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published subspace identification algorithms for combined deterministic- 
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Abstract-The aim of this paper is to indicate and explore 
the similarities between three different subspace algorithms 
for the identification of combined deterministic-stochastic 
systems. The similarities between these algorithms have 
been obscured, due to different notations and backgrounds. 
It is shown that all three algorithms are special cases of one 
unifying theorem. The comparison also reveals that the three 
algorithms use exactly the same subspace to determine the 
order and the extended observability matrix, but that the 
weighting matrix, used to calculate a basis for the column 
space of the observability matrix is different in the three 
cases. 

1. INTRODUCTION 

A number of algorithms to identify multi-input 
multi-output (MIMO) combined deterministic- 
stochastic systems have been published. In 
contrast to ‘classical’ algorithms (Ljung, 1987, 
Sijderstriim and Stoica, 1989), these subspace 
algorithms do not suffer from the problems 
caused by a priori parametrizations and non- 
linear optimizations. They identify MIMO 
systems in a very simple and elegant way. In this 
paper, we shall indicate and explore some 
striking similarities between three different 
subspace algorithms for the identification of 
combined deterministic-stochastic systems. This 
comparison is done through the introduction of a 
unifying theorem, of which all three published 
algorithms are a special case. We believe that 
this observation will contribute considerably to a 
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further understanding of subspace algorithms for 
system identification. 

We consider three different algorithms in this 
paper. The first is that due to Larimore (1990). It 
is based on statistical arguments, and makes 
extensive use of principal angles and directions. 
The method is often referred to as ‘canonical 
variate analysis’ (CVA). The second algorithm 
we shall consider is the MOESP algorithm of 
Verhaegen (1994). MOESP stands for ‘multi- 
variable output-error state space’. The third 
algorithm is the N4SID algorithm of Van 
Overschee and De Moor (1994) which is also 
treated from a different point of view by Viberg 
et al. (1993). N4SID stands for ‘numerical 
algorithms for subspace state space system 
identification’ and should be read as a 
Californian license plate: enforce it. The last two 
algorithms (MOESP and N4SID) are based on 
geometrical and linear algebra concepts. 

The identification problem considered in the 
combined deterministic-stochastic identification 
papers is the following. Let uk E R” and yk E R’ 
be the observed input and output generated by 
the unknown system 

X k+, =Axk + Buk + wk, (1) 
y, = Cxk + DUk + uk, (2) 

with 

E[(n$+? $)I=(: ;)sk+-o (3) 

and A, Q E IX”““, B E Iw”““, C EIF!?‘, D E 
IF?‘, S E Wx and R E [wlx’ (here E denotes the 
expected value operator and Sk, the Kronecker 
delta). uk E R’ and wk E R” are unobserved, 
Gaussian-distributed, zero-mean, white noise 
vector sequences. {A, C} is assumed to be 
observable while {A, [B Q”‘]} is assumed to be 
controllable. The main problem is then stated as 
follows. Given input and output measurements 

Ul,..., LlN and y,, . . . , yN, where N is large and 
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sometimes (e.g. for statistical analysis reasons) is 
required to go to infinity (N+ m). Given the fact 
that these two sequences (uk and y,J are 
generated by an unknown combined 
deterministic-stochastic model of the form 
described by (l)-(3), find A, B, C, D, Q, R and 
S up to within a similarity transformation. 

Before we proceed, we note that Viberg et al. 
(1991) presented a comparison along the same 
line as developed here. In their paper the 
similarities between three subspace algorithms 
were also investigated. However, the subspace 
algorithms discussed and compared by Viberg et 
al. (1991) consider the identification of purely 
deterministic systems. This paper presents an 
extension of these results to the identification of 
combined deterministic-stochastic systems as in 

(l)-(3)* 
Subspace algorithms basically consist of two 

steps (see Fig. 1). As a first step, the algorithm 
computes a certain characteristic subspace from 
the given input-output data, which coincides 
with the subspace generated by the columns of 
the extended observability matrix of the system 
(Ii). The dimension of this subspace is equal to 
n, the order of the system to be identified. Thus, 
in the first step, the order and the extended 
observability matrix of the system are deter- 
mined directly from the given input-output data 
(full lines in Fig. 1). For the second step, the 
considered algorithms apply either of the 
following strategies. 

l Two algorithms (Viberg et al., 1993; Ver- 
haegen, 1994) determine two system matrices 

: E,D,Q,R,S : i A,B,C,D,Q,R,S : 
.___________--------1 .______________-----1 

Verhaegen (1994), 
Viberg et al. (1993) 

Larimore (ISSO), 
Van Overschee & De Moor (1994) 

Fig. 1. The two steps of a subspace algorithm. The full lines 
represent the first step: the determination of the order (n) 
and the extended observability matrix (ri) from the 
input-output data ukr yk. This first step is analyzed in the 
namer. The dotted lines represent the two possibilities for the 
second step. The left-hand side illustrates the strategy 
followed bv Verhaeeen (1994) and Viberg et al. (1993) 

J \ I 

while the right-hand iide illustrates the strategy of Larimore 
(1990) and Van Overschee and De Moor (1994). 

. 

(A and C) directly from the extended 
observability subspace. This is typically done 
by making use of the shift invariance of the 
subspace spanned by the columns of the 
extended observability matrix. This method is 
widely used in realization theory (Kung, 1978), 
stochastic identification (Akaike, 1975; Van 
Overschee and De Moor, 1993) and direction 
of arrival estimation (Paulraj et al., 1986). 
After A and C have been determined, they are 
used to determine the remaining system 
matrices (B, D, Q, R, S). This is illustrated on 
the left-hand side of Fig. 1. 

