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. Subspace model ldentlf' catlon L T Q
~Part 2. - Analysis of the elementary output error state- space model
* identification algorlthm L

MICHEL VERHAEGEN)L and PATRICK DEWILDET

The elementary MOESP algorlthm prcscnted in thc first part of this series of
papers is analysed in this paper. This is done in threc different ways. First, we
study the asymptotic properties of the estimated state-space model when only
considering zero-mean white noise perturbations ‘on the output sequence. It is
‘shown that, in this case, the MOESP1 implementation yields asymptotically
unbiased estimates. An important constraint to this result is that the underlying
system must have a finite impulse response and subsequently the size of the
Hankel matrices, constructed from the input and output data at the beginning
of the computations, depends on the number of non-zero Markov parameters. ;
This analysis, however, leads to a second implementation of the elementary !
MOESP scheme, namely MOESP2. The latter implementation has the same
asymptotic properties without the finite impulse response constraint. Secondly,
we compare the MOESP2 algorithm with a classical state space model
identification scheme. The latter scheme, referred to as the CLASSIC al-
gorithm, is based on the Ho 'and Kalman realization scheme and estimated
Markov parameters. - The comparison is done by a sensitivity study, where the
effect is studied of the errors on the data on the calculated column space of the
shift-invariant subspace. This study demonstrates that the elementary MOESP2
scheme is more robust with respect to the errors considered than the CLASSIC-
- algorithm. In the third part, the model reduction capabilities of the elementary. -
MOESP schemes are analysed when the observations are error-free. We
demonstrate in which sense the reduced order model is optimal when acquired
with the MOESP schemes. The optimality is expressed by the difference’ -
between the 2-norm of -the errors on the state (or output) sequence of the
reduced-order model and the 2-norm of the matrix containing the rejected
singular values being as small as possible. The insights obtained in these three
parts are evaluated in-a simulation study, and validated in this paper. They
lead to the assertion that the MOESP2 implementation allows identification of
a compact, low-dimensional, state-space model accurately describing the input
‘—output behaviour of the system to be identified, while making use of
‘perturbed’ input—output data. ThlS can be done eff1c1ently

1. Introduction
In this paper, we study the 1dent1f1cat10n and model reduction capabllmes of
 the elementary MOESP algorithm presented in the first part of this series.
. The identification problem analysed is a simplified version of the collective
problem stated by Verhaegen and Dewilde (1992). With the help of Fig. 1, we
i defme this problem as follows.

~ A simple identification problem: given a finite and exactly known input
sequence u; and its corresponding output sequence gz, the latter se- .
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Figure 1. Block schematic view of a simple system identification set-up.

quence is assumed to be perturbed by an unknown zero-mean white noise
sequence vy, statistically independent from the input sequence. Then, the
task is to approximate a shift-invariant or structured subspace of spaces
defined by the input—output data. This subspace should determine a
state-space model that represents the input—output behaviour of the
linear time-invariant finite-dimensional system in the block P of Fig. 1.

Such a simple identification problem has very limited practical value.
However, the insights from this simple framework will be important in analysing
more complicated identification problems. In this way, we may compare the
results obtained in this paper with the insights that have been gathered from
studies of the simple linear least-squares problem. These insights have served as
the cornerstone in the analysis of other identification problems where nonlinear
least-squares problems occur (Ljung 1987 and Soderstrom and Stoica 1989).

When the system has muitiple inputs and multiple outputs (an MIMO
system), the basic identification problem can be solved by the scheme recently
proposed by Moonen and Vandewalle (1990). However, algorithmically this
scheme is more complicated since it requires the use of the generalized SVD
(Golub and Van Loan 1989). In the elementary MOESP scheme we have seen
that only an ordinary SVD is required. Therefore, we observe that the algorithm
of Moonen and Vandewalle (1990) will solve the basic problem in a complicated
way. In addition, because the underlying principles that give rise to both
implementations are different, we will not pursue an analysis of the relationship
between both algorithms any further in this paper.

Another existing solution, mentioned by Verhaegen and Dewilde (1992), is
borrowed from the realization theory developed by Ho and Kalman (1966). In
an identification framework, the same algorithm can be used, now based on
estimated Markov parameters. The latter quantities can be estimated (see, €.g.
Verhaegen 1991b) from the input-output data by solving a least-squares
problem. Experience with this approach has demonstrated that it is very
sensitive to errors on the data, especially when relying on a restricted number of
Markov parameters (Verhaegen 1991 b). e

The data used by the elementary MOESP algorithm consists, apart from the
input—output data, of a restricted number of Markov parameters. Hence, this
scheme is related to the classical solution based on Markov parameters only. In
order to reveal the usefulness of both solutions,"a‘-'detailed'sensitivity analysis is
performed in this paper. R

The organization of this paper is a continuation of that established in Part 1.
The notation is compatible with that used in Part 1. For the sake of continuity
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: we compile the different proofs and proposmons at the end of the paper in
Appendlces A and B, respectively, unless otherwise stated.

In*§2, we investigate the . asymptotic unbnsedness of the elementary
~ MOESPI implementation, - simply referred to as the MOESP1 -algorithm. This
leads to ‘a more favourable .implementation, indicated by the MOESP2 al-
gorithm. - The classical - algonthm based only on estimated ‘Markov_ parameters
. and the sensmvnty study on the effect of error-affected data on the calculation of
* the shift-invariant subspace is presented in § 3; § 4 discusses the model reduction
capab:htnes of, the elementary MOESP schemes. The obtained .insights are
verified by’ means of a series of simulations in §5. The concluding remarks
summmg up some useful properties of the elementary MOESP schemes are
glven in §6

Coarp X

2. Performance of the MOESP1 scheme when the system output is contammated ‘
;- by errors

From the algorithmic summary of the MOESPI algorithm, given in §4.3 of
- Part’ 1, a number of quantities influence the estimates obtained with this
" algorithm. In this section, we study the influence of those quantities which are
o inherent to the identification prob]em at hand and therefore not wrthm the
- control of the user. These are: : Co

(a) the estimation of the Markov parameters necessary in the Toephtz
. matrix H; (see its definition in (7) (8) of Part 1);

(b) conditions on the stochastic process vy in (3) of Part 1 Wthh guarantee'-
~; an asymptotically unbiased estimate of the state space quadruple.

. In this and the following section; we-will mark the quantities related to the
error-affected output measurement z; and estimated Markov parameters by.a
. (). The estimates of the: above problems w1ll be" studled in. the ergodic '
E statlstlca] framework, outlined i in.§ 2.3 of Part 1.

2.1. Estzmatmg the Markov parameters :
- It is a well-known result in identification theory (e.g., see Chen 1970), that
when the underlymg system (represented by (1)-(3) of Part 1) is asymptotically
* stable and vy is an “arbitrary but. zero-mean stochastlc process statistically
~ independent from the input, the Markov parameters h; = CA/"'B for j=1, 2,
. and hy= D can be estimated by simple least- squares in a statistically
~ consistent manner. In the context of §2.3 of Part 1, this result is summarized in
- the following lemma. First we defme the fzmte impulse response model represen-
~ tation. SR 7

Definition1: A linear time-invariant and finite-dimensionalrlinear system given
. by (1)-(2) of Part 1 is representable by a finite impulse response (FIR) model of
* order -k, 1f and only if the output of the system to an mput sequence {uk}.

. sat:sfles i o , .. : -

©k-l : s o
i N yk = ECAJ lBllk_j + Duk = T = (1)

e j=1 .. i by
. Bog - : ' . ; ‘.‘ . . E ’ ‘: . . D -
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Lemmal: Let the system (1)-(3) of Part I be represented by an FIR model of
order x. Furthermore, let uy be a persistently excited input of order x, and let the
zero-mean perturbation vy, be statistically independent from the input, then:

1 1 -1 _
im — Z,nenetUTenl < UrenlUlan] =I[CA¥2B ... CB D} (2
N—>» N N

For a proof of this lemma (in terms of mathematical expectations), we refer to
Chen (1970).

In the study of the unbiasedness of the MOESP1 algorithm, we will assume
that the conditions of Lemma 1 hold and hence that we know the restricted set
of Markov parameters in the matrix H; of (8) in Part 1 exactly. This allows us to
investigate the effect of the errors on the output separately. The above
assumption is motivated by the fact that both estimation problems can be solved
independently.

