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Subspace model identification

Part 3. Analysis of the ordinary output-error state-space model
identification algorithm
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'L7_The"ordinary MOESP algorithm presented in the first part of this scries of
papers is analysed and extended in this paper. First, an analysis is made which
- proves that the asymptotic unbiasedness of the estimated state-space quadruple
... [Ar, Br, Cr, D] critically depends on the unbiased calculation of the column
space of the extended observability matrix. Second, it is proved that the latter
quantity can be calculated asymptotically unbiascdly only when the stochastic
“*+ additive errors on the output quantity are zero-mean white noise. The
-+ extension of the ordinary MOESP scheme with instrumental variables increases
) - the applicability of this scheme. Two types of instrumental variables are
' proposed: (1) based on past input measurements; and (2) based on rccon-
~ structed state quantities. The first type yields asymptotic unbiased estimates
. " when the perturbation on the output quantity is an arbitrary zero-mean
: stochastic process independent of the error-free input. However, a detailed
sensitivity analysis demonstrates that for the finite data-length casc the calcula-
tions can become very sensitive; this occurs when the particular system at hand
has dominant modes close to the unit circle. In the same sensitivity analysis it
is shown that far more robust results can be obtained with the second type of
instrumental variables when the true state quantities are used. A number of
guidelines are derived from the given sensitivity analysis to obtain accurate
reconstructed state quantities. Efficient numerical implementations are pre-
" sented for both extensions of the ordinary MOESP scheme. The obtained
insights are verified by means of two realistic simulation studies. The devel-
oped extensions and strategy in these studies demonstrate excellent perfor-
mances in the treatment of both identification problems,

1. Introduction

- In the third and final part of this series of papers, we analyse and extend the
identification capabilities of the ordinary MOESP scheme. First, we study the
asymptotic unbiasedness of the ordinary MOESP scheme for the simple identifi-
cation problem stated in Part 2 (Verhaegen and Dewilde 1992 b). Second we
extend the capabilities of the ordinary MOESP scheme to a realistic version of
the global identification problem, stated in Part 1 (Verhaegen and Dewilde
1992 a), by incorporating instrumental variables in this scheme.

- The realistic version of the open-loop global identification problem is stated
next with the help of Fig. 1. As in Part 1 (Verhaegen and Dewilde 1992 a), we
assume the different stochastic signals in the identification problem to be
stationary, ergodic stochastic processes.

A realistic open-loop identification experiment and problem. Apply a com-
- puter-generated input sequence u(k) via the necessary transducers to the
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Figure 1. Block schematic view of a realistic system open-loop identification set-up.

linear time-invariant and finite dimensional (LTIFD) system, represented by
the dashed box in Fig. 1. Owing to imperfect transducers, the actual input to
the system ii(k) differs from the generated one. Record the output sequence
z(k). The measurement equipment used for that purpose further introduces
the additive errors v,(k). Assume that the different zero-mean and additive
transducer errors due to wy(k), modelling errors, due to wy(k) and measure-
ment errors v,(k) are statistically independent of the generated input se-
quence u(k). Then, the task is to approximate the input-output behaviour of
the block P of the LTIFD system in Fig. 1.

In the SMI context of this series of papers, the input—output behaviour is
determined by a state-space model. The key part (of Part 3) in approximating
this model is the estimation of the column space of the extended observability
matrix from Hankel matrices constructed from the input and perturbed output
data.

Since the deterministic part P of the unknown system in Fig. 1is LTIFD, the
above problem statement is equivalent to the basic identification problem stated
in Part 2 (Verhaegen and Dewilde 1992 b); however, now v(k) is a zero-mean
~ stochastic process of arbitrary colouring. The latter represents the sum of all the

time sequences owing to w;(k), wy(k) and v,(k) in Fig. 1 and possibly also due
~ to unmeasurable input sequences. Owing to the output—error approach, but also
"' because the individual effect of the different error sources is difficult to trace
“ back in the recorded output Z(k), we treat the latter equivalent problem in this
" paper. ISR
* Instrumental variables are common practice in parametric model identifica-

. tion schemes (see e.g. Soderstrom and Stoica 1989 and Ljung 1987). The
* . primary purpose in selecting these variables is to remove asymptotically the bias

on the estimates due to the perturbation v(k). This can be done in various ways,
generally by projection or filtering the input—output data. The second constraint
on these instrumental variables or on the projection operation is that the key
. model information has to be preserved. This is generally stated as a rank
 constraint. These two constraints also characterize the developed extension of
“ the ordinary MOESP scheme to handle perturbations v(k) of arbitrary colour-

- ing. First, the operation of the instrumental variables is presented as a

" projection of the structured matrices into a subspace constructed from an
- instrumental variable time sequence. Second, certain matrices affected by the
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instrumental variables have to satisfy a rank constraint. Although, different
choices of instrumental variables can easily be suggested, they may differ
significantly in the way they change the numerical conditioning of the estimation
problem at hand. Therefore, we pay special attention to the way the different
extensions affect the numerical sensitivity of the key subspace approximation
problem. (The organization of this paper is again a continuation of that
established in Parts 1 and 2. For a quick review of the relevant notation, model
and data representation, we refer to §2 of Part 1—Verhaegen and Dewilde
1992 a.)

In §2, we briefly summarize the key algorithmic steps that characterize the
ordinary MOESP scheme. The asymptotic unbiasedness of the ordinary MOESP
scheme for the equivalent problem stated above is investigated in §3. Two
different types of instrumental variables which can be efficiently included in the
algorithmic structure of the (ordinary) MOESP schemes are presented in §4.
The sensitivity study on the effect of error-affected data on the calculation of the
column space of the extended observability matrix is made in § 5. The insights
obtained in this section are verified by means of two simulation studies based on
mathematical models of realistic physical systems; namely a flexible mechanical
system and the identification of longitudinal aircraft dynamics using data
recorded when flying through a gusty wind field; §7 concludes this series of
papers, summing up some of the useful properties of the approach presented.

2. The relevant algorithmic steps of the ordinary MOESP scheme

The operation of the ordinary MOESP scheme, derived by Verhaegen and
Dewilde (1992 a) in Part 1 of this series for the case v(k) = 0 is characterized by
three key steps.

Step 1. The first key step is the following RQ factorization:
ULin Ry l 0 Q1

Yiin Ry I Ry | O

Step 2. The second key step is the calculation of the column space of the
extended observability matrix I'; by means of the following SVD:

S, |0 yT

Rzz=[Un|U#]
0 sl ovy

Let T € R™ " be a non-singular matrix, then, as proved in Theorem 4 of
Part 1 (Verhaegen and Dewilde 1992 a),

ri=u,T7!
From the matrix U, we can compute the pair of matrices (A7, Cr).

Step 3. The third key step is to use the knowledge of U,, to transform the data
equation

Yiin=LiXon+ HU iy = RnQ1 + ROy )
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into ' o -
(UHTH; — (Up)"RuRy =0 @)

From this equation, we can determine the pair of matrices (Br, D).

3. Asymptotic analysis of the ordinary MOESP scheme

In this section we analyse the unbiasedness of the ordinary MOESP scheme
for the equivalent of the realistic open-loop identification problem, stated in the

introduction of this paper.
In the first part of this analysis we treat the (asymptotic) effect of the error

v(k) on the calculation of the column space of I5. The result of this analysis is
summarized in the following theorem.