The other two algorithms (Larimore, 1990; 
Van Overschee and De Moor, 1994) use in 
the second step the extended observability 
matrix to implicitly determine two state 
sequences. When these state sequences are 
then combined with the original input-output 
data, all system matrices (A, B, C, D, Q, R, S) 
can be determined directly by solving a set of 
equations in a least-squares sense. This is 
illustrated on the right-hand side of Fig. 1. 
There is a certain elegance about this second 
strategy, since all the unknowns are deter- 
mined in one step, and not in two as in the 
first strategy. 

Since all algorithms determine in a first step 
the order and the extended observability matrix 
of the system, we shall focus our attention in this 
paper on that problem. We introduce a unifying 
theorem that allows the determination of the 
order and the extended observability matrix 
from input-output data. The basic subspace in 
this theorem is obtained by an oblique 
projection, as was already mentioned by Van 
Overschee and De Moor (1994) and Viberg et 
al. (1993). The only difference between the 
algorithms lies in the use of different weighting 
matrices. 

This paper is organized as follows. In Section 2 
we introduce some notation. Section 3 presents 
the unifying theorem, which is the main result of 
this paper. In Section 4 it is shown how the three 
algorithms fit in this unifying theory. Section 5 
gives an intuitive interpretation of the weighting 
matrices. The theory is illustrated by an 
example in Section 6. Section 7 summarizes the 
main results of this paper. 

2. NOTATION 

In this section we introduce the notation used 
for input and output block Hankel matrices, for 
projections and for some matrix operations. 
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Input and output block Hankel matrices are 
defined as 

/ 
ug u1 u2 . . . uj-l 

\ 

. . . 

/ Yo Yl y2 . . . Yi-I \ 

Y2 Y3 . . . 

.Yi Yitl . . . Yi+,pZ 

where we assume that j+ ~0 throughout the 
paper. i is a user-defined index, which is ‘large 
enough’. The subscripts on U and Y denote the 
subscript of the first and last element of the first 
column. 

We denote the ‘past’ input block Hankel 
matrix by U,l,_, and the ‘future’ input block 
Hankel matrix by I.jl2i-l. A similar notation 
applies for the past and future output block 
Hankel matrices. Furthermore, for notational 
convenience and following Larimore (1990), we 
define p, f and u as follows: the past inputs and 
outputs 

’ 

the future outputs 

PfV,2i--l), 

and the future inputs 

c4 dsf (U;,,,_,). 

. . . 

P = ( 1 UOli-1 

yoli-1 

z” 
P 

% 

. 

ui+q-1 

YP 

. 
Yi+q-1 

C+q 

The extended (i >n) observability matrix Ii 
(where the subscript i denotes the number of 
block rows) is defined as 

The Kalman filter state sequence Xi is defined as 
in Van Overschee and De Moor (1994): 

~i~f(~i I;+l ~i+2 . . . eT;+j_,)* 

Each column is the output of a non-steady-state 
Kalman filter built from the matrices of the 
system (if they were known). The j columns of 
xi are thus the outputs of a bank of j Kalman 
filters in parallel (see also Fig. 2). When the 
system matrices A, B, C, D, Q, R, and S are 
known, this sequence can be determined easily 
by combining the input-output data with the 
known system matrices. The point is that this 
state sequence can also be obtained directly from 
the input-output data, without any knowledge of 
the system matrices. This observation is at the 
heart of the approach elaborated by Van 
Overschee and De Moor (1994) to which we 
refer for more details. 

IIA denotes the operator that projects the row 
space of a matrix onto the row space of A 
(which is assumed to be of full rank): 

IIA gfAT(AAT)-‘A 

. . . -0 
“j-l 

Uj-1 

Ui+j-2 

Yj-1 

. 

Yi+j-2 

Fig. 2. Interpretation of the sequence k, as a sequence of non-steady-state Kalman filter state estimates based upon i 

1 

Filter 

measurements ot uk and yk. When the system matrices A, B, C, D, Q, R and S are known, the state fi+q can be determined from 
a non-steady-state Kalman filter as follows. Start the filter at time 9, with an initial state estimate T”g, which is a function of the 
past and future inputs as explained by Van Overschee and De Moor (1994). Now iterate the non-steady-state Kalman filter over i 
time steps (the downwards vertical arrow). The Kalman filter will then return a state estimate Xi+,. This procedure could be 
repeated for each of the i columns, and thus we speak about a bank of non-steady-state Kalman filters. The major observation in 
subspace algorithms is that the system matrices A, B, C, D, Q, R and S do not have to be known to determine the state sequence 

8,. It can be determined directly from input-output data. 
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A’ denotes the subspace perpendicular to the 
row space of A. B/A is shorthand for the 
projection of the row space of B onto the row 
space of A: 

B/A efBII, = BAT(AAT)-‘A. 

The Frobenius norm squared of a matrix 
A E R”“” is defined as 

The Moore-Penrose inverse of a matrix A is 
denoted by At and the n X n identity matrix by 
I n. 

