
T �

B � Uf � R	���
�	���
Q
T �

C � Wp � R	���
�	���
Q
T �
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we could compute the oblique projection Yf�
Uf
Wp. Even though this would lead to

a valid expression for the oblique projection, there is a better way to calculate this
quantity by first projecting Yf on the row space of the past outputs and the past and
future inputs, and then separating the effect of the future inputsUf out of this projection
(see also Section 1.4). This can be done as follows: With LUp � LUf and LYp defined
as: �

LUp�
z�
�Rli�mi

LUf�
z�
�Rli�mi

LYp�
z�
�Rli�li

�
def
� R	���
�	���
R

y
	���
�	���
 � (6.2)

we have:
Zi � Lup �Up � LUf �Uf � LYp �Yp �

We thus get for the oblique projection:

Yf�
Uf
Wp � LUp �Up � LYp �Yp

�
�
LUp �R	���
�	���
 � LYp �R	���
�	���


�
QT
��� � (6.3)

This computation is significantly faster than the previous one, since (whenR	���
�	���
 is
of full rank) the matrices LUp � LUf and LYp can be computed using back-substitution
(since R	���
�	���
 is a lower triangular matrix).

Principal angles and directions

In [VODM 93a] it is described how the principal angles and directions can be computed
from the QSVD of certain R factors. Since we will not be using these results in this
book, we refer to [VODM 93a] for further details.

Finally we want to note that the “best” numerical implementation is still an open
problem. The implementation presented in this Section is one possible implementation,
that allows to calculate all quantities presented throughout the book. When only one
specific matrix is needed, there often exist more optimal implementations. For instance,
when only:

Yf�
Uf
Wp�	U�

f

were needed (for instance in MOESP and in the third combined identification algorithm
of Figure 4.8), it would be better to use the RQ decomposition of formula (4.40):	
 Uf

Wp

Yf

�A �

	
 L�� � �
L�� L�� �
L�� L�� L��

�A	
 QT
�

QT
�

QT
�

�A �
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since it can be verified that in this case:

Yf�
Uf
Wp�	U�

f
� L���Q

T
� �

The advantage of the different ordering of the matrices Uf �Wp and Yf in the RQ
decomposition is however lost when the matrix:

Y �f �
U�
f

W�
p

has to be calculated. That is why we stick to the RQ decomposition presented at the
beginning of this Section.

6.1.3 An implementation of the robust identification algorithm

To illustrate the ease of use of the RQ decomposition when implementing subspace
identification algorithms, we give the details of the implementation of the third com-
bined algorithm (Figure 4.8). Further details on the first and second combined al-
gorithms can be found in [VODM 94a]. The final implementation is summarized in
Figure 6.1. The projected oblique projection can be computed as:

Oi	U�
f
�
�
LUp �R	���
�	���
 � LYp �R	���
�	���


�
QT
���


Q
�
I��m�l�i �

�
RT
	���
�	���


�

�
�R	���
�	���
R

T
	���
�	���
�

y
�
R	���
�	���
 �

��
QT �

With:
	 � I�mi �RT

	���
�	���
�R	���
�	���
R
T
	���
�	���
�

��R	���
�	���
 �

this leads to:

Oi	U�
f
�
�

LUpR	���
�	���
 � LYpR	���
�	���
��	 LYpR��

�
QT
��� � (6.4)

The other steps of the implementation are straightforward (except maybe for the step
where B and D are determined). The overall implementation is illustrated in Figure
6.1.

The Matlab function subid.m contains a Matlab implementation of this robust
algorithm. See also Appendix B.
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Implementation of algorithm 3:

1. Compute LUp � Rli�mi and LYp � Rli�li from:�
LUp LUf LYp

�
� R	���
�	���
R

y
	���
�	���
 �

where the pseudo inverse can be substituted by a backsubstitution when
R	���
�	���
 is of full rank.

2. With:

	 � I�mi �RT
	���
�	���
�R	���
�	���
R

T
	���
�	���
�

��R	���
�	���
 �

Compute the SVD of:�

LUpR	���
�	���
 � LYpR	���
�	���
��	 LYpR��

�
�

3. Determine the order by inspection of the singular values and partition the
SVD accordingly to obtain U� and S�.

4. Determine �i � U�S
���
� and �i�� � �i. Define Tl and Tr as:

Tl def
�

�
�yi��R	���
�	���


R	���
�	���


�
� Tr def

�

�
�yiR	���
�	���


R	���
�	���


�
�

Compute A and C as the first n columns of: S � Tl�T yr .

5. In order to solve B and D, the matrices P andQ are set equal to:

P � Tl �
�

A
C

�
�yiR	���
�	���
 �

Q � R	���
�	���
 �

Also determine the matricesNk (4.57)-(4.59). Solve (4.61) for B and D.

6. Determine the covariance matrices Q�S and R as:�
Q S
ST R

�
� 
Tl � S�Tr�
Tl � S�Tr�T �

Figure 6.1 Implementation of a robust deterministic-stochastic identification algorithm.
Note that the Q matrix of the RQ decomposition is never needed. This algorithm has been
implemented in the Matlab function subid.m.
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6.2 INTERACTIVE SYSTEM IDENTIFICATION

In this Section, we first explain in Subsection 6.2.1 the trend in present days software
towards graphical user interfaces (GUIs). In Subsection 6.2.2, we describe our GUI
ISID�, which was developed to do interactive system identification in an ultimately user
friendly manner. We describe the use of ISID in Subsection 6.2.3 while in Subsection
6.2.4 we give an overview of the algorithms that are implemented in ISID (preprocess-
ing, identification, validation and display). Since it is impossible to summarize all the
features of ISID, let alone that we could visualize all its graphical functionalities, we
would like to refer the interested reader to the ISID manual [VODMAKB 94].

6.2.1 Why a graphical user interface ?

In this Subsection, we motivate the use of a graphical user interface (GUI) for system
identification, by giving a short historical overview of the different types of user-
interfaces.

The overview is confined to the history of user interfaces for identification and control
of processes, which can be split up in three stages: Program User Interfaces, Command-
line User Interfaces and Graphical User Interfaces. An overview of the discussion is
given in Table 6.1.

Program User Interface: This is the era of lower level programming languages
(Fortran, Pascal and C). Typically, the user-input consisted of programs with low
level commands. To solve a problem, one had to write a library of applicable
functions, which were then combined to a program. The programming had to
be done on a very low level, and it was only at the end, when all the bits and
pieces were put together, that the results were obtained. If the results were not
satisfactory, parts of the programs had to be rewritten. Due to the inflexibility
of the programs, most of the time was spent programming. Investigation of the
influence of different parameters (and different methods) on the result was hard
and time consuming. Especially the intermediate bookkeeping tasks were very
tedious.

Command-line User Interface: The second type of user interfaces is the command-
line interface. This interface allows the user to enter commands at the command-
line. Contrary to the previous generation, the effect of the commands could

�ISID (Part 2) was developed in Xmath, a trademark from Integrated Systems Inc., Santa Clara, Califor-
nia, USA, and is the successor of ISID Part 1 (which is a command-line user interface package for system
identification, see [AMKMVO 93] [AKVODMB 93] for more details about ISID Part 1).
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immediately be inspected. The commands also became more powerful (higher
level), which made writing programs and experimenting with different methods
less time consuming. Another feature was the bundling of programs into so
called Toolboxes. These bundles contained all the necessary “tools” to solve a
whole class of similar problems. There was for instance a Toolbox for control
problems and one for identification problems. However, due to the complexity
of the commands it was not easy for a novice user to start using these Toolboxes.
First, he had to become familiar with all methods implemented in the Toolbox.
Then, he also had to understand and study the sometimes complicated syntax of
the commands. Finally, he had to understand how to interconnect the commands
into a program that would solve his problem.

Typically the user had to read thick manuals with extended syntax conventions
before he could start. On top of that, after he had read the manuals, it was
not always clear how to solve his problem. This is because there was hardly
any user guidance available (apart from the examples in the manuals). A thor-
ough understanding of the implemented methods was thus still needed to use the
Toolbox.

Even though a lot easier to use and more flexible than the Program User Interface
programs, this new generation still had significant drawbacks i.e. the extended
syntax, the complicated interconnections of commands and the lack of user-
guidance.

Graphical User Interface: The most recent interface is the graphical user interface
(GUI). A GUI is a user interface made up of graphical objects such as menus,
buttons and plots. Using it is straightforward since it only requires manipulation
of the three mouse buttons and at rare occasions, typing in the name of an object
or data file.

A first feature of a GUI is that it makes thick manuals virtually obsolete. Most
graphical objects are clearly labeled so that their function is immediately clear.
There is no need to study complicated syntax. An overview of the functionality
can be found by browsing through the menus of the interface.

Another GUI feature is that the effect of changes in parameters (or methods) is
depicted graphically. In the previous generation, the results were obtained as
variables. These variables had to be transformed to figures to be interpreted.
This made it necessary to add extra visualization commands. A GUI presents
all results graphically, which excludes this last step, and which turns it into an
elegant tool to perform varying parameter experiments.

On top of that, a GUI for identification and control system design provides
the user with guidelines to solve her problem. By equipping the GUI with
a certain intelligence (highlighting certain menus, buttons and plot handles),
the user is guided through the interconnection of complicated functions. This
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Program Command-line Graphical
User Interface User Interface User Interface

Date �1960-1982 1982-1990 1990-?
Input programs command-line graphical
Output text variables graphical
Elementary Block low level command high level command window
Start Threshold very high high low
Flexibility low high high
User guidance none limited high
Syntax complex complex simple
Expertise required high high limited
Computer required simple simple fast

Table 6.1 Comparison of the different stages in the history of user interfaces for identifi-
cation and control software.

interconnection is also graphically depicted, which enables the user to retain a
clear overview (see for instance Figure 6.5).

A GUI for system identification thus enables a novice user to get acquainted with
the intuitive software without the need for thick manuals or extensive (identifica-
tion) expertise. In the next Subsections these advantages will become even more
apparent.

6.2.2 ISID: Where system identification and GUI meet

The combination of powerful numerical algorithms for system identification (such as
subspace identification algorithms) and a graphical user interface leads to intelligent
and user-friendly identification software. The Interactive System Identifiction software
ISID, contains 3 major concepts: the data objects, the building blocks and the chain.
These concepts are briefly reviewed in this Subsection.
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Data Objects

System identification typically requires a fair amount of data-handling. This handling
is organized in ISID using so-called data objects. The basic idea behind it is to bundle
data and related information into one object. The five different data objects in ISID
are:

Input-Output Records: contain input-output data in the time domain. In most
identification problems the data is measured from the plant. Alternatively, the
data could be gathered by simulating a model of the plant in any of your favorite
numerical simulator.

Frequency Responses: contain complex data in the frequency domain represent-
ing a frequency response or a spectral density function.

Impulse Responses: contain data in the time domain representing an impulse
response or a covariance sequence.

Models: contain models of systems (one or more). The end result of an identifi-
cation session is typically a model data object.