Theorem 1: Let
(1) the input u; be such that condition (28) of Part I be satisfied;
(2) the dimension parameter i in the ordinary MOESP scheme satisfies
i>n 3)
(3) the following RQ factorizations of

be given as
mi I
[Uin| ™[R0 | O oY
T N N N @
| Zyin| " LRz |Rn Q5
Uy "R | O
ol - 11 Ql
= ()
| Xinv ] " LR3|RYG JLoY
(4) the following limits hold:
Alll_f&— UrinUlin = Ry (6)
Isﬂﬁ ViinViin =R, 7
1 NN g 1
lim = RA(RAT + lim = RA(R)T = Pay + Puo ®)
A’(ﬂﬁ UinViiw =0 ©)
1\1/1_1’11007V‘_X1,NV1,1‘,N =0 (10)
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then

1
Jlim — RR(RE)T = NiPoIT + R, (11)

For the proof, see Appendix A.

If we substitute the matrix product I“,-PJ,QI’,-T by its SVD UrSrU;, with
Sre R"™", then (11) becomes

lim %R%(RQQ)T = UpS;UT + R, (12)
Hence, according to Proposition 2 of Appendix B of Part 2 (Verhaegen and
Dewilde 1992 b), the ordinary MOESP scheme will determine the column space
of the extended observability matrix I'; asymptotically unbiasedly, only when the
(covariance) matrix R, is proportional to the identity matrix. This constraint on
the matrix R, corresponds to v, being zero-mean white noise.
In the second part, we analyse the effect of the errors v, on the calculations
of the matrices [B7, D] from (2). Let the column space of I'; be denoted by U,
and its orthogonal complement by U, then (1), for v(k) # 0, becomes

UsT7' Xn + HiUyin + Vi = RYOY + REQY
Since (U)TU, =0, multiplication of this equation on the left by (U ;)T yields
WUDTHULin + (U ™Vin = (UE)TREQN + (UNTRHQ7

When the condition (28) of Part 1 is fulfilled p(U 1,i,N) = mi, we can multiply
the above equation on the left by the right inverse of U, n and obtain

(U H; + (UDTV (@1 (RE) ™ = (UDTRH(RY) ™!
Using, the expression for Vl,,',N(Q{V)T in (58) of the proof of Theorem 1, yields

1 ! -
(Ui)THi+(U¢)Te‘?vE?v(—A—, Rﬁ(Rﬁ)T) = (U RA(R™

Hence, in the limit, '
lim (U;)TRI(RY) ™! = (UHTH, (13)
N—ow

Therefore, we conclude that when the column space of I'; is known, the matrix
pair [Br, D] can be computed asymptotically unbiased. The latter conclusion
holds for the case where the error term v, is zero-mean arbitrarily coloured
noise independent of u;. Hence, this outline stresses the key role played by the
computation of the subspace determined by the column space of the extended
observability matrix I7.

Remark1: The restriction imposed on the colouring of the perturbation v,
when the column space of I'; has to be computed asymptotically unbiased can be
removed when the covariance matrix R, of this error source is known. The
computation of the column space of I'; then proceeds via a generalized SVD
(Paige and Saunders 1981) instead of an ordinary SVD. The modification of the
algorithm in this case is similar to that required when making the scheme
described by Moonen et al. (1989) applicable to zero-mean errors of known
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colouring. Therefore,” we refer to Moonen and Vandewalle (1990) for algo-
rithmic details. In a practical - context,- the colouring of the different noise
processes in Fig. 1 is generally not known. a

4. Incorporating instrumental variables in the ordinary MOESP scheme

In the previous section it was demonstrated that the ordinary MOESP
scheme is only capable of solving the basic identification problem, defined in
Part 2, asymptotically unbiased. It would be possible to extend the applicability
of this scheme to a broader class of perturbations via the introduction of the
so-called instrumental variables.

In the class of parametric model identification schemes (see Soderstrom and
Stoica 1989 or Ljung 1987) the use of instrumental variables is common practice.
In this paper, we demonstrate how some of these ideas carry over to the
ordinary MOESP scheme.

4.1. General operation of instrumental variables in the ordinary MOESP scheme

Assume that the signal referred to as the instrumental variable gives rise to
the instrumental variable matrix Wy e R/*N (for j= n). Recall (59) from the
proof of Theorem 1, namely

1 N AN 6 6( 1 N 'r)"1 N 1 N AN
— R = —gNyEN|—= (R + ——= IR0,
/N 20> NENTN (R11) 01 VN »Q

1
+ —=Vy, 14

\/ﬁ 1,i, N ( )

Then the use of instrumental variables in the ordinary MOESP schemes

corresponds to the multiplication on the right of (14) by the matrix Wy, ie.

1 N AN T 1 N ANy T 6 1 -
—— RNOMWY = ——= MRLONWY - S ES[——= (RDT] o'W
\/N 202 \/ﬁ 10 N enyEy \/ﬁ (R11) 1 Wi

= Vi W 15
| ARV LiNW N (15)
Assuming thai |
|  im (—L (RM)T _1QNWT
e TR 1 W

exists, then (15) in the .limit N — @« becomes

e .’ 1

,_llm-———-RN NWT’—'I' 1N N
]\‘l_,?o W 203 | ‘N. Nl_lgo '\/N r.RE0MWY

+ lim ~— V. WT 16

Nl_.oo N LN (16)

From this equation we conclude that, when the instrumental variables are
chosen such that: (1) they are statistically independent from the error term vy,
ie. :

e
m —— Vo oW =
N‘_rf]m W ViinWy =0
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and (2)

p( lim —— r,-R,i,‘;Q,’,VW,TV) =n
Nowx \/ N

the column space of I'; is computed asymptotically unbiasedly for arbitrary
zero-mean errors vy independent of the input 1. A similar pair of conditions is
imposed in the parameter model identification framework (see e.g. Ljung 1987,
p. 193). Two types of extensions of the ordinary MOESP scheme based on
instrumental variables are discussed in more detail. First, in §4.2 we describe
the extension based on past input measurements and, sccond, in §4.3 we
describe the extension based on reconstructed state quantities. In §5 we
investigate the numerical sensitivity introduced by these extensions on the
computation of the column space of the matrix I';.

4.2. Past observations of the input sequence as instrumental variables

In this subsection, we assume the following data samples of the input u(k)
and the output Z(k) to be available:

u(l), u(2), ..., u(@, u@ + 1), ..., u(N +2i-1) 17
Z(1), Z2), ..., Z(), ZG + 1), ..., Z(N + 2i — 1) (18)

With these observations, the instrumental variable matrix Wy is taken equal to
Ul‘,-‘N/\/N. From (16) we might conclude that the use of the instrumental
variable matrix requires the accumulation of the orthogonal transformation Qév.
Based on the present choice of instrumental variables, a more efficient imple-
mentation is possible.

The PI (ordinary MOESP with instrumental variables constructed from the Past
Input sequence) algorithm (Error-free case). Given:

The input to the ordinary MOESP scheme (see §5.2 of Part 1—Verhaegen
and Dewilde 1992 a), with the input and output data sequences given in (17)
and (18) for v(k) =0.

Algorithmic steps:

Step 1. Construct the Hankel matrices Urins Uiprivand Y,y g n.

Step 2. Compute the following RQ factorization, without accumulating the
orthogonal transformations required:

mi I3 mi
Uit1.in ™ Ry 0 0 o2
Yivin | =% | Ry | Ry 0 o)) (19)
Uiin ™| Ry | Ry | Ry 03

Step 3. Compute the SVD of the matrix Ry, R1,, denoted as
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n mi—n
n o li-n | Sy 0
Ry R3; = [U,| U] VT (20)
o 0 S,
Step 4. Calculation of the quadruple [Ay, By, Cr, D], as outlined in Step 4 of
the ordinary MOESP scheme in § 5.2 of Part 1 (Verhaegen and Dewilde 1992 ).