3. A UNIFYING FRAMEWORK 

In this section we present a unifying 
framework for the determination of the order 
and the extended observability matrix of a 
system, directly from given input-output data. In 
a first subsection we shall stress the intuition that 
leads to the theorem. In a second subsection we 
state and prove the theorem, and show how it 
ties in with the intuition of the first subsection. 
In Section 4 we show that the three aforemen- 
tioned algorithms are special cases of the 
unifying theorem. 

3.1. Intuition 
The goal of an identification procedure is to 

find a model that behaves in approximately the 
same way as the process under consideration. 
This goal is ‘classically’ solved by minimizing a 
‘prediction error criterion’. This criterion ex- 
presses the ‘prediction performance’ of the 
model on the given data set. The minimizing 
solution is designated as the optimal model (see 
e.g. Ljung, 1987). In the framework of subspace 
identification, we reach the identification goal by 
solving two subsequent problems. 

Optimal prediction. As stated before, we want to 
find a model that will predict the behavior of the 
process sufficiently accurately. This can be 
formulated as follows: predict the future outputs 
(f) as accurately as possible, using all the 
information that can be obtained from the past 
(p), and using the knowledge of the inputs that 
will be presented to the system in the future (u). 

Complexity reduction. Apart from the fact that 
we want to find a model that can predict the 
future, we also want the complexity of this 
model to be as low as possible. The model has to 
be as compact as possible. Or, equivalently, we 
want to reduce the complexity of the amount of 
‘information’ of the past that we need to keep 
track of to predict the future. 

We shall now formulate this intuition 
mathematically. 

Optimal prediction. Inspired by the linearity of 
the system, we propose to combine the past (p) 
and the future inputs (u) linearly to predict the 
future outputs (f). We denote the linear 
combinations respectively by L, and L,,. The 
quality of the prediction is measured in the 
Frobenius norm. Mathematically, the first part of 
the identification goal then becomes 

The optimal combination of the past (p) to 
predict the future is thus L,p. Geometrically, 
the row space of L,p can be interpreted as the 
oblique projection of the row space off along the 
row space of u on the row space of p (see 
below). This oblique projection is denoted by 
0 E [w/ix/: 

Oef Lpp. 

Complexity reduction. As a second step, we 
need to reduce the complexity of 0’. Since the 
rows of 6’ span an li-dimensional subspace in the 
j-dimensional ambient space, we can introduce a 
complexity reduction by reducing the subspace 
dimension to n (the order of the system). 
Intuitively, this implies that we only have to 
remember n different directions of 
predict the future. Mathematically, 
step can be formulated as 

the past to 
the second 

(5) 

constrained by rank (3) = 12, 

where W, E R’ix” and W, E KY’“’ are user-defined 
weighting matrices (see below). These weighting 
matrices determine which part of the ‘informa- 
tion’ of 6 is important to retain. A more rigorous 
interpretation of the weighting matrices is 
presented in Section 5. Since we do not want to 
lose any ‘information’ (rank) owing to the 
weighting, we should make sure that 

rank (W, QWz) = rank (0). 

3.2. A unifying theorem 
In this subsection we state and prove the 

unifying theorem. We also illustrate how the 
intuitition of the previous subsection ties in to 
this Theorem. 

Theorem 1. Unifying theorem. 

1. The process noise wk and the measurement 
noise vk are not identically zero. 
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2. The input uk is uncorrelated with the process 
noise wk and the measurement noise uk. 

3. The input uk is persistently exciting of order 
2i (Ljung, 1987). 

4. An infinite number of measurements are 
available: i + cc. 

5. W, is of full rank and W, is such that 
rank (p) = rank (p W,). 

Then 

CJ’= [(flul)(plul)‘l[(pl~‘)(~l~~)~l-‘p (6) 
and, with the singular-value decomposition 

we 

(4 

(b) 

(cl 

(4 

(4 

have the following. 

The order of the system (l)-(3) is equal to 
the number of non-zero singular values in 

(7). 

The optimal reduction % can be taken equal 
to 

%! = w;‘u,s,vTw:. 

(This is the minimum-norm solution of the 
optimization problem (5). When W, is 
rank-deficient, there is more than one 
solution. See also the Appendix.) 

The extended observability matrix Ii can be 
taken equal to: 

ri = w;‘u,$‘! (8) 

(Note that Ii is only determined up to a 
non-singular similarity transformation T. 
This implies that W ;‘U,S~‘2T is also a valid 
choice for I,.) 

The part of the Kalman state sequnce _%; that 
lies in the column space of W, can be 
recovered from 

z.W = ~“2vT 
2 1 1. (9) 

(Using the same ‘similarity transformation T 
as in (c), we find _%,W, = T-‘S!‘2VT.) 

The ‘full’ Kalman state sequence xi can be 
recovered from 

Xi,= r@. (10) 
The proof of the unifying theorem can be found 
in the Appendix. 

Discussion. First we provide some back- 
ground on the assumptions (the numbers of the 
notes correspond to the numbers of the 
assumptions in the theorem). 

2. Assumption 2 is satisfied for open-loop 
operation of the system. In closed loop the 

noise would be fed back to the inputs through 
the controller. 

Persistency of excitation means that uk should 
at least contain i sinusoids with distinct 
frequencies. Any white or colored noise signal 
also satisfies this assumption. 

Assumption 4 is needed for the asymptotic 
analysis. In practice it suffices to have a large 
amount of data. 

Assumption 5 is made to avoid loss of rank of 
0 when multiplying by the weighting matrices 
(see also the proof of the theorem in the 
Appendix). 