Square Roots: contain intermediate identification results. A square root contains
the same information as the input-output data sequence it was derived from, but
in a condensed form. Basically, it contains the R factor of the RQ decomposition
of Section 6.1.

Apart from the actual data (the matrix containing the numerical values), data objects
also contain the following information: sampling time and unit, channel names and
units, data object history� and a data object name.

Data objects are typically used for three purposes: At the beginning of an identification
session, a variable is loaded in ISID from the Xmath workspace. It is internally
converted to a data object. Data objects are also used to transfer information between
different algorithms. As will be explained below, algorithms have as inputs and outputs
one (or more) data objects. Finally, at the end of an identification session the data
objects of interest are converted to Xmath variables and saved in the Xmath workspace.

�The history consists of a textual description of how the object came about. This releaves the user of the
bookkeeping details of the identification session.
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Building Blocks

The second major concept of ISID is that of building blocks. On an abstract level, a
building block is an operator with inputs and outputs. The building block operates on
the inputs to calculate its outputs. Within ISID, the building blocks have the following
structure (see also Figure 6.2):

Inputs: one or more data objects

Operation: determined by a set of parameters

Outputs: one or more data objects

Building Block
Data Object(s)

Output
Data Object(s)

Input

Parameters

Figure 6.2 An ISID building block: the inputs and outputs are data objects, the operation
of the block is determined by a set of parameters.

Each building block has an algorithm window associated with it. This window displays
information about the building block and allows for graphical interaction to set some
of the parameters.

In ISID there are two different types of building blocks: Algorithms building blocks
and data boxes, which differ slightly from the first type since they have an Xmath
variable as input (and not a data object).

There are 4 classes of algorithm building blocks: processing, identification, validation
and display algorithms. Each of the algorithm blocks operates on an input data object
to create the output object.

Figure 6.3 shows an example of an identification algorithm building block. The block
itself is represented by an icon (the rectangular box containing the text “Algorithm
Building Block”). The algorithm window associated with the building block is also
displayed.
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Input-Output Model
Data Object

Building Block

AlgorithmData Object

Figure 6.3 An example of an algorithm building block. The block itself is represented
by an icon (the rectangular box). The input and output data objects are indicated by the
arrows. The algorithm window associated with the building block is displayed in the right
bottom corner. This window allows for graphical interaction with the algorithm parameters.
Furthermore, it is possible to zoom in on one subplot or on a specific part of the data. The
axes of the plot can be set interactively and the data values can be viewed by a single click
of the mouse.

Data boxes are very similar to algorithms, with the only difference that their input
is not a data object but an Xmath variable. Every time an Xmath variable is loaded
into ISID, a data box is generated. Data boxes are always found at the beginning
of the chain (see below). Figure 6.4 shows an example of a data box containing an
input-output data object.

A complete list of building blocks (algorithms and data boxes) and their parameters
can be found in Subsection 6.2.3.
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Data ObjectData BoxXmath Variable
Input-Output 

Building Block

Figure 6.4 An example of a data box. The input of the data box is an Xmath variable,
the output is an ISID data object. Just as algorithms, data boxes have an algorithm window
associated with it. This window allows for graphical interaction with the parameters.

Chain

The main idea of ISID is to connect building blocks one to another. The output of one
building block is used as the input to another building block. In this way, different
building blocks can be put in series and in parallel. The result is called a chain (of
building blocks).

Figure 6.5 shows an example of a chain. The different building blocks are represented
by an icon in the Chain Plot. One can distinguish the data box icons at the beginning
of the chain and the algorithm icons that are connected back to front.

The chain thus consists of a “causal” connection of algorithms in series or parallel (no
feedback). Whenever either the input object or the parameters of any of the algorithms
in the chain change, these changes are propagated causally (from left to right) through
the chain.
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Figure 6.5 An example of a chain. Each icon represents a building block. The data box
(arrow shaped) is located at the beginning of the chain. The algorithms are connected back
to front.

For instance, when the output of an algorithm (say A) is used as input for another
algorithm (say B), then these algorithms are coupled and thus form a part of the chain.
Every time a parameter of algorithm A changes, a new output of A is calculated which
in turn triggers the recomputation of algorithm B. This procedure is not restricted to
two algorithms, and it is thus possible to couple many algorithms back to front, to form
a chain.

Typically, the front end of a chain consists of data boxes, containing variables loaded
from Xmath. The back end consists of validation or display algorithms. The inter-
mediate part of the chain consists of processing algorithms in series and one or more
identification algorithms in parallel.

The graphical interaction with the chain and with the parameters of the building blocks
allows for a fast inspection of the influence of certain parameters on the quality of the
identified model.
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6.2.3 Using ISID

Figure 6.6 An overview of an ISID session. Shown in the background is a particular chain
window. In the foreground, we see the algorithm windows which are automatically ordered
as a “card box”. There are several functionalities to manipulate these windows, details of
which can be found in [VODMAKB 94].

An overview of a typical ISID session is depicted in Figure 6.6. ISID can be used in
many different ways. As an example you might:

interactively identify a model from input-output data, frequency response data or
impulse response data

compare the results of different identification techniques (the more these results
are alike, the more you can trust your models)

pre-process data measured from an industrial plant to a form suitable for linear
system identification
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cross-validate identified models on validation data

display several properties of the identified models

interactively analyze the influence of parameter changes on the resulting model
quality

save the identified model to Xmath and use it (after conversion to a continuous
time model) for control design

6.2.4 An overview of ISID algorithms

Each of the ISID algorithm building blocks takes a data object as input and returns
another data object at its output. The four data object classes (and their abbreviations)
are: Input-Output Data (IO), Frequency Response (Freq), Impulse Response (Imp) and
Models (Model)�. There are 4 different types of algorithm building blocks, namely
pre-processing, identification, validation and display algorithms. Since obviously we
can not describe all of these functionalities in full detail (for which we would like to
refer the interested reader to the manual [VODMAKB 94]), we will restrict ourselves
here to a mere enumeration of all the possibilities of algorithm building blocks. In
each of the following tables, the first column contains the name of the functionality,
the second column is the data object that acts as an input, the third column the data
object that is delivered as an output while the fourth column is a one-line description
of the functionality.

(Pre-)Processing

Industrially measured data sets often need to be pre-conditioned to make them suitable
for linear time-invariant identification. The processing algorithms are:

Name Input Output Functionality

Detrend and Scale IO IO Scaling and trend removal (drift ...)
Peak Shaving IO IO Removal of outliers (sensor failure ...)
Delay Estimation IO IO Estimation and extraction of delays.
Filtering IO IO Low, high or band pass filtering.
Post Sampling IO IO Subsampling of a data set.
View and Split IO IO Split in Identif. and Validation set.

�Since the square root object is only used by expert users, it is dropped from this discussion.
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Identification

ISID contains a whole range of identification algorithms. Apart from the “classi-
cal” identification algorithms there are also two subspace identification algorithms
described in this book implemented: The stochastic identification algorithm
 of Fig-
ure 3.13 and the combined deterministic stochastic identification algorithm of Figure
4.8. The collection of identification algorithms is the following:

Name Input Output Functionality

Least Squares IO Model Least Squares in time domain.
Subspace Identification IO Model This book.
Instrumental Variables IO Model Uses inputs as instruments.
Prediction Error Method IO Model Classical cost function minimization.
Empirical Estimation IO Freq & Imp Non-parametric identification.
Frequency Least Squares Freq Model Least squares in frequency domain.
Impulse Realization Imp Model Realization of impulse responses.

Validation

The validation algorithms of ISID allow to asses the “quality” of the identified models.
This is done by inspection of different properties of the prediction errors. The validation
algorithms are:

Name Input Output Functionality

Error Norms IO & Model - Displays prediction error norms.
Prediction IO & Model IO Predicted signals.
Prediction Errors IO & Model IO Prediction errors.
Covariance IO & Model Imp Covariance of prediction errors.
Spectral Density IO & Model Freq Spectral density of prediction errors.
Cross Correlation IO & Model Imp Correlation inputs � prediction errors.

	Note that the stochastic identification algorithm is only included in the command line interface ISID
Part 1 and not in the graphical toolbox ISID Part 2, because (for now) the GUI only allows identification of
input-output data.
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Display

These algorithms are intended to display properties of the identified model which can
then be interpreted by the engineer. The display algorithms are:

Name Input Output Functionality

Frequency Response Model Freq Displays frequency responses.
Impulse Response Model Imp Displays impulse responses.
Spectral Density Model Freq Displays spectral densities.
Covariance Model Imp Displays covariances.
Poles & Zeros Model - Displays poles & zeros.

6.2.5 Concluding remarks

GUI driven toolboxes belong to a third generation of user-friendly software packages.
Users can tackle more serious problems than previously possible because of the fact they
don’t need to bother about programming subtleties. In addition, bookkeeping of tasks
to do, of interconnections of models and data sets becomes straightforward. Finally,
there is lots of user guidance and as a matter of fact, most of the time default settings
are provided (and they represent the most commonly performed actions anyway).

We have been developing a GUI, called ISID, which provides all of these function-
alities for a system identification environment, including the subspace identification
algorithms described in this book. Obtaining mathematical models from experimental
data from industrial processes now comes within reach of every control system design
engineer.

6.3 AN APPLICATION OF ISID

To illustrate the possibilities of the subspace identification algorithms developed in
this book and of the software implementation ISID, we describe one industrial case
study in detail. We will build a state space model, from input-output records of a glass
tube manufacturing process�. At the same time, we will show in some more detail the
different GUI functionalities that we have been describing in the previous Section 6.2.


The data we use here are real industrial measurements on a real industrial commercial production plant.
However, for reasons of confidentiality, we are not allowed to reveal in detail exact physical production
parameters.
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Other identification methods are applied to the glass tube manufacturing process in
[Bac 87] [DBC 81] [Fal 94] [Hak 94].

In Subsection 6.3.1, we give a short description of the process. In Subsection 6.3.2,
we build the Chain that allows the identification of the process and we discuss some
intermediate options and results. Although it is not a formal part of this book, we show
the results of a control design based on the derived model in Subsection 6.3.3.

6.3.1 Problem description

Figure 6.7 shows a schematic description of the glass tube production process. Quartz
sand is fed to the machine at the top. The sand is melted to glass inside the furnace.
The glass tubes are drawn at the bottom of the machine.

Inputs: The inputs are drawing speed and mandrel pressure. The drawing speed is
the speed at which the tubes are pulled out at the bottom of the machine. The
mandrel pressure is the pressure applied to the mandrel at the top of the machine.
Through the mandrel, this pressure is then applied to the inside of the tubes when
they are pulled out of the machine.

Outputs: The outputs to be controlled are the geometrical parameters of the tube
which are its mean diameter and thickness.

Two input-output data sequences were measured. The diameter is measured in two
orthogonal directions and averaged. The wall thickness is measured in four directions
in a plane, and once again, these measurements are averaged. The input and output
signals are scaled so that the original signals can not be retrieved (confidentiality of
industrial information), after which they are oversampled with a factor 10. These
processing steps can also be found in [Bac 87] [Fal 94] [VO 94]. The first input-output
sequence (1355 points, see Figure 6.8) is used for the identification of the process. The
second sequence (893 points) is used for the validation of the results. For both input
signals a pseudo random binary noise sequence was used as input.

