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Abstract-Subspace-based methods for system identification 
have attracted much attention during the past few years. 
This interest is due to the ability of providing accurate 
state-space models for multivariable linear systems directly 
from input-output data. The methods have their origin in 
classical state-space realization theory as developed in the 
1960s. The main computational tools are the QR and the 
singular-value decompositions. Here, an overview of existing 
subspace-based techniques for system identification is given. 
The methods are grouped into the classes of realization- 
based and direct techniques. Similarities between different 
algorithms are pointed out, and their applicability is 
commented upon. We also discuss some recent ideas for 
improving and extending the methods. A simulation example 
is included for comparing different algorithms. The 
subspace-based approach is found to perform competitive 
with respect to prediction-error methods, provided the 
system is properly excited. 

1. INTRODUCTION 

System identification is generally the art of 
mathematical modeling, given input-output 
measurements from a dynamical system. The 
problem is of interest in a variety of applications, 
ranging from chemical process simulation and 
control to identification of vibrational modes in 
flexible structures. In the classical system 
identification problem the input (the control 
signal) is known exactly, whereas the output 
signal may be corrupted by additive noise. The 
process can also have external unmeasurable 
inputs. The focus here is on parametric 
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model-based techniques for system identification. 
The task is then to find a suitable mathematical 
model for the system from a finite number of 
data, corrupted by noise and/or process 
disturbances. 

The most important traditional system iden- 
tification techniques are the prediction error 
method (PEM) and the instrumental variable 
method (IVM); see e.g. Ljung (1987) and 
Siiderstrom and Stoica (1989). A number of 
algorithms within these two classes have been 
proposed and found to perform well on both 
simulated and real data. The statistical pro- 
perties of the PEM and IVM methods are well 
known-in particular, so is their relation to 
maximum-likelihood estimation. The aforemen- 
tioned ‘traditional techniques’ offer good solu- 
tions to many real-world problems. However, 
they do. have a number of shortcomings, 
particularly so for systems with many inputs and 
outputs. The PE and the IV methods are 
primarily used with so-called black-box model 
structures. The candidate models then consist of 
linear difference equations for describing the 
input-output relations (and, if desired, the noise 
color). The use of such models is quite 
cumbersome in the general multivariable case, 
and the numerical reliability may be poor for 
large system orders. The preferred model 
structure for more complex problems is there- 
fore a state-space model. In principle, PEMs are 
easily adapted to work with state-space models. 
However, in practice this generalization may 
lead to a huge number of unknowns, rendering 
the numerical optimization required to calculate 
the optimal PEM estimate impractical. A 
canonical parameterization of a general nth- 
order system with m inputs and f outputs 
requires n(2Z + m) + mE free parameters. In 
extreme applications the number of inputs and 
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outputs are on the order of 10, whereas the 
number of states can be on the order of 100. 
Furthermore, the problem of finding a numeri- 
cally reliable canonical parametrization is also to 
a large extent unsolved, and in fact it may have 
no satisfactory solution at all. See for example 
VanOverbeek and Ljung (1982) Chou (1994) 
and Mehra (1994) for more details on this 
problem. While PEMs are essentially indepen- 
dent of the system representation, the extension 
of IVMs to state-space models is less obvious. It 
is shown here that subspace-based methods can 
be viewed as one way of generalizing IVMs in a 
numerically reliable way. 

Subspace-based state-space system identifica- 
tion (4SID, pronounced ‘forsid’) methods offer 
numerically reliable state-space models for 
complex multivariable dynamical systems dir- 
ectly from measured data. No nonlinear search is 
performed, nor is a canonical parametrization 
used. The computational complexity is modest 
compared with PEM, particularly when the 
number of outputs and states is large. Two 
review papers have recently been published on 
the subject. In Rao and Arun (1992) systems 
without measurable input signals (i.e. time 
series) are considered. In VanDerVeen et al. 
(1993) a good overview of methods based on 
state-space realization theory is provided. Both 
papers emphasize the strong connection to 
certain problems in signal processing; see further 
Section 6. Also, the theses by VanOverschee 
(1995) and McKelvey (1995) contain nice 
tutorials on subspace-based methods. 

