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Subspace model identification’ »
Part1. The output-error state-space model identification class of
algprithms - |

MICHEL VERHAEGEN+ and PATRICK DEWILDE#

In this paper, we present two novel algorithms to realize a finite dimensional,
linear time-invariant state-space model from input-output data. The algorithms
have a number of common features. They are classified as one of the subspace
model identification schemes, in that a major part of the identification problem
consists of calculating specially structured subspaces of spaces.defined by the
input-output data. This structure is then exploited in the calculation of a
realization. Another common feature is their algorithmic organization: an RQ
factorization followed by a singular value decomposition and the solution of an
overdetermined set (or sets) of equations. The schemes assume that the
underlying system has an output-error structure and that a measurable input
sequence is available. The latter characteristic indicates that both schemes are
versions of the MIMO Output-Error State Space model identification
(MOESP) approach. The first algorithm is denoted in particular as the
‘elementary MOESP scheme’. The subspace approximation step requires, in
addition to input—output data, knowledge of a restricted set of Markov
parameters. The second algorithm, referred to as the ‘ordinary MOESP
scheme’, solely relies on input—output data. A compact implementation is
presented of both schemes. Although we restrict our presentation here to
error-free input-output data, a framework is set up in an identification
context. The identification aspects of the presented realization schemes are
treated in the forthcoming Parts 2 and 3. :

1. Introduction ST e o
The identification of multiple-input multiple-output (MIMO) linear time-

invariant state space models from input—output measurements is a problem of
‘central importance in system analysis, design and control. In general terms it can
‘be viewed as the problem of finding a mapping between the available input-out-
put data sequences and unknown parameters in a user-defined class of models,
e.g. state-space models. o B - '

- A particular class of solutions, discussed in Ljung (1987) or Soderstrém and
Stoica (1989), tackles versions of this general problem in a direct way using
iterative optimization schemes. The major drawbacks of this direct approach are
the difficulty of model class selection and the overparametrization of the model.
" An alternative class of solutions are the subspace model identification (SMI)
schemes. The latter terminology, introduced in Verhaegen and Deprettere
(1991), covers the family of identification schemes that formulate and solve a
major part of the identification problem on a signal level. On this level, the
main characteristic of these schemes is the approximation of a subspace, defined
by the span of the column or row space of matrices determined by the
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input-output data. The parametric time-invariant model, in this case, is calcu-
lated from these spans by exploiting their special structure, such as the -
shift-invariance property defined in Definition 2. e

The SMI approach has the potential either to overcome a number of -
drawbacks from the direct approach or to complement them. The latter is, for
example, highlighted by Ljung (1991). Of the drawbacks we mention: first, the -
task of model selection might become much simpler. On a signal level, this
becomes a signal separation problem, where the recorded perturbed sequences :
have to be split in a ‘signal’ component and a ‘noise’ component. Secondly, the .
treatment of the MIMO case might become a trivial extension of the scalar case. -
Thirdly, the problem formulation in this framework is much more appealing to
an application engineer. The potential advantage of the latter is demonstrated -
by the following prototype problem formulation, which makes use of the Figure. -

A collective identification problem: GIVEN a perturbed finite length sequence 5
of measurements of the input quantity t, denoted in the Figure by i, and
the output quantity zx, denoted by Z, and AassuMe that the various additive :
perturbations v,(k), v,(k) and those due to the white noise sources wi(k)
and w,(k) are (statistically) independent of the error-free input uy, then
APPROXIMATE a shift-invariant subspace of spaces defined by the input-output
data which characterizes a state-space model. The latter model represents the
input—output behaviour of the deterministic (or ideal) part of the system t0 be
identified. This part is indicated in the Figure by block P. The perturbations
considered can be divided into two classes: (1) internal error-sources, due to
parasitic effects or unmeasurable system inputs, represented in the Figure by -
the error term v; lumped to the error-free output y; and (2) external -
error-sources, due to the measurement equipment or transducers, represented
by the error signals v,(k), v,(k) and another due to wa(k). All internal and -
external errors are assumed to be zero-mean arbitrary stochastic processes.

The appealing nature of such a problem formulation is again due to its
formulation on a signal level. It presents the identification problem in terms of |
the recorded signals and their relationships, which often are familiar in engineer--
ing problems. The overall mathematical model, representing the input—output.
behaviour denoted by the dashed box in the Figure, is not specified in terms of

wa(k) wy (k)

Shaping Shapiag
Filter Filter
Fu
1 Unknown Y
oput e ¥ Deterministic Y + Output 2
System P
+ v (k) ‘v:(k)
Measured Input & Measured Cutput & .

Block schematic view of a general system identification set-up.
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- a particular model class, such as the ARMAX model. Furthermore, the above
. prototype problem formulation is unifying in the sense that it covers a wide
- variety of existing identification problems. For example it includes problem
formulations where a priori model structures, such as ARMAX (Ljung 1987),
- are assumed for the combination of the deterministic part P and the stochastic
1 part F,. However, no numerical schemes exist that tackle this collective problem
+ in:a reliable way. Only subdivisions of the problem have been successfully
| solved thus far Examples are the followmg

(a) The stochastlc realization problem Referring to the F:gure this is the
characterization of the filter F, by a state-space model making use of
the covariance information of the observations Z; only. In this case,
only the transfer from the zero-mean white noise sequence wy(k) to Zj
is considered. Pioneering work in this area has been done by Akaike
(1975). For a survey of solutions to this problem we refer to the book
by Caines (1988).