The investigation of the effect of error-affected data on the solution of the
least-squares problem, denoted by (40) of Part 1, is done in Theorem 1. In the
first place, we need a result on the calculation of the invariant subspace of a
perturbed positive semidefinite matrix.

2 2. Some results on the invariant subspaces of a perturbed positive semidefinite
matrix
The analysis given in this section focuses on positive semidefinite matrices
which are obtained by multiplication of a rectangular [.i X N matrix and its
transposition, with [.i < N, of rank n. These dimensions correspond to the
indices 1, i, n and N introduced in (1)-(2) and (7) of Part 1.

Lemma?2: Let the matrix Fy and its perturbation Fy=Fy+ VyeR"Y,

satisfy:

) 1
(1) lim < FyFy = UpStUF 3)

with Sr an n X n diagonal matrix and n <1.i

.1 :
(2) 1\1]1_120 ~ FyVy =0 )
3 im — vy = o
(3) 1\1/120 N VaVn =071, ()
then,
o . Sz + 021,, | 0 U}
1\111_[20 ~ FnFy = [UrlUs ' 2 INT (6)
0 |0 Lien | L (UF)
with UF such that
L : :
[UFIUF] (—U“gf] =1,
Proof: For the proof, see Appendix A.1. . -j o O
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The entnes of the matrix Vy in the above lemma represent zero-mean white
noise errors added to the entries of the ‘error-free’ matrix FN
This lemma leads to the followmg two corollaries.-

B

Corolhry 1: Let Ihe smgular value decomposmon of the matrix F ~.be given as

Py = (Us( L Up o n '+ L)(S ( Va( L)
N ~( F.\I(" '")l F.\'(" n ,+ . ’))( Fv) (VF\,(.f n + 1 h))T

with the smgular values ordcred in ascendmg order suclt that Sy v(],j)>
Se(j+Lj+1) forj=1, ..., L i- l ‘and let spanwl denote the span of the
column space, then, o ‘ _ : : .

LRI

) o

r

o« lim spang, Ug, (:, I:n) = spang UF
L Nesoo e

N
PR

e llm spane, Ur,(:, n + 1:1i)_= spang, U F _

Proof: For the proof see Appendix A.2. - T - ' : 0

Since the individual spectra of SF+ 021 and ol i, may (wrll) coincide, .
the result of Corollary 1 can also be written as ‘
llm UF,\( 1 n) =" lim UFM1 and Ilm UF ("‘n + 1) = 'lirn"Uﬁ-sz (8)»

) . N-.-.oo

where {MrN e R} and {M2 e RU-i=mx(Li- ")} are sequences of orthonormal
- matrices.. For example, when considering the left-hand side equality, the
equlvalence means that there will always exist an orthonormal matrix M 1, and -
*an integer Ny such that for N > Ny, the dlfference UF,\( l:n) — UpgM,, can be
~ made arbltrary small.

Corollary2 Let the defzmttons in Corol[ary 1 hold and let the matrices Fy, Vy.
and UN e R™PN satisfy,

1 : 1 - . : B
llm — VNUN 0;‘ lim N FNUN exist and spang, Fy = spang, Ur

N—>°° "N

 and let {Mz € IR(" ")x(" ")} be a sequence of orthonormal matrices, then

§ e

“lim ﬁ M2VSFN(’1 + 1 lz n4+ 1 lt)(VFN( n + 1 11))TUN 0 ®)
o Noc . B

Proof: - For the pr_oof,‘ see Appendix A.3. o - ' T

. 2.3. Unbiasedness of the MOESPI algorithm

Before stating the main result of this section, we need two other lemmas.

The first lemma comments on’ the full row rank condmon (28) of Part 1

when the output y; is perturbed by the error v,,.

2 When the input sequence u; is ergodic, and hence xx Is also ergodic, then .
! condltron (28) of Part 1 can be stated in view of the discussion given after
Definition 1 of Part 1 of persrstency of excitation as the persistency of excitation
. (of order 1) of the signal (L T|x,MT. This condition holds when

multrplymg x; by a non-singular n X n transformatlon matrix 7. To see thls RRAN
7 denote the followrng hmlts SRR S
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lim 1—TXLNX{NTT==TPXTT 1
N—x N
lim LTXINUTEN——- TRxu =n[ > ]
N—x N ' v TRXU| l* ! (10)
1 R *
lim — Ul.i,NUL',N =Ry = oo
N—ow
* *

then the persistency of excitation of the signal (ukT...uHi_lTlka)T cor-
responds to:

o K Px | Rxu ‘
p| lim & [(XialUnl | =P\ 5 =m.i+n (11)
R

N—x®
UrinN XU Ry

Hence, for some non-singular transformation matrix T, the matrix

TPxTT ‘ TR xy

R, TT | Ry

remains positive definite.
Based on this way of interpreting condition (28) in the ergodic signal
framework, we have the following lemma.

Lemma3: Let the input uy and state xi be ergodic signals, such that the
conditions in (10) and (11) hold, let v; be a zero-mean white noise sequence with
variance 0?, and orthogonal to uy and X and let T, be an nxXn invertible
matrix and T € R then the signal

Dk
Tixip+ T2 T
UDgvi-1-1.

e
is persisently excited (of order 1).
Proof: For the proof, see Appendix A4 e O

The second lemma evaluates the pseu"d’_“(')?invé:rse (UP)t used in the calcula-
tions of the elementary MOESP1 algorithm when the dimension parameter i
satisfies a particular constraint. o

Lemmad: Let,

(1) the plant P be representable by thév.stat»e'_v-isp;ace model given by (1)-(2) in
Part 1 of order n and an FIR model of order x given by equation (1) of
this Part; g
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-

(2)1>K"and > .
2‘(3) the mpur u;\ be such that Condmon (28) of Part l s sansﬁed and
(4) the SVD of the mamr I“Xl N be: )

- ‘ n Li=n - -
‘ t'fl. [ S er N = h[ | . U.L:| SVT ‘ o (12)
o o o } | U, | " . . 7
then, "

- , (U(l))T(U )(l) =0 and (U(]))T = (U(l))T | (13)

where, ( )T and ()W respectlvely denote a left pseudo-inverse and the submatrtx
composed of the first (i = 1)l rows.

Proof: . For the proof, see Appendix A.5. a

The proof of the lemma shows that when its conditions are satisfied the
bottom block matrix U,(/(i -~ 1) + 1:4i,:) in U, is zero. Therefore, when the
matrix (U |U;) is orthonormal, the bottom submatrix U ; 2 =1)+ 1:0, ) has
to have full row rank. In this way, we have proved the assertion made after
Theorem 4 of Part 1. ,

The above two lemmas in combmatlon with Lemmas 1 and 2 lead to the
main theorem of thls sectlon ez

Theorem 1 Let

(1) the mput uy be sitch that condition (28) of Part 1 (or condmon (11) of
this Part), and the assumption in the basic tdemtﬁcanon problem hold;

“(2) the perturbatzon to the output vy be zero-mean white noise;

(3) the underlying deterministic plant P be representable by an FIR model (1)
o of order x and a state space model given by (1) -(2) of Part 1 of order n;

(4) the dimension parameter [in the MOESP realzzatzon scheme sansfy

\.