The 4SID methods have their origin in 
state-space realization theory as developed in the 
1960s although they can in fact be traced to 
principal component factor analysis (Hotelling, 
1933). A classical contribution is by Ho and 
Kalman (1966) where a scheme for recovering 
the system matrices from impulse response 
measurements is outlined. Refinements of Ho 
and Kalman’s scheme are reported in Zeiger and 
McEwen (1974) and Kung (1978) introducing 
the SVD as a tool to reduce the sensitivity to 
errors in the measured impulse response. More 
recently, a number of algorithms further 
extending these ideas have been proposed (e.g. 
King et al., 1988; Liu and, Skelton, 1991; Ljung, 
1991; Bayard, 1992). We shall refer to this class 
of techniques as the realization-based 4SID 
methods. 

A problem with the above-mentioned ap- 
proach is the difficulty of obtaining a reliable 
nonparametric estimate of the impulse response. 
A number of algorithms require special inputs, 
such as impulse or white noise signals (see e.g. 
Liu and Skelton, 1992). An alternative approach 
is to extract the desired information directly 

from the data, without explicitly forming impulse 
responses. An early attempt to solve this 
problem is presented in Gopinath (1969) and 
more recently developments are due to DeMoor 
et al. (1988) Moonen et al. (1989) and 
Verhaegen (1991). We shall refer to this class of 
algorithms as direct 4SID methods. The basic 
direct 4SID techniques produce consistent 
estimates of the system matrices only under very 
restrictive assumptions on the noise. More 
recently techniques incorporating so-called 
instrumental uariabks (Ljung, 1987; Soderstrbm 
and Stoica, 1989) have been suggested for 
overcoming this drawback (see Verhaegen, 
1993b, 1994; Viberg et al., 1993; VanOverschee 
and DeMoor, 1994b). 

We shall focus on systems driven by both 
observable and unobservable inputs. The reader 
is referred for example to Akaike (1974), Faurre 
(1976) Aoki (1990) Rao and Arun (1992), 
VanOverschee and DeMoor (1993) and Deistler 
et al. (1994) for 4SID methods and their analysis 
in the time-series case. We keep in mind, 
though, that the distinction between inputs and 
outputs is not so obvious in all applications 
(Willems, 1986). The discussion is also confined 
to open-loop systems. An extension to systems 
operating in closed loop is reported in 
Verhaegen (1993a). There, a ‘global system’, 
with the control signal, the system output and 
the different error signals as outputs is identified. 
The open-loop transfer function is then calcu- 
lated from this global system. One should also 
consider applying the techniques of Schrama 
(1991) and VanDenHof and Schrama (1993) to 
4SID methods. The idea is to estimate a 
‘noise-free’ input signal, and to apply the 
open-loop identification method using the 
reconstructed input. We also tend to ignore the 
computational aspects of 4SID methods. For 
efficient implementations of the basic techniques, 
see Verhaegen and Deprettere (1991) and Cho et 
al. (1994). 

The remainder of this paper is organized as 
follows. Section 2 gives an introduction to 
state-space realization from impulse response 
data. Section 3 presents the basic two classes of 
4SID methods. In Section 4, a framework for 
statistical analysis is introduced, and the basic 
techniques are analyzed with respect to consis- 
tency. Section 5 presents extensions of the basic 
techniques using the concept of instrumental 
variables. Section 6 gives some details from a 
related problem in signal processing. In Section 7 
some recent research trends are reported, and 
suggestions for improving the IV-based 4SID 
metods are made. Section 8 presents the results 
of a simple computer simulation to illustrate the 
ideas, and Section 9 concludes the paper. 
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2. REALIZATION THEORY 

Consider a causal linear time-invariant (LTI) 
system with m input signals collected in the 
vector u,, and 1 output signals denoted by y,. In 
the absence of noise, the input-output relation 
can be described by the convolution sum 