6.3.2 Chain description and results

One of the main features of ISID described in Section 6.2, is the graphical represen-
tation of the chain of algorithms to be executed to find a mathematical model of the
process under study. Figure 6.9 shows the chain that was used to identify the glass
tube manufacturing process.
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Figure 6.7 The glass tube manufacturing process. Inputs are drawing speed and mandrel
pressure. Outputs are tube diameter and thickness. The input signals were pseudo-binary
noise sequences. These inputs are sufficiently “wild” to excite all the dynamic modes of
the system (which is necessary since we want to control these modes afterwards). The
tubes that are produced from these inputs are worthless since they are too irregular due to
the wild inputs. This situation is typical for industrial system identification: There is a
basic trade-off between the production loss that goes together with experimenting and the
production quality enhancement as a result of the identification/model-based control design.
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Figure 6.8 Data set used for the identification of the glass tube production process. The
inputs (top two signals) are drawing speed and mandrel pressure. They are excited using
pseudo-binary noise sequences. The outputs (bottom two signals) are tube diameter and
thickness.

Processing: Both input-output data records are first detrended to remove the mean
and the linear trends in the data. Since the measurements of the outputs can only
be done when the tubes are sufficiently cooled down, there are significant time
delays. The two delay estimation blocks estimate these delays and compensate
for them by shifting the input and output signals in the appropriate direction.
Figure 6.10 shows the algorithm window behind the delay estimation algorithm
block.

Identification: Three different identification algorithms are applied to the data. By
comparing the resulting models, we can enhance our confidence in them.

A first model is obtained by realizing the impulse response obtained from
the empirical transfer function.
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Figure 6.9 ISID chain representing the identification of the industrial glass-tube man-
ufacturing process. Each block represents an algorithm. The blocks to the left are the
input-output data and preprocessing blocks, followed by the identification blocks. To the
right, we also see some validation blocks. Behind each block there is an algorithm window
that visualizes the algorithm specific data and allows for adjustment of the parameters.

A second model is obtained from subspace identification. The algorithm
window corresponding to this identification block is shown in Figure 6.11.

A last model is obtained by a least squares identification.

Validation: The models are validated by comparing the measured and simulated
outputs (validation and identification data). For this example, the subspace model
has the smallest error and is thus used for control design. Through computation of
the covariance of the prediction errors, the whiteness of the errors can be checked.

Display: The transfer functions of the obtained models are displayed on the same plot
to compare the models in the frequency domain. Other model properties can also
be easily displayed.
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Figure 6.10 The ISID algorithm window for the delay estimation algorithm. The delays
are indicated by the vertical lines. They can be changed by clicking on the vertical lines
and dragging them to the desired value i.e. the intersection of the impulse response and the
confidence bounds (horizontal lines). This contrasts with the Command-line User Interface
where the user had to read the intersecting point from the scales.

6.3.3 PIID control of the process

Even though this is not a part of the ISID software, we describe the result of a
controller design to illustrate the use of the subspace algorithm based model. The
control design technique, based on multi-objective optimization of the free parameters
of the controller is described in [VDM 93]. Figure 6.12 illustrates the noise reduction
and thus the quality enhancement that can be obtained with this controller��

��Unfortunately, at the printing of the book, the industrial closed-loop experiments were still to be
performed. Figure 6.12 thus shows the simulated product enhancement using the measured open-loop
disturbances.
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Figure 6.11 The algorithm window behind the subspace identification algorithm. The

plot displays the principal angles (algorithm of Figure 4.8 with W� � �
����

�Yf�U
�
f
�Yf�U

�
f


),

which allow the user to make a decision on the order of the system. The order (9 in this
case) can be selected by clicking and dragging with the left mouse over the desired orders.
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Figure 6.12 Illustration of the quality improvement. The top two figures show a histogram
of the measured diameter and thickness without the optimal controller installed. The
reference setpoint for production is at zero (the vertical line). Clearly, both diameter and
thickness are too large (on average). Especially the diameter does not satisfy the production
specifications. The bottom two figures show the histograms of the controlled system.
The variance on the diameter is a factor two smaller. The mean diameter is also exactly
at its reference. The variance of the thickness is not reduced (not that important in the
specifications). However the mean value is right at the specification now. This figure clearly
illustrates the benefits of subspace identification and of model-based control system design.
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6.4 PRACTICAL EXAMPLES IN MATLAB

In this Section, we summarize identification results for ten different practical data sets.
They indicate that the robust algorithm of Figure 4.8 fastly computes accurate models.
Refinement of these models through a prediction error approach is possible, but at a
higher computational expense.

The results were obtained using the Matlab implementations of the subspace algorithms
described in this book. For a full overview of all the implemented algorithms, see
Appendix B. To ensure maximal reproducibility, we included most of the data files on
the diskette accompanying the book. This diskette also contains M-files which allow
for the recomputation of the examples.

Note that some of these (and also other) applications are described in [Abd 94]
[AML 94] [Cho 93] [CK 93] [Chu 94] [DMVO 94] [FVOMHL 94] [Gyu 93] [LS 91]
[LSS 92] [VVDVOV 94] [VODM 93c] [VODMAKB 94] [ZVODML 94].

First we shortly describe the ten different practical processes. Some relevant numbers
are displayed in Table 6.2.

1. Glass Tubes. This is the same process as in Section 6.2, however a different
input-output data set is used. The input for this experiment is a filtered pseudo
random binary noise sequence. The relevant Matlab files are appl1.m and
appl1.mat.

2. Dryer. Laboratory setup acting like a hair dryer. Air is fanned through a tube
and heated at the inlet. The air temperature is measured by a thermocouple at
the output. The input is the voltage over the heating device (a mesh of resistor
wires). The data was adopted from [Lju 87] [Lju 91c]. The relevant Matlab files
are appl2.m and appl2.mat.

3. Glass Oven. The glass oven has 3 inputs (2 burners and 1 ventilator) and 6 outputs
(temperature measured in a plane). The data has been pre-processed : detrending,
peak shaving, delay estimation and normalization. For more information about
the data itself and the pre-processing steps we refer to [Bac 87]. The relevant
Matlab files are appl3.m and appl3.mat.

4. Flutter. Wing flutter data. Due to industrial secrecy agreements we are not
allowed to reveal more details��. Important to know is that the input is highly
colored. The relevant Matlab files are appl4.m and appl4.mat.

��This constraint may be un-allowable for the pure scientist, whose scientific beliefs may be shocked by
such a non-disclosure agreement and who may argue that the essential requirements of scientific research
-namely full experimental detail to guarantee complete reproducibility by independent third parties- are
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5. Robot. Data from a flexible robot arm��. The arm is installed on an electrical
motor. We have modeled the transfer function from the measured reaction torque
of the structure on the ground to the acceleration of the flexible arm. The applied
input is a periodic sine sweep. The relevant Matlab files are appl5.m and
appl5.mat.

6. Evaporator. A four-stage evaporator to reduce the water content of a product,
for example milk. The 3 inputs are feed flow, vapor flow to the first evaporator
stage and cooling water flow. The three outputs are the dry matter content, the
flow and the temperature of the outcoming product. The process is described
in more detail in [ZVODML 94]. The relevant Matlab files are appl6.m and
appl6.mat.

7. Chemical. A chemical process with 6 inputs and 7 outputs. Due to reasons
of industrial secrecy, no more details can be revealed��. We have however
included this process because it contains measurements of a quite complicated
multivariable process. Unfortunately we were not allowed to include this data set
on the diskette.

8. CD Player. Data from the mechanical construction of a CD player arm. The
inputs are the forces of the mechanical actuators while the outputs are related to
the tracking accuracy of the arm. The data was measured in closed loop, and then
through a two-step procedure (as described in [VDHS 93]) converted to open loop
equivalent data��. The inputs are highly colored. The relevant Matlab files are
appl8.m and appl8.mat.

9. Ball & Beam. The ball and beam system consists of a horizontal beam with
a ball placed on top of it��. The angle of the beam (with the horizontal axis)
can be controlled, making the ball roll back and forth on the beam. The system
is considered to be linear around its horizontal working point. The input of the
process is the angle (in radians) of the beam. The output of the process is the
velocity of the ball. In fact we are interested in the position of the ball, but that
means we have to identify an integrator (one integrator from beam position to
ball position). We have thus differentiated the position signal to obtain the ball
velocity. The relevant Matlab files are appl9.m and appl9.mat.

not respected. This scientist is however free to disregard this data-set and concentrate on the eight other
publically available sets.
��We are grateful to Hendrik Van Brussel and Jan Swevers of the laboratory of Production Engineering,

Machine Design and Automation of the Katholieke Universiteit Leuven, who provided us with these data,
which were obtained in the framework of the Belgian Programme on Interuniversity Attraction Poles
(IUAP-nr.50) initiated by the Belgian State - Prime Minister’s Office - Science Policy Programming.
��We are grateful to R. de Callafon of the Mechanical Engineering Systems and Control group of Delft

and to the Philips Research Laboratories, who provided us with these data.
��We are greatful to Bart Motmans of the Department of Electrical Engineering of the Katholieke

Universiteit Leuven, who provided us with these data.
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m l sid sval n i

Glass Tubes 2 2 900 426 8 20
Dryer 1 1 500 500 4 15
Glass Oven 3 6 900 347 5 10
Flutter 1 1 1024 — 6 20
Robot 1 1 800 224 5 20
Evaporator 3 3 3300 3005 5 15
Chemical 6 7 1000 501 4 10
CD Player 2 2 1024 1024 7 20
Ball & Beam 1 1 1000 — 2 20
Wall Temp. 2 1 1200 480 3 20

Table 6.2 Overview of the ten practical examples. The first and second column contain
the number of inputs (m) and outputs (l). The third and fourth column display the number
of data points s used for identification sid and validation sval. Note that for the Flutter and
Ball & Beam example no validation data was used. The reason for this is that the data sets
did not contain enough information to be split in two (identification on a shorter data set
gave unacceptable results). The fifth column indicates the system order n (the order of the
state space model). Finally, the sixth column indicates the user defined index i, being the
number of block rows used in the input-output block Hankel matrices in algorithm A1, A2
and A3 (see further).

10. Wall Temp. Heat flow density through a two layer wall (brick and insulation
layer). The inputs are the internal and external temperature of the wall. The
output is the heat flow density through the wall. The data was adopted from
[Sys 1994]. The relevant Matlab files are appl10.m and appl10.mat.

On each data set we have applied 7 different identification algorithms :

A1: The subspace algorithm com_alt.m of Figure 4.6.

A2: The subspace algorithm com_stat.m of Figure 4.7.

A3: The robust subspace algorithm subid.m of Figure 4.8.

P1: The prediction error algorithm pem.m of the Matlab identification toolbox
[Lju 91c]. As an initial guess we took the result of the command canstart.m
in the same toolbox, which implements an instrumental variable method. See
[Lju 91c] for more information.