(b) The deterministic realization problem Wlth the Flgure this problem is
defined as the realization of a linear state-space representation of the
plant P neglecting the presence of . all perturbations in the Figure.
Original results are due to Ho and Kalman (1966). Later on, different
proposals were made from a numerical robustness point of view (Kung
1978, Zeiger and McEwen 1974). Recently, in Moonen et al. (1989),
Moonen and Vandewalle (1990}, a numerically robust solution to this
problem was proposed. The scheme presented in the latter papers allows
handling additional errors on the input and output signals, namely v, (k)

~and v,(k), which are zero-mean white noise (Moonen et al. 1989) or

" zero-mean with a known colouring (Moonen and Vandewalle 1990).
With the schematic outline of the Figure, we observe that in both cases
a restricted part of the collective identification problem is treated.
Hence, its practical usefulness will be limited.

Var1ous attempts have been ‘undertaken in the hterature to adapt existing
realization schemes to the collective identification problem A classical approach
is to apply the Ho and Kalman method and to make use of estimated Markov
parameters. Based on these parameters only, the shift-invariant subspace, which
in this case is the extended reachability or observability matrix, is approx1mated

Only a very limited number of publications have appeared on this subject in a
pure identification context, such as in Juang and Pappa (1985).

In the first part of this series of papers, we describe two novel algorithms of
the SMI class. In these algorithms, the output-error structure of the model in
the dashed box of the Figure is essential to these solutions, as will be
demonstrated in the second part (Verhaegen and Dewilde 1992) but see also
Verhaegen (1991 a). Therefore, we refer to these algorithms as versions of the
MOESP (standing for MIMO output-error state space model realization) ap-
proach. The first version, indicated by the elementary MOESP algorithm, uses
all available input~output data in combination with a restricted set of estimated
Markov parameters to determine a shift-invariant or structured subspace. The
second version, indicated by the ordinary MOESP scheme, only relies on
input-output data. The basic algorithm steps of these algorithms is, however,
the same—namely an RQ factorization followed by a SVD. The algorithms are
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presented as solutions to the deterministic realization problem. An analysis of
the elementary MOESP algorithm is presented in the second part of this series
of papers. Here, we only treat a simple identification problem, indicated by the
model in the dashed box with v, equal to zero-mean white noise. The analysis
of the ordinary MOESP scheme for a realistic version of the collective
identification problem is presented in the third part of this series of papers.

The outline of the paper is as follows. We describe in § 2 some basic notions
and the model and data representation used throughout this series of papers. In
§ 3, we deal with a qualitative description of using the RQ factorization in the
MOESP approach, the influence of the input sequence choice on the algorithmic
organization of the elementary versions and evaluating the effects of the
persistency of input excitation conditions. A compact implementation is pre-
sented in §4 of the elementary MOESP scheme, i.e. MOESP1; a compact
implementation of the ordinary MOESP algorithm is presented in §5. Finally,
§6 summarizes the contributions of this paper. In order to preserve the
continuity of the material presented in this paper, we have summarized the
proofs of the different theorems and lemma in an appendix at the end of the

paper.

2. Model description and notational preliminaries
2.1. Some basic notation

In this section, we define some frequently used notions in this series of
papers.

2.1.1. Marrix partitioning. A first way of indicating the partitioning of a matrix
or a vector is illustrated by the following example.

Example1: Let A e RY*DXN < N, 1= 0, then the following representation
of A: :
N-m

A=m Ay | A
1| Ay | A2

indicates the partitioning of A in respectively Ay € R™*™, Ape€ RmX(N=m)
Ay € R*™ and A,y € RPXV-m), : e

A second way is conformable to the notation used in the MATLAB package
(Moler et al. 1987). - . 0O

Again, we illustrate this by example. ,
Example2: Let A € R™™" and let k <n, then a partitibning of 'Aiisl”repre‘-
sented by: ‘ ‘ o

A = [A(G, L:k) ACG, &+ 1:n)] - :‘

where A(:, 1:k) denotes the first & columns of A ande(‘:, k+ 1:n)1 denotes the
last n — k columns. o in)

2.1.2. The rank of a matrix. The rank of a matrix. A, Heﬁhed for exémpleﬁin
Golub and Van Loan (1989), is denoted by p(A). ' e

2.1.3. The RQ factorization. The RQ factorization of a matrix A € R™N is a
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factorization of this matrix into a lower triangular matrix R € R""‘N and a
square orthogonal matrix Q € [RN"N, such that: ' -
‘ B A =RQ

2:1.4. The symbol . This symbol is used for lmp11c1t definition; for
example e -

= it [A 2= [: ]

w\defmes P1 to be A + B and P2 to be CD.

-

2.1.5. The quadruple [A T BT, CT, D]. Defines a quadruple of system matrices
that are equal to a similarity transformatlon T to the quadruple- of system
matrices [A B, C, D], i.e. :

ron " [Ayp By, Cp, D] = [TAT™!, TB, CT™}, D]

2. 1 6 The symbol C. Let A, B be matrices in RM*™M with m < N then AC B
means that there exists a square m by m matrix T such that: '

iy S A= BT"!'”
2 2 " The output-error ( OE) state- space model

“Let the deterministic linear time-invariant system P in the Figure be
‘represented by the followmg linear tlme invariant state- -space model:

Xesn = Axe + Buy . (1)
yi = Cxp +. Duy T ) . (2

where u; € R"’ (the 1nput vector) yi € RY (the undlsturbed output vector) and
x; € R™ (the finite-dimensional " state vector). The. unknown system matrices
A, B, C, D have appropriate dimensions. Furthermore, it is assumed that the
model representation is minimal (Kallath 1980) that is; the system is completely
reachable and observable.