Z 

Y, = 2 hkUr-,u (1) 
k=O 

where hk denotes the f X m matrix of impulse 
responses. That is, the ijth element of hk is the 
response in output i at time k, to a unit impulse 
applied to input j at time 0. Assume that the 
system is of finite dimension n. An alternative 
description of the dynamics is then obtained 
from a state-space realization: 

x,,, = Ax, + But, (2) 

y, = cx, + Du,. (3) 

Here, x, is an n-dimensional state vector, the 
matrixAisnXn, BisnXm, CislXnandDis 
1 X m. The description (2), (3) is not unique. Let 
T be a nonsingular n X n matrix. It is then easy 
to see that 

2 r+, = AZ, + Bu,, 

y, = Cz, + Du, 

provides an alternative state-space realization, 
where zI = TX,, ;i = TAT-‘, B = TB, c = CT-’ 
and D = D. The transfer function is of course the 
same for different state-space realizations, 
though. As can easily be checked, H(z) = 
C(zZ - A)-‘B + D = c(zZ -A)-% + 0. 

Classical realization theory deals with the 
problem of finding a minimal state-space model? 
given the collection of impulse responses {h,}, 
sometimes referred to as the Murkov parameters. 
By applying impulse inputs to (2) and (3) one 
finds immediately the relation 

h,= D 

1 

0 (t < O), 

(t = O), 

CA’-‘B (t > 0). 
(4) 

Thus, the system matrix D is readily available 
from ho. The so-called Hunkef matrix of order 
(n + 1) X (n + 1) of the system is defined by 

H=[hil i; i; ~~~;] 

Using (4), it is straightforward to verify that H 
can be factored as 

H = r,+,Q,+,, (5) 

t A state-space model is minimal if there exists no other 
realization of lower degree. Minimal realizations are always 
both observable and controllable. 

(6) 

is the observability matrix of the system, and 

a, =[B AB . . . A”-‘B] (7) 

is the controllability matrix. For a minimal 
realization, the latter matrices have full rank (see 
Kailath, 1980), and hence H has rank n, equal to 
the system order. Moreover, if H = ~,+,~-n,+, is 
any given full-rank factorization of the Hankel 
matrix then r,,, is the observability matrix and 

fin+1 is the controllability matrix for some 
state-space realization. The algorithm of Ho and 
Kalman (1966) is based on the above observa- 
tions. The first step is to compute a factorization 
(5) of the given Hankel matrix. The system 
matrices B and C are then read directly from the 
first block column (first m columns) of a,+, and 
the first block row (first 1 rows) of r,,, 
respectively. It remains to compute A. This can 
be done, for instance, by observing that r,,+, has 
a so-called shift invariance structure. More 
exactly, define the submatrices rZZn+, and I’,:n, 
which are obtained from r,,, by deleting the 
first and the last block rows respectively. It is 
then easy to see that the system matrix A is the 
transformation that maps rlZn onto rZZn +,, i.e. 

rZZn+, = rl :,A. (8) 

If we require the realization to be minimal, the 
observability matrix IIZn = r, is nonsingular, and 
A can be computed from r,+, by solving (8): 

A = r::nr2:n+l, 
where (a)+ denotes the Moore-Penrose pseudo- 
inverse (note that rlIn is, in general, not square). 
The relation (9) completes the basic determinis- 
tic realization scheme. One should note that the 
particular realization that the method delivers 
depends on the factorization algorithm used for 
finding r,,, and Cn,, +, from H. This is an 
unattractive feature for some applications, where 
a certain canonical realization is desired. We 
refer the interested reader to linear systems 
textbooks, such as Kailath (1980), for more 
details on canonical parametrizations and other 
aspects of state-space realization theory. 