The intuition of the previous section can now be 
related to Theorem 1. 

Optimal prediction. From the proof in the 
Appendix, we indeed find that 6’ is equal to the 
oblique projection of f along u on p. Equation 
(6) is just one way of writing this projection. 

An important observation is that, indepen- 
dently of the weights W, or W2 in the second 
step, the matrix that is rank-deficient and that 
determines the system order and matrices is the 
oblique projection 0. Since (see the proof of the 
theorem in the Appendix) [p/u’(p/u’)‘]-‘p is 
of full rank, we see from (6) that the order and 
the extended observability matrix are fully 
determined by the rank and the column space of 

which is thus the matrix that lies at the heart of 
the theorem. 

Complexity reduction. The optimal reduction %! 
(the solution of the minimization problem (5)) 
can be taken equal to (Theorem 1) 

%? = w;‘u,s, vyw:. 

Note that 3 = 0 when all the assumptions of 
Theorem 1 are satisfied. In that case C?? is merely 
a basis for the row space of 6’. However, when 
i # m or when the data-generating system is not 
linear, the singular values of W,QM$, (7), are all 
different from zero. In that case the row space of 
0 is of dimension li, and the order has to be 
chosen equal to the number of ‘dominant’ 
singular values. The complexity reduction step is 
then truly a reduction of the dimension of the 
row space of 0, and the weights W, and W, play 
an important role in determining which part of 
the original row space of 0 is retained. The error 
induced by this reduction is then 

IlW,(O- %)w,llF= i (r2k, 
k=n+l 

where ok are the diagonal elements of S,. 



1858 P. Van Overschee and B. De Moor 

Section 5 presents a deeper analysis of the role 
of the weighting matrix W,. 

4. THREE ALGORITHMS AND THE UNIFYING 
THEOREM 

In this section we show how the three 

and Fi directly from the singular-value decom- 
position of the oblique projection (the super- 
script IZ stands for ‘n4sid’): 

subspace algorithms (N4SID, MOESP and 
CVA) determine the system order and the 
matrix Ti from the given input-output data as 
stated in Theorem 1, but with different weighting 
matrices W, and W, for each algorithm. 

The order is equal to the number of non-zero 
singular values in z. The observability matrix is 
taken equal to 

In each of the following subsections we first 
give an outline of the algorithm. Then we prove 
a theorem that connects the algorithm with the 
unifying Theorem 1. Finally, this connection is 
discussed in further detail. Table 1 gives an 
overview of the results. Note that for each 
algorithm, there are two different singular-value 
decompositions of importance. 

ri = ?U;l(fl)“? (12) 

The algorithm of Viberg et al. (1993) calculates 
the singular-value decomposition of (? (adjusted 
to our notation): 

(3 =f(P= u=)[ (E)(PT q’ 

x (I’yy o”)[ (;)(p= uqla. (13) 

SVD ‘Theorem 1’. This indicates the singular- 
value decomposition suggested by the unifying 
Theorem. This refers to the singular-value 
decomposition of (7). The matrices of this 
decomposition will be denoted by capitals (and 
the necessary sub- and superscripts): 

Squaring (13) and using the results of part 1 of 
the proof of Theorem 1 in the Appendix leads to 

(LX’ = [(flU%PIUL)=] * [(p/u’)(p/u’)‘]-’ 

u, s, v. 

SVD ‘Algorithm’. This points to the singular- 
value decomposition used by the authors of the 
algorithm (which can be slightly different from 
that of Theorem 1). The matrices of this singular 
value decomposition will be denoted by script 
letters (and the necessary sub- and superscripts): 

* [PPTl. KPlu%Pw=l-’ * KPw(fw=lY 

which is exactly equal to OoT (see e.g. (6)). This 
implies that both the algorithm of Van 
Overschee and De Moor (1994) and that of 
Viberg et al. (1993) calculated the same singular 
values fl and the same left singular space %Y, 
and thus determine the order n and Ti in exactly 
the same way. 

021, Y, “Ir. 

4.1. N4SZD 
Description of the algorithm. The acronym 

N4SID stands for ‘numerical algorithms for 
subspace state space system identification’, and is 
pronounced like a Californian license plate: 
enforce it. 

Theorem 2. N4SZD. The algorithms of Van 
Overschee and De Moor (1994) and Viberg et al. 
(1993) correspond to Theorem 1 with the 
weights 

w, = I, 

w, = I. 

The algorithm of Van Overschee and De Proof. This is trivial (just replace WI and W2 by Z 
Moor (1994) determines the order of the system in the formulas of Theorem 1). 

Table 1. Overview of the results for the three algorithms. The numbers refer to the 
corresponding formulas. W, and W, are the weighting matrices of Theorem 1, while 
SVD ‘Theorem 1’ indicates the singular-value decomposition suggested by the 
unifying theorem. SVD ‘Algorithm points to the singular-value decomposition used 
by the authors of the algorithm iwhich can be slightly different from that of Theorem 

1). Ii. 8, W, and X, are also indicated for each algorithm 

Theorem 1 N4SID MOESP CVA 

W 
w, 

SVD ‘Theorem 1’ 
SVD ‘Algorithm’ 

I-, 
rl’,_W2 

X, 

I I 

n,, 
(7) CA) 

0 i::; 
‘Zk6,’ ‘iKj) 

(9) I:;; 
(24) 

(20)~ (23) 
(10) - (2% (25) 
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Discussion. A consequence of W, = I is that 
we do not need (10) to determine the states -%;, 
but they can be determined simply from the 
singular-value decomposition (11) (using (9)) as 

X; = (X)‘“(V)‘. (14) 

In the following subsections it will become clear 
that for the other two algorithms, the determina- 
tion of the state sequence xi requires the use of 

(10). 
In Viberg et al., (1993) an interpretation of 

this algorithm is given in an instrumental 
variable framework. In Van Overschee and De 
Moor (1994) the connection with non-steady- 
state Kalman filters is elaborated (see also 
Section 2). 