Based on the assumption that the error v(k) and the input u(k) are indepen-
dent, condition (1) imposed on the instrumental variables holds.
In the error-free case, the matrix product R22R"3r2 equals

RynRYL= MRLO UL N (1)

Therefore, when p(RzzRgz) = n, the SVD in (20) allows for the computation of
the column space of I';. The fulfillment of this condition, corresponding to
condition (2) imposed on the instrumental variables, depends on the actual input
used. For example, when a periodic input signal of the particular class treated in
§3.3 of Part 1 (Verhaegen and Dewilde 1992a) is used, exactly the same
conditions as stipulated in Theorem 2 of Part 1 are required. This can be proved
in a similar way as done in the proof of Theorem 2 of Part 1. When the input is
a zero-mean white noise sequence, this condition is also satisfied and we refer to
§ 5.3 for more details.

4.3. Reconstructed state variables as instrumental variables
4.3.1. Reconstructing the state variables. In the MOESP framework, a second

. possible choice of instrumental variables is based on the approximation of the

space spanned by the rows of the matrix X n. The state quantities that give rise
to this space are assumed not to be known exactly. Therefore, they have to be
reconstructed from the available input-output observations (and a possible
state-space model estimate). In this paper, we only outline a simple way of
reconstructing the state vector sequence (TX )1.~. The reconstruction requires:
(1) an estimate of the state space quadruple, denoted as [AT, By, Cr, DJ; and
(2 ‘an ‘estimate of the initial state 7 = Tx,. The estimated state vector
" sequence, denoted by [#;, 2, ..., fix], is then calculated from the difference

equation o e e

Aert = Arflg + Bruy (22)

Tw_p_‘pcl)s‘s_ibilitiés are discussed in this paper to obtain an estimated state-space
- quadruple. First, using the ordinary MOESP scheme and second using the PI
scheme. The estimate of 7, is discussed next. Assume the system matrices [Ar,
- Br,Cr, D] to be given then, similarly to (1), we can denote the output
‘sequence Yy n,1as, ' C o
4 o Yyna=INTTYm + HyUina

" where the underbraced term is the simulated output of the system determined
by tl?e‘ quadruple [A1, By, Cr, D] with input sequence Uj y, and zero initial
conditions.. When the system [Ar, Br, Cr, D] is observable, the initial state
‘vector. 1) equals

:’71"“’—‘77(FNT_1)T(Y1,N,1 — HyUqn 1)
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where (-)1 denotes the pseudo-inverse of the matrix (-). When we make use of
the actual output measurements {Z(k)}, the following estimate;

M =ONT INZ\ny = HyU,n )

is asymptotically unbiased. This is because the errors v(k) are independent from
the deterministic sequences determined by the columns of the matrix (I, 77}).
Finally, using a model estimate [Ay, By, Cy, D], we define the following
estimate:

h = (Iﬁl)f(zl,N,l - AyUing)

Due to the model errors, this latter quantity will generally be biased. As a
consequence, the reconstructed state quantities will be erroncous. Nevertheless,
the following lemma highlights their usefulness.

Lemmal: Let n, € R", upe R® and ®e R™" be an asymptotically stable
matrix and let I' € R™ ™, n, € R" be an arbitrary, bounded, constant matrix and
vector. Let these quantities define a linear time-invariant system as follows:

Mik+1 = P + Ty

Furthermore, let uy and v, be two ergodic, independent zero-mean stochastic
processes, then

1 & T
lim — i+10jei-1 =0 VI
N_mNglmn j+i-1

For the proof, see Appendix B.

Therefore, we conclude that, although the actual estimates of flr, ﬁT and
71 are affected by the noise v(k), the fact that they are constant over the
reconstruction interval k=1 guarantees that the reconstructed state sequence
satisfies condition (1) imposed on the instrumental variables.

4.3.2. A compact implementation. With the reconstructed state sequence
(TX)1,n, we can state the following algorithm.

The RS (ordinary MOESP with instrumental variables constructed from the
Reconstructed State vector sequence) algorithm ( Error-free case). Given:

The input to the ordinary MOESP scheme (see §5.1 of Part 1—Verhaegen
and Dewilde 1992 a), and
the state vector sequence (7X); y.

Algorithmic steps:
Step 1. Compute the SVD of the state vector sequence (TX)1,n, denoted as

(TX)1x = Uiy S Vi (23)

(In this step we could restrict to the computationally more efficient RQ
factorization of (7X); y.)

Step 2. Construct the Hankel matrices U rivand Yy oy,
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Step 3. Compute the following RQ factorization, without accumulating the
orthogonal transformations required:

mi li n
Uyvin m Ry 0 0 04
Yiun | =% | Ry | R 0 0> (24)

T mi
Virxy Ry | Rn | R=n 03

Step 4. Compute the SVD of the matrix Ry R1,, denoted as
n
n li-n | Sy

R»RYL = i[U,|U;] vT (25)

Step 5. Equivalent to Step 4 of the ordinary MOESP scheme in § 5.2 of Part
1 (Verhaegen and Dewilde 1992 a).

In the error-free case, the matrix product R22R;r2 now equals
RnR3 = IR OV (1x) (26)
From (5) and (23), we have the following relationship:
UrxSax Vit = TRxQ1 + TRaQs

Multiplying both sides on the right by QT and making use of the fact that
0,01 =0, 0;0; =1 yields

U(m{)~5'(m)V(TTX)Q;:r = TR,

Hence, when condition (28) of Part 1 (Verhaegen and Dewilde 1992a) is
fulfilled, Lemma 1 of Part 1 shows that the rank of the matrix product O,V (rx)
is n. Therefore, when using the row space of the error-free state vector
sequence Xy as instrumental variables, Condition (2) imposed on these
quantities in § 4.1 will also be satisfied.” ..~

5. Comparison of the two instrumental variable ordinary MOESP schemes
5.1, Framework of analysis

In this section, we compare the two extensions of the ordinary MOESP
scheme. The comparison study investigates the sensitivity of the calculated
quantities with respect to the perturbation v(k). More precisely, since the
extended observability matrix I'; has been demonstrated to be a key quantity in
the operation of the (ordinary) MOESP scheme, see for example the asymptotic
analysis study in §3, the column space of the latter matrix is taken as the
quantity of interest and the perturbation considered is the term

L T2 M X 1 o) NgT
VN VNN EN NW(RII) 01 Wy

in (15). This per_turbation approaches zero for N — o, however for finite N, it
causes an error in the approximation of the column space of I';. Therefore, we
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study the effect of the above perturbation on the calculated column space of the
matrix R$QYWN/V'N via a SVD.

Assuming, as in §3.2 of Part 2, that the effect of the perturbations is of
different orders of magnitude larger than the errors made during the numerical
computations, we investigate the influence of the perturbations on the calcula-
tion of the invariant subspaces in a symmetric eigenvalue problem. Hence, in
this sensitivity analysis we shall again make usc of Proposition 1 of Appendix B
of Part 2 (Verhaegen and Dewilde 1992 b).

The actual experimental conditions for which the comparative sensitivity
study is performed correspond to the case where the input signal is a zero-mean
white noise sequence with variance 2. Further, we shall assume, in §5.3, that
the subspace spanned by the state vector sequence in the matrix X y is exactly
known. In the discussion in §5.4, the effect of using reconstructed state
quantities is discussed in more detail.