: o i>n and izk ' - (19
(5) the Markov parameters [D CB CA' 2B] be exactly known:

then - the quadruple of system matrices [A7, B  Crt, D],‘representmg an nth
order state-space model realzzed wzth the MOESPI algorithm, is asymptotically
unbiased. : :

Proof: For the proof see Appendlx A. 6 co s . g
¥

‘In the theorem, the order of the system was assumed to be given. However,
identifying the matrices I';.X; y and V; 5 in the proof of Theorem 1 with the
matrices Fy and .V in Lemma 2, the latter Lemma demonstrates that: the
smgular values in the SVD of (IiXy,n + Vy,n) will also reveal this- quantity.
This “features requires the separation of the singular values of the matrix
(T X115+ Vy,n) in those correspondmg to the ‘signal’ or ‘error-free’ compon--
‘ent and those corresponding to the ‘noise’ component. In practice, this might -
‘not be trivial at all.
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2.4. The MOESP2 algorithin : S

The equation given at the end of the proof of Theorem 1 in Appendix A.6,
ie. oo -
(A7l Br) = (UDTUDUIHTi-1B)) L)
shows that when the perturbations v; =0 and the Markov parameters in the
matrix H; are exactly known, the solutions for the system matrices (Ag|Br)
only require the column space of the matrix U, (or I;) in addition to the
restricted set of Markov parameters (I';_q B).Furthermore, the additional and
often cumbersome requirement [ = k; stated in (14), was only necessary to make
use of (13) of Lemma 1. Therefore, the proof of Theorem 1 reveals that this
condition does not intervene when directly computing estimates of the system
matrices, as given by (15). Therefore, "this - would yield unbiased estimates
without the constraint i = k. A summary of this.way of computing a realization
for the case v, = 0 follows. : o

The elementary MOESP2 algorithin _‘; ,
Given: el e
(i) an estimate of the underlying systémf'd"rdér" n;
(ii) a dimension parameter i, satisfying:
i>n . (16)
(iii) the first { Markov parameters /g = CAS'B for s=1, ..., i—1 and
ho = D L
(vi) the input and output datai‘”ééﬁhcﬁcés [y, ugs - ., Unsi-1) and
[¥1: Y25 -« o Yn4i-a], With N >>mi;
do the following.
Step 1. Construct the Hankel matrices U 1 N' and Y~ and the lower triangu-
lar Toeplitz matrix H;, all defined in (7) and (8) of Part 1. -
Step 2. Achieve a data compression via te RQ factorization given“iﬁ -(25) of
Part 1. EREE : B

Step 3. Compu%e the SVD, of the njl.atrixh‘i[(Rzl—HiR11)]R22];‘ Tgivén as
UnSnVn' R C ‘ ‘ SR

Step 4. Compute the quadruple of system ‘matrices [Ar, By, Cr, D] by solving
the following set of equations: : Lo

UO A =g@ee et )
UOBr = (ryB) o o ()
and extract the following matri?és: ’ "" o |
Cr = first ] row;bf ‘the"&;at.ri.)\(: Un S ©(19)
D = the (estimatrégi)' Markov 'parérﬁeter hio" (20

The main differeqce between the MOESPI (see '§§ 4.2-4.3 of Part i) and the
MOESP2 algorithm is that, in the latter the key part.consists of approximating

.
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the column space of the extended observability matrix I';. As demonstrated in
Theorem 3 of Verhaegen and Dewilde (1992), the key part of the MOESP1
algorithm is the approximation of the row space of the matrix X y. In this way,
the MOESP2 algorithm is strongly related to the classical realization scheme
based on Markov parameters only, but also to the ordinary MOESP approach.

3. Comparison of the MOESP2 scheme with the classical realization scheme
based on Markov parameters only

In the asymptotic analysis of the unbiasedness of the MOESP1 and MOESP2
algorithms in Theorem 1, we have assumed the exact knowledge of a restricted
set of Markov parameters. Therefore, one may wonder why it is not sufficient to
realize immediately a quadruple of system matrices from these Markov para-
meters only. The latter approach, as outlined in a system identification context
in Kung (1978), is referred to in this paper as the classical approach. To answer
this question, it is necessary to study the sensitivity of the computed results with
respect to perturbations on the Markov parameters.

In this section, we study the effect of these errors on approximating the
column space of the matrix I';. For simplicity, we only treat the case where the
input signal u; is zero-mean white noise of unit variance (g, = 1).

To distinguish between similar quantities that are approximated in both
algorithms, the relevant ones related to the MOESP2 scheme are marked in
bold.

3.1. The classical SMI scheme

The description of the classical algorithm in this paper is mainly based on the
outline given in Kung (1978). A summary of the algorithm to compute the
column space of the extended observability matrix is given next.

The CLASSIC algorithm
Given

(i) an estimate of the system order n;
(ii) the Markov parameters h; = CA* *B for s=1, ..., 2i — 1 for i > n and
hg = D;
do the following.
Step 1. Construct the Hankel matrix H7:

hy hy ... h;
H; = h:2 fa oo hi?Ll = LA, (21)
b, R
with A; =[B AB ... A"!B].
Step 2. Compute the SVD of the Hankel matrix H;:
HS=U,S, Vi (22)

Rm.ixu

with S, an n X n diagonal matrix, U, € R"”*" and V, €
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Step 3. Identify the column space of Hi:

spancol (I't) = Un (23)
The computation of a realization is done as described in Step 4 of the MOESP2
algorithm.

3.2. Sensitivity analysis

In Appendix B, we summarize two propositions discussing the perturbation
of invariant subspaces of a symmetric matrix. These propositions will be used in
the sensitivity analysis. In the beginning of this section, we also introduce the
notation A(M) to denote the spectrum of the matrix M and ||M||; to denote the

2-norm of a matrix M. :

In this section we analyse the numerical sensitivity of calculating the column
space of I'; (or I;) with respect to perturbations on the data. According to the
algorithmic summaries of the MOESP2 algorithm (see Step 3 in §2.4) and the
CLASSIC algorithm (see Step 2-3 in §3.1), such a basis is obtained via the
singular value decomposition. Hence, we should study the effect of the errors on
the computation of U, (respectively U,). However, assuming that the effect of
the estimation errors is of different orders of magnitude larger than errors made
during the numerical computations it is subsequently valid to consider the
influence of the estimation errors on the calculation of invariant subspaces in a

symmetric eigenvalue problem.

3.2.1. The perturbed symmetric eigenvalue problem related to the CLASSIC
algorithm. Let the estimated Markov parameters A be perturbations of the true
Markov parameters h;, that is h;= h; + 6h;, for j=1, ..., 2i—1, then the
perturbation of the Hankel matrix H; is denoted as:

HS= HS + 6HS (24)
Hence, co
HY(HS)T = H{(H)T + HI@H)T + SHI(HYT + SHI(SH)T @)

Denote the eigenvalue decomposition of this matrix by:

[ [0 [@"

HY(HY™ = [U.T]) (26)

0 [ * | L(TDT
This matrix will, in general, have full rank. On the other hand, its unperturbed
counterpart has rank n < /.. R !

In view of Proposition 1 (See Appendix B), we now denote the unperturbed
symmetric matrix and its perturbation respectively as: RS

Mc= H{(H)T = AAT] : @
Ec= HSGSHS)T + SH(HOT + HI(SHS)T @)

The dimension parameters g and r used in Proposition 1 (see Appendix B) are
now equal to /.i and n respectively. In the above two equations, the subscript C
refers to the CLASSIC scheme. C
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3.2.2. The perturbed symmerric eigenvalue problem related to the MOESP2
algorithm. Assume, as before, that the estimated Markov parameters /i; are

perturbations of the true parameters /;, that is /7[- =hj+ Ohj, for j=1, ..., i,
then the perturbation of the Toeplitz matrix H; in (8) of Part 1 is denoted as:
ii,- = I{, + (511, (29)

Hence, the perturbation of INX |y (due to the errors vy and &4;), denoted by
I''X, y equals:

LX\n= 2N — ﬁiUl.i,N =Xy —OHU;;xn + Viin (30)

Since, v; and u; are orthogonarl and hg:ncge —,'\7V1_,-,NU}:,~_N = gi,Ef\, and since by
Lemma 2 of Part 1, ﬁXl_NUl_,-_N = ey Ey, and making use of the expression
for Xy y as given in (A7) of Part 1 and the white noise property of n; as
expressed by (14) of Part 1, we find:

1

N LX T MEXT T = [FAA]] [

T
(gh]1?+5nﬁuhﬁ+aﬂ“+a
!

1)

where A] = A'[B AB A%B ...]and A represents second-order effects such as
(I/NYViin UIi,NéH? and other terms that vanish for N — .

Now we express the eigenvalue decomposition of the matrix product in (31)
as:

s2 |0 U)"

— (32)
0 |x[@HT

Then, since of, =1, we have the following pair of matrices characterizing the
perturbed eigenvalue problem in Proposition 1 (see Appendix B):

T

My = L[A]A]] Lﬁfﬂ] I} + ol (33)

which clearly has full rank and which, according to Proposition 2 (see Appendix
B), has the same invariant subspace as My — 0,/;;, and,

Ey = SHSHT + A (34)

The dimension parameters g and r of Proposition 1 (see Appendix B) again
equal /.i and n respectively. The subscript M is used to indicate correspondence
with the elementary MOESP2 algorithm.