Once the extended observability matrix 
and/or the states have been computed, the other 
system matrices can be computed in different 
ways (Fig. 1). In Viberg et al. (1993) the matrices 
A and C are calculated directly, while in Van 
Overschee and De Moor (1994) the states play a 
crucial role. 

4.2. MOESP 
Description of the algorithm. The acronym 

MOESP stands for ‘multivariable output-error 
state space’. Verhaegen (1994) considered the 
following QR decomposition (adapted to our 
notation): 

With the singular-value decomposition (the 
superscript m stands for ‘moesp’) 

Verhaegen proved that the system order can be 
retrieved from the number of singular values of 
fl different from zero. He also proved that a 
possible choice for I, is 

rj = %;“(sp;n)“! (17) 

Theorem 3. MOESP. The algorithm of Ver- 
haegen (1994) corresponds to Theorem 1 with 
the following weights: 

w, = I, 

w, = II,&. 

The proof can be found in the Appendix. 

Discussion. From the proof, we can conclude 
that applying the weights of Theorem 3 to the 
results of Theorem 1 leads to the MOESP 
algorithm of Verhaegen (1994). MOESP is thus 
a special case of the unifying theorem. 

Note that since W, is not of full rank, we do 
not recover the full state from the singular value 
decomposition of L33Q2 (see (31)). According to 
(9), L32Q2 only recovers the projection of the 
state: 

Z; W, = ZJI,, = (Sy)“*( V;l)’ = (fl)ln( Y”T)‘Q2. 

(18) 

The state could be determined through (10). 
However, since MOESP does not use state 
sequences, we shall not elaborate on this any 
further. 

Once the extended observability matrix 
and/or the states have been computed, the 
other system matrices can be computed in 
different ways (Fig. 1). 

4.3. CVA 
Description of the algorithm. Larimore (1990) 

considered the canonical correlation between, on 
the one hand, the past (p) conditional to the 
future inputs (u) and on the other hand the 
future outputs (f) conditional to the future 
inputs (u). In formulas, this means that he 
considered the principal angles and directions 
between p/u’ and f /uL. He denoted his class of 
algorithms by CVA, which stands for ‘canonical 
variate analysis’. 

Consider the singular-value decomposition of 
.& (the superscript c stands for ‘cva’): 

~c~f[(flu’>(flu’)T]-“‘[(flu~)(plu~)T] 

x [(p/u’)(p/u’>‘]~“’ 

SPT 0 (VT)’ 
= (‘y ‘;I( 0 o)((y,')* (19) 

2 

From Pal (1982), we then find that the cosines of 
the principal angles between p/u ’ and flu’ are 
given by the elements of % and that the 
principal directions CY in plu’ and /3 in f lul are 
given by 

a = L,(plul), (20) 

P = Lp(flu% (21) 

with 

L, = (.r”T)“‘(~)T[(pl~~)(pIU~)T]-“2, 

L, = (9y)“‘(%~)‘[(f/u’)(f/u’)‘]-“2. 

Larimore (1990) determined the order from the 
number of principal angles different from 4~. 
He did not use the extended observability 



1860 P. Van Overschee and B. De Moor 

matrix explicitly (as in N4SID and MOESP), but 
instead he worked with the states (which he 
called ‘memory’). The way we understand it, he 
defined this ‘memory’ (@) by applying the linear 
combination L, to the past p: 

2$i L,p. (22) 

Note that this ‘memory’ is not equal to (Y (the 
principal directions in the projected past (20)). 
We shall show in the sequel that these principal 
directions (Y are projected states, and thus cannot 
be used as states. 

MOESP are sensitive to scaling of the inputs 
and/or outputs, the CVA algorithm is insensi- 
tive. This is because only angles and normalized 
directions are considered in the CVA algorithm. 

Note that the general framework proposed by 
Larimore (1990) corresponds to a generalization 
of principal directions and angles. In this 
framework, the matrix 

K = [(fIU)(fIU1)T]-1’2 

is replaced by another weighting matrix 

w, = n-112, 

Theorem 4. CVA. The algorithm of Larimore which still falls into the unifying approach of 
(1990) corresponds to Theorem 1 with the Theorem 1. For a further interpretation of WI, 
following weights: see Section 5. 

w, = [(flu’)(flu’)‘]~‘“, 

w, = rI,l. 

Once the extended observability matrix 
and/or the states have been computed, the other 
system matrices can be computed in different 
ways (Fig. 1). 

The proof can be found in the Appendix. 
Discussion. From Theorem 4, we conclude 

that applying the weighting matrices of Theorem 
4 to the results of Theorem 1 leads to a principal 
direction analysis between the past inputs and 
outputs orthogonalized to the future inputs 
(p/u’) and the future outputs orthogonalized to 
the future inputs (f/u’). The same principal 
angles are calculated as in Larimore (1990). 