5.2. The perturbed SVD problem with the PI scheme
Equation (14} for the matrices appearing in the PI scheme reads

1 1 -1 1
\/N R%Qév = —E?\/E?\l(.\/ﬁ (Rﬁ)T) Q{V + \/ﬁ riRJJcVZQiV
1
+ EVei VitrLin (27)

With some abuse of notation, we recall (33) of Part 1 from the noise-free case
(Verhaegen and Dewilde 1992 a)

IRy = RpQ,

Furthermore, in the same noise-free case, the proof of Theorem 1 of Part 1
shows that due to the white noise property of the input u(k), see the equation
just before (A 6) of Part 1, the matrix product R3Q%/\/N equals

1 N N [ 1 3 3 ( 1 N T)—l N]

——= R =TIjl——= X1y — enEy|—= (R

/N 202 N NEN W( 1) Q1
Combining the last two equations and again adapting their indices to those of

the_matrices used in the PI scheme, shows that the error-free term I ,—RQ;Q?’ /
V N in (27), equals

1 3 3( 1 N T)_l N)
Il—— Xy - eVEY—— (R
x(, 7N irLN T ENEN W( | Q1
and hence, (27) becomes

1 1 1 -1
N RpQ; = FiW Xivin — (IE?VE?VY‘F ENERN) (7—; (Rﬁ)T) oy

=: E?VE?V

1
+ VN Visrin
Using this expression for R»Q¥ /V/ N, the matrix product R, R, in (21) scaled
by a factor 1/N equals

(28)
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1 1 o —of 1 Ny
N RYOYUT v = Fi'l—V'Xin,'NU{i.j - ENEN(—,\/_I_V'— (Rn)T) : : oY UTix
Q] (i)
1
+_NV1+11NU11N (29)

(iii)
We now explicitly evaluate the underbraced terms.

(i) Using the convolution expression for X,iin a8 in (A7) of Part 1
(Verhaegen and Dewilde 1992 a) for Xy We obtain

1
N XiaULin =
— 'lfi‘ S Hivr e uN+i—J
Ui-1 Ui
%[B AB ... AT'B|A'B ..] ”1 ‘_‘“2 S AT
‘ uo Upny-1
L :, 4 ' ]
Using the white noise property of the mput u(k), the right-hand side of
this equation reduces to : ‘
o U%tlmz + ENE}‘S’)
=[A"'B ... AB B|A'B ... ]
(i) Again using the white noise property of the input u(k), we have
1 . - . -

T :. ‘A12.' w2 ..
~N UntinUiin = eNEN
Substi_tuting the expression for U ,~+‘1,,-;1§r = RYOY in (19) into the above
equation yields C

1 N T '1 L _:1fg'i, o
VN Q1 UtiN= (WRﬁ) eNER |
(iii) Finally, using the 1ndependency of the perturbatlon v(k) and the input
u(k) we obtain s :

1
'IVVHIINUlzN = 8NE13

Substituting the results of the above three dlfferent 1tems pack into (29)
yields .
. 2 10
1 s Y Imt + ENEN
S REQYUL W =TiA™'B ... AB BlA'B ]

e%E%
9ol N L NNT -1 :
ENEN(N Ru(Rn)T) eNEN + eREY | (39
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5.3. The perturbed SVD problem with the RS scheme

Similarly to (28) in the previous section, the matrix RﬁQéV/\/N occurring
in the RS scheme can be expressed as

1 N N 1 9 9 ( 1 N T)_l N 1
——= R =T Xy — enE R + Vii
VN 202 i /N X T enEn W( | O VN Vi
Let us assume that the row space of the matrix (TX), n is known. Hence, the
matrix product R22R§2 in (26) scaled by a factor I/W cquals

1 1 1 -1
EV4rd REQYV ¥y = r,-—\/? ww Vi — E?VE?V(W (Rﬁ)T) Qv i
= " ' (i)

0]

1 N
+ ViinV 31
VN LNV (1)

(ii)
Again we explicitly evaluate the underbraced terms.
(i) With the SVD of X, y given as
Xy = URSE(VIT (32)
the first underbraced term becomes

1 N

X
N XNV = UY N (VQ)TV(NTX)

Since the row spaces of the matrices Xin and (TX), 5 are equal, the
matrix [( Vﬁ)TVﬁ-X)] satisfies
[(VRTV Il (VD TVl =1 (33)
(ii) Since the input u(k) is white noise, we have, by Lemma 2 of Part 1
(Verhaegen and Dewilde 1992 a),
1
~ ULinXinTT = ey E}

Substituting the expression for U LiN = ROV given in (24) and that for
(TX)1,n given in (23), into the above equation yields

1 -t 1 !
Ny N N 303 N AT N
|4 = R En(U S
01 Vax (W 11) eENEN(U(Tx)) (W (TX))
(iii) Finally, according to Lemma 1, we obtain

1 1 -1
W Vl,i,NV?;'X) = E%E}\?(U(NTX))T(W S(NTX))

Substituting the results of the above three different items back into (31)
yields
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5.4. Discussion

To apply Proposition 1 of Part 2 (Verhaegen and Dewilde 1991b) we
multiply both sides of (30) by their transposes. Denoting the matrix (B
AB ... A"'B] and [A‘B ... ] respectively by A; and A,, we obtain for the
PI scheme o

1 o -
~7 k2P UTinUnin( @ T(RY)T = ol AN + 8n (39)
where Apj represents second-order effects that vanish for N > .

To find a similar expression for the RS scheme, we first use the expression
for X, in (A7) of Part 1 (Verhaegen and Dewilde 1992 a) and the white noise
property of u(k) to derive the following equality: -

im L X, T = tim L UNSLUNT = oAl (o

Nox N ’ ! Noo N o B ! (Ar)
Hence, multiplication of both sides of (34) by their transposes, and making use
of the relationship in (33) yields RV

~ REQYVE(V)T(@2)T(RY)T = oi_ri[z},-lAf][( A,')T] [T+ Ags  (30)

where again Agg represents second-order effects that vanish for N — .

Based on similar reasoning as performed in the sensitivity analysis in §3.2.3
of Part 2 (Verhaegen and Dewilde 1992b), an: application of Proposition 1 of
Part 2 leads to the following observation. When the perturbations Ap in (35)
and Agg in (36) are comparable, the calculation of the column space of I; with
the PI scheme is much more sensitive to the perturbations on the data than is
the case with the RS scheme, when the following condition holds:

. AT .
ri{Ala ][( A;)T] i > LAATT G7)

This increased robustness of the RS scheme depends on the exact knowledge
of the state vector sequence in the matrix X y. In practice we cannot make this
assumption. Therefore, we continue the discussion by investigating the effect of
only having an approximation of the state vector sequence. Suppose we have an
estimate available of the state-space model of the deterministic plant P, then we
can compute the state vector sequence of this model using the input sequence

u(k), as done 'in § 4.3.1. If we denote the latter state vector sequence by X1y’
then the SVD in (23) changes into S ETI t

R = OXSYOHT (38)

and, as a consequence, we use the matrix=V.Y -in (31) instead of the matrix
V (rx)- In that case, the first two underbraced terms in (31) change into:

N,
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(i) With the SVD of X, y in (32) and of X’LN in (38), the first underbraced
term becomes
1 N NN N\T{N
XinVy=UxSy(VV)'V
VA xSx((Vy) Vi)

(ii) Since the estimated state vector sequence /\A’,‘N is also derived from the
white noise input u(k), we have, according to Lemma 2 of Part 1
(Verhaegen and Dewilde 1992 a),

L
N

and, therefore, by arguments similar to those used in (ii) above:

ST 3 g3
UpinX1ny = enyEy

. 1 -1 N 1 n\7!
QYVY = (W Rﬁ) e%E%(Uﬁ)T(W S%)

Again, according to Lemma 1, the last underbraced term remains similar to that
in item (iii) of §5.3. As a consequence, (34) modifies due to the use of
reconstructed state quantities into

s

1 ~ ~
TN RYQYVE = ru¥ N VYTV

1 -1 . SN -1
- | i) e+ ept (5] oo
Since the row space of the matrices X y and )A(I,N do not necessarily coincide,
the matrix ((V¥)TV¥) generally is a contraction now, that is vHTve =<1,
and therefore

sk A A s¥
Uk 7y 0 - HTHEHTH) = whT=0 @

This shows that the smallest singular value of the matrix

Sy

VN

is less than or equal to that of the matrix
N

X
Uy Ve [(VI)TV Ix]