3. SUBSPACE METHODS 

Most 4SID (subspace-based state-space system 
identification) methods suggested to date have a 
great deal in common with Ho and Kalman’s 
realization algorithm. More specifically, all 
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methods involve extraction of the extended 
observability matrix from input-output data, 
possibly after a first step where the impulse 
response is estimated. The various techniques 
differ in the way the observability matrix is 
estimated, and also how it is used for finding the 
system matrices. In the vector input-output 
relation (1.5) below, the extended observability 
matrix spans an n-dimensional signal subspace, 
which contains the part of the output that is due 
to the state variable. This is a proper subspace, 
since the dimension of the observability matrix is 
larger than II, the system order. A ‘data 
compression’ (or, more precisely, rank reduc- 
tion) step will therefore be necessary for 
computing the signal subspace. As will shortly be 
demonstrated, this data compression is typically 
performed by the SVD (Golub and VanLoan, 
1989). Here, the class of 4SID methods is 
somewhat loosely defined as those techniques 
that employ a rank reduction of some quantity 
estimated from input-output data, arriving at an 
estimate of an extended observability matrix. 
The latter matrix can then be used in various 
ways for obtaining a state-space model (and in 
some cases a full stochastic model) of the system 
under study. The 4SID methods are split into 
two subclasses, where the members of the first 
class form an explicit estimate of the impulse 
response, whereas the second type of methods 
circumvent this step. 

3.1. Realization-based 4SID methods 
A natural idea is to apply a state-space 

realization technique to an estimated impulse 
response. This procedure turns realization theory 
into system identification, but it also raises two 
important questions. 

1. How does one estimate the impulse response 
given a finite number of noisy input-output 
data? 

2. How does one reduce the effect of errors in 
the estimated impulse response to arrive at a 
low-dimensional state-space realization? 

The most straightforward way to solve the first 
problem is to employ a nonparametric tech- 
nique, since a parametric model is delivered 
from the realization step. A direct method is to 
apply impulse input signals in the different input 
channels, and simply measure the response in 
each output (Liu and Skelton, 1992). To reduce 
the effect of noise, the experiment may be 
repeated and the average output calculated. A 
less time-consuming approach is to use correla- 
tion analysis. Consider the convolution (l), and 
assume that the system is corrupted by some 
disturbances sources, whose effect on the output 

is lumped into the zero-mean additive noise term 
u,: 

y, = 2 hku,pk + u,. 
k=O 

(10) 

Suppose for the moment that a stationary white 
noise input signal is selected,? so that 

E[441 = r,J,,,, (11) 
where a,,, is the Kronecker delta. Provided u, 
and u, are uncorrelated for all t and s and the 
system is stable, we get 

r,,(r) = 4y~L.l = hrr,,,. 02) 

Hence a finite number of impulse response 
parameters can be consistently estimated from 
the corresponding nonparametric estimates of 
the cross-covariance function ryU(z) (Ljung, 1987; 
Siiderstrom and Stoica, 1989). Another nonpara- 
metric approach for estimating the impulse 
response is to use the inverse discrete Fourier 
transform of a nonparametric transfer function 
estimate. This idea is pursued in McKelvey et al. 
(1994), and a close link to a method that 
operates directly in the frequency domain is 
presented. It is also possible to apply a 
parametric technique for estimation of the 
impulse response. The approach of Ljung (1991) 
is to use a black-box IVM, whereas Bayard 
(1992) proposes to use an iterative frequency 
domain technique. In both cases an overpara- 
meterized model should be used-a fact that 
suggests ill-conditioned estimation problems. 

Given a number of estimated impulse 
response parameters, Kung (1978) (see also 
Juang and Pappa, 1985) proposed to modify Ho 
and Kalman’s algorithm in the following way. 
Firstly, to reduce the effect of errors in the 
estimation of A, the system (8) of equations 
should be overdetermined. Hence a ‘large’ 
dimension of the Hankel matrix H should be 
used. In the presence of noise, the Hankel 
matrix will generically be of full rank. An 
‘optimal’ way of reducing the rank+ of the 
Hankel matrix, namely to truncate its SVD, is 
therefore used. Let fi be an estimated Hankel 
matrix of (block) size cy X p, say, where (Y and /3 
are both chosen to exceed the largest expected 
system order. Let the SVD of k be given by 

t Temporal whiteness is no restriction so long as the color 
of the input signal is known (or estimated). A prefilter can 
then be applied to both U, and y,, rendering the filtered input 
signal temporally white. 