4.4. Other algorithms 

We shall now investigate further similarities. 
The formula (9) shows how we can partially 
reconstruct the states. In part 2 of the proof of 
the theorem in the Appendix it is shown that 
the (partial) states recovered from (9) are equal 
to the principal directions (Y. This proves 
formally that the principal directions are no 
states, but projected states: 

(Y = win,l. (23) 

The ‘full’ state sequence is given by (10) of 
Theorem 1. First Ti is determined (for the 
weights of Theorem 4) as 

It should be clear by now that the three 
published algorithms discussed so far do not 
exclude other variations on the same theme. 
Different weighting functions will allow for a 
different determination of Ti and thus a different 
algorithm. As a simple example of such an 
extension, we mention a possible introduction of 
W, in the MOESP and/or the N4SID scheme. 
Another important note is that different 
algorithms calculate the same result (up to 
within a similarity transform) whenever the exact 
system order IZ is chosen and the number of data 
points goes to infinity (since all algorithms are 
asymptotically unbiased). However, the 
differences between the algorithms (and between 
the different weightings) become clear under the 
following conditions. 

ri = [(f/Ui)(f/UI)T]“2U~(SF)“2. (24) 

Then we find, with (lo), 

X; = r;o: (25) 

In the Appendix (proof of the equivalent states) 
it is shown that the state used by Larimore (% 
as defined in (22)) is exactly the same as _%?F of 
(25), and is thus indeed a valid state sequence. 

An additional point concerning the CVA 
method is that the weighting used in this 
method is optimal for state order determination 
from finite sample sizes. This has been shown by 
example by Larimore (1994). 

A last remark concerns the sensitivity to 
scaling. While the two algorithms N4SID and 

1. When the order that is chosen is different 
from the exact order, this implies model 
reduction (note also that a lot of real life 
processes are infinite-dimensional, which 
implies that the order is always underestim- 
ated). The distribution of this ‘bias error’ will 
be different for each algorithm (for each 
weighting). The characterization of this error 
as a function of the weighting matrices W, and 
W, is discussed in Van Overschee and De 
Moor (1995). 

2. The number of data points is finite. This 
raises the question of the large sample 
(asymptotic) variance on the result. This 
question was already partially solved by 
Viberg et al. (1991, 1993). Continuing efforts 
are underway by these authors to get more 
insight into the variance distribution. 
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5. HOW TO CHOOSE THE WEIGHT W, 

In this section we shall outline an intuitive way 
to choose the weighting matrix W,. The matrix is 
constructed from the impulse response of a 
shaping filter. 

The weight WI was introduced in the 
complexity reduction optimization problem (5): 

constrained by rank (3) = n. 

To get a better understanding of the meaning of 
this optimization problem, consider the first 
column of 0. Since we know (see the proof of 
Theorem 1 in the Appendix) that 6= IiWi> we 
find that this first column (r,) is equal to: 

z1 is thus equal to the autonomous response of 
the system (without noise) to an initial state Zi. 
In this way, each column rk of C? can be 
considered as the autonomous response to the 
state zk+i+l. The states zk, on the other hand, 
are the states that are reached when an input uk 
is applied to the system. 6 thus contains the 
autonomous responses to initial states that are 
typically reached when the input uk is applied to 
the system. It seems meaningful to try to keep 
these responses as intact as possible. Thus the 
minimization problem is 

constrained by rank (‘3) = n. 

We are now ready to interpret the weight W,. 
Suppose that a shaping filter WI(z) is given. This 
filter has a large amplitude at frequency ranges 
where the system has to be modeled well, and 
vice versa: 

W,(z) = C,(zZ - AJ’B, + D,. 

The weighting matrix WI is now formed as 

w, = 

RV 0 

C&&U D, 

C,&+JL C,J, 

C,Af,T2B, C,,,AL3B, C,Ai4B, . . . D, 

Consider the first column of W, f!? 

W, 21 = W,Tix’i = 

. . . 0 

. . . 0 

GAwBw LB, D, . . . 0 

i C,Af,T2B, C,,,AL3B, C,A’,-4B, . . . D, 

X 

i : I CA’-’ 

It is clear that the elements of WI q are the first i 
components of the filtered sequence r, (filter 
W,(z)). This implies that the minimization 
problem 

constrained by rank ($32) = n, 

will approximate the filtered autonomous res- 
ponses of the states %k as well as possible. Thus if 
W,(z) is a low-pass filter then the approximation 
will be good at low frequencies and bad at high 
frequencies. This specific form of the weighting 
matrix W, thus introduces the freedom to shape 
the error in the frequency domain. 

Van Overschee and De Moor (1995) show that 
this weight WI can be interpreted in the 
framework of the weighted model reduction of 
Enns (1984). 

6. EXAMPLE 

We illustrate the differences between the 
different algorithms and choices of weights with 
a simulation example. Consider the fourth-order 
system (in forward innovation form) 

/ 0.67 0.67 0 0 \ 

-0.67 0.67 0 
X k+l = 

0 0 

0 0 

+( _~~)“k+(~~~~~)ek9 

yk = (-0.5749 1.0751 -0.5225 0.1830)Xk 

- (0.7139)& + (0.9706)ek. 