O1: The output error algorithm oe.m of the Matlab identification toolbox
[Lju 91c]. As an initial guess we took the (output error) result of the command
canstart.m in the same toolbox.
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P2: The prediction error algorithm described in [McK 94a], which uses a full parame-
trization of the state space model combined with regularization. The implementa-
tion in Matlab of the algorithm was obtained from McKelvey [McK 94c]. We did
not include this implementation on the diskette, however it can be easily obtained
through World Wide Web from control.isy.liu.se (directory /pub/Software/SSID).
As an initial starting value we took the result of the robust subspace identification
algorithm A3.

O2: The output error algorithm described in [McK 94a], which uses a full parametriza-
tion of the state space model combined with regularization. The implementation
in Matlab of the algorithm was obtained from McKelvey [McK 94c]. Similarly,
this software can be obtained from the same World Wide Web site. As an initial
starting value we took the input-output part of the robust identification algorithm
A3.

Table 6.3 shows the simulation errors (in percentage) for identification and validation
data and for all cases and examples. The simulation errors are computed as (with 
ysk�c
channel “c” of the simulated output) :

� � 
�� �



l
�

lX
c��

� sPs
k��

yk�c � 
ysk�c�

�Ps
k��

yk�c�

�

�
� � (6.5)

A Matlab function to compute these simulation errors has been implemented in
simul.m. See also Appendix B..

Table 6.4 shows the prediction errors (in percentage) for identification and validation
data and for all cases and all examples. These prediction errors were computed as in
(6.5) but with 
ysk�c replaced by 
ypk�c the one step ahead predicted output.

A Matlab function to compute these prediction errors has been implemented in
predic.m. See also Appendix B..

An entry “�” in the tables indicates that the identified system was unstable. An
entry “b” indicates that the optimization procedure did not start up due to a bug in
canstart()��. An entry “�” indicates that the input-output part of the initial

��In the version of Matlab we used (Version 4.2), the bug in canstart() shows up when the number
of states is smaller than the number of outputs (this is the case for the Glass Oven and the Chemical example).
One of the observability indices has to be chosen equal to zero, which crashes canstart(). Through
private conversation with Prof. Lennart Ljung, we have learned about this bug, which will be fixed in the
next release.
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model was unstable (for O1). Finally “—” indicates that there was no validation data
at hand.

Table 6.5 shows the computational complexity of the algorithms. This is the number
of floating point operations as computed by Matlab.

These examples and Tables justify the heuristics in the derivation of the third combined
algorithm of Figure 4.8. We conclude that this third algorithm is a fast, robust and accu-
rate algorithm that works well on practical and industrial examples. We also conclude
that (if wanted) the computed model is an excellent starting value for optimization
based identification algorithms.

6.5 CONCLUSIONS

In this final Chapter, we have shown how the subspace algorithms can be easily
implemented using tools from the numerical linear algebra: the QR and Singular
Value decomposition.

We have also demonstrated in some detail the efficiency of using subspace identifi-
cation algorithms and the GUI-based software tool ISID on an industrial glass tube
manufacturing process.

We have illustrated the power of the robust subspace identification algorithm on ten
practical data sets. In the mean time, we (and others) have built up additional equally
successful experiences with other industrial production processes [Abd 94] [AML 94]
[Cho 93] [CK 93] [Chu 94] [DMVO 94] [FVOMHL 94] [Gyu 93] [LS 91] [LSS 92]
[VVDVOV 94] [VODM 93c] [VODMAKB 94] [ZVODML 94].

Our faith in the applicability of our new subspace identification algorithms is confirmed
by the implementation of our robust algorithm in different commercial computer aided
control design packages such as Matlab’s System Identification Toolbox [Lju 91c,
Version 4], and Xmath’s ISID [AKVODMB 93] [VODMAKB 94].
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A1 A2 A3 P1 O1 P2 O2

Glass Tubes 57.1 35.8 35.5 133 � 37.4 49.5
Dryer 8.22 8.2 8.2 8.66 8.6 7.09 8.34
Glass Oven 39.8 39.9 39.7 b b 39.5 34.8
Flutter � � 25.6 106 29.6 25 15.5
Robot � � 4.62 � � 8.23 6.58
Evaporator 34.3 33.7 34.3 40.7 593 34.9 30.5
Chemical 468 � 64.2 b b 65.8 60.6
CD Player � � 18.4 � � 17.3 20.5
Ball & Beam 132 � 53.9 72.6 � 71.8 46.9
Wall Temp. 40.5 12.1 11.8 � � 11.8 11.7

A1 A2 A3 P1 O1 P2 O2

Glass Tubes 36.1 17 15.8 91.7 � 18.4 23
Dryer 7.45 7.39 7.49 7.21 7.33 7.4 7.47
Glass Oven 32.7 34.1 32.8 b b 34.9 31.4
Flutter — — — — — — —
Robot � � 2.44 � 3.68 4.71 3.41
Evaporator 32.4 31.2 31.9 39.9 558 33.3 34.5
Chemical 365 � 60.2 b b 60.7 63
CD Player � � 20.7 � � 20.7 20.5
Ball & Beam — — — — — — —
Wall Temp. 25 7.49 7.36 � � 7.41 7.42

Table 6.3 Simulation errors (in percentage (6.5)) for the identification data (top) and
validation data (bottom). “�” indicates that the input-output part of the identified model
was unstable, “�”,“—” or “b” indicate that these entries could not be computed (see text).
In each row, the entry of the most accurate model and the most accurate subspace model
are highlighted. Clearly, of the subspace algorithms, the robust algorithm (A3) of Figure
4.8 is the most accurate for almost all examples. Moreover, the first and second subspace
algorithm often compute really bad results, especially when the input data is colored : Glass
Tubes, Flutter, Robot, CD Player, Ball & Beam. This result justifies the heuristics involved
when deriving the third combined algorithm. From the last four columns, it follows that O2
(and P2) compute the most accurate models for the identification data. For the validation
data however, A3 seems to perform better. The instrumental variable method used to start
up P1 and O1 does not perform very well. We conclude from these tables that the robust
combined identification algorithm (A3) computes accurate models, and that these models
(if needed) provide excellent initial starting values for optimization algorithms.
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A1 A2 A3 P1 O1 P2 O2

Glass Tubes 11.2 9.87 9.89 23.7 � 7.49 49.5
Dryer 3.31 3.31 3.31 3.27 8.6 3.26 8.34
Glass Oven 10.3 10.3 10.3 b b 10 34.8
Flutter ++ ++ 1.49 0.104 29.6 1.23 15.5
Robot 28.7 883 1.22 56.8 � 0.594 6.58
Evaporator 20.1 19.9 20 21.1 593 19 30.5
Chemical 102 75 51.8 b b 44.2 60.6
CD Player ++ ++ 12.2 83.2 � 5.95 20.5
Ball & Beam 65.3 44 36.5 36.7 � 36.2 46.9
Wall Temp. 37 12 11.8 216 � 11.7 11.7

A1 A2 A3 P1 O1 P2 O2

Glass Tubes 8.28 7.21 7.23 17.6 � 5.61 23
Dryer 3.15 3.15 3.15 3.07 7.33 3.07 7.47
Glass Oven 7.66 7.66 7.67 b b 7.43 31.4
Flutter — — — — — — —
Robot 15.4 362 0.741 26.9 3.68 0.335 3.41
Evaporator 15.5 15.7 15.8 16.4 558 15.1 34.5
Chemical 90.8 70.2 59.1 b b 52.6 63
CD Player ++ ++ 12.4 83.3 � 5.93 20.5
Ball & Beam — — — — — — —
Wall Temp. 22.6 7.44 7.34 136 � 7.38 7.42

Table 6.4 Prediction errors (in percentage (6.5)) for the identification data (top) and
validation data (bottom). “++” indicates that the one step ahead prediction computed large
errors (� ������), “�”, “—” or “b” indicate that these entries could not be computed (see
text). In each row, the entry of the most accurate model and the most accurate subspace
model are highlighted. Just as for the simulation errors, among the subspace algorithms, the
robust algorithm (A3) of Figure 4.8 is the most accurate for almost all examples. Again this
justifies the heuristics involved when deriving the third combined algorithm. From the last
four columns, it follows that P2 computes the most accurate models (for almost all cases).
Again, we conclude from these tables that the robust combined identification algorithm
(A3) computes accurate models, and that these models (if needed) provide excellent initial
starting values for optimization algorithms.
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Mfl A1 A2 A3 P1 O1 P2 O2 D1 D2 D3

Glass Tubes 48 1.11 1 1.2 5.9 � 21 12 � � �

Dryer 4 1.09 1 1.13 2.1 1.3 3.2 3 .29 .20 .33
Glass Oven 63 1.06 1 1.15 b b 35 21 .32 .26 .41
Flutter 14 1.06 1 1.09 4.6 3 6.5 13 � � �

Robot 10 1.06 1 1.1 3.3 � 8.8 7.8 � � �

Evaporator 200 1.03 1 1.06 4 2.5 5.8 3.8 � � �

Chemical 140 1.12 1 1.33 b b 26 16 .40 .28 .61
CD Player 54 1.09 1 1.16 4.6 4.6 15 7.6 � � �

Ball & Beam 6 2.18 2.07 2.22 1 � 2.9 3.3 .33 .23 .38
Wall Temp. 30 1.4 1.26 1.46 1 � 2.9 2.6 .28 .14 .34

Table 6.5 Computational complexity of the algorithms i.e. the number of floating point
operations (flops) computed by Matlab. All entries are relative to the basis number of mega
flops in the first column. The second combined subspace algorithm is the fastest, while
the third algorithm is the slowest of the three subspace algorithms (but the most accurate)
especially when there is more than one input and/or output (Glass Tubes, Glass Oven,
Chemical). The optimization based algorithms are a lot slower for multivariable systems
(up to a factor 35 for the Chemical example). Especially the optimizations based on a fully
parametrized model (O2 and P2) are slow. The last three columns (D1, D2 and D3) indicate
the number of flops when computing the R factor of the RQ decomposition making use of the
Hankel structure (using displacement rank). As indicated in Subsection 6.1.1, this method
is not numerically stable for all cases (cfr. the “�” entries). When it is stable however,
another factor 3 to 5 can be gained from using these displacement algorithms (this provides
a nice motivating example for accurate numerical implementation of displacement rank
algorithms). A technical note is the fact that the number of floating point operations is not
always directly related to the run time. The implementation of the optimization algorithms
demands many for-end loops, which tend to be slow in Matlab. The real execution time
is thus even higher for the optimization based algorithms as would be deduced from this
table.
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CONCLUSIONS AND OPEN

PROBLEMS

7.1 CONCLUSIONS

In this book we have treated the theory, implementation and application of subspace
identification algorithms for linear time-invariant systems.

The theory of subspace identification algorithms has been presented in detail.
Deterministic, stochastic and combined deterministic-stochastic subspace identi-
fication algorithms have each been treated separately in Chapter 2, 3 and 4. For
each case, the geometric properties have been stated in a main Theorem 2, 8 and
12, which has led to new algorithms. The connections to the existing algorithms
have been indicated, as the interconnections between the different cases (Section
4.5).