3.2.3. Discussion. Comparing the matrices M¢ in (27) and M)y in (33) we
conclude that:
My = Mc = LAT(A)TT] + oyl

which is clearlg positive definite and hence My > M¢ or, the minimum
eigenvalue (# ag,) of My is larger than the minimum eigenvalue (# 0) of M.
Denoting,

Sy = min |iu| = |Emull = 1Ema22l- (35)
}-M E}-(A{M)
}-M¢U,‘}
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and
oc = min |ic| = [E¢ulk — IEcal (36)
JceMMQ)
Ac#0 R

and assuming (1) that 8y >0, 8¢ >0 and ‘(2) 8¢ < 8y, then Proposition 1 (sce
Appendix B) asserts that the invariant subspace U, of Mc is more sensitive to
the additive errors considered than the same invariant subspace U, of M.

Now, the assumption d¢ < 8y will generally be satisfied because of the
significance of either terms in My — Mc and assuming that all terms in the
perturbations E¢ and Ey are comparable. Similarly, the assumption 8¢ >0 and
Sy > 0 is generally true provided that the signal-to-noise ratio is large enough.
When the latter conditions are violated, the invariant subspace of interest cannot
be retrieved by the numerical scheme suffering from the violation.

A number of remarks are in order at this point.

(1) Since the difference My — M¢ eqﬁ»als}
; r AT T 2
LAA|A]] (A(')TJ (ANTL; + oyl

we observe that its 2-norm is affected by the 2-norm of the matrix A'.
Therefore, when the underlying system has its poles inside the unit circle
the superiority of the MOESP2 algorithm decreases by increasing i.
Based on this observation, we conclude that the insensitivity of the
MOESP2 algorithm compared with the CLASSIC algorithm will be
significant when the system has its ‘eigenvalues close to the unit circle
and/or i is small compared with k in (1) or as defined later in (41).
Systems that can be characterized in this way will be labelled as
‘marginally stable systems’. The presence of the noise term vy demons-
trates working out the advantage of the elementary MOESP2 algorithm.

(2) In the derivation of the symmetric eigenvalue problem in (31) related to
the MOESP2 algorithm, we implicitly assumed the system to be operat-
ing from time instant £ = —» and on. When we start the data collection
and excitation of the plant at a finite time (and at zero state), the
eigenvalues of the matrix M, decrease in magnitude. This technical
detail increases the sensitivity of the MOESP2 algorithm. The effect on
the CLASSIC algorithm will not be analysed. ¢

(3) In the present outline of both identification approaches, nearly twice the
number of Markov parameters are.required in the CLASSIC algorithm.
However, when using all available Markov parameters, as with the
CLASSIC scheme, we see that the set of equations, (17), which
determine At has more rows then is the case for a similar set of
equations in.the CLASSIC algorithm. Therefore, we can expeét>a better
error averaging within the MOESP2 scheme. - :

_To summarize, the main observation of the performed perturbation study in
this section is that the column space of the extended observability matrix I i
calculated more accurately with the MOESP2 algorithm. As a consequence, the
results derived from this shift-invariant subspace will also be more accurate. In
this sense, the MOESP?2 algorithm is numerically more robust. :
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4. Dominant mode extraction
d4.1. Framework of analysis

An important aspect of the low-order identificd model is that it accurately
represents the system in a certain frequency range. In the literature, this
problem is generally referred to as the model reduction problem. Nevertheless,
looking at it more broadly and including the phenomenon studied in § 2, namely
the ability to extract the deterministic part of the model from noisy measure-
ments, it should be considered as a specific operation mode of dominant mode
extraction.

The model reduction capabilities of the novel realization scheme are analysed
in this section. We will assume the observations to be error-free. This would be
compatible with realistic circumstances where first, the full order deterministic
model is identified and next the model is reduced. Of course, it is desired to
have a scheme that identifies a compact model using error-affected measure-
ments. The insights in this section will indicate under which circumstances this is
indeed possible. Later, we will present an experimental verification of the
practical validity of these insights (see § 5.3).

4.2. Optimality of the elementary MOESP implementations in model reduction

From the outline of the MOESP1 and MOESP2 algorithm (see § 4.3 of Part
1 and § 2.4 of this Part) it is clear that, in the actual computation of the state
space system matrices, the singular values and right singular vectors of the
computed SVD do not intervene. Nevertheless, as stated in the paragraph
following Theorem 1, these singular values bear ‘crucial’ information about the
model order. Also, in revealing the model reduction capabilities, they reappear
as is demonstrated in the next theorem.

Theorem 2: Let

(1) the input uy be such that condition (28) is satisfied;

(2) the underlying deterministic plant P be representable by a state space
model (1)-(2) of Part 1 of order ny and the FIR model of order k, see
(1) of Definition 1 of this Part;

(3) the dimension parameter i in the MOESP schemes satisfy the conditions:

i>n; and [ =K

(4) the SVD Of Fin,N be:

T
SlVl) (37)

52V
with the diagonal matrices Sy € R™" §; € Rw=m"(n=m) qnd n, > n.

(5) the system matrices (Ar|Br) of the full order system realized with the
MOESP algorithm be partitioned as:

Fin,N = Uﬂlsnlvzl = (Un‘U;l;)(

AgBy = | [Ar@D [Ar(D) | B D)

o \Ar@. 1) | Ar2,2) | B2 1)
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(6) rthe state sequence over the time mterval k=1, ..., N of the reduced
order systent: :
ey = Ap(LDRE+ Bl D )
be denoted as: * o |
Riy =187 87 o 5M
then, e
(1) the matrix A7(1,1) satisfies |Az(1, D=1
T on
XN
2 . = (1 + S 39
@ st = [(Sig) = (T2 = @+ s ®)
with « = (1 — ||Az(1, DY~ )/(1 - ||AT(1 D), for B a constant gene-
rally close to 1.
Proof: For the proof, see Appendix A 7. ':f | - 0

The above theorem leads to the followmg corollary and remark.

Corollary 3:  When the conditions of the above theorem are satisfied, the output
matrix Cy computed by the MOESP algorithms corresponds to a submatrix of an
orthonormal matrix. Hence, using (39),

svTy (&
o3 - (507
5:V1 0
Y

=@+ aols:l . @)

”YI,I.N - 5}1,1,1\1 = |

<o (55 (%

The above theorem and corollary allow verification of the optimality of the
model reduction step for a particular- value of i. We can compute
|Y11n — Y11l for a particular value of i. Depending on its difference with
|S,]l, the model reduction can be judged on its optimality. When the value of x
is known and manageably finite, we can meet the conditions stated in the
theorem and hence, using the MOESP2 algorithm once, the above test will
highlight the deviation from optimality. However, experimental evidence has
demonstrated that when « is large (infinite) the elementary MOESP schemes
must be executed repeatedly, starting with a small value of i and then increasing
it. This should be repeated until the discrepancy between the quantmes in (40)
are as small as possible within a prescrrbed tolerance. :

Remark 1: The proof of Theorem 2 (see (A 9)) also states that the calculation
of the reduced-order model, defined by the system matrices [A7(1, 1)|Bz(1, 1),
only requires knowledge of the part U, of:the column space of I;. The
calculation of the other parts of Ay and Br requlres knowledge of U Hence,
we can interpret this splitting of the column space of the matrix I into matrices
with orthogonal columns as an independent parametrization of . the different
parts in the model. In the framework of parametric system identification; set up
in Ljung (1987), it is claimed that the independent parametrrzatlon of parts of
the model used in a particular identification scheme, might lead to ‘good’ model
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reduction capabilities. In the present framework, tne above thcorem gives
formal proof of this claim. a

The ‘optimality’ of the reduced-order state space model discussed in
Theorem 2 can, in the case that the input is zero-mean white noise, be
interpreted in terms of the Hankel singular values (Glover, 1984). This is
indicated in our final theorem.

Theorem 3:  Let the conditions imposed in Theorem 2 be satisfied; let the input
be zero-mean white noise with variance o, = 1, satisfying condition (14) of Part
1, then the singular values in the matrices S%/N and S%/N in (37) asympuotically
approach the Hankel singular values.

Proof: For the proof, see Appendix A.8. O

5. Simulations

In this section, a number of experiments are reported to validate the insights
obtained in the previous sections of this paper. These series of experiments can
be subdivided into three parts. The first part verifies the asymptotic properties
of the estimates obtained with the MOESP1 and MOESP2 algorithm. In the
second part, an experimental comparison is performed between the CLASSIC
and MOESP2 algorithms and the third part presents results demonstrating the
model reduction capabilities of the elementary MOESP schemes.