As represented - in the dashed box of the Flgure the output of the
deterministic system . is perturbed by the norse term V. Hence ‘the output
equation reads 4

- Zk—)’k"'vk | (3)

When the stochastrc process Vi is assumed o’ be an arbitrary zero-mean
stochastic process (hence F, in the Figure can be an arbitrary linear dynamical
system), the model representatlon (1 -3) encompasses a wide variety of existing
linear, time-invariant parametric and non-parametric models, such as ARMAX,
ARX and OE models - referred to in Ljung (1987), as well as stochastic
state-space models with a so-called process noise term as an addrtronal un-
measurable input to our system (Kailath 1980). -

In our presentation of the algorithms in the first part we will assume, apart
from Remark 1 in §3.3, that all perturbations - defined in the collective
identification problem are zero. The above defined output-error model structure -
and the presence of a measurable input, is crucial to the 1dent1f1cat10n problems
considered in the MOESP framework . z
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2.3. Data representation, a definition of persistency of excitation, a basic lemma
and the shift-invariance property
The signals occurring in the identification problem considered in this paper
will be assumed to be (finite segments) of realizations of ergodic stochastic
processes. That is, for N — @ there exists ergodic stochastic processes u; € R™

and v, € R’ such that:
[t sy - - tnsj-1] and [V Vksr .- DN +k-1) 4

are realizations of u; and vy respectively, and the following (or similar)
expression(s) holds:

z

.1 T T
— o or.. = E[u;vk
]3’1_120 N 2:1 Uipi-10k+i-1 [u]vl\] (5)
We adopt the notation, in bold, to represent the stochastic process and use the
symbol E[-] to represent the mathematical expectation operator. An alternative
way of expressing the above limit is:
1< T Ty
~ 21 Hipi-10k+i-1 T ENEN = Efujvi]. (6)
where ey is a sequence of real numbers such that li‘ryn)v_;w:‘sN =0 and Ey is a
matrix of appropriate dimensions with [|Ex|| =< 1. '

A representation that proves to be particularly useful in studying properties
of a state-space realization based on derived input and output sequences, se¢
e.g. Moonen et al. (1989), Kailath (1980), Gopinath (1969), Liu and Suen
(1977), De Moor (1988), is given by: S

Yj Yi+r .- Yi+N-1 C
Yi+1 Yit2 . - Yi+N CA
= [x,- Xiv1 - x,-+N_1]
Vivicl  Yiri ce- YjeN+i-2 CA*!
CPB g 0 T g U; Ujg -+ Ui+N-1
T Uiyl  Ujg2 e Ui+ N
+ CAB CB D 0 . T (N
CAl:—ZB ) D Ujri-1 . uj+l v Ujr N+i-2
Let I'; and H; define the matrices
C D 0 e 0
CA CB D 0 ... .0
CAi—l ______

CAl—zB ‘ . -_D
respectively, then we can denote the data equation (7) more égﬁbéCtly as .

Yiivn = TiXjn + HUjw ®
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. Similarly, the output z can be c\prCSSCd as: : o |
thN rXN+HUl'N+V‘N ' )

" where Z;;n and V,,N are Hankel matrices constructed from 4.[\ respectlvely vy
7, in a similar way as Y;; y. was constructed from yk
" < “An important property vof ‘the mput sequence in system 1dent|f1catlon is its

perszstency of excitation: ThlS property of the - mput sngnal is defined in Ljung
(1987) p. 363, as follows. «. = oo RS :

e Definition1: An ergodlc sequence u, € R"‘ is perszstently exc:tmg of order i
. from time instant j on, if and only if:

. . 1 ’ E
,P(g’imw,.ﬁ Uj,.',Ny;r,i,l}{)= mio oSy (10)
- v - I | S - ’ | ‘ Dl
. The condition in (10) can be 'aenot_ed asi o L R
p(_ﬁUl’NU’Jr’N + E}VE}V) = mi ) ‘ '__ (11)

** Therefore, when N is suffncnently large, so that the smallest singular value of
l/N(U,,NU,,N) is larger than |ey|, the definition of the persistency of excita-
- tion of the sequence 1y can be interpreted for the finite data length case as a full
+ row rank condition

PN = mi B (12),
When the signal u; is a zero ‘mean discrete’ whlte noise sequence it has the
© statistical property: O T T S S
0 RN I, 0. ... 0
0 r ST R Y S |
E g [wj wisr ol =ou o e (13)
Biyi-1 . R S - i 0 ) A 0o - Im

Under the assumption of ergodicity this gives: :

.1 T YRR
lim —= UjinUjin = Oulmi -

N—ox

L or

1
N

", From thls definition of white noise ‘we see that it is persistently exciting of
arbitrary order. As outlined- in the paragraph following the definition of
- persistency of excitation (above) this holds for the finite data length case by
" choosing N properly.

- Throughout this paper, we often have to analyse the rank of the product of
matrices. For that purpose, we W1ll make use of the followmg basic lemma.

Lemmal: Sylvester's inequality (Kailath 1980, p.655): Let Mye R™" and -
M, € R"*? then:

ljerthN 2Im.i +‘ E%VE%I ) | (14)




1194 M. Verhaegen and P. Dewilde
M) + p(M2) — n.< p(M M) < min {p(M1), p(M2)} (15)

Finally, we define the shift-invariance property in the finite dimensional
context of this paper as follows.

Definition2: Let I'" be an [.i X n matrix with (> n and with 'Y and I'®
denoting the submatrices composed of the first respectively last (i — 1)./ rows of
I, then the matrix I is called shift-invariant if and only if it satisfies:

Mcrv O

3. The RQ factorization in approximating shift invariant or structured

subspaces
3.1. Qualitative description of the various approaches

A basic feature that characterizes the MOESP approach is the use of the RQ
factorization not just to compress the data matrices as a pre-processing step
prior to other algorithmic operations (such as a SVD), but to reveal matrices
with specially structured column or row spaces. This step characterizes a broad
and alternative family of realization algorithms, as will be demonstrated in this
paper and as is demonstrated in related papers (Verhaegen and Deprettere
1991, Verhaegen 1991 a, Verhaegen 1990 and Parts 2 and 3).