The subspace identification theory has been linked to the theory of frequency
weighted model reduction in Chapter 5, which has led to new interpretations and
insights. The theoretical development has evolved into a practically usable and
robust subspace system identification algorithm (Figure 4.8).

Implementation of the subspace identification algorithms has been discussed in
terms of the numerically stable and efficient RQ and singular value decomposi-
tions in Section 6.1. The algorithms have then been implemented together with
a whole scale of classical identification algorithms and processing and validation
tools in a commercially available graphical user interface toolbox: ISID. The
motivation for the graphical user interface has been given in Section 6.2.

This book also contains a set of Matlab functions which implement the subspace
algorithms in this book. These Matlab functions are easy to use and enhance the
understanding as well as the applicability of the algorithms.

197
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One application of the algorithms to an industrial glass tube manufacturing
process has been presented in Section 6.3. This application has been used to
illustrate the power and user-friendliness of the subspace identification algorithms
and of their implementation in ISID. The identified model has allowed for an
optimal control of the process, which has led to a significant enhancement of the
production quality.

The applicability of subspace identification algorithms to practical (industrial)
data has been further illustrated with a short description of ten practical applica-
tions in Section 6.4. These examples can be easily reproduced by simple running
the included M-files.

7.2 OPEN PROBLEMS

Subspace identification is a young but promising field of research and there are still
many open problems to be solved. In this Section we summarize the open problems
that have been encountered when writing this book. The solution of these problems
would contribute significantly to the maturing of the field of subspace identification.

A first and obvious problem is that of the statistical analysis. Throughout the
book, the asymptotic (un)biasedness of the algorithms has been indicated. This
however doesn’t indicate in any way how the algorithms perform when only a
finite number of samples is available,nor does it say anything about the asymptotic
statistical distribution of the results. First attempts for a statistical analysis have
been made in [OV 94] [VOWL 91] [VOWL 93] (and related work for subspace
tracking in [Ott 89] [OVSN 93] [OVK 92] [VO 91] [Vib 89]). In [VTS 95] a first
order analysis of stochastic realization algorithms is made. This technique could
be extended to the algorithms described in this book.

Closely related to the previous point is the choice of the weights W� and W�.
In each of the main Theorems 2, 8 and 12, two weighting matrices W� and W�

have been introduced. In Chapter 5, the effect of these weighting matrices on the
state space basis in which the results are obtained has been presented. However,
it is not at all clear which weightings are statistically optimal (in a sense that the
covariance matrix of the results is minimal). In [Lar 94] it is claimed that the
CVA algorithm is optimal (see also Subsection 4.3.3), it is however not proved.
In [DPS 94] the relative efficiency of stochastic subspace identification methods
is shown by example. Expressions for the finite sample statistics (previous point)
would however indicate and prove which weights are statistically optimal.
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The order decision is fairly heuristic. Indeed, when the number of measurements
is infinite, a number of singular values will be exactly equal to zero. However
for a finite number of samples, one has to look for a gap in the singular value
spectrum. As an alternative (and more theoretically grounded) method, statistical
significance tests could be developed. A first step in that direction has been
described in an Appendix of [CXK 94a].

For the further analysis of the subspace identification algorithms, it would help
to investigate the connection with the classical identification techniques (see
for instance [Lju 87]). In [JW 94] a connection is made to the classical ARX
modeling, while in [OV 94] [VOWL 91] [VOWL 93] an instrumental variable
interpretation of the algorithms of Chapter 4 is presented. Another issue addressed
in these papers is the option of splitting the past and the future in unequal parts.
Throughout this book we have assumed that both have an equal number of block
rows i. The effect of having 
 block rows in the future and � 
� 
 block rows in
the past should still be investigated.

Frequency domain extensions of the subspace identification ideas could lead to
fast, efficient and always convergent frequency domain identification techniques.
Algorithms based on the deterministic projection algorithm of Section 2.3.2 have
been described in [LJM 94] [McK 94b]. Further extension (to more general noise
cases) and investigation of these algorithms could lead to interesting algorithms
and interpretations.

Subspace identification algorithms as described in this book are completely black-
box, in a sense that no a-priori knowledge can be included. However, in practice,
many facets of the process are often known (integrator, stability, DC gain, rise
times, � � �). The possibility to include these constraints in the subspace identifica-
tion algorithms would greatly enhance their practical value. As described in this
book, the stability constraint can be included [Mac 94], but how to include the
other constraints is still an open problem.

One of the main assumption of the main Theorems is that the process and mea-
surement noise are independent of the input uk. This assumption is violated when
the system is working in closed loop. Subspace identification techniques could
be extended to also work under these conditions. For the MOESP framework,
this has been treated in [Ver 93]. Other approaches worth investigating are the
two step method [VDHS 93] and the framework presented by Schrama [Sch 91].
Preliminary results on this last approach can be found in [Wan 94]. It has been
shown in for instance [Gev 93] that closed loop identification is very useful (if
not necessary) when doing identification for control.

The stochastic identification problem has a nice symmetry in it: The forward and
backward innovation model. This symmetry is lost in the combined deterministic-
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stochastic identification problem. A topic of further research could be the quest
for symmetric models (as in the stochastic case) for the combined problem.

The error bounds for the frequency weighted model reduction provided by Enns
[Enn 84] unfortunately contain an unknown factor
. Finding an upper bound for
this factor is still an open problem. Another related issue is that of finding error
bounds for the lower order identified models (see Chapter 5), since in this case
the lower order model is not obtained by a mere truncation of the balanced high
order model. A last open problem is the exact interpretation of the state space
basis of the MOESP and CVA algorithm, for non-white noise inputs (see Section
5.4).
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A.1 PROOF OF FORMULA (2.16)

First we prove that:
rank Wp � rank Wp�U

�
f � (A.1)

Using (2.5), Wp can be rewritten as:
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Due to the first two conditions of Theorem 2, the following holds:
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This proves Formula (A.1). Now, denote the singular value decomposition ofWp�U
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Since Wp�U
�
f is a linear combination of the columns ofWp, and since the rank ofWp

and Wp�U
�
f are equal, we find that the column spaces of Wp and Wp�U

�
f are equal.

This implies that Wp can be written as:

Wp � U�R � (A.3)

Finally, with the singular value decomposition (A.2) and using (A.3), we find:
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which proves (2.16). �

A.2 PROOF OF THEOREM 6

We first prove that Theorem 6 is true for k � 
. Then we prove that if the Theorem 6
is true for k � p, it is also true for k � p� 
. This then completes the proof.
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Which implies that:
�x� � �c
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which is exactly (3.23) for k � 
. As a side result, we find from (3.22) that for k � 
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which is (3.24) for k � 
.

k � p � k � p � 


We first prove that if (3.24) is true for k � p, it will also be true for k � p� 
. In the
following derivation, we use the matrix inversion lemma of [Kai 80].
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The last equation clearly indicates that the matrix Pp�� calculated from (3.22) and
from (3.24) are the same. Which thus proves (3.24). Now, we are ready to prove
(3.23). We assume that (3.23) is satisfied for k � p:
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We should prove that:
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is indeed true (using the recursive formulas (3.20)-(3.22)).
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The last equation clearly indicates that the state �xp�� calculated from (3.20) and from
(3.23) are the same. Which thus proves (3.23).

�
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A.3 NOTE ON THE SPECIAL FORM OF THE KALMAN

FILTER

In this Appendix, we give two different forms of the recursive Kalman filter. The first
one is the classical form of for instance [AW 84]. This form is transformed into the
form of (3.20)-(3.22), which is more useful for this book.

Consider the system (3.1)-(3.3), where we assume that A�C�Q� S and R are known.
Given �x�, eP� and y�� � � � � yk��, the non-steady state Kalman filter state estimate �xk is
then given by the following set of recursive formulas [AW 84]:

�xk � A�xk�� �Kk��
yk�� � C�xk��� � (A.5)

with:

Kk�� � 
A ePk��CT � S�
C ePk��CT �R��� � (A.6)ePk � A ePk��AT �Q

�
A ePk��CT � S�
C ePk��CT �R���
A ePk��CT � S�T � (A.7)

and ePk the error covariance matrix:

ePk � E�
xsk � �xk��
x
s
k � �xk�

T � �

For our purpose, a different form of these recursive Kalman filter equations is more
useful. WithA�C�Q� S�R given, the matrices �s� G and �� can be computed through
the formulas in Figure 3.3. Now define the transformation:

ePk 	 �s � Pk �

We then get (from (A.6)):

Kk�� � 

A�sCT � S�� 
z �
�G

�APk��CT �

C�sCT �R�� 
z �
���

�CPk��CT ���

� 
G�APk��C
T �
�� � CPk��C

T ��� �

For the Riccati equation (from (A.7)) we have:


s � Pk � A
s
A
T �APk��A

T � �
s �A
s
A
T �
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���A
s
C
T � S�� 
z �

�G

�APk��C
T ���C
s

C
T �R�� 
z �

���

�CPk��C
T ���

���A
sCT � S�� 
z �
�G

�APk��C
T �T �

Pk � APk��A
T � �G�APk��C

T ���� � CPk��C
T ����G�APk��C

T �T �

This means that the Kalman filter (3.20)-(3.22) calculates the same state estimate �xk
as the “classical” Kalman filter (A.5)-(A.7) with ePk � �s � Pk.

A.4 PROOF OF THEOREM 8

From (3.17) and (3.18) we find for (3.33) and j ��:

Oi � Yf�Yp

� Ci�L
��
i �Yp �

Now from classical stochastic realization theory (analogous to deterministic realization
[Kun 78] [ZM 74] of the covariance sequence), we find:

Ci �

	BBBB

�i �i�� � � � �� ��

�i�� �i � � � �� ��

�i�� �i�� � � � �� ��

� � � � � � � � � � � � � � �
��i�� ��i�� � � � �i�� �i

�CCCCA

�

	BBBB

CAi��G CAi��G � � � CAG CG
CAiG CAi��G � � � CA�G CAG
CAi��G CAiG � � � CA�G CA�G

� � � � � � � � � � � � � � �
CA�i��G CA�i��G � � � CAiG CAi��G

�CCCCA

�

	BBBBB

C
CA
CA�

...
CAi��

�CCCCCA �
�
Ai��G Ai��G � � � AG G

�

� �i��
c
i �
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This implies that:
Oi � �i��

c
i �L

��
i �Yp �

Using (3.25) this leads to:
Oi � �i� bXi �

which proves (3.35). Since W� is of full rank, and since the rank of Yp�W� is equal
to the rank of Yp, we find that the rank of W�OiW� is equal to the rank of Oi, which
in turn is equal to n (the system order). This is due to the fact that Oi is equal to the
product of a matrix with n columns and a matrix with n rows. The singular value
decomposition of the weighted projectionOi (3.34) can now be split in two parts:

W��i � U�S
���
� �T � (A.8)bXiW� � T���S

���
� V T

� � (A.9)

Equation (A.8) proves (3.36), while equation (A.9) proves (3.38). It is also clear that
fromOi � �i� bXi it follows that: bXi � �yi �Oi �

which proves (3.39). Equation (3.37) can be easily proven from the fact that:

�	Yf �Yp
 � Ci � �i��
c
i �

Finally, equation (3.40) follows directly from (3.31) combined with (3.19).