All the numerical tests have been performed with the MATLAB package
(Moler et al. 1987). When use is made of a white noise sequence in the tests, the
internal random number generator of this package was used.

5.1. Verification of the asymptotic unbiasedness of the elementary MOESP
implementations

In Theorem 1 (see condition (3)), the asymptotic unbiasedness of the
MOESPI1 algorithms required that the system to be identified has a FIR
representation as given in (1). However, for a large class of linear time-invariant
systems, the Markov parameters h; only approach zero in the limit {— .
Hence, in that case, condition (3) and condition (4) of Theorem 1 can never be
satisfied. Nevertheless, it has been observed in similar simulation runs that the
latter constraint can be relaxed somehow. When we define k in condition (3)
and (4) now as a function of some real parameter value 7.

I
;_:0”111”%
k(1) = ming j:1> —
' Y
1=0

WV

= = (41)

then the unbiasedness of the estimates obtained with the MOESP1 algorithm
resulted in values of k() corresponding to values of 7 close to 1-0.

The conflict between taking 7 in (41) as close as possible to one and
simultaneously limiting the dimension parameter value i in the MOESPI
algorithm becomes more pronounced when the underlying system has its
eigenvalues close to the unit circle. The effect of this condition is analysed in the
following experiment. Since the MOESP2 algorithm was claimed not to suffer
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from this (ovcr-)dimcnsioning, a comparison between both identification al-
gorithms is performed. ‘

5.1.1. The mathematical model. In this experiment the system to be identified is
represented by 2 mathematical aircraft model, taken from Elliott (1977). This
model describes the linearized longitudinal motion of an F-8 aircraft operating at
50000 ft with an air speed of Vo=0620 fts”! and an angle of attack
ay = 0-078rad. The continuous state-space representation of the deterministic
part of this motion due to deflections of the elevator angle d¢ is:

p _049  0-00005  —4-8 0 |[q ~87
g_ w | _ 0 —0-015 -14-0 -3221 |l u + -11 5
dila | 7| 10 —0-00019 —0-84 0 o -0-111| ¢
7] 0

0 1-0 0 0 0 .

where we refer to Elliott (1977) for an explanation of the other quantities beside
.. The second component of the state vector x is defined as the output quantity
yx. This output is perturbed by a zero-mean white noise sequence vy Wwith
standard deviation equal to 0-5. The latter perturbation corresponds to a very
high signal-to-noise ratio. The input sequence O is also a zero-mean white noise
sequence statistically independent from vy and standard deviation 0-1. In the
simulation, we used a discrete version of the continuous model. The discretiza-
tion period and sampling period of input and output signals are equal to 0-03 s.

5.1.2. Experimentl. We set up a Monte Carlo simulation study. In each runa
different realization of the output z, is generated for . a fixed input sequence

.

{8.}. The length of each observation sequence is 1000 and a total of 25 runs was
performed. The information flow through both algorithms considered is:

(6.0}, {z&}s Hos - - -» hag —| MOESP i = 40| —> 4th order model (£)

The eigenvalues are computed from the estimated system matrix A  obtained in
each run by both MOESP implementations. These estimated quantities ar¢
plotted in Fig.2 on the left-hand side for the MOESP1 algorithm and on the
right-hand side for the MOESP2 algorithm. The centres of the crosses in these

figures correspond to the true eigenvalue locations.

5.1.3.. Discussion. The results of the above experiment cIearly show the effect
desgnbed in Theorem 1. In addition, the MOESP2 iﬁlplefﬁéﬁtation yields
unbiased estimates for the conditions assumed in the,expéﬁrhéntf'These experi-
mental conditions can be considered as critical, because the Sriginal'system has
f_:lgenvalues very close to the unit circle, namely 0-9997 0-0038j (with
j ="V =1). Consequently, the integer x defined in Theorem 1 or even as in the
relaxed form given by (101), is of orders in magnitudétlar“gﬂéf-"fh‘él'fl‘? the order of

the systems. Therefore, to make the MOESP1. algorithm compatible with the
assumptions in Theorem 1, first of all, the computati(i)igls:l‘ju“ryde’n drastically
increases ?nd second, the input has to be persistently excited of ‘a very larg
order. This clearly demonstrates the advantages .of the MOESP2 implemet&
tion. In additional experiments, however, it was observed  that the MOESP!
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.. batches of 1000 measurements
PR | .

algorlthm has some degree of robustness with respect to violating condmons 3)
and (4) of Theorem 1 for less ‘critical’ plants. In these experlments the
dimension parameter i in the MOESP1 algorrthm could be taken at an order of
magmtude smaller than k(7), defined in (41) for values of T close to one while
Stlll guaranteemg unblased estimates. oL .

5 2. Comparmg the CLASSIC and MOESP2 algortthm

: In the discussion following the analysis given in § 3, it was clarmed that the
MOESPZ algorithm will give more accurate results than the CLASSIC algorithm
when only a restricted and perturbed set of Markov parameters are used in the
calculations in both schemes. o

The experlmental conditions chosen to compare both schemes are in com-

plrance with those assumed in the comparison study performed in §3 Special

attention will be given to the analysis of margmally stable systems.

5.2.1. The mathematical model. The mathematical model that’ represents the

system to be 1dent1f1ed is given by the followmg drscrete state-space descrlptlon

*

: " T192 —0 316 o
xk+r—|: ? ] k’*‘[]uk o - (44

Lo Zk - [O 05 OOZS]Xk + Uy - ‘v e .‘ a (45)

The perturbatron to the output v is a zero-mean white noise sequence with
variance equal to 1-0. This corresponds to a relatively low signal-to- -noise ratio.
The input sequence uy is also a zero-mean white noise sequence statlstlcally
mdependent from v, with variance equal to 1-0. - -

5.2.2. Experiment2. We set up a Monte Carlo S1mulat10n study In each run, a
different realization of the output sequence {z)} is generated while keeping the
input sequence {uy} fixed. The length of the observations is restricted to 200.




1228 M. Verhaegen and P. Dewilde

The initial conditions are set equal to zero_,-ﬁcorresponding to no past input. The
information flow through the CLASSIC algorithm 1s:

s X g

b} b ~

{ug}, {zx) = Equation (2) k = 25 |— E()‘,E';-i.“,,., h24

_, |CLASSIC i = 12 | — second-order model ~ (46)

The information flow through the MOESP2 ’_ellﬂl‘g'orithm is:

i

{1y}, {zx} — | Equation (2) k=25 |— ho, .. L hu

— | MOESP2 i = 12 | = second-order model ~ (47)

From the estimated system matrix A 7 obtained in each run by both algorithms,
we computed the eigenvalues. These estimates and their true values are plotted
in Fig. 3 on the left-hand side of the CLASSIC algorithm and on the right-hand
side for the MOESP2 algorithm. e

A possible way to judge the choice of the dimension parameter i in both
identification schemes is based on (41). For-a fixed value of i, the amount of
information present in the restricted number of Markov parameters considered
by both schemes can be expressed by the value B(i) defined in (41). In Table 1,
we list this parameter for different values of the dimension parameter i used in
the two schemes. Co

CEee
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Yl MOESP2
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Figure 3. Poles of second order systems identified with the CLASSIC and MOESP2 algorith
using batches of 200 measurements.



Subspace model identification— Part 2 1229

Dimension parameter pli)-parameter in (41)
12 0-3440
20 0-7580
24 0-8636

Table 1. The f(i)-parameter in (41) for different values of i in
Experiment 2.

5.2.3. Discussion. The above experiment confirms the numerical robustness of
the elementary MOESP2 implementation as outlined in § 3 and the sensitivity of
the CLASSIC algorithm. Although it uses a major part of the Markov
parameters, namely the first 24 corresponding to a f3(/) parameter in Table | of
(-8636, it is very sensitive to small errors on these parameters. Following the
theoretical analysis of § 3, this numerical robustness/sensitivity depends on the
separation of ‘signal’ and ‘noise’ singular values. To see this effect, we plotted
the corresponding relevant sm&,uhr values in Fig. 4. On the left-hand side, we
plotted the singular values of H¢ and on the right-hand side, we plotted the
singular values of (I;.X "X ~/VN) minus o,. The latter figure conveys the reasons
outlined in §3. Similar tests with larger batches of data, different dynamic
systems, different signal-to-noise ratios, etc. showed a similar increased numer-
ical robustness of the MOESP2 algorithm with respect to the class of errors
considered. For the sake of brevity, we refrain from their presentation in this

paper.