In this first part, we will present two schemes that fit into this alternative
framework in detail. In the first scheme, called the elementary version of the
MOESP approach, the RQ factorization of the data matrix pair

( Ul,i,N)
Yiin

is used to retrieve explicitly the matrix product I''Xqn in (8). Under certain
mild conditions, the column space and row space of this matrix product is equal
to that of I'; and X y respectively. In the second scheme, called the ordinary
MOESP scheme, we use the RQ factorization of the above data matrix pair to
retrieve a matrix with column space equal to the column space of I';, again
under similar mild conditions. Having calculated a span of the column space of
I;, we exploit its shift-invariance property to compute the matrix Ar. To see
this, let the columns of the matrix U, span the column space of I';. Then there
exists a square, non-singular matrix 7 such that:

U, =TT, - (16)
Since o
C CA R
rda := C:A 4 = C1:42 o I’fz) (17
CAI-2 cAi—l ’

the matrix I is shift-invariant (see Definition 2). Next We combine (16) and (17)
as follows, L

WA == TOTNTTAT) = TOT, = UD (18)

to show that the matrix U, remains shift-invariant and that when the matrix U %
has full (column) rank, we can solve (18) for Ar,. In addition (16) shows that
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U, directly displays the matrix Cr,. The calculation of the matrices By, and D
then proceeds via the solution of an overdetermined set of equations, see § 5.1
for more details. It is important to note that knowledge of a span of the column
space of I'; plays a key role in constructing this overdetermined set of equations.

In the case where we calculate a span of the row space of X y, we cannot
use the shift-invariance property in the strict sense of Definition 2 to compute
the system matrices. However, we can exploit the special structure of this span
to compute a quadruple of system matrices all at once. To see this, let the rows
of the matrix x; v span:the row space of . X1 N Then there exnsts a square,’
non-singular matrix 7, such that:

XN = TzXIN S (19)

The matrix X y is not shift-invariant. However for. k = 1:N-in (1-2) we can
combine the state, mput and output tra]ectory as follows

|:x2 X3 . . i } [ :] [ 1 X1 XN_]]' 3
Y1 Y2 --'-F~YN1 Uy Uz ... UN- ]

denoted more compactly as : - o ', , o

Xzzv— ] |: ] XthJ B

o (20
11N1 C D Unwn-]. . t-"( )
The compatibility of this set of equations can be mterpreted in the followmg less
restrictive ‘shift-invariance’ sense,

Xan-1 ]T e ‘XI,N——I]T
YIIN 1 Ui,nv-1
Substitution of (19) into (20) ylelds ’ | |
xonar | T TATTY B[ awer
Yi1n-1 L CTz_l D Ul,l,N—-l.:

Therefore, we conclude that when the matrix

l: X1,N-1 :] o
AUnan-1] -
has full (row) rank, we can solve for the quadruple of system ~matrices
(Ar,, Br,, Cr,, D). In the second part of this series of papers, we demonstrate
that the latter approach only gives unbiased estimates for a very restrictive
identification problem. -

In the following two subsectlons we subsequently demonstrate the use of the

RQ factorization for the case in which the 1nput uy is zero- mean white noise and
for the case in which the mput i is arbltrary

3.2. The white noise input case ‘
First, we state the following lemma.
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em (1)-(2) be discrete zero-mean white

Lemma2:  Let the input ug 10 the syst -
by (13) and being independent of the

noise. having the statistical properties given
initial state xo. Then:

E{x,uj] =0 for (= k=0 (21)
Proof: For the proof. sec § A.l of the Appendix. O

Based on this Lemma, we have the following theorem.

Theorem 1:  Let the input uy be an ergodic zero-mean white noise sequence with
the property stated in (14), assume the following RQ factorization:

vux ] R o || el )
Vuwd e | rEJ LY
and let, = B
lim & Xuw KTy = Peo S ®
be the covariance matrix of the state vector Xy, that is E [xlif], then,
lim }—i,'Révz(Révz)T= iPTi | o | (24)
Proof: For the proof, see § A.2 of the Appendix. | ;‘f::::::é;w O

The above theorem reveals that when p(I“,-PxI“,T) =p(I; X y)=n (for a
suitably chosen N), the column space of the matrix R2 obtained in (22)
approximately equals the column space of I';. This observation only holds in the
limit for N — . However, recalling (A 6) from the proof of Theorem 1 given in
§ A.2 of the Appendix, namely -

S N I T 33l pN M) 3 3T | T
N Ran(Rp)' = Tijw XinXin eENnEMN RERN)T| en(Ew)' |l
this shows that it also holds for the finite data length case. In the next
subsection, we demonstrate that it holds for the arbitrary input case as well. In
this subsection we will also comment on the crucial condition p(I X N)=n

3.3. The arbitrary input signal case
Consider again an RQ factorization of the pair

[ Uiin ]
Yiin
for fixed N now denoted as:
mi ii
Ul iN . I{11 0 Ql (25)
Yiin | Ry | Ry | L2
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When the input u; is arbitrary and the Markov parameters in the matrix H,; are
known, then from (8):

X\~ =Yun— HUp N (26)

or with the factorizations given in (25):

X, n = [Ry — HiRp|R2]

0>

Now we can derive from the matrix product I';X; 5 the column space of I'; or
the row space of X, y only when p(I';:X, ) = n. A crucial role in meeting the
latter condition is played by the condition:

UuN]
— =mi+n 28
X n (28)

(27)

3

which is therefore stated first.