Uy VHTVH

Then, Proposition 1 of Part 2 (Verhaegen and Dewilde 1992 b) shows that when
the perturbations which vanish for N — « in (34) and (39) are comparable; the
use of imperfect state quantities increases the sensitivity of the calculations in
the RS scheme. In particular, the calculations related to the badly reconstructed
state quantities will become more sensitive. Let us illustrate this assertion with
an example. Suppose the SVD of the matrix X, y is partitioned as

S |O vi

Xy n = [U4|Uy]

0 ]52 Vi

with §; > §,. Similarly, partition the SVD of X 1,5. Furthermore, let a matrix
V3 exist such that VIV; = I; V;r[V1|V2] = 0 and the following conditions hold:
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f}l = Vl(I + Al) + V2A2 + V3A3
P, = VAL + VaAy + V(I + A))

with |A;]| = llajll«< 1 for j=1:3. This assumption, on the row space of Xin
reflects the situation that the ‘dominant’ modes in V; are accurately recon-
structed whereas the ‘weak’ modes in V; are poorly reconstructed. Then, the
term

sy S, \ 0 S14A, |SIA'1

VN

Hence, again by the same Proposition 1 of Part 2 we conclude that the
sensitivity of approximating the column space of the matrix U, increases most.

This example demonstrates that the superiority of the RS, being a con-
sequence of (37), can be completely destroyed when using inaccurate recon-
structed state variables. However, when accurate reconstructed state quantities
are available, the above analysis shows that the superiority of the RS is
maintained. Therefore, in the final part of this discussion we formulate more
precise guidelines in selecting either the PI or the ordinary MOESP scheme to
estimate the model necessary to reconstruct accurately the state quantities.

Since the PI provides asymptotically unbiased estimates, although possibly
sensitive ones, without relying on an a priori model estimate, we can evaluate
the condition in (37) for the model of fixed order estimated by this scheme. If
the singular values, ordered in decreasing magnitude, of the matrices

PR i = F% i 41
/N L and -5 IiXiviin Uyin (41
are such that those with the same index have the same order of magnitude, the
superiority of the RS over the PI scheme does not hold for the estimated model.
This is a possible indication that this estimated model may supply accurate
reconstructed state quantities to the RS scheme. Whether this actually holds has
to be verified explicitly by performing the calculations. The evaluation of the
accuracy of the model and the order selection can both be based on the singular
values calculated in the different schemes. This is demonstrated in more detail in
the simulation study, see Experiment 3 in § 6.2.

If the corresponding singular values of the matrices calculated in (41) differ
by an order of magnitude, we have an indication that the condition in (37) holds
for the estimated model. When this is the case, the strength of the perturbations
v, becomes an issue. Let o,,,(-) denote the smallest singular value of the matrix
(+); then, under the condition that B ¥

lapll = Omin(2TAATTT) “2)

+

Uy (VHTPR) equals [U|Us]

0 \SzAﬁ S2A, ] 0

the PI scheme will provide bad estimates of the model corresponding to the
small singular values. As a consequence, see (40),-the RS scheme will also be
sensitive when using this model estimate to provide estimated state quantities.
On the other hand, we could simply use the ‘biased’ mddel derived from the

or.dinary MOESP scheme to reconstruct the state qlieiﬂﬁties. Part of the latter
will be badly reconstructed if o -

IViinl = omaTiX18) (43)
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Hence, in that case these poorly reconstructed state quantities increase the
sensitivity of certain parts of the model calculated with the RS scheme. The
conditions in (42) and (43) are reflected by a small gap between the n largest
singular values and the remaining ones of the matrix R» Q5 U",r‘,-_N/N in the Pl
scheme and the matrix Ry in the ordinary MOESP scheme respectively. We
again refer to the simulation study in § 6 for an illustration of the operation of
the presented schemes under such circumstances.

The discussion in the previous paragraph highlights that there is a trade-off
in dcciding which of the two schemes to use in estimating an a priori model
necessary in the RS scheme. Although the relevant singular values may give
useful information in deciding which a priori estimated model to use in the RS
scheme, the final answer is obtained by explicitly performing the calculations.

When a more accurate model estimate is obtained, we might iterate further
each time using the reconstructed state sequence derived from the previously
calculated model. However, at this stage we should bear in mind the insight
given by the example after (40), that badly reconstructed modes will not be
recovered.

The highlighted condition (37) represents a critical condition for the schemes
presented in this paper. Therefore, to evaluate the usefulness of the strategy, we
have included the example in § 6.2 in the simulation study.

6. Simulation study

In this section, we report the results of two simulation studies to validate the
insights obtained in the previous section. Realistic mathematical models are used
in both studies. In the first study, an example is analysed representing a
non-critical plant as outlined above, while in the second study a critical one is
taken. Similar to § 5, the numerical calculations have been performed with the
MATLAB package (Moler et al. 1987).

6.1. Identification of a flexible mechanical system

In the previous section, identification problems were indicated to be non-crit-
ical in the identification framework presented in this paper when the determin-
istic plant P does not give rise to the condition in (37). One such example is
analysed in more detail in this section.

6.1.1. The mathematical model. The system considered is a discrete-time model
of a laboratory set-up. The set-up consists of two circular plates rotated by an
electrical servomotor via a flexible shaft. We refer to Hakvoort (1990) for a
detailed description of this laboratory experiment. The model of the plant P is
given in transfer function form as

Pz) = 107%(0-98z* + 12-99z° + 18-59z2 + 3-30z — 0-02)
T S 44z § 80925 — 78322 + 4z — 086

(44)

The output, i.e. the angular rotation of one of the plates, is assumed to be
perturbed by a zero-mean white noise sequence filtered by the linear filter F, as
depicted in Fig. 1. The transfer function of this filter has been chosen arbitrarily
to be equal to (Schrama 1991)
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0-01(2:89z2 + 11-13z + 2:74)
73 = 27z% + 261z — 0:9

The input sequence {u(k)} and the sequence {w,(k)} in Fig. 1 are chosen to be
independent zero-mean white noise sequences with variance equal to 1 and 1/9,

respectively.

6.1.2. Experiment 1. We set up a Monte Carlo simulation study. In each run, a
different realization of the output sequence {z(k)} is generated while keeping
the input sequence {u(k)} fixed. The length of the observations is 1200. A total
number of 20 runs are made. Each model estimate is evaluated by comparing its
Bode plot with the true one. In Figs 2-4, we indicate the latter by the dashed
(~—-) lines. These are almost invisible, reflecting the unbiasedness of the
obtained estimates.

In this experiment, we evaluate three different scenarios to estimate a model
from the input-output data. First, the PI scheme is used. The corresponding
information flow is

Folz) =

{u(k), z(k)} = [P1i =20 |— 5th order model (45)
100 L Bode plot plant,
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Figure2. Bode plot of the flexible mechanical system (---), and the estimated ones
determined by the PI scheme.
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Figure 3. Bode plot of the flexible mechanical system (---), and the estimated ones
determined by the RS scheme using the true state quantities as instrumental variables.
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Figure 4. Bode plot of the flexible mechanical system (---) and the estimated ones
determined by the RS scheme using the reconstructed state quantities based on the
model derived by the PI scheme as instrumental variables.

The estimated Bode plots are shown in Fig. 2. Second, the RS scheme is used
with the true state quantities taken as instrumental variables. Let {x(k)}Eq.49)5
denote the state vector sequence obtained from the model obtained or given in
(44), then the information flow is

{u(k), z(k)}, {x{k}gq sy — RS i =20, # iteration = 0 |— 5th order model
(46)

with estimated Bode plots shown in Fig. 3. Third, the RS scheme is used with
reconstructed state quantities derived from the model obtained with the PI
scheme. The information flow is now

{u(k), z(k)}, {x{k}gqus) = RS i =20, # iteration = 0 |— 5th order model
(47)

With estimated Bode plots shown in Fig. 4.