5.3. Evaluating the model reduction capabilities of the elementary MOESP
algorithm

In Theorem 2 and Corollary 3, the model reduction capabilities of the
MOESP algorithm were presented in terms of 2-norms of the errors on the state

He L v
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E ] :
iy R s M, S O kg P g ey 1Y) Sl i A g AT Ww-’"@"‘\”’w
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Figure 4. The relevant singular values to judge the numerical robustness of the CLASSIC and
MOESP?2 algorithm.
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or output sequence reconstructed with thé”’“vreduced order model. In this
perspective, we may call a model reduction -optimal if the values on both sides
of the inequalities (39) and (40) are close to one another, i.e. when the constant
a is in the vicinity of one. i

A condition in the above theorem is again-the constraint on the dimension
parameter i as given by condition (3): of ,Th'eorem 2. In the experiment
presented in this section, we study the ‘robustness of the model reduction
capabilitics of MOESP with respect to violating this condition. Furthermore, we
perform a comparison with the classical approximate model reduction approach

based on a balanced realization, such as described by Moore (1981).

5.3.1. The mathematical model. The system considered in the next experiment is
taken again from the acronautical world. To demonstrate the MIMO capabilities
of the MOESP approach, a mathematical model describing the longitudinal
lincarized motion of an F-4 aircraft at Mach 0-9 at an altitude of 15000 ft is
taken. The continuous state space descriptior_ipis':‘ e

_0.0068 00015  =0-6594 1

0
d 00011 —0-494  14-484. —00145 0
Se=| 0341 -198  -0dsg 0 0|x
0 0 R S | 0
0 0 Yo 0 -1
0-0321 0
~0706 0
+] 1599 0 |u > (49)
0 0
0 0-1
- vy v
_[102 o o 0 0] .
y = [0 00689 0 0 0]" i )

The different quantities in the state, input and output vector are not relevant in
the present experiment and we refer to Elliott (1977) for an explanation of their
physical meaning. The input vector consists of two independent zero-mean white
noise sequences with variance equal to 1-0. The output sequences used in the
model reduction are unperturbed. In the simulation study, the continuous model
was discretized for a period of 0-05s. The brfnodél(féadhction analysis is based on
this discrete model. AT

5.3_.2. Experiment 3. The model in (48)—(4@)\3‘is‘;uséd;to generate a single batch
of.mput and output samples with a length of 500, The MOESP2 algorithm uses
this data along with the true and necessary Markov parameters to identify a
state-space model of order n =3. The true order n; of the underlying system is
five. In a first part of this experiment, the dimension parameter i was set equal
to 16: In a second part, this value was increased.to 60. The.results of this
experiment are summarized in Table 2. The top three quantities in this table
correspond to values defined in Theorem 2:"The bottom quantity,: namely the
2-norm of a part of the impulse response, allows one to quantify the violation of
the constraint in condition (3) of Theorem 2.~ =~ = s
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;_Néhﬁ quantityA . . U Li=60 "Ui=16 . . Balanced realization
Jrsviy (R .

i Bl e 8-893 122260 30338
S,V . TR P A L
[Viaw = Pranll 0 e meneiiazg e 12952 47.035

s L sy J031as o Lesdl
Sl 03486 0 041750

Table2. Values of the norm quantities specificd in Theorem 2 to judge the optimality of the

[ s reduced third order model.’ :
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1 5.3.3. Discussion. The above experiment demonstrates the robustness of the
- MOESP2 algorithm in model reduction with respect to violating the constraint in
- condition (3) of Theorem 2. This observation can be made since for i =16 or
- i =60 only a minor part of the impulse response has been considered. This may
_be observed by comparing the bottom values in Table 2 with the value that
. would result when taking i in:this table.equal to 4000. In the latter case,
S0 17 equals 5-7678. Therefore, when i ‘= 60, the value of B(60), defined in
- (41), is approximately 0-0604 and when'i = 16, B(16) = 0-0303.

T 1rs

6. Conclusions T }

_~ +In the second part of this series of papers, the identification and model
- reduction performances of the elementary MOESP scheme of Verhaegen and
. Dewilde (1992) are analysed.’ .~ o

© The common thread in the performances of the elementary MOESP scheme
_ is'the parameter i, referred to as the dimension parameter since it determines
 the sizes of the data matrices handled by the algorithm. When this dimension
. parameter has to be chosen larger than or equal to the number of non-zero
- Markov parameters, it harms the performances of the MOESP algorithm mainly
- in two ways: (1) the computational burden increases significantly, since, for
. example, the number of flops (1 flop = 1 multiplication + 1 addition) in the RQ
. factorization increases proportional to i and; (2) the data requirements in terms
. of the length of the observations and persistency of excitation become more
- critical. e A L
éf It is demonstrated that the asymptotic unbiasedness of the estimates obtained
" with the elementary . MOESP scheme presented in Verhaegen and Dewilde
| (1992), referred to as the MOESP1 scheme, stipulates the above condition. This
. analysis only considers .the output quantity to be perturbed by zero-mean white
. noise errors. The same analysis automatically leads to the derivation of a second
implementéﬂon of the 'eleméhtary,MOESP scheme, namely. MOESP2. This
. alternative implementation is not indexed by this constraint on the dimension
. parameter i. Hence, for the latter scheme the dimension parameter i only has to
. be'chosen larger than the order of the underlying system. In' this way, the
' MOESP2 algorithm fully exploits the algorithmic advantage of using only the
. lower triangular factor of the RQ factqrization in the elementary and ordinary
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MOESP schemes. The constraint on the dimension parameter i allows for a very
efficient execution of the RQ factorization. and hence of all subsequent al-
gorithmic steps. e

These appealing computational properties are combined with an increased
robustness by the MOESP2 scheme with-respect to errors on the used data. This
is based on a comparison with the classical approach based on Markov
parameters only. The crrors on the output 'are ‘zero-mean white-noise errors,
This property becomes significant when the number of non-zero (or larger than
a prescribed tolerance) Markov parameters is large. .

For a more general case, when these errors are arbitrarily coloured, it is
possible to make the clementary MOESP schemes the building block of an
iterative version. This would then correspond to an approach pursued in classical
parametric model identification as described by Ljung (1987) and Soderstrém
and Stoica (1989). In these classical iterative identification schemes, the simple
linear lcast-squares method -plays a key role. The schemes and analysis pre-
sented in this paper might serve as the crucial part in the design and analysis of
iterative versions of the MOESP approach. -However, we mention that it is
possible to incorporate instrumental variables in an efficient way in the MOESP
algorithmic structures, see the third part of ‘this series of papers (Verhaegen
1993 or Verhaegen 1991 a). This extension has been demonstratec to make the
MOESP schemes applicable to realistic identification problems, where the input
and output signals are corrupted by zero-mean errors or arbitrary colouring.

The above insights are validated in a simulation study. A number of the
experiments performed in this study are reported in this paper.

In the analysis of the model reduction capabilities of the elementary MOESP
schemes, the finite impulse response constraint reappears. In this case, a
procedure is derived to judge the optimality-of the calculated reduced-order
model making use of error-free observations. The optimality corresponds to the
2-norm of the errors on the reconstructed state or output sequence being as
close as possible to the 2-norm of the métri;@’- containing the rejected singular
values. In the experimental verification ‘study. of- this result, we demonstrated
that the dimension parameter i can be constrained to practical values and still
guarantee a reduced-order model of high-quality, for example, compared with
the classical balanced realization approach described in Moore (1981).

Based on this last observation and:the; asymptotic unbiasedness of the
MOESP2 algorithm for a dimension parameter i of practical value, we are led to
the assertion that the MOESP2 implementation ‘allows efficient identification of
a compact and accurate state space model from ‘perturbed’ input-output data.