�

A.5 PROOF OF THEOREM 9

We first prove that Theorem 9 is true for k � 
. Then we prove that if the Theorem 9
is true for k � p, it is also true for k � p� 
. This completes the proof.

k � 


With (4.9) and (4.12) we find that:

�� � 
G�AP�C��
�� � CP�C
T ���

� K� �
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From (4.8), we thus find:

�x� � A�x� �Bu� �K�
y� � C�x� �Du��

�
�
A�K�C B �K�D K�

�
�

	
 �x�
u�
y�

�A
�

�
A����� �d

� ���H
d
� ��

�
�

	
 �x�
u�
y�

�A �

which is exactly (4.11) for k � 
. As a side result, we find from (4.10) that for k � 
:

P� � AP�A
T � 
G�AP�C

T ��
�� � CP�C
T ����
G �AP�C

T �T

� AP�A
T � 
�c

� �AP��
T
� ��
L� � ��P��

T
� ��
�

c
� �AP��

T
� �

T �

which is (4.13) for k � 
.

k � p � k � p � 


We first prove that if (4.13) is true for k � p, it will also be true for k � p � 
. In
the following derivation, we use the matrix inversion lemma of [Kai 80]. We also
introduce the following convenient notation:


p � 
�c
p �ApP��

T
p � �

�p � 
Lp � �pP��
T
p � �

� � G�Ap��P�
A
T �pCT �

We thus find:

Pp�� � A
p��

P��A
T �p�� � �p���

��
p���

T
p��

� A
p��

P��A
T �p��

���c
p�� �A

p��
P��

T
p����Lp�� � �p��P��

T
p���

����c
p�� �A

p��
P��

T
p���

T

� A
p��

P��A
T �p��

�
�
A	�c

p �ApP��
T
p 
 G�Ap��P��A

T �pCT
�

�

�
Lp � �pP��

T
p 	��c

p�
T � �pP��A

T �p
CT

C	�c
p �ApP��

T
p 
 �� � CApP��A

T �pCT

���

�

�
	��c

p�
T � �pP��A

T �p
AT

GT � CApP��A
T �p��

�
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� A
p��

P��A
T �p��

�
�
A�p �

�� �p �Tp C
T

C�p �� � CApP��A
T �pCT

����
�TpA

T

�T

�
� A

p��
P��A

T �p�� �
�
A�p �

�
�

�
���
p � ���

p �Tp C
T���C�p�

��
p ����

p �TpC
T���

����C�p�
��
p ���

��
�TpA

T

�T

�
with � � �� � C 	Ap

P��A
T �p � �p�

��
p �

T
p 
� 
z �

�Pp

C
T � �� � CPpC

T

� A 	Ap
P��A

T �p � �p�
��
p �

T
p 
� 
z �

�Pp

A
T

��� �A�p�
��
p �

T
p C

T ������ �A�p�
��
p �

T
p C

T �T

� APpA
T � �G�A 	Ap

P��A
T �p � �p�

��
p �

T
p 
� 
z �

�Pp

C
T �

�����G�A 	ApP��A
T �p � �p�

��
p �Tp 
� 
z �

�Pp

CT �T

� APpA
T � �G�APpC

T ���� � CPpC
T ����G�APpC

T �T �

The last equation clearly indicates that the matrix Pp�� calculated from (4.10) and
from (4.13) are the same. Which thus proves (4.13). Now, we are ready to prove
(4.11). We assume that (4.11) is satisfied for k � p:

�xp � 
Ap ��p�p��x� � 
�d
p ��pH

d
p �

	B
 u�
...

up��

�CA��p

	B
 y�
...

yp��

�CA �

with �p � 
p�
��
p . We first prove that:

�p�� �
�

A�KpC��p Kp

�
� (A.10)

From the same formulas as before, we find:

�p�� � �p��	
��
p��

�
�
A�p	

��
p � A�p	

��
p �Tp C

T���C�p	
��
p � 
���C�p	

��
p

�A�p	��
p �Tp C

T��� � 
���
�
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�
�
A�p � �
 � A�p�Tp C

T ����C�p �
 �A�p�Tp C
T ����

�
�

�
A�p � �G� APpCT ���� � CPpCT ���C�p �G �APpCT ���� �CPpCT ���

�
�

�
�A�KpC��p Kp

�
�

We can now rewrite the estimate of �xp��:

�xp�� � �Ap�� � �p���p����x� � ��d
p�� � �p��H

d
p���

	B
 u�
...
up

�CA��p��

	B
 y�
...
yp

�CA
� �Ap�� � �A�KpC��p�p �KpCA

p��x�

��A�d
p � �A�KpC��pH

d
p �KpC�

d
p�

	B
 u�
...

up��

�CA� �B �KpD�up

��A�KpC��p

	B
 y�
...

yp��

�CA�Kpyp

� �A�KpC��

����Ap � �p�p��x� � ��d
p � �pH

d
p �

	B
 u�
...

up��

�CA��p

	B
 y�
...

yp��

�CA
���

��B �KpD�up �Kpyp

� �A�KpC���xp � �B �KpD��up �Kp�yp �

The last formula clearly indicates that �xp�� is the propagation of the state �xp through
formula (4.8). This proves the induction and thus (4.11).

�

A.6 PROOF OF THEOREM 11

From the first assumption of Theorem 11, we easily find that (see also Subsection
1.4.4):

Ej�Y
s
p U

T
� � � � � Ej�Y

s
p 
X

d
� �
T � � � �

Ej�Y
s
f U

T
� � � � � Ej�Y

s
f 
X

d
� �
T � � � �
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where the subscript � denotes past or future. In the following we make use of (4.15)
through (4.17) without explicitly mentioning it.

Proof of formula (4.18)

Define

A def
� Ej � Yf �

�
UT
p UT

f Y T
p

�
� �

� A� A� A�

�
�

We have:

A� � Ej	YfU
T
p 


� Ej

�
��iA

i
X
d
p � �i�

d
iUp �H

d
i Uf � Y

s
f ��U

T
p

�
� �iA

i
S
xu
p � �i�

d
iR

uu
p �H

d
i �R

uu
pf �

T
�

A� � Ej	YfU
T
f 


� Ej

�
��iA

i
X
d
p � �i�

d
iUp �H

d
i Uf � Y

s
f ��U

T
f

�
� �iA

i
S
xu
f � �i�

d
iR

uu
pf �H

d
i R

uu
f �

A� � Ej	YfY
T
p 


� Ej

�
��iA

i
X
d
p � �i�

d
iUp �H

d
i Uf � Y

s
f ����X

d
p �

T�Ti � U
T
p �H

d
i �

T � �Y s
p �

T �
�

� �iA
i
d�Ti � �iA

i
S
xu
p �Hd

i �
T � �i�

d
i �S

xu
p �T�Ti � �i�

d
iR

uu
p �Hd

i �
T

�Hd
i �S

xu
f �T�Ti �H

d
i �R

uu
pf �

T �Hd
i �

T � Ci

� �iA
i
d�Ti � �i�

d
iR

uu
p �Hd

i �
T � �iA

i
S
xu
p �Hd

i �
T � �i�

d
i �S

xu
p �T�Ti

�Hd
i �R

uu
pf �

T �Hd
i �

T �H
d
i �S

xu
f �T�Ti � �i�

c
i �

Thus, we find:

A �

�
A��
z�

li�mi

A��
z�
li�mi

A��
z�
li�li

�

�

�� �iA
iSxu �iA

i
d�Ti � �i�
c
i � �i�

d
iR

uu
p �Hd

i �
T

��i�
d
i � R

uu
p Ruu

pf � ��iA
iSxup �Hd

i �
T � �i�

d
i �S

xu
p �T�Ti

�Hd
i � �R

uu
pf �

T Ruu
f � �Hd

i �R
uu
pf �

T �Hd
i �

T �Hd
i �S

xu
f �T�Ti

�� �(A.11)

The second part we need to express in terms of the system matrices is:

B def
� Ej

�� 	
 Up
Uf
Yp

�A �
�
UT
p UT

f Y T
p

� �� �

� B�� BT��
B�� B��

�
�
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with:

B�� � Ej

�
Yp�� U

T
p UT

f �
�

� Ej

�

�iX

d
p �Hd

i Up � Y s
p ��� U

T
p UT

f �
�

� �iS
xu �Hd

i � R
uu
p Ruu

pf � �

B�� � Ej�YpY
T
p �

� Ej

�

�iX

d
p �Hd

i Up � Y s
p ��

X

d
p �
T�Ti � UT

p 
H
d
i �
T � 
Y s

p �
T �
�

� �i�
d�Ti � �iS

xu
p 
Hd

i �
T �Hd

i 
S
xu
p �T�Ti �Hd

i R
uu
p 
Hd

i �
T � Li �

and B�� � Ruu. Note that B is guaranteed to be of full rank (
�m � l�i) due to the
persistently exciting input and the non-zero stochastic subsystem. To compute B��,
we use the formula for the inverse of a block matrix [Kai 80]:� B�� BT��

B�� B��
���

�

� B���� � B���� BT�����B��B���� �B���� BT�����
����B��B���� ���

�
� (A.12)

with � � B�� �B��B���� BT��. So, in our case, this becomes:

B�� �

�
�Ruu��� � �

�
I
�

�
�Hd

i �
T � �Ruu����Sxu�T�Ti ��

���Hd
i

�
I �

�
� �iS

xu�Ruu����

�����Hd
i

�
I �

�
� �iS

xu�Ruu����

��

�
I
�

�
�Hd

i �
T � �Ruu����Sxu�T�Ti ��

��

���

�
� (A.13)

with:

� � �i

d�Ti � Li ��iS

xu
p �Hd

i �
T �H

d
i �S

xu
p �T�Ti �H

d
i R

uu
p �Hd

i �
T

���iS
xu �H

d
i 	 R

uu
p R

uu
pf 
��Ruu�����Sxu�T�Ti �

�
Ruu
p

�Ruu
pf �

T

�
�Hd

i �
T �

� Li � �i �S
xu�Ruu����Sxu�T �
d�� 
z �

�P�

�Ti �

For convenience, we alter the definition of Zi slightly from (4.18) to:

Zi � Yf�

	
 Up

Uf

Yp

�A
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� A�B��
	
 Up

Uf
Yp

�A
def
�

�
LUp LUf LYp

�	
 Up
Uf
Yp

�A �

Note that this change of definition only consists of switching some block rows in the
matrices we are projecting on. It does not change any properties. Using (A.11) and
(A.13), we thus find:�

LUp LUf

�
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Once again, using (A.11) and (A.13), we find for LYp :
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We thus conclude that:
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�Hd
i Uf �

Using (4.14) we get:
Zi � �i bXi �Hd

i Uf �

which proves (4.18).