6.1.3. Discussion. To decide whether the underlying input—output data repre-
sents a ‘critical’ system/problem for the class of schemes presented in this paper,
we evaluate, as suggested in § 5.4, the condition in (37) for the model estimated
with the PI scheme, see (45). The singular values of the different matrices
obtained with one particular model estimate are displayed in the first two
columns of Table 1. The results obtained with the other model estimates were
completely similar. These quantities are compared with the corresponding ones
derived from the true model. The latter are displayed in the last two columns of
Table 1.

Both the estimated (indicated by the hat) and the true singular values reveal
that the condition in (37) does not hold. Therefore, we can use this model with
some confidence to reconstruct the state quantities used by the RS scheme. In
order to verify this, the experiment indicated in (47) is performed. Comparing
Figs 2 and 4, we indeed see that improved estimates result. Based on a single
estimate, one observes for the model obtained by (47) that: (1) the five largest
singular values in this case increase; and (2) that the norm of the residuals, that
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. (r,vx,f‘.?NUL,N) (r. U}Sx) (r,-x.-ﬂ,.v,N UT,.-,N) (r, stx)
i e ) R e of

o 1200 1200 1200 /1200

1 160-80 421-43 7393 275-48
5.5 35:10 42-65 33.37 41:73
3 2342 31-02 17-62 30-19
4 0-92 0-94 0-82 0-85
S 0-83 0-86 0-70 0-75

Table 1. Key singular values in monitoring the sensitivity in the PI scheme in Experiment 1.

is the difference between the measured output and the one obtained on the basis
of the estimated model, decreases. A final check, only relevant in a simulation
context, is to compare the obtained estimates with those produced in the most
favourable case; that is, using the RS with the true state vector sequence. These
results are given in Fig. 3. A comparison of this figure with Fig. 2 confirms the
insight derived from the condition in (37). Comparing Figs 3 and 4, we observe
that the estimates in both cases are of the same accuracy. Therefore, the
superiority of the RS scheme holds for this example when using reconstructed
state quantities.

6.2. Identification of the aircraft dynamics when flying through gusty wind

Critical plants in the framework developed in § 5.4 are those that give rise to
the condition in (37) in combination with significant (as stated in (42) and/or
(43)) zero-mean but coloured perturbations. An example of such a system is
analysed in more detail in this section.

6.2.1. The mathematical model. The particular aircraft analysed in this experi-
ment is an F-8 aircraft and the numerical data describing its dynamics is taken
from Elliott (1977). The continuous-time model that describes the linearized
longitudinal motion of the aircraft hit by a vertical gusty wind at an altitude of
20000 ft, an airspeed of 620 fts~* and an angle of attack &g = 0-078 rad is

q 2040, 00005 . —48 0 ha
S b b8 —0-015 —-14-0 322 ||u
dt| « 1-0 —0-00019 —0-84 0 @
7] 1-0 0 0 0 0

~8.7 —4.8

oty ~14.0

th oot igigd | X (48)
0 0

Here ¢ is the rate of pitch, u the horizontal component of the airspeed, « the
angle of attack, 6 the pitch angle, 8. the measured elevator deflection angle
(deterministic) and a, the unmeasurable scaled vertical gust velocity. Zero-mean
white noise with standard deviations equal to 0-05 and 0-2 affect the output
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measurements g and u respectively. The vertical gust velocity is a zero-mean
normally distributed stochastic process with power spectrum given by

wL \*
1+ 3|—
_% L (V)
ag_-n-vo 1+ CUL 212
Vo

(49)

The quantities 0,, and L equal 0-4 and 2500 respectively. In the simulation, use
is made of a discrete version of the model in (48)-(49) for a discrete period of
Ar=0-05s and a zero-mean white noise sequence with standard deviation
05 = 0-1 for the &,.

To get some feeling for the nature of the errors considered in this
experiment, we first calculated the auto-correlation functions of the two diffe-
rent components in the total error signal v(k) + v,(k) in Fig. 1 on the output.
These auto-correlation functions indicate strongly correlated stochastic proces-
ses. Second, we calculated the signal-to-noise ratio for the individual output
quantities. When the signal-to-noise ratio is expressed (in decibels) as 20log,
I¥I/lz = |, then it is approximately 10 dB for the first quantity and 1 dB for
the second.

6.2.2. Experiment2. We again set up a Monte Carlo simulation study. Similar
to the previous experiment, only one realization of the input u(k) was used and
the length of the data sequences was equal to 1200. A total number of 50 runs
was performed. From the estimated discrete time models we compute and
display the eigenvalues of the transition matrix A 7.

Now we focus on four different scenarios to produce a model estimate. The
scenarios, represented by an information flow diagram are:

{u(k), Z2(k)} — |Ordinary MOESP i = 20 |— 4th order model (50)

The poles of the estimated models are depicted in Fig. 5 on the left-hand side
(LHS). The singular values of the matrix R, € R***, are depicted on the
right-hand side (RHS).

{u(k), (k)} — [PIi = 20 |— 4th order model (51)

-0.1

-0.15

10!
iy %.9 0.92 0.94 0.96 098 1 1.02 0 10 20 30 40 50

Figure 5. Estimated poles and relevant singular values obtained with the ordinary MOESP
scheme.
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The poles of the estimated models are depicted in Fig. 6 o¥ the LHS. The
singular values of interest now are those of the matrix RyR3 € R®. They

are plotted on the RHS.

{(u(k), 2(k)}, {x(k)}Eq.50 = RS i = 20, # iteration = 0 | 4th order model
(52)

The poles of the estimated models are depicted in Fig. 7 on the LHS. The
singular of the matrix Ry R% € R¥** are plotted on the RHS.

{u(k), zZ(k)}, {x(k)}Eq.51) = RS i = 20, # iteration = 8 | 4th order model
(53)

The poles of the estimated models and the relevant singular values are depicted
on the LHS, respectively the RHS, of Fig. 8.

6.2.3. Discussion. Similar to the previous experiment, we present the results of
one arbitrarily selected model, estimated as specified in (51), to evaluate the
condition in (37). The relevant singular values are now displayed in Table 2. In
the first two columns are those values corresponding to the estimated model; in
the last two columns, those derived from the true model. The estimated
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Figure 6. Estimated poles (left) and relevant singular values (right) obtained with the PI

scheme.
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Figure 7. Estimated poles (left) and relevant singular values (right) obtained with the RS

scheme using the reconstructed state iti i the
otdiary MOESP scheme. quantities based on the model derived by
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Figure 8. [Estimated poles (left) and relevant singular values (right) obtained with the RS
scheme using the reconstructed state quantities based on the model derived by the PI
scheme as instrumental variables and eight iterations.

quantities in columns 1 and 2 of Table 2 clearly differ by an order of magnitude.
The true quantities in columns 3 and 4 confirm this observation. Therefore, this
observation stresses the fact that although the computations within the PI are
quite sensitive in the present case, as shown in Fig. 6, the estimated model
provides useful information on the condition in (37).

The suggested route to follow in the identification process was first to inspect
the singular values of the matrix R, Q> UIT,,-VN in the PI scheme and those of the
matrix Ry, in the ordinary MOESP scheme. In the first case, see Fig. 6 on the
right-hand side for a particular run, we clearly observe that the fourth singular
value is buried in the noise. Therefore, the corresponding part of the state-space
model will be poorly identified. This is confirmed in the right-hand side of this
figure. In the second case, see Fig. 5 on the right-hand side for a particular run,
we observe that although the perturbations are quite strong, there is a small gap
between the fourth singular value and the next smaller ones. This suggests that
the increased numerical robustness in combination with the biasedness of the
model estimated with the ordinary MOESP scheme is preferred over the
unbiased but sensitive calculations with the PI scheme.