EER .
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Appendix S
Proofs of the Corollaries, Lemmas and Theorems of Part 2

i T ST U RT |
FyEy = FxFy + FyVy + VNFY + ViV

Taking the limit for N — o« of both sides and makir‘lg‘u's‘e of (3)—(5), yields:
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- T
lim — FyFy = USFUL + 01 =

N—x { . )
S + o1, ‘ o 1 Uk
(UL UF) — : N
0 02 e ||L(UF)T (A1)

and the result of the lemma is established. | o ' : O

A.2. Proof of Corollary 1: Smce the smguhr values of FN are defined as the
eigenvalues of the matrix FN FN, we have:

lim —

1 S%N(lill, llll) | 0 Szl + 02171 \ 0
Nosx N 0 ls% (n+ L:Li,n+ f:l.i) | 0 ’0211.,'—,1

Hence since the diagonal entries (eigenvalues) of the matrix S7 + 01, and
0?1l ,_, differ, their corresponding invariant subspaces are uniquely determined
(Golub and Van Loan 1989). In terms of the computed left singular subspaces
and the limit in (6} or (A 1), the corollary holds. - O

A.3. Proof of Corollary2: From the conditions stipulated in the corollary, we
have that *

0= lim _(U )T(FN + VN)UN
Now N

Substituting the SVD of Fy given in (7) yieldsc

= ]blm N (UPDTUE(C, 1:n)Sg, (L:n, 1:n) (VG 1n)TUN

+ lim —(UF)TUFN( n+1: lt)SFN(n+1 li,n+1: lz)(VFN( n+1: lz))TUN
N._.oo

Making use of the limits in (8), we obtain:

—]£’1m N(UF)T My S (Lin, 1:n)(VE (s ln))TUN |

+ lim % My Sk (n + i, n + LI)VE(Gon + LI)TUY
Nox

Since the limit l1mN_,m (1/N)FNUN exists, the limit limy_ o (I/N)SFN(I n, 1: n)
(VE G, 1:m))TUY exists, and since (UF)TUr =0, (9) holds. -

A.4. Proof of Lemma3: We have to prove that

Uiin

1 .
p(lslim Fl:TlXLN + TaViiw [XT,NTIT + VlT,i,NTg UlT,1,N]) =n+m
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1234

or alternatively that the matrix,

lim L ThiXon * TaViin [X{NTI +_'VI,i,NT§ U{l,N]
Nox N Uiin S

is positive definite. With the expressions in (10) and using the orthogonality
between v, and uy, Xi, the above matrix equals:

T 2 T RS
T,PxT: + 0,T,T> |AT(1RXU1

T t
R§01T1 RUI

Tlxk q
Uy )
is persistently excited (of order 1), the above ‘matrix is the sum of a positive

definite matrix and a positive semidefinite matrix and hence is clearly positive
definite. B O

Since the signal

A.5. Proof of Lemmad4: Since U, and U are orthonormal, we have that:

[(UDHYT U, (1.(i — 1) + 1:1.i, :)T]|:UJ-(1.(},- (_.Uf))(-l: 1:4.4, I):] =Y

or,
(UDTWUHDO = —U (LG ~ 1) + 104, YTURLG = 1) + L1, 2)

Now we show that U,(I.(i — 1) + 1:1.i, :) = 0.-Based on conditions (2) and (3)
of the lemma, see Theorem 3 of Part 1, I';X; 5 has a SVD given as:

Sn 0 VT, _
I'iXyn = [U,|U7] [ ;] = UpSiVn
0 | o ;

Hence,

(U)X n = S, VT

Denote the matrix product urr, by T, then since Snvz"is of rankn and

Xy e RHXN " .
FI’N R™ Y, the square n x n matrix T is invertible. Then, we can denote
X1,y as, ‘ e,

FiXyn = FiT_lTXl,N = U;S,V »",{v;";z“;;;
Hence, since SnV’,I; has full r !

; oW 't jous tWo
equations that rank 2, we deduce from the previou

n

rT!'=y (A2)

which is denoted explicitly as
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CcT™! Cr
-1 -1
rret = (CT )(:TAT ) | _ CT:AT U,
(CT~YWTA'T™Y CrAT!

Based on the constraint on the dimension parameter i and the FIR representa-
tion of the plant P, we conclude:

Cr
CTAT \AT\B ArBr ... AW Br]=0
CrAT

and therefore A'}"l = 0. Hence the last block-row of U, equals zero and the
proof is completed. O

A.6. Proof of Theorem 1: We will only give the proof for the calculated system
matrices Ar and By, since the solution with respect to the matrices Cr and D
is similar. The proof is based on the construction of the solution to the
least-squares problem in (40) of Part 1. Since, the Markov parameters in the
matrix H; in (9) of Part 1 are assumed to be exactly known, the matrix
(X n+ Viin) in (9) of Part 1 equals Z,;y — HiU,;n. Hence, we can
denote the least-squares sub-problem to calculate (Ar|Br) by:

min

i | (Ur(llN))T(Fi—lXZ,N + Vayicin) — [A7|Br]
T»OTr

[(ﬁr(:l,v))T(ri—lXLN + Vii-,n)
Uian

F

with the additional subscript (-)ey now to indicate the dependency of the
quantity (-)e on N.
Now denote the SVD of the matrix I';.X y + VN as

ST
- o 1y | 0 V]N

IX n + Viiv = [UnUxl N o (A3)
NEREA

Then, identifying I';X; » with the matrix Fy in Lemma 2 and V;; 5 with the
matrix Vy, we may conclude according to (8) that:

lim 7,, = lim U,M,, and lim U, = lim U;M,, (A4)

Now N—ox Nowx Nox

With the same identification of matrices, Corollary 2, shows that

Allligo N My, 8, V3 UTin =10 (A5)
Since, in the error-free case, see Theorem 3 (2) of Part 1, the matrix (U a ))
is a square invertible matrix, and since limy_. (U,,N)T = [imy_,e MlN(U )‘L
see the right-hand side limit in (A 4), there exists a particular Ny such that for
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N = N, the matrix (U ,(,L))TI”,-_l is a square invertible matrix. Hence, by Lemma
3, for a fixed N = N, the underbraced matrix "in the above least-squares

sub-problem has a right inverse. o
With the SVD of the matrix IX 1 n + Vi~ in (A3), we have the following

expressions:

oo S L7
Mo X + Vienw = [ORl05)0] — | = | (9
0 | S| LV

and

i AX n + Vaisin = [ﬁr(zm(ﬁrfh,)(z)] .

S0 LV,
Since, -1 Xon = T-1AX1n + (T 1B)U1y, i we have
i 1 Xon + Voisn = [q%”(ﬁjfv)(f\”(fi—llg)] 5.Va, (A7)
Uian

With the expressions in (A6) and (A7) and the definition (U ,EB)T(’U i
=: M3, the solution to the least-squares sub-problem can be denoted as

(Ar.|Br) = (UDHTPNT 2PN -1 B)Y)

UinVi,51, + Unan Vo 50, M3, | UninUiin
( N [ SL SR |8, VEUTL + 5, R0
N UpinVi,Si, + U1,1,NV2N§2NM~;N ’ ) U1,1,NU£1,N
o (A8)
Using the limits in (A 4) we have -
lim M, = lim M{(UPYHUDNOM,, =0 A9

’fl;l;ealllat]s:r relationship holds because M, and M,, are orthohb:iilal matrices
limit i Asee (8), and because of Lemma 4. This result, in combination with the
in (A 5) reduces the expression in (A 8) in the limit N — % to:

lim (A7 |Br.) = 1 T 77Dy ;
i (ArdBr) = lim (ML UDWUD M| MT U (T1B)

-1
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~

Without the errors v, that is for $, =0 and U,, = U,, the solution to the
least-squares sub-problem is equal to:

(ArlBr) = (UD)ULIU)H(Ti-1B)
Comparing the last two expressions, completes the proof of the theorem. O

A.7. Proof of Theorem 2: We only have to prove the upper bound. The system
matrices Ar and By of the full nth order system, which is determined by the
MOESP algorithm, satisfy the fo]lowimo overdetermined set of cquations:

] [AT]B']'][(Uf’ll))'ruf’]l)s"lv"l
Ui~

(UMHUD|(r- IB>
l 1.N

(A 10)

Since, the conditions of Lemma 4 are satisfied:
(UM =(UM? (Al1)

Now partition the matrices Uf,‘l) and U,,1 according to the partitioning of U,, in
(37), then a combination of (A 10) and (A 11) yields