�

A.7 PROOF OF THEOREM 12

We prove equations (4.26)-(4.28). The rest of the Theorem follows from these equa-
tions through a similar reasoning as in the proof of Theorem 2 or 8. O i is the oblique
projection of the row space of Yf along the row space of Uf on the row space of
Wp. This oblique projection can also be computed by decomposing the orthogonal
projection of the row space of Yf on the combined row spaces of Wp and Uf (see
Section 1.4). Dropping the part along Uf results in the oblique projection Oi. We
know now that (4.18):

Zi � Yf�

�
Wp

Uf

�
� �i bXi �Hd

i Uf �

Using the expressions for bXi (4.14) and bX� (4.22) and the fact that:

Xd
p�

�
Up

Uf

�
� Xd

p�
Up
Uf �Xd

p�
Uf
Up �

this can be rewritten as:

Zi � �i
�
�d
i ��iH

d
i �i

�
Wp �Hd

i Uf

��i
A
i ��i�i�

�
Xd
p�
Up
Uf �Xd

p�
Uf
Up

�
�

The effect of Uf is clearly visible in this last equation. When we drop the linear
combinations of Uf we get the oblique projection:

Oi � �i
�

Ai ��i�i�

�
�d
i ��iH

d
i �i

� �� Xd
p�
Uf
Up

Wp
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Defining eXi as:

eXi �
�

Ai ��i�i�

�
�d
i � �iH

d
i �i

� �� Xd
p�
Uf
Up

Wp

�
�

and comparing this last equation with the expression for the Kalman filter states (4.14)
shows that eXi is indeed a Kalman filter sequence with initial state and covariance
matrix as defined in (4.27)-(4.28).

A.8 PROOF OF LEMMA 2

We first prove equation (5.10). Hereto we consider the different sub-blocks of the
weighted controllability Lyapunov equation (5.8):

P�� � AP��A
T �EET �AP T

��C
T
u B

T �BCuP��A
T

�B�CuP��C
T
u �DuD

T
u �B

T � (A.14)

P�� � AuP��A
T � �AuP��C

T
u �BuD

T
u �B

T � (A.15)

P�� � �AuP��A
T
u �BuB

T
u � � (A.16)

For convenience of notation and since i � �, we drop all the subscripts i in the
following. All superscripts are also replaced by subscripts (for instance �s

i 	 �s).
We first prove that with:

�u
def
�
�
� � � A�

uBu AuBu Bu

�
�

we have:

P�� � �u�
T
u � (A.17)

P�� � �uW
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u �

T
d � (A.18)

Proof of (A.17):
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� Au��u�

T
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T
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which proves that �u�
T
u is the solution of the same Lyapunov equation (A.16) as P��

and thus proves (A.17).
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Proof of (A.18):
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T
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which proves that �uW
T
u �

T
d is the solution of the same equation as P�� (A.15) and

thus proves (A.18).

Finally, we prove (5.10):
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which proves that �dWuW
T
u �

T
d ��s�

T
s is the solution of the same equation as P��

(A.14) and thus proves (5.10).

Now we prove equation (5.11). Once again, we consider the different sub-blocks of
the weighted observability Lyapunov equation (5.9):

Q�� � ATQ��A�ATQ��ByC � CTBT
y Q

T
��A

�CT �BT
y Q��By �DT

yDy�C � (A.19)

Q�� � ATQ��A
T
y � CT �BT

y Q��Ay �DT
y Cy� � (A.20)

Q�� � �AT
yQ��Ay � CT

y Cy� � (A.21)

We again drop the subscript i and transform all superscripts to subscripts. With:

�y
def
�

	
 Cy
CyAy

� � �

�A �
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we have:

Q�� � �Ty �y � (A.22)

Q�� � �TW T
y �y � (A.23)

Proof of (A.22):

�Ty �y �
�
CT
y AT

y �
T
y

�� Cy
�yAy

�
� AT

y ��
T
y �y�Ay � CT

y Cy �

which proves that �Ty �y is the solution of the same Lyapunov equation as Q�� (A.21)
and thus proves (A.22).

Proof of (A.23):

�TW T
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� W T
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which proves that �TW T
y �y is the solution of the same equation as Q�� (A.20) and

thus proves (A.23).

Finally, we prove (5.11):
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T
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which proves that �TW T
y Wy� is the solution of the same equation as Q�� (A.19) and

thus proves (5.11).
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A.9 PROOF OF THEOREM 13

W� (5.12) and W� (5.13) are easily seen to be of full rank. Note that since j �� we
dropped all the time average operatorsEj in this proof (and in the proofs to follow).

Proof of (5.15):

From condition 1 of Theorem 12 we know that uk and ek are uncorrelated. From this it
follows that (see Subsection 1.4.4 and taking into account that we dropped the symbol
Ej):

EpU
T
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Ep	U�p
� Ep �

It is also trivial that Up	U�p
� �. From these equations, it is easy to verify that (with

W� given by equation (5.13)):
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Combining these results with (5.7) we find that:eXiW�W
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It is easy to verify that W� given by formula (5.14) leads to the same result (A.24).
From Theorem 12 we also know that:eXiW� � S

���
� V T

� �

Since V T
� V� � I , this leads to:eXiW�W

T
�
eXT
i � S

���
� V T

� V�S
���
�

� S� � (A.25)
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Finally, from (A.24) and (A.25) we find:

�d
iWuW

T
u 
�

d
i �
T ��s

i 
�
s
i �
T � S� �

From Lemma 2 we know that the left part of this expression is equal to P �Wu
z��.
This leads to:

P �Wu
z�� � S� �

which is exactly (5.15).

Proof of (5.16):

From Theorem 12, we know:

�Ti W
T
� W��i � S

���
� UT

� U�S
���
�

� S� � (A.26)

Combining this with Lemma 2 (5.11) and with W� �Wy (5.12), we find:

Q�Wy
z�� � �Ti W
T
y Wy�i

� �Ti W
T
� W��i

� S� �

which is (5.16).

A.10 PROOF OF COROLLARY 2 AND 3

Proof of Corollary 2:

With Wu � Luup and Wy � Ili, we find for the weighting matrices (5.12) and (5.13)
in Theorem 13:

W� � Ili �
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220 Appendix A

In Section 4.3.1 it was shown that this choice of weights (W� and W�) exactly corre-
sponds to the N4SID algorithm.

Proof of Corollary 3:

With Wu � Luup� and Wy � Ili, we find for the weighting matrices (5.12)-(5.14) in
Theorem 13:

W� � Ili �
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f
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In Section 4.3.2 it was shown that the MOESP algorithm corresponds to this choice
of weights W� � Ili and W� � 	U�

f
.

A.11 PROOF OF THEOREM 14

It is easy to verify that for the choices (5.17)-(5.18) of W� and W� are full rank
matrices.

Proof of (5.19):

From Theorem 12 we know that uk and ek are uncorrelated. From this it follows that
(see Subsection 1.4.4 and taking into account that we dropped the symbolEj):
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From these equations it is easy to verify that:
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Combining these results with (5.7), we find:eXiW�W
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The last equation is exactly the same as (A.24) in the proof of the first main Theorem.
The rest of the proof of (5.19) is the same as the proof of (5.15).

Proof of (5.20):

To get more insight in (5.17), we investigate YfW� (using (5.3)-(5.5)):
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It can now easily be verified that:
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With (5.17) and the matrix inversion Lemma of [Kai 80] this leads to:
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find the following expression for Qn:
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The final part of the proof consists of proving that Qn � Q�H��
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This proves (5.20).
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MATLAB FUNCTIONS

In this Appendix, we describe the set of Matlab files that implement the algorithms
developed in this book. The idea of these files is to make subspace identification
algorithms more accessible for researchers as well as for industry.

B.1 GETTING STARTED

All algorithms in this book have separately been implemented in M-files. The research
however culminated in one overall algorithm called subid.m which implements
deterministic (Figure 2.8), stochastic (Figure 3.13) and combined (Figure 4.8) subspace
identification. This function is a good place to start with.

After you have copied the files from the diskette to your computer (for instance in the
directory c:\subspace), you should include the directory subfun in your path:

> path(path,’c:\subspace\subfun’);

Now change your directory to the examples directory and run the demo file
sta_demo.m:

> cd c:\subspace\examples
> sta_demo

You will get a clear impression of what subspace identification algorithms can do. You
might also want to run the stochastic identification demo sto_demo.m.
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Now you are ready to rerun some of the applications in Section 6.4. To run for instance
the application of the flexible robot arm, do:

> cd c:\subspace\applic
> appl5

This will guide you through the demo and reproduce the results of Section 6.4. You
could now also run any other applications in this directory.

You are now ready to try out your own problem. You could just use one of the subspace
identification functions (for instance subid.m). Alternatively, you could also copy
and adapt one of the application M-files.

B.2 MATLAB REFERENCE

This Section contains a short description of the files on the diskette. For more infor-
mation, see the Matlab on line help and the M-files themselves.

B.2.1 Directory: ’subfun’

This directory contains the Matlab subspace functions organized into main subspace
identification functions and auxilary ones.

All subspace identification functions have approximately the same syntax:

Inputs:

y and u:
The output and input data arranged in a matrix. The matrices have as many
rows as the number of data samples and as many columns as there are outputs
respectively inputs. The stochastic identification algorithms have no input u.

i:
The number of block rows used in the block Hankel matrices. The maximal order
that can be estimated is i times the number of outputs. Do not choose i too
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large, since the computational time is proportional to i�. Typically i is equal to:

i � ��
Maximal Order

Number of Outputs

n:
The order of the system. This parameter is optional. When it is not given, the
singular values are plotted and the user is prompted for the system order.

AUX:
An optional auxilary variable which speeds up the identification process. For
instance, when one wants to identify systems of different order, this variable is
used to avoid the recomputation of the RQ decomposition every time. See also
the M-function allord.m and the examples in sta_demo.m.

W:
An optional weighting flag which indicates in which basis the subspaces are
computed. See also Chapter 5.

sil:
When this flag is set to one, the algorithms run silently, without any output to the
screen.

Note that when an input is optional, supplying an empty matrix [] is the same as not
supplying that specific input. For example subid(y,u,i,[],AUX) allows you
to use the auxilary variable AUX without specifying the order.

Outputs:

A,B,C,D:
The state space system matrices of Formulas (1.1)-(1.3).

K,R:
The Kalman gain and covariance of the innovations. The general identified model
is thus:

xk�� � A�xk �B�uk �K�ek

yk � C�xk �D�uk � ek

E�ep�e
T
q � � R��pq

G,L0:
The state space matrices determining the stochastic model (3.6) and (3.7). These
matrices can be converted to a Kalman gain and innovations covariance through
the function gl2kr.m.
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AUX:
This output can be used as an input the next time the function is called.

ss:
A column vector containing the singular values from which the order could be
determined.