Second, to check whether this is indeed the right decision, we evaluate the
models estimated with the RS scheme using the model estimated by the ordinary
MOESP scheme, respectively the PI scheme, as a priori models. In the first
case, (52), we observe that the bias of the model is indeed removed and that the
increased sensitivity of the estimates or the increased spread of the estimated
poles, is limited and much smaller than the case with those derived from the

. (riXH/l'.:NUI,E.N) (FJU}SX) (riXHl.i.NU.lr,i,N) U(F:'stx)
i : o; ol ——————— ;

- 1200 /1200 1200 1200
1 1-95 68-76 4-38 204-62
2 0-076 1-82 0-063 3-59
3 0-018 0-46 0-022 0-52
- 0-0007 0-008 0-0007 0-2

Table 2. Key singular values in monitoring the sensitivity in the PI scheme in Experiment 2.
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model obtained with the PI scheme. In the second case, model estimates of
similar accuracy could only be obtained after an additional number of eight
iterations, see Fig. 8, where we may even observe four aberrant pole estimates.
In this case, the weaker modes could not be recovered by the iterative RS
scheme.

The reliability of the above observations is evaluated by repeating the
calculations in (50) and (52), now increasing the variance o, in (52) by a factor
of five. Although, now both outputs are nearly completely absorbed into the
noise, as revealed by a particular signal-to-noise ratio of approximately —7 dB
for the first quantity and 0 dB for the second one, the results did not differ
much from those plotted in Figs 6 and 7. Therefore, they are not included in the
present paper for the sake of brevity, and we restrict mentioning that the
estimates obtained as outlined in (50) showed an increased bias, while those
obtained as outlined in (52) again became unbiased with a marginal increase in
spread compared with Fig. 7. This reliability of the combined ordinary
MOESP/RS scheme to identify ‘critical’ plants was also demonstrated in other
simulation examples, such as reported by Verhaegen and Lycklame 4 Nyeholt
(1990).

6.2.4. Experiment3. In the previous two experiments, models of fixed order
were estimated. In addition, we occasionally evaluated the accuracy of the
obtained model estimates by inspecting the spread of the estimated quantities
under consideration (Bode plots or poles) around the true quantity. In a realistic
identification problem, neither the order of the deterministic plant nor more
than one input—output data pair are generally available. Therefore, we evaluate
in this final experiment how the presented schemes and insights can be used to
supply this information. We take the critical plant used in Experiment 2 as a test
vehicle.

Two measures are considered for this purpose. A first set of measures are
the singular values computed in the different MOESP schemes of this paper.
When i>n and the input u(k) is suitably chosen, the order of the system
corresponds to the number of non-zero singular’values in the error-free case.
Therefore, as remarked in the paragraph following Theorem 1 of Part 2
(Verhaegen and Dewilde 1992b), the decision on the order boils down t0
di'viding the singular values into ‘significant’ ones and ‘neglectable’ ones. This
division becomes easy when there is a clear gap between these two groups of
singulgr values. As pointed out in the discussion in § 5.4, such a clear gap is also
a qualitative measure that the sensitivity of approximating the column space of
thelmatrix I; is low. Therefore, the singular values alone can be used both to
decide on the model order as well as to judge the accuracy of the calculations.
However, in order to support this decision, it is proposed to use a second
measure, namely the norm of the one-step prediction error (Ljung 1987). For
tl?e output-error type of models, these are simply the residuals; that is, the
dlffereqce between the measured output and the reconstructed output based on
the estlmated model. This second measure is, however, not relevant in the
computations.

These two measures are now calculated for the example discussed in
Expempent 2 for the three different schemes analysed in this paper. Using 2
single time sequence of the input—output pair {u(k), Z(k)} we identify models
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of order #i = 1:1:10. We remark that the calculation of the residuals requires the
explicit computation of the ten different models. The singular values on the
other hand only require one single execution until Step 3 for the ordinary
MOESP scheme and the PI scheme, and until Step 4 for the RS scheme. The
total number of singular values equals /.i and m.i respectively for the first two
schemes; in the RS scheme the number is equal to #. In this example, we focus
on the singular values computed with the RS scheme for 7 = 10. The singular
values which have been computed and the standard deviation of the residuals of
the first output quantity for these ten different models are plotted in our final
figure. The residual information of the second output quantity is completely
analogous to that of the first one and therefore not shown. The objective in
selecting a system of order # is to find a big gap between the #ith and the
7 + 1th singular value, while the residual of the #th order systems is (close to)
the minimal one. With the information derived by the ordinary MOESP scheme
(see Fig 9(a)) the selection of order one or four would then be plausible. From
that derived by the PI scheme (see Fig. 9(b)) a third order system is suggested.
The standard deviation of the residuals of the first and second-order system fall
outside the range of the figure. The clearest decision on the order, which
happened to be the correct one, is obtained from the information supplied by
the RS scheme. Note that this model also has the smallest standard deviation of
the residuals compared with the models of order 4 obtained with the other two
schemes.

In order to verify that the last observation did not depend on the particular
input-output data batch used, we performed a similar Monte Carlo simulation
study of 50 runs as reported in Experiment 2. In 95% of the cases, the ordered
singular values computed with the RS scheme for 7 =10 showed a clear gap
between the 4th and 5th singular value, similar to the one in Fig. 9(c). In the
other marginal cases, a gap as in Fig. 9(a) resulted. However, even in these
cases, the minimal residual would still highlight the correct system order. For
the sake of brevity, these results are not shown in this paper.

7. Conclusions

The ‘subspace model identification’ (SMI) class of algorithms presented in
this series of papers is formulated and analysed in a linear algebra framework.
This way of approaching the linear system identification problem has been
demonstrated to lead to a successful analysis of theoretical questions, such as the
asymptotic unbiasedness, as well as to contribute to the convenient nature of the
derived schemes. In this set of final remarks, we draw special attention to the
following convenient aspects.

(i) The algorithmic structure of the numerical schemes, derived for both the
basic and the general (open-loop) identification problem, is completely
similar, namely an RQ factorization followed by a SVD and finally the
solution of overdetermined sets of equations. This common structure of
the algorithms is certainly beneficial in implementing these schemes, and
would also be an asset when mapping them on a dedicated systolic array.
On classical sequential computer architectures, the special attention given
to the efficiency of the computations works to the advantage of the use of
these schemes.
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Figure 9. (a) Relevant singular values (left) and the standard deviation of the residual on the

(ii)

first output quantity (right) obtained with the ordinary MOESP scheme for model
orders 1:10. (b) Relevant singular values (left) and the standard deviation of the
residual on the first output quantity (right) obtained with the PI scheme for model
orders 1:10. (c¢) Relevant singular values (left) and the standard deviation of the
residual on the first output quantity (right) obtained with the RS scheme using the

reconstructed state quantities based on the model derived by the ordinary MOESP
scheme for model orders 1:10.

Except for the ordinary MOESP scheme extended with instrumental
variables based on reconstructed state quantities, indicated by the RS
scheme, the schemes presented in this series of papers require the tuning
of only two parameters, irrespective of multiple inputs or outputs. These
two parameters are first the dimension parameter i, determining the



Subspace model identification— Part 3 581

(row) size of the data Hankel matrices processed by the different schemes
and, second, the order of the system. This reduced number of parameters
enables easy visualization of an accuracy measure, such as the norm of
the residuals on the output quantity.