The input uk is a white Gaussian noise process 
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with variance I. The innovation ek is also a 
white Gaussian noise sequence with variance 9. 
This leads to a signal-to-noise ratio (of 
variances) at the output of 2.2. We consider 
experiments with 100 samples. The number of 
block rows i is chosen equal to 10. Two different 
series of Monte Carlo experiments are 
performed. Each series consists of 100 experi- 
ments. For each experiment, a new innovation 
sequence ek is applied (the input uk is the same 
over the 100 experiments). For every experi- 
ment, the extended observability matrix r, is 
determined. The estimated matrix A is deter- 
mined as: 

A = (5)‘. c, 
where Ti is equal to r, without the last I (number 
of outputs) rows. Similarly, ri is equal to ri 
without the first 1 rows. The eigenvalues of the 
matrix A are calculated and plotted. 

Dijj%rent algorithms. In this first Monte Carlo 
experiment, we have tested the three different 
algorithms considered in this paper. Figure 3 
shows the results. 

1 N4srn Order4 

0.5 

0 

-0.5 

-1 q 
-1 0 1 

1 
MOESP Order4 

0.5 

0 

-0.5 

-1 KI 
-1 0 1 

1 
CVA Older4 

0.5 

0 

-0.5 

-1 q 
-1 0 1 

NQID Order2 

1 MOESP Order 2 

0.5 

1 
CVA Order2 

0.5 

Fig. 3. Plot of the eigenvalues of the estimates of A. The 
rows correspond to the different algorithms (N4SID, MOESP 
and CVA), while the columns correspond to different orders 
of the identified system (4 and 2). The fourth-order system 
(first column) is identified equally well for the three 
algorithms. The second-order approximation (second col- 
umn) turns out to have the smallest variance for the CVA 
algorithm. This observation has been made in other 

simulation studies, but could not be proved. 

_.f=?+J ;a 
-1 0 1 -1 0 1 

Fig. 4. Plot of the eigenvalues of the estimates of A. The 
rows correspond to different filters W,(z) (all-pass, low-pass 
and high-pass), while the columns correspond to different 
orders of the identified system (4 and 2). The weight W, = I. 
The fourth-order system (first column) identifies the four 
poles, but the variance of the poles is the smallest where the 
amplitude of the filter is the largest (large variance for the 
high-frequency poles when the low-pass filter is used, and 
vice versa). The second-order approximation is clearly the 
best where the amplitude of the shaping filter is the largest, 

as was predicted in Section 5. 

DifSerent weights W,. In this second Monte Carlo 
experiment we have tested the use of three 
different weights W,(z): an all-pass weight, a 
low-pass weight (a sixth-order Butterworth filter, 
with cut-off frequency equal to half the Nyquist 
frequency) and a high-pass weight (a sixth-order 
Butterworth filter, with cut-off frequency half 
the Nyquist frequency). W, was for each of the 
cases equal to the identity. Figure 4 shows the 
results. 

7. CONCLUSIONS 

We have introduced a unifying theorem that 
allows the extraction of the system order and the 
extended observability matrix from given input- 
output data. The theorem succeeds in unifying 
three algorithms described in the literature. By 
the introduction of weighting matrices, the 
approximation of the system can be shaped in 
the frequency domain. 
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APPENDIX-PROOFS 

Proof of the unifying Theorem 1 
Part 1. In this first part we prove (6). First note that the 

matrix (rrT u’)’ is of full rank. This is because the inout ur 
is persistently’exciting of order 2i (assumption 3 of the 
theorem) and because the noise sequences Us and w, are not 
identically zero (assumption 1 of the theorem). 

The solution to the minimization problem (4) 

/I 
2 

min f - (L,, 
L )( 

,, ’ 
$.l.,, 111 u F’ 

can thus be written as 

(L, &) =f(pT uT)[ (“U)(P.’ uT)]-I. (‘4.1) 

Through the matrix inversion lemma (Kailath, 1980), (A.l) 
can be rewritten as 

(L, Lu) 

with 
A =p[Z, - uT(uuT)-‘u]p’. 

This implies that 

L, = f(l, - uT(uuT)-‘u)p=A-’ 

= f[I, - uT(uuT)-‘u]p-qp[zj - uT(uuT)-‘u]pY-1. (A.2) 

We also know that 

II,1 = I, - Ur(uUr)-‘II, 

and that this projection operator is idempotent (II,II,l = 
II,,,) and symmetric. We can thus transform (A.2) to 

L, =frle’pT’ (pll&pT)- 

=fn,,In~LpT’(pnuInf;lpT)-’ 

= (fR,l)(PK&)T ](Pb)(PK&)T3- 

= (flu’)(Plu’)T. ](Plu’)(Plu”)Tl-‘, 

which proves (6): 

o= Lrp 

= (flu’)(Plu’)T. ](Plu’)(Plu’)~-‘P. 

It should also be clear that L,p is the oblique projection of 
the row space off along the row space of u on the row space 
of p, since it is the part of the row space off that lies along 
the row space of p when the row space off is projected (in a 
least-squares sense) on the row space of u and p. 

Part 2. In Van Overschee and De Moor (1994) it is 
proved that, under conditions l-4 of the theorem, we have 

8= r,xi. 

This implies that the column space of 0 is equal to the 
column space of I,. 

Part 3. With (7), we easily find that the best ‘unstructured’ 
rank-n approximation (in the Frobenius norm) of W,aul, is 
equal to LI,S, VT (problem (5)). We thus have 

W,nw,=W,r,~iW,=U,S,Vf=W,~W,. (A.3) 

(a) The rank of the second part of (6.3) is equal to n, 
since Ii has only n columns and Xi has only n rows 
(and since W, is of full rank and rank(p) = 
rank (pWz)-assumption 5 of the theorem 1). This 
proves claim (a) of the theorem. 