In the literature, various studies have been performed on the requirements
on u,; to satisfy (28). For a study in a statistical framework, we refer to
Gopinath (1969). For a study in an algebraic framework similar to the one used
in this paper, we refer to De Moor (1988). Both studies state that, for most
choices of u,, condition (28) will ‘almost surely’ (Gopinath 1969) be satisfied.

~ In this paper, we further complete these studies for the case where u; is a
pesiodic signal. For this class of widely used test input sequences, we will derive
precise requirements on u; in order to assure (28). This is done in the next
theorem for a particular class of periodic signals, the analysis of other periodic
signals families being similar.

Theorem 2: Ler,
(1) the plant P, represented (1)-(2), be operating from time instant k = —x
on,

(2) the plant P be asymptotically stable, that is all eigenvalues of the A matrix
in (1) be within the unit circle,

(3) the input u; be a periodic sequence with period 2(i +j) for j=n
satisfying uy = —Uyy;y; and

4) p(U—j+1,i+ij) =m(i + j)

then the condition

Uiin
———|=mit+n
Xin
holds.
Proof: For the proof, see § A.3 of the Appendix. O

When condition (28) is satisfied, the matrix pair

[ Ul,i,N]
Xin

has an RQ factorization given as:
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M o (29)
X 0. |
with Ry, and R,> square invertible matric.e‘sy." V\;ltl‘; (his notation, we can express
X, nas: R
ri'X v = ri(Rleé + Rx2Qx) (30)

Hence, when i=n and under the minimali‘tyi/a)ssumption of the underlying
plant, p(I;)) =n and since p(RQx) =, ‘w__e,;co‘nclude according to Lemma 1

that p(I X\ §) = 1. I ‘ .
Combining the above expression for I’Q(fﬂ“wﬂh the one given in (27)

produces: A :
FRuQy + TR0y = (Ry =~ HRWQ1 + RnQ2 . ()
Hence, since 0,01 =0, QXQ}- =0 and QlQI-—-Im,, we obtain
IRy = Ry — HlRll . - (3
and f’ fh ) |
I'iR;»Q; = IgzzQz (33)

The latter relationship demonstrates that,-again by application of Lemma 1,
o(Ry,Q5) = n. Furthermore, since R,,Q, € R™*Y; the column space of Rp0
equals the column space of I';! This observation forms the key to the ordinary
MOESP algorithm, further outlined in § 5. S

Remark 1: When the error-free acquisition of the input signal u; does not
hold, the RQ factorization in the data pre-processing of the MOESP algorithm,
outlined in § 4.1, should be substituted or followed by a SVD in order to assure
an unbiased realization. For example, consider only white noise errors on both
input and output signals, a straightforward S'\‘/Df of the matrix

[ Upin ] L
Yiini |

is then necessary : . Lo

Yiin U,
Hence we obtain,

I'X,y = (U, - HU)ZVT o ((35)

In a similar way to the compact algorithm based on the RQfactorization,
described in §4, it can again be shown that only the factors U; and, U, are
requ:red to calculate a state-space realization. That this would yield an '{lnlqiased
estimate can be demonstrated similarly to the asymptotic analysis made in §8, of
Verhaegep and Dewilde (1992). For the general case of arbitrary stochastic
perturbations on the input and output quantities (of known colouring), the
GSVD (Golub and Van Loan 1989) would be required. - C
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4. An implementation of the elementary MOESP algorithm

The description of an implementation of the elementary MOESP algorithm
for the arbitrary input signal case follows. It allows calculation of a quadruple of
system matrices [Ar, By, Cr, D] from a set of input-output data sequences and
a restricted number of Markov parameters contained in the matrix H; of (8).
The latter data sequences are taken from the linear time-invariant system given
in (1)-(2). The implementation consists of a data pre-processing step done by
means of an RQ factorization, then followed by a SVD and the solution of an
overdetermined set of equations.

4.1. The data pre-processing
The pre-processing step first partitions the data matrix

[Ul.i,N]
Yiin
as follows:
-vm [ Upiogn | m [ Uy |
Uiin m | Ui~ (i-Dm| Uyi1,n
Yiin (GRVURED SRS ! Yiin
I | YN | G- LYZ,E—I,N_

Next, an RQ factorization of this matrix pair is computed. This is denoted in
accordance with the above partitioning as:

[ . o
mtl li
(i-1)m Ru 0
Ry |0 o) I 0 O

]

L TS
- o
m . 0
- (i-1)ym R%l T % (37)
! ry=1 T Q2
(i-1i LE R%z_

4.2. Realization of a quadruple of system matrices [Ar, Br, Cr, D]
In §3.3, following the discussion of (29), it was demonstrated that when
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condition (28) is satisfied, p(IX, ~)=n and ‘hence [(Ry — H;Ry)|Ry) is of
rank n. Based on this insight, we formulate the following theorem.