(ii)) The singular values can supply very useful information in making a
motivated choice on the two tuning parameters indicated in item (i1). The
selection of both correspond to the detection of a clear gap in the
ordered singular values. In addition, it has been shown that such a gap is
also a qualitative measure for the accuracy of the obtained estimates.
Therefore, a detailed sensitivity analysis is performed that a priori
highlights the schemes that will lead to the largest relevant gap. The
latter schemes are those that implicitly approximate the controllability
gramian accurately. When the input quantity is chosen as zero-mean
white noise, two schemes closely approximate this gramian, i.e. the
MOESP2 and the RS scheme, irrespective of the choice of the dimension
parameter i (as long as it is chosen larger than the system order). For the
other schemes, the same reliability is achieved by choosing an extremely
large dimension parameter i. Among other things, this affects the
computational efficiency in a very undesirable way, as was mentioned in
the concluding remarks of Part 2 (Verhaegen and Dewilde 1992b). We
remark that the increased reliability of the RS scheme depends on the
accurate reconstruction of the state sequence of the deterministic part of
the system. Again, here the singular values of the different schemes
enabled the set up of a strategy to make the best a priori model choice
for this purpose.

Although, this final paper has addressed and solved a realistic open-loop
identification problem, not every aspect of the schemes presented has yet been
fully understood, such as which class of systems or identification problems
cannot be handled by the proposed schemes. Some preliminary insight in this
matter can be obtained from the sensitivity analysis presented in this paper, i.e.
for critical plants with strong and highly coloured perturbations on the output.
The experimental analysis has shown that the RS scheme can be very robust
even for such systems. However, we may expect extreme difficulties for systems
of large order which, in the error-free case, show a gradual decay in the singular
values. Further research on this topic is required. Additional items for further
research are the following.

(i) The qualitative information on the accuracy of the obtained information
can be very useful in a preliminary analysis of an identification problem.
However, in a number of applications more detailed quantitative (co-
variance) information is required. For the ordinary MOESP scheme, an
initial analysis is made in Viberg et al. (1991) to derive covariance
information about the poles estimated from the system matrix. This
analysis has to be extended to more general estimates, such as uncer-
tainty levels of Bode plots, and to the other algorithmic variants
presented in this series.

(i) A comparative study of the presented approach, both on a theoretical
level and on an experimental level, has to be made with other SMI
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schemes. In Part 2 (Verhaegen and Dewilde 1992 b), a comparison has
been made with the classical Ho, Kalman-based approach described by
Kung (1978). However, other recently proposed strategies should be
included in such a study, e.g. Moonen ef al. (1989) and Larimore
(1990). Furthermore, the relationship and complementarity to the para-
metric model identification strategies, developed by Soderstrom and
Stoica (1989), Ljung (1987), should be further strengthened.

(iii) The identification problems addressed in this series of papers require
open-loop experiments. An extension to an application of the developed
strategies to closed-loop experiments is highly desired. We refer the
interested reader to Verhaegen (1993) for a possible solution to such
problems.

(iv) As highlighted in Experiment 2, the sensitivity of the calculations to the
perturbations on the data increases when all the dominant poles are
close to the unit circle. Changing the sample rate might be a possible
cure to decreasing the sensitivity. However, a more rigorous method of
improving the estimates might be through the derivation of the schemes

presented in this series of papers in the &-operator framework as
developed by Middleton and Goodwin (1990).
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Appendix A
Proof of Theorem 1: From (4) we obtain
Uyin = RNOT (54)
Further, introduce the data equation (1)
Zyin = RNOY + RRQY =Xy + HUpin + Viin (35)
From (5) we obtain
X1y = RaQY + R2Q7 (56)
Substitution of (56), (54) into (55) yields
R0V + rR%QY + HRYQV . i NAN (57
iR Q1 R50Y + HRNQY + Viin = Rn@1 + RnQs (57)

From (9) and (54) we obtain
1

1
o VMO (R = ey
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Since condition (28) of Part 1 (Verhaegen and Dewilde 1992 a) is fulfilled, there
exists an N such that for N > N, the square matrix R} is non-singular, hence

1y
7117 YiiAdD)" = E%E?V(V% (Rﬁ)T) (58)

Using this relationship and the facts that QY(QM)T = QY¥(QM)T =0 and

QNN =1,,;, (57) after multiplication on the right with (Q)T/ /N
becomes

1 1 1 - 1
W IiRey + “‘\/7\7“ HRY + e‘}’vE%(W (Rﬁ)T) = VN R

Hence

1 1 A
w (iRa + HR{ - RY) = —e?«E%(-——W (Rﬁ)T)
and (57) becomes

1 1 - 1
N R»QY = “S?VE?V(V_AT (Rﬁ)T) oy + VN r;r%0Y
1
4 W Viin (59)
Using (58) and the fact that QY(Q1)T = 0, 1/NRS(RY)T becomes
1 1

1 1
N RY(RY)T = N TRNRY)TIT + N LRLONVT v + N Viin V-Ir,i,N

1
+ 3 V(@) RDT]

-1
- 71——1\7 vl,.-,N(Qf’)T(% (Rﬁ)) e (ES)T

1 iy g
+ E?VE?V(_\/“—A_, (Ri‘{)T) (RI) LeN(ES)T

~ehES( (Ri‘{)T)_IQf’—\}—ﬁ 23
- % LRO(RYD)T] + *11\7 riR%'QiVVL,N + % ViinViin
+ ']lv Viin(@)T(RL)TIT
~k B4 RARYT) efeEpT (60

We now turn to the underbraced term in the above expression. From (10) and
(56) we deduce
1

N

1 Ny, T 73
RAOTViin + N RNOMVIin = enEN
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With (58) this equality becomes

1 1 . 1
(—— R”l)(—\/——h—, (Rﬁ)) eS(EWT + 5 RBOIViiw = enEy

VN
Since the limits in (6) and (8) exist, the limits of the different factors, namely
i ¥y : ( 1 N )
1 —= R and lim |—= (R
Nl—r-nm(\/l_\'- "‘) lim {75 (R1D
also exist (up to an orthogonal right transformation) and therefore, the matrix
multiplication

(o )

exists in the limit N — . Hence, we can define a new sequence of real

numbers e?v and bounded matrices E ?v such that

1 NN T 8 8
— RY%0:Viin = enEN

N
With this expression for the underbraced term in (60), the latter equation
becomes
1 angiee o1 N aNiigmo T
N Rx(Rn)" =% TiRx(Rx) I'i + ViinViinN
1 -1
+ TeVEY + eMENTTT - E?VE?V('N R{‘i(Rﬁ)T) eN(EN)'

(61)

Taking the limit N — of both sides, we obtain the result of the theorem. [

Appendix B

Proof of Lemma 1: With the state-space representation of the system in the
Lemma 1 and using the independence between u(k) and v(l), we can express
the limit in Lemma 1 as

1 N
lim — b
N Elrhﬂ jHI=1

1 N 1 N
= lim — >, ®Pnv}. - 1
SN NiVjri-1 T I\\lll_’mm N glru]vjﬂ_l

s

=0

M=

. 1 1
i T T
lim (N ‘pT]ll)l + ']-V' (pnju}‘_'_l_l)

j=2

NIEL(N Pt N Eld)nﬂﬂufw = N ¢'77N+1U?v+z)
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pioafid 1 Qe sl o T
- h]/;_;'nm (7\/— P, + N ?:‘,ldb NuOi+yu] + /\lzl_l.nm—ﬁ zldﬂ“u“u,“,
-0
gt T
= lim = > @ nyoy
N—x s=1
=0
The third equality holds since
1
lim — @y oy =0
N—ox N
while the last equality holds since the sequence [P, @%n, ... 14 a
deterministic time sequence and the noise v; has mean zero. O
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