(b) From (A.3). we know that 

w, aw, = u, s, v:. 

From assumption 5 of the theorem, we know that W, is 
of full rank. Assume also that rank (W,) = p 5 j. We 
then find that the general solution R of the 
optimization problem (5) can be written as 

where Z E Rjx(j-p) is an arbitrary matrix and 
W: E R(i-p)xj is the orthogonal complement of the 
row space of W,:W,lW,=O and rank(W$)= j -p. 
The solution .% with minimal Frobenius norm can be 
found by putting Z = 0: 

R = w;‘lJ,s, VFW:. 

This proves claim (b) of the theorem. 
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(c, 4 

(4 

We can split (A.3) into two parts: 

w,ri = lJ,S1’2, (A.4) 

BiW2 = S;“Vr 1. (A.5) 

Equation (A.4) implies that ((8) or claim (c) of the 
theorem) 

r, = w;‘f./,S;‘? 

Equation (A.5) is claim (d) of the theorem. Note that, 
when splitting (A.3) into (A.4) and (A.5), a similarity 
transformation T is easily introduced, which explains 
the parenthetical notes in the theorem. 

Since 6= riJ?i, we can recover the ‘full’ state sequence 
(not projected on the column space of W2 as in (A.5)) 
as 

Xi = r10, 

which is exactly claim (e) of the theorem. 

Proof of Theorem 3 (MOESP) 
With the QR decomposition of (15), we find that 

P/U’ = L22Q2 

f/u’ = 6532 L33) 
Q2 ( > Q, . 

Note also that 

QzQT= k+m),, 

QzQT=& 
rank (L2*) = (I + m)i. 

With the weights of Theorem 3 and (7) we find that the 
matrix from which we should take the singular-value 
decomposition according to Theorem 1 is 

[(f/u’)(P/u’)WP/u’)(P/ul)‘l-‘Pk~ 

= I(f/u’)(P/u’)WP/u’)(P/u~)~-‘(p/ul) 

=[ 6532 L~s)(~~)Q:L~~](L~*Q~Q:LL)-'L~,Q, 

= (L32G)(L22LT2)-‘L22Q2 

= L~~G~(LT~)-‘LG’L~~Q~ 

= L32Q2 

(‘4.6) 

Equation (16) takes the singular-value decomposition of L32, 
while (A.6) takes the singular-value decomposition of LJ2Q2. 
Since Q2 is orthonormal (L32LT2 = L32Q2QTL:2), we find 
that the left singular vectors and the singular values of both 
matrices are equal: 

%u;l = UT, 

Y9$ = S$. 

Proof of Theorem 4 (CVA) 
Part 1. With the weights of Theorem 4, we find from 

Theorem 1 ((7) which we denote be MC) 

MC= [(f/u~)(f/u*)Tl-“2[(f/u’)(p/u’)Tl 

X [~P/u’~~P/u”~‘l-‘P~,. 

=[(f/uI)(f/UI)~-‘n[(f/UI)(P/uI)Tl 

x [(P/u’~~P/u’~T1-‘P/u’ 

64.7) 

Comparison of 1’ of (19) (first line) and MC of (A.7) (second 
line) leads to the conclusion 

J@(&)~ = Mc(Mc)T. 

This implies that the left singular vectors and singular values 
of both matrices are equal: 

%i = UT, (A@ 

Yi = St. (A.9) 

We conclude that, with the weights of Theorem 4 applied to 
Theorem 1, we can calculate the principal angles between 
p/u1 and f/u’. 

Part 2. A second observation is that the principal 
directions a in p/u’ are exactly equal to (Si)r2( Vt)=. This is 
because (with (A.@ and (A.9)) 

Mc=Ic[(p/u~)(p/u~)T]-“2(p/u~) 

& 

u;(s;)“‘~ [(s;)“‘(v~)T] = %;(Y;)“* [(Py2(v;)T 

4 
x ~~Plu'~~P/u'~'l~"'~P/~i~l 

(A.10) 

(S;)“*(v:)‘= (y;)“2(y~)T[(p/UI)(p/u ‘)‘I-“‘(p/u’) 

v 
(s:)“*( v;)‘= a. 

Proof of the equivalent states 
We prove that the states of (22) are exactly equal to the 

states of (25): 

(~pC)‘R(Vi)T=(~i’R(~i)T 

v 
(Yi)‘R(Vi)T = (rl)(r,)(YpC)“2(Yi)T 

4 
(Yi)‘n(“tri)T=r~[(f/u’)(f/u’)T11’2 

X Ui(Sf)“2(Yi)‘“(Yi)T 

& 
(sYi)‘n(~)T=r~[(f/U~)(f/U~)Tlll* 

X %iz( “vi)’ 

6 

(~)‘R(~~)T=r~[(f/U~)(f/u~)T11~2 

X [(f/u’)(f/u’)‘l-“’ 

[(f/u’)(P/u’)Tl 

X [(P/u’)(P/u’)‘1r”* 

4 

(~~)'R(~i)T[(P/U')(P/U')Tl-'~P= wfw(p/wl 

x KP/ui)(P/uL)Tlr’P 

4 

(Yi)‘“(Vi)T[(p/U*)(p/UL)T]-“2p = r?a 
4 

*=j:. 