SivVi
whHTu® | (UMNHT(UH® |(U$.”)T(r,--13)
S, Vi | =
WHNTU? | (whHmyrwhHe | (uHOTr-B)
Uiin
S,V
AL D) [ A1) | BrOL ]| =
S,V] (A12)
A1) | Ar2.2) | B2 D)
Ujin

Define, Tx; = (x7)x with T the non-singular transformatgo[n matrlx repre-
0
senting the matrix product (U(l))TF, LXPTR =S Vi, (X7t)inv= S,V3 and

S\V1

(X% = (UDTUL( U TWHPNUD) (T B)| 52V

Uian

the first n rows of the above partitioned set of equations can be written as:
(XS = Ar(L, DXDIR + Br(1, DUsiw + Ar(l, (XD

Hence, since the state £} evolves according to (38) the error between both state
sequences in (X1)1 v+ and in X1 ~N+1 satisfies:

(Xp)$h — Rin = Ar(L, DI(XDPR — &Ta] + Ar(L (XD
Further we introduce the following notation:

(XT)I N = [W1 Wy ... WN]

~ o

(Xp)'% — Xin=Xin=1[%1 % ... %]
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Then
[¥1 %2 TN] =
- N=-27 4 ml 0 mr e way
[0 I Ar(1,1) ... : Ar(1l, 7] diag(Ar(1, 2)) o - ,

' . Lo
with diag(A7(1,2)) a b]ock dlagonal matrix € R"Nx(”‘ "W w1th AT(l 2} on its
diagonal. Therefore, | b DR
IXT Nl =<

b Wi Wy WN

- <0 T wyie Wy-

It Az 1) o A DY A 2] T G e Y
0 0 Wi

Now we explicitly evaluate the norm quantities on the rlght hand side of this
inequality. Since U and (U)® are submatrices of orthonormal matrlces,
lar( 2l = [P < [(wHP| <1

Also, since Ar(1,1) =(UYTUP, |Ar(1,1)| =<1, hence the elgenvalues of
Ar(1,1) are all within or on the unit mrcle ThlS _proves the flrst part of the
theorem. Hence, we have - i

N=2 LR ' k. Sq TN 4 N-1
1‘*‘"IAT(1, 1)”2
I Ar(,1) ... A(11N2 =< Ar(1;1 ‘

T ) “ E “ T( )”2 _ “AT(la 1)”2
Since, (X7)i%% =[w; wy ... wy]= S2V2, we have for somef:,c:o'ﬁjs‘tant f close
to1, T

Wi Wo e Wy .

0 w A

S Mot < sl
0 0 ... w

From the above bounds, we conclude that

IXEN =< @liSall e e
Hence, ' e

< [[Sll + ass]
and the proof is completed.

II(X T)“’p - Xl

3.8. Prot)f of Theorem 3: Recall from, for example Glover: (1984) that the
ankel singular values are the singular values of the .matrix product of the
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observability gramian U times the controllability gramian ‘6. Therefore, we now
explicitly compute both gramians for the full order state-space model realized in
the elementary MOESP schemes.

From (A 2), the observability gramian ¢ equals:

O=T7"rinT ' = vy, =1

Making use of the representation by the MOESP algorithm of
(Xthon =(TX, y) as
[SINVITN]

T
§2,. Vs,

see Theorem 2 we can denote:

1 r e 1Sk |0
. TX],NXI.NT = -
N Nlo |s2

Substituting the expression in (52) from Part 1 for (X7),.n into the left-hand
side of the above relationship; this expression is also equal to

_ K2 1
= [BT ATBT e AT BT]_—
N
T
7N My ... UN_> U U_q cee UH_yyo Br
T,T
_q vee UN_D 7h Uy BrAr
: : : S
U_y42 e Uy-1  Un_2 Br(AT ")

Taking the limit of the right-hand side of the above equalities and making use of
the white noise property in (14) of Part 1 yields

Bt
B}A}

ATBT e A'}_zBT][m(K_l) =%

BT(A5HT

Hence, multiplication of the above expression for O and € leads to the desired
result. d

Appendix B
Propositions

B.1. Proposition 1: (Taken from Golub and Van Loan (1989), p.413). Let M
and M + E be q X q symmetric matrices and let,

Q=q[01 Q]

r q-—-r

with r < q, an orthogonal matrix such that the column range of Q. is an invariant
subspace for M, that is MQ, C Q. Partition the matrices QTMQ and QTEQ as

follows:
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- _ My O fr TEO = |:E]1v:.., .;Elglr
QIMQ—[O Mzzilq—’ Q" EQ EoEp Jo-r

Pl g

1240

r q—-r

If

' S

= min |A—y = |[Eulh = |Exl >0 and |Ey|, S;
2eA(M) e i
WEA(M )

then there exists_a matrix P € R4~ satisfying, ||Pl| < (2/O)|Enlly such thar
the columns of Q= (01 + Q,P)({ + PTP)'I/2 form an orthonormal basis ofa
subspace that is invariant for M + E. '

P L
Proof: For the proof, see Steward (1973). ‘ C
B.2. Proposition2: Let M be a q X g symmetric matrix and let the column
range of Qy, with Q1 € R™" (r < gq), be an invariant subspace of M, then (, is
an invariant subspace of M + oI, for any real number o.

Proof: (; is an invariant subspace of M + o1, if, (M -k-}izI)Ql C 0, This
holds because MQ, C Q;. ‘ 0

ACKNOWLEDGMENT

The research of Dr Michel Verhaegen has been made possible by 2
feliowship from the Royal Dutch Academy of Arts and Sciences. The authors
also thank the anonymous referees for their constructive and. helpful comments

that improved the readability of Parts 1 and 2 of this paper.

o

Loy

REFERENCES

Cuen, C. T., 1970, Introduction to Linear System Theory. (New York:;Holt, Rinehart and
Winston). e

ELuO'rr,_J - R., 1977, NASA’s Advanced Control law program for the F-8 digital fly-by-wire
aircraft. I.E.E.E. Transactions on Automatic Control , 22, 753-757. "

Grover, K., 1984, All optimal Hankel-norm approximations of linear multivariable systems
and their L -error bounds, International Journal of Control, 39,'1115-1193. _

Gorus, G., and Van Loan, C., 1989, Matrix Computations (Baltimore: Johns Hopkins
University Press). - .

Ho, B. L., and Karman, R. E., 1966, Effective construction of linear, state-variable models
from input/output funtions. Regelungstechnik, 14, 545-548. °

Kung, S. Y., 1978, A new identification and model reduction algorithm via singular value
decomposition. Proceedings of the 12th Asilomar Conference on Circuits, Systems id
Computers, pp- 705-714. g '

Liuna, L., 1987, System Identification: Theory for the User (Englewood Cliffs, NJ: Prentice

Hall).
Moter, C., Lirrie, J., and Baxcerr, S., 1987, PRO-MATLAB User's: Guide, The Mat
Works Inc. : e

MOONEI\'J, M: .anq VANDEWALLE, J., 1990, QSVD approach to on-,.raﬁ;d-f)ff‘line state SpIce

Moome 1d§ntg1cailgon< Int?rnfztional Journal of Control, 50, 1133—1146-7” s . :
,abﬂ.it ‘énd 8],dPrm01pal.component analysis in linear systems: controllability, obs;r\'

SODERSTRO\,{y’[‘ mg Sel reduction. I.E E.E. Transactions on Automatir_chontrol, 26, 17-3 :ce
Hal‘l)’ -+ @nd Stoica, P., 1989, System Identification (Englewood Cliffs, NJ: Prent

STEWART_, G. W., 1973, Error and perturbation bounds for subspaces associated with certa
cigenvalue problems, S74Mf review, 15, 727-764.




Subspace model identification— Part 2 1241

Vernaraes, M., and Dewwor, P., 1992, Subspace model identification. Part 1: The
output-error state space model identification class of algorithms. International Journal
of Control, 56, 1211-1241.

Vernaraen, M., 1991a, A novel non-iterative MIMO state space model identification
technique. Preprints of the 9th IFAC/IFORS symposium on Identification and System
parameter estimation, pp. 1453-1458: 1991b, Robustness of the novel MOESP
realization scheme. Presented ar the Internaiional Symposium on the Mathematical
Theory of Networks and Systems: 1993, Subspace model identification, Part 3: Analysis
of the ordinary output-error state space model identification algorithm. International
Journal of Control, §7, to be published.