Theorem 3:  Lei, ,
(1) the input u; be such that condition (28) is satisfied,

2) i>n
(3) the RQ factorization of the pair of Hankel matrices

[UI,I,N] :
Yiunl -

be given and partitioned as in (37),
(4) the Markov parameters in the Toeplitz matrix H; of (8) be exactly known

(5) the SVD of the matrix [(Ry — HiR11)|R2] be: o
[(Ray = HiR1)|R2) = UnSaVn )

with U, € R¥*" S, an n X n diagonal matrix and V, € R(”’”)’x" .
then, o b i

(1) the submatnx composed of the fzrst (z — 1)] rows of the. matrlx U,
denoted by U,, , has a pseudo-inverse (U )T such that (U(l))TU(l) =1,

(2) the matrix (U, ¢ ))TI‘ :_1 Is a square invertible matrix;

(3) the quadruple of system matrices [Aq, BT, Cy, D], which satzsﬁes the
following set of overdetermined equations:

[(U“’)T(R%I — Hi.1RT) (U“’)fﬂ _

ry2

[ J[(U‘“)T(Rzl an) <U£3’)TR;2] ®)

is similar to the original quadruple of system matrices [A, B, C, D]
Proof: For the proof, see § A.4 of the Appendlx e O

The crucial part in the MOESP algorithm consists of the overdetermmed set
of equations, given by (39). Owing to errors in the original data as well as du¢
to the incompatibility between the model and the true system, this set of
equations generally has no compatible solution. In that case, a pos51ble solunon
consists of solving (39) in least-squares sense, denoted as: - :

min [ (USRS ~ Hi R WRa)
[A1,B1,Cr,D) r ’ ;
y2 A R
[ ][(U(l))T(R“ H;_1R1) '(US,")TRéﬂ | i”7(.40)
A‘ 0 7 F . 7

where ||M||r denotes the Frobemus-norm of the matrlx M (Golub and Van
Loan 1989).

o Itt should be remarked that when the set of equatlons (39) has no compatlble
olution, solving the set of equations in least- -squares sense does not restore the
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lost ‘shift invariance’ property. The shift invariance property now should be
interpreted in the less restrictive sense as pointed out in §3.1. By forcing a
solution in least-squares sense, we only obtain an approximate solution in a
similar way as is done with most existing algebraically inspired realization
techniques, such as Kung (1978), Zeiger and McEwen (1974) and Moonen er al.
(1989). Restoring the shift invariance structure would require an analysis as
given in Adamjan et al. (1971). The value of the approximation (or model
reduction) capabilities of MOESP is analysed in § 10 of Part 2.

4.3, The elementary MOESPI algorithm

The exposition in the previous subsections can be summarized into the
following algorithm, which is referred to as the elementary MOESP1 algorithm,

The elementary MOESPI algorithm
Given:
(i) an estimate of the underlying system order r;
(ii) a dimension parameter i, satisfying:
i>n(andi = k) (41)

where «, defined later in Lemma 3 of Verhaegen and Dewilde (1992), is
yet of no importance;

(iii) the first i (estimated) Markov parameters h, = CA*"'B for s=
1,...,i—1and hg= D;

(iv) the input and output data sequences:

[ul, Uzs o v vy uN+i—1] and [yla Y290 yN-H-l]

with N >> m.i.

Do the following:

Step 1. Construct the Hankel matrices Uy ;y and Yy ;n and the lower triangu-
lar Toeplitz matrix H;, all defined in (7) and (8).

Step 2. Achieve a data compression via an RQ factorization, of which the
R-factor is partitioned according to (37).

Step 3. Compute the SVD of the matrix given in (38) of Theorem 3.

Step 4. Solve the set of equations in (40).

The compactness of the MOESP1 algorithm stems from the fact that
calculating the system matrices [A7, Br, Cr, D] (in (39)) only requires know-
ledge of the lower triangular factor obtained in the pre-processing steps, in
addition to the restricted set of Markov parameters in the matrix H;. From an

implementation point of view, it is important that the orthogonal transforma-
tions in this RQ factorization need not be accumulated explicitly.

5. An implementation of the ordinary MOESP algorithm
5.1. Realization of a quadruple of system matrices [Ar, By, Cr, D].

The observation made in the paragraph before Remark 1 in §3.3 is used in
this section to derive the ordinary MOESP algorithm. This algorithm can again
be retrieved from the following theorem.
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Theoremd: Let ’
(1) the input uy be such that condition (28) is satisfied,

2)i>n :
(3) The RQ factorization of the pair_of , ankel matrices
Usin

Yiin |

be given as in (25),
(4) the SVD of the matrix Ry € R™Y in (25) is

i n li—n T }
nooimplls, o vE ,
Ry = | Us | Un || 2" (VHT (42)
0 |S,
(5) UG = 1) + 18, 2)) =1

then, the system matrices denoted by Ar, B, Cy and D can be computed from
the following set of equations: ' ' Lo

UPAr = Uﬁf")" B @)
Cr = Uy(1:1, 1) (44
m 3

li-n E(z, 1:m)
li-n ZG, m+ 1:2m) =

ti-n | E(:, m(i — 1) + 1:mi)

l - ! -y e
Ur(:l, )T UG -1+ 1:5, )T L o) D
Un(l +1:21, )T e e 0 -
1 : 0 . .00 0 UE,I) Br
UntG-D+ 1k, 0 ..., 7 0
s (45)
with U, U @ g5 defined in Theorem 3 a"n'drE’. ::,# (U ,f)TRleﬁl.
Proof: For the proof, see § A.5 of thré Appendlx : < o

Condition (5) in the above theorem is necésééry in the computation of the
matrix pair (DT (B1)T)T. Therefore, it has to be checked prior to solving the
set of_ equations (45). When it does not hold for-a particular example, a stsible
cure is to increase the dimension parameter i. This assertion can formally be

P?OP‘,’ed ;Vhe“ the underlying system is asymptotically stable based on Lemma 4
ol Part 2. e o
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5.2. The ordinary MOESP algorithm
Theorem 4 now gives rise to the following algorithm.

The ordinary MOESP algorithm
Given:
(i) An estimate of the underlying system order n.
(i1) A dimension parameter i, satisfying:
i>n
(iii) The input and output data sequences:

[ g, o s ttygiza] and [yi, ya, oo YNaiei]

with N >> m.i.
Do the following:

Step 1. Construct the Hankel matrices U} ;v and Y ; v defined in (7).