Subspace functions

Function Fig. Page Inputs Options Outputs

intersec - 45 y,u,i n,AUX A,B,C,D,ss
project - 46 y,u,i n,AUX A,B,C,D,ss
det stat 2.7 52 y,u,i n,AUX A,B,C,D,AUX,ss
det alt 2.8 56 y,u,i n,AUX A,B,C,D,AUX,ss

sto stat 3.11 86 y,i n,AUX,W A,K,C,R,G,L0,AUX,ss
sto alt 3.12 87 y,i n,AUX,W A,K,C,R,G,L0,AUX,ss
sto pos 3.13 90 y,i n,AUX,W A,K,C,R,G,L0,AUX,ss

com alt 4.6 121 y,u,i n,AUX,W A,B,C,D,K,R,AUX,ss
com stat 4.7 124 y,u,i n,AUX,W A,B,C,D,K,R,AUX,ss
subid 4.8 131 y,[u],i n,AUX,W A,B,C,D,K,R,AUX,ss

allord - - y,[u],i n,AUX,W ersa,erpa,AUX

Auxilary functions

Function Page Syntax Description

blkhank 33 H=blkhank(y,i,j) Make Hankel
solvric 62 [P,flag]=solvric(A,G,C,L0) Solve Riccati
gl2kr 137 [K,R]=gl2kr(A,G,C,L0) Transform
kr2gl 137 [G,L0]=kr2gl(A,K,C,R) Transform
simul 192 [ys,ers]=simul(y,u,A,B,C,D,ax) Simulation
predic 192 [yp,erp]=predic(y,u,A,B,C,D,K,ax) Prediction
myss2th - th=myss2th(A,B,C,D,K,flag) Conversion

B.2.2 Directory: ’applic’

This directory contains the applications described in Section 6.4. Both data files
and M-files are provided to ensure total reproducibility. See also Table 6.2 for more
information.
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M-File Data Description

appl1 appl1.mat Glass Tubes
appl2 appl2.mat Dryer
appl3 appl3.mat Glass Oven
appl4 appl4.mat Flutter
appl5 appl5.mat Robot
appl6 appl6.mat Evaporator
appl8 appl8.mat CD Player
appl9 appl9.mat Ball & Beam
appl10 appl10.mat Wall Temp.

B.2.3 Directory: ’examples’

This directory contains two demo files, which illustrate the possibilities and applica-
tions of the subspace functions.

M-File Description

sta demo Starting up demo
sto demo Stochastic systems demo

B.2.4 Directory: ’figures’

This directory contains the M-files that generate the matlab Figures in this book.

M-File Figure Page
det sim1 2.6 49
sto sim1 3.10 83
sto sim2 3.14 92
sto sim3 3.16 93
com sim1 4.5 116
com sim2 4.9 132
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C
NOTATION

Notation Description Page

A�B�C�D Dynamical system matrices. 7

Au� Bu� Cu� Du Input weight dynamical system matrices. 140

Ay� By� Cy� Dy Output weight dynamical system matrices. 140

Ci Block Toeplitz matrix of output covariances. 68

efk Forward innovation at time instant k. 61

ebk Backward innovation at time instant k. 64

E�F System matrices of forward innovation model. 137

Ep� Ef Block Hankel matrices of past (E�ji��) respectively
future (Eij�i��) forward innovations.

138

E
z� Z-transform of the forward innovations efk . 140

G Auxilary matrix for the description of stochastic sys-
tems.

61

G
z� Deterministic transfer matrix D � C
zI �A���B. 140bG
z� Reduced order deterministic transfer matrix. 150

Hd
i Toeplitz matrix containing the deterministic Markov

parameters D�CB�CAB� � � �.
36

Hs
i Toeplitz matrix containing the stochastic Markov pa-

rameters F�CE�CAE� � � �.
139

H
z� Stochastic transfer matrix F � C
zI �A���E. 140bH
z� Reduced order stochastic transfer matrix. 150

i Number of block rows in block Hankel matrices. 34
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In Identity matrix 
n
 n�.

j Number of columns in block Hankel matrices. 34

k Time instant. 6

Kf Forward Kalman gain. 61

Kb Backward Kalman gain. 64

l Number of outputs. 6

Li Block Toeplitz matrix of output covariances. 68

Luup Square root of the matrix Ruu
p . 138

Luup� Square root of the matrix Ruu
p� . 138

m Number of inputs. 6

n Number of states. 6

N Solution of the backward algebraic Riccati equation. 64

Nk Solution of the backward difference Riccati equation. 72

Oi Oblique projection of the row space of Yij�i�� along
the row space of Uij�i�� on the row space of W�ji�� :
Oi � Yij�i���

Uij�i��
W�ji��.

40

P Solution of the forward algebraic Riccati equation. 62

Pk Solution of the forward difference Riccati equation. 70

P �Wu
z�� Wu
z� weighted controllability Grammian. 142

Q�R� S Covariance and cross-covariance matrices of the for-
ward measurement and process noise.

7

Qb� Rb� Sb Covariance and cross-covariance matrices of the back-
ward measurement and process noise.

65

Qp Part of the orthogonal matrix in the RQ decomposition. 164

Q�Wy
z�� Wy
z� weighted observability Grammian. 142

R	p�q�r�s
 Part of the triangular factor in the RQ decomposition. 164

Ruu Covariance of the inputs : �	U�j�i���U�j�i��
. 100

Ruu
p Covariance of past inputs �	Up�Up
. 100

Ruu
p� Covariance of past projected inputs �	Up�U�f �Up�U

�
f

. 138

Ruu
f Covariance of future inputs �	Uf �Uf 
. 100

Ruu
pf Cross-covariance of past and future inputs �	Up�Uf 
. 100

Sxu Cross-covariance of the past deterministic state and
inputs : �	Xd

p �U�j�i��

.

100
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Sxup Cross-covariance of the past deterministic state and
past inputs �	Xd

p �Up

.

100

Sxuf Cross-covariance of the past deterministic state and
future inputs �	Xd

p �Uf 

.

100

Su
z� Spectral factor of U
z�. 140

s Number of available measurements. 9

T Non-singular n
 n similarity transformation. 43

uk Input at time instant k. 6

U� S� V Matrices of a singular value decomposition.

U�ji�� Input block Hankel matrix. The subscript indicates
the indices of the first column of the matrix.

33

Up� U
�
p Past inputs U�ji�� respectively U�ji. 33

Uf � U
�
f Future inputs Uij�i�� respectively Ui��j�i��. 33

U
z� Z-transform of the input uk. 140

vk (Forward) measurement noise at time instant k. 6

vbk Backward measurement noise at time instant k. 64

wk (Forward) process noise at time instant k. 6

wbk Backward process noise at time instant k. 64

Wu Weighting matrix with input weight Markov parame-
ters Du� CuBu� CuAuBu� � � �.

140

Wy Weighting matrix with output weight Markov param-
eters Dy� CyBy� CyAyBy� � � �.

140

Wu
z� Input weighting transfer matrix Du � Cu
zI �
Au�

��Bu.
140

Wy
z� Output weighting transfer matrix Dy � Cy
zI �
Ay�

��By.
140

W�ji�� Past inputs (U�ji��) and outputs (Y�ji��). For stochas-
tic system identificationW�ji�� only contains outputs.

35

Wp�W
�
p Past inputs (Up respectively U�

p ) and outputs (Yf re-
spectively Y �

f ). For stochastic system identification
Wp only contains outputs.

35

xk State at time instant k. 6

xdk Deterministic state at time instant k. 32

xfk Forward innovation stochastic state at time instant k. 61

xsk Forward stochastic state at time instant k. 58
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�xk Forward Kalman filter state estimate at time instant k. 69

Xi State sequence. The subscript indicates the index of
the first element of the matrix.

99

Xp Past state sequence. 139

Xf Future state sequence. 139

Xd
i Deterministic state sequence. 35

Xd
p Past deterministic state sequence. 35

Xd
f Future deterministic state sequence. 35

Xs
i Stochastic state sequence. 74

Xs
p Past stochastic state sequence. 99

Xs
f Future stochastic state sequence. 99bXi Forward Kalman filter state sequence. 102eXi Forward Kalman filter state sequence. 108

yk Output at time instant k. 6

ydk Deterministic output at time instant k. 98

ysk Stochastic output at time instant k. 98

Y�ji�� Output block Hankel matrix. The subscript indicates
the indices of the first column of the matrix.

35

Yp� Y
�
p Past outputs Y�ji�� respectively Y�ji. 35

Yf � Y
�
f Future outputs Yij�i�� respectively Yi��j�i��. 35

Y 
z� Z-transform of the output yk. 140

zsk Backward stochastic state at time instant k. 64

zbk Backward innovation stochastic state at time instant
k.

64

�zk Backward Kalman filter state estimate at time instant
k.

69

Zi Orthogonal projection of the row space of Yij�i�� on
the sum of the row spaces of U�j�i�� and Y�ji��.

105

bZi Backward Kalman filter state sequence. 72

�i Extended observability matrix. 36

�i Extended observability matrix �i, without the last l
rows.

50

�i Extended observability matrix �i, without the first l
rows.

51
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�pq Kronecker delta. 6

� Delay operator.

�d
i Reversed extended controllability matrix of fA�Bg. 36

�s
i Reversed extended controllability matrix of fA�Eg. 138

�c
i Reversed extended controllability matrix of fA�Gg. 68

�� Covariance of the stochastic output. 61

�i Stochastic output covariance sequence. 61

	
ajb� Minimum variance estimate of a given b. 63

	A Operator projecting the row space of a matrix onto the
row space of A.

19

	A� Operator projecting the row space of a matrix onto the
orthogonal complement of the row space of A.

20

�k�Wu
z��Wy
z�� Frequency weighted Hankel singular values. 143

�s Covariance of the stochastic state sequence :
�	Xs

� �X
s
� 


.
60

�d covariance of the deterministic state sequence :
�	Xd

� �X
d
� 


.
100

�	A�B
 Covariance matrix of A and B : Ej�AB
T �. 27

�k Auxilary matrix in the linear combinations of the com-
bined Kalman filter state estimate.

101

R
l Vector space of l-dimensional real vectors.

Rl�m Vector space of l 
m-dimensional real matrices.

E��� Expected value operator. 25

Ej��� Time average : limj��
�
j ���. 26

A�B Projection of the row space of A on the row space of
B.

19

A�
B
C Oblique projection of the row space of A along the

row space of B on the row space of C.
21

�A � B� Principal directions in the row space of A. 24

�A � B� Principal directions in the row space of B. 24

�A � B� Principal angles between the row spaces of A and B. 24

Ay Moore-Penrose pseudo-inverse of A.

A�B Kronecker product of A and B. 126

vec A Column-wise vectorization of a matrix A. 126
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kAkF Frobenius norm of a matrix A.

kA
z�k� H-Infinity norm of a transfer matrix A
z�.

CACSD Computer Aided Control System Design. 7

CVA Canonical Variate Analysis. 114

GUI Graphical User Interface. 11

MOESP Multivariable Output-Error State space. 113

N4SID Numerical algorithms for Subspace State Space
System Identification.

112

PC Principal Component. 78

SVD Singular Value Decomposition.

QSVD Quotient Singular Value Decomposition. 60

UPC Unweighted Principal Component. 79
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