Step 2. Achieve a data compression via an RQ factorization, of which the
R-factor is partitioned as in (25)

Step 3. Compute the SVD of the matrix Ry, as given in (42) of Theorem 4.
Step 4. Solve the set of equations (43) and (45).

Again, when the latter set of equations has no compatible solution, it is
possible to force a solution by solving them in least-squares sense.

As demonstrated in § 3.3 and Theorem 4, the ordinary MOESP algorithm
resulted in a straightforward way from studying the realization capabilities of the
elementary MOESP scheme. As such, it has been derived independently from
the related solution presented in De Moor and Vandewalle (1987). The
algorithm summarized above is, however, more attractive than the solution
presented in De Moor and Vandewalle (1987) because of the use of the RQ
factorization. The fact that one only needs to use the lower triangular factor
obtained in this factorization makes our solution especially appealing from an
implementation and computational point of view. In addition, further attention
to this scheme in Verhaegen (1991a) has demonstrated that it is capable of
handling a realistic version of the collective identification problem.

6. Concluding remarks

In the first part of this series of papers, a novel state-space realization
approach is presented. The approach is indicated by the multiple-input, multi-
ple-output output-error state space (MOESP) approach.

In the elementary MOESP scheme we realize a quadruple of system matrices
[A7, By, Cr, D] making use of the available input-output data and a restricted
set of Markov parameters. It has been demonstrated that when the necessary
Markov parameters are known, the above calculations only require a single RQ
factorization followed by a SVD and the solution of a least squares problem.
The presented implementation is compact mainly because only the R factor is
necessary in the RQ factorization and subsequent calculations.

Due to the use of a restricted set of Markov parameters, the elementary
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MOESP algorithm is closely related to the classical Ho and Kalman (1966)
approach based on Markov parameters only. Therefore, in Part 2 (Verhaegen
and Dewilde, 1992) we perform a detailed comparison study between both
algorithms for a simplified version of the collective identification problem.
Although we require only input-—output data in the ordinary MOESP
scheme, the algorithmic steps are similar to those in the elementary MOESP
scheme. In an identification context, the capabilities of both implementations
still have to be investigated. In Part 2 (Verhaegen and Dewilde 1992) we analyse
the elementary scheme and in the third part (Verhaegen 1991a, 1993) we
analyse the ordinary scheme. ‘
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Appendix ,
Proofs of the Lemma and Theorems of Part 1

A.1. Proof of Lemma2: The solution to the difference equation (1), given that
the state vector at k = 0 is xg, is:
k PR - “‘-‘ .
x; = A*xg + >, AT Buy - (AD
=1 ‘
Hence, since xg is independent of uy, since uy is zero-mean white noise and
since [ = k=0: R
k
E[xul] = A*E[xqu{] + > A BE[u;_u{] = 0 O
-1
A.2. Proof of Theorem 1: From (22) we obtain:
Upiv = RIIQY (A2)

Based on the white noise property of i, and take N such that the condition in
(.12) holds, then since the matrix Rj; is square, the latter matrix cannot be
singular (Lemma 1). Introducing the data equation (8), we find:

Yiin = NiXyn + HUpiny = RNQ: + R2Q2 (A3)
and hence with (47) we obtain: I B
IiX,n — R3Q7 =‘(R_21\{ = HR{)OY ~4:k“‘(A4)
Since the input u; is ergodic, (21) of Lemma 2 can be denoted as: |
) fathiee

T e ey ! 4

N XunUiin =, enEx
a3 IS 3

with £y a sequence of real numbe3rs such that limN_,wsi, =0 and E:}}V a matrix

of appropriate dimensions with |E~|l = 1. Substituting the factorization of Uyix

given in (A 2) yields: -

3 .3 1 ' 1
enEy = N X1,N(Q{V)T_,W(Rﬁ)T
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Since for finite and sufficiently large N the matrix 1/ \/N(R‘,\;)T remains
invertible, we obtain:

1
Vi X x0T

1 "‘l
E?VE-;V (\/N(R{VI)T)
and therefore:

1 1 -1
NN X, p(O)' = NienExN (W(Rﬁ)T) (AS)

Sinée, o¥eMT =0 and QY(QMT = 1,,,, multiplication of (A 4) on the right
by 1I/VN(QY)T yields:
.’ 1 (R3 — HRY) = IenE} (L (RN)T)-I
| \/ﬁ iR ievEn |y (Ru
and:hence' agéin by (A 4) |
5 1 N AN 1 3 paf 1 PR
—— RnQs =T|7= X\~ — enEN (Ri)'| @i

Multip‘lying each side of this equation by its transpose and making use of (A 5)
yields:

1, 1 1 -

~ Ra(R)T = r,-[ﬁ X1 nXiy = e%E%(ﬁ Rﬁ(Rﬁ)T) e%v(E?v)T]r? (A6)
Based on the white noise property in (14) we gieduce that
lim g, (/N(RN(RID T ! = limy_,u(I/N(U1inUTin)) " =0, L. Making
use of the condition in (23) of the theorem and taking the limit limy_,. of both
sides of (A 6) we obtain the result of the theorem. a

A.3. Proof of Theorem2: From relationship (A1) for xo=0 and the sum
going to %, we obtain:

Ug u ‘e Upn-1
u_ e Un—
X,ny=[B AB A’B .. y ! N=2 (A7)
Since
U; Uipr oov UN4i-1
U;_ u; ‘e U i—
Ul,i,N :r 1 i :N+1 2
P =p
u ‘e u
XI,N 1 N
| X4 X2 e XN _

we will investigate the rank of the latter matrix.
Let A denote the matrix [B AB .... A/"!B], substitute (A7) and use condi-
tion (3), to find,
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i; e Upn4i-1
-y ... UN$-2

mi| ¢ : _
iy e Uxn

nl X AN XN ]

u; cee UN4i-1
Ui cee UNGi-2 i
:Lh ’ ) “ee Uy
Ug ‘ v Un_1
U_4 T e Un-2 mj
U_jy1 e UN-j

W 00 O I°

_ - cee TUNt

0 ’ A “ . | AITTA “ Ui —UN4i-2 mi
— U e —Upy
—ug " ... TUN4
—U_7 v ~Un_2 m
fu_j+1 e —UN-j

The right hand side of the above equation can be written as:

I; 1010 0 0
AR .

o [all.f arial]
Explicit multiplication of the above pair of matric;is.rﬁévlvds':*
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I 0

— — Q
| [In - A’H + (A’H)z T e ’]ARZ?.

Hence

Uiin

e = p(Rll) + p([’n - Ai“ + (AjH)z - ']AR22)

mi

XN

Since, p(U_;4y,i+jn) = m(i + j) the submatrices R,y and R, are square invert-
ible matrices and since A has its eigenvalues within the unit circle
[I, — AT+ (A2 —...]=(, + A*)7!, an application of Lemma 1 com-
pletes the proof. a

A.4. Proof of Theorem 3: With the partitioning in (37) and condition (4) of the
theorem, we can express I';_1 X y and I';_; X, n analogously to (27) as:

T Xin = (Ry — H o R1DQL + RpQ;
and
I X,y= (R} — Hi_ R3O + R%H0, (A 8)

A combination of the SVD in (38) and the expression of I';'X | y, given by (27),
yields a SVD of the latter matrix given as:

Xy = USVr o =: U,S,V, (A9)
Q>
Hence, I';_1 X, 5 can be expressed as:
i X,y =UPS, vy (A 10)
or with the expression for X,y obtained in (30), as

I X1 ny=Ti_1(R Q1 + R»0Q,). Since i > n, p(I';_1) = n and since condition
(28) is satisfied, p(R,2Q;) = n, Lemma 1 shows that p(I';_1X; ) = n. Hence,
since UP e RU-DIxn ¢ ‘e R"*" and V, € R¥~", another application of Lemma
1 teaches that the rank of these factors of I';_1X 1 n hasto be n. Therefore U
has full column rank and hence has a left inverse, denoted by wl Yt. This
proves the first part of the theorem

The matrix product (U )TI' ;_1 is a square n by n matrix. Denote this
matrix product by 7, then (A 10) becomes:

TX nx =S,V (A 11)
Since T € R"™", X1 y € R”*V and 8,V obviously is of rank n, Lemma 1 again

demonstrates that T is full rank and hence invertible. This proves the second
part of the Theorem. Hence,

XI,N = T“lS,,VI
or with (A 8) and (A 10), this is equivalent to
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1
X,y = THUD(RY - Hi-lRil)lR%zl[—]

0,

Applying the same transformation (U(,,l))’r on the left of the expression for
;o1 X2 in (A8B) yields: :

1

Xon = T—I(Ug))T[(Rgl - Hi-lR%I)'R%Z]\:_}

Q-

Substituting the latter two expressions for Xin and X,y into the set of
equations:

X2 X3 xN+1] ___[A B] ‘:ﬁ X2 xN]
yo. Y2 - YN. c D wy Uy ... UN
yields,

[T“(U&”)T(R%—H,--lzzil) T'l(U&”)TRﬂ Ql}

yl Iyz Q2

A Bi\ -1 UOYHRY - Hi-sR1) T*l(U&”)TRﬂ{QI}
cC D T 0 Q2

From which we easily deduce the third part of the theorem.
A.5. Proof of Theorem 4: Recall (33):
[RyQ: = RnQs

Condition (1) of the theorem implies (see the paragraph following (33)) that
p(Ry) = n. Hence, it has a SVD given as:

Ry = UnSaV'] (A12)

r

Furthermore, as in the above mentioned paragraph, we conclude that the
column space of Ry equals the column space of I';. By (A 12), we deduce that
the column space of Ry equals U,, hence there exists a non-singular n X n
transformation matrix 7, such that:

rT=U, (A13)
With the definition of I, following (7), this can explicitly be denoted as:

(CT)
(CTHT1AT)

(CTYTLATIT)

The shift-invariance property of the matrix U, then gives rise:fo' (43) and (44).



" Subspace model identification— Part 1 1209

(43) is solvable, since by condition (2) of the theorem, the matrix U = ;| T
has full column rank.’

Recall (A 3) i.e. Yiin=T; Xy = R0+ R»Q>. Substitute on its right-

hand side equality, the expressions for U,y in (A 2), for Ry m (A 12) and for
I; in (A 13) then we obtain:

UT X1N+HR“Q1—R21Q1+USVQ2 (A 14)

Since (U, )T ,;—0 multiplication of (A 14) on the left by (U;)7 vyields
((U )THR“—(U )TR21)Q1_00r

RIS C(UDTHRy = (Uy) Ry =0

.. Since, 'conditio_n (28) implies that p(U,;x) = mi, and hence the matrix Ry; is
- again invertible, the above relationship can be transformed into:

(UDNTH, = (Up)"Ry Ry =0 (A 15)

Wlth the defmmon of H; following (7) and the definition of Z cqual to
(unT’ R2,R11 , this equation can explicitly be denoted as in (45).

By condition (5) of the theorem, the left matrix in the underbraced matrix
product in (45) has (full column) rank /i. Subsequently, by condition (2) of the
theorem we have that p(U i-1T) = n, therefore, via an application of
Lemma 1 the latter condition demonstrates that the rank of the underbraced
matrix product in (45) is / + n. Hence, the latter matrix product has a left
inverse and we can solve for the matrix pair (DT (B7)DT. O
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