$The truncation of the SVD is optimal in the sense of 
minimizing both the Frobenius norm and the spectral norm 
of the difference between the original matrix and its low-rank 
approximation. Note, however, that the reduced-rank matrix 
has generally lost the block Hankel structure. 
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where 0 and t are orthogonal matrices, and !? is 
a diagonal matrix with the singular values in 
nonin~reasing order on the diagonal. In the ideal 
case H is of rank IZ, so that only the n first 
singular values are nonzero. In the case of noisy 
impulse response measurements, all singular 
values will be positive w.p.1. The user must then 
decide on the number of ‘significant’ singular 
values, which in turn will determine the resulting 
system order. This is a nontrivial task, for which 
few theoretical guidelines are available in 
general. Assuming the system order to be given, 
the SVD matrices are partitioned into the 
‘signal’ and ‘noise’ parts 

where 6, and ts contain the IZ principal singular 
vectors, whose corresponding singular values are 
collected in the n X n diagonal matrix ss. The 
‘cleaned’ estimates of the extended observability 
and controllability matrices are then 

As in the classical realization algorithm, the 
system matrices B and C are read directly from 
the first block column of fi, and the first block 
row of 5, respectively, whereas A is obtained by 
solving the overdetermined system of equations 

f2:a = F,:+,A. (13) 

A least-squares or a total least-squares (Golub 
and VanLoan, 1980) solution can be used, both 
leading to the same first-order sensitivity to 
errors in the estimated impulse response 
parameters (Rao and Hari, 1989; Stoica and 
Viberg, 1995). The particular state-space realiza- 
tion resulting from the procedure outlined above 
is balanced in the sense that f, and & both 
have orthogonal columns and 

Of the existing alternatives to Kung’s approach, 
we mention the eigensystem realization ap- 
proach (ERA) due to Juang and Pappa (1985). 
The close ties to Hankel-norm model reduction 
(Glover, 1984) also deserve recognition. A more 
elaborate realization-based approach is obtained 
by considering not only the impulse response 
parameters, but also the atuocovariance of the 
output, I;(Z), at a number of lags r. A 
realization approach that matches measurements 
of both these types of parameters to their 
corresponding models is the Q-Markov COVER 
(covariance equivalent realization) method 

(King et al., 1988; Liu and Skelton, 1991; Liu et 
al., 1992). 

3.2. Direct 4SID methods 
The direct 4SID methods are based on the 

same geometrical ideas as the realization-based 
techniques. However, rather than forming the 
Hankel matrix, a direct input-output relation 
implies by the description (2) (3) is used. 
Introduce the la-vector of stacked outputs as 

y(t)= [Y7 YT+1 . . . Y7+UJT1 (14) 

where LY > n is a user-specified integer, whose 
role is similar to the number of block rows in the 
Hankel matrix employed by the realization- 
based methods. The ma-vector of stacked 
inputs, u(t), is defined in an analogous fashion. 
The following input-output equation (Gopinath, 
1969; DeMoor, 1988) is then easily derived from 
the system description (2), (3): 

y(t) = raxt + @t),u(r), (15) 

where the matrix a, is a block lower-triangular 
and Toeplitz matrix of impulse responses: 

rD O... 

ap,= (16) . . . . . . 

CA”-*B . . . CB 

Suppose we are given observations of y, and u, 
for t = 1,2, . . . , N + (Y - 1. Using (15), the 
observations can be modeled by the matrix 
equation 

Y = r,x + *,u, (17) 

where the block Hankel matrices of outputs and 
inputs are defined as 

Y = [y(l) . . . Y(N)], (18) 

U== [u(l) . . . u(N)], (19) 

and the state trajectory is collected in the matrix 

X=[x, . . . XN]. (20) 

Consider the problem of obtaining an estimate 
of r, in (17), with knowledge of the data 
matrices Y and U. If the impulse response 
matrix Qp, was known, we could simply subtract 
the @,U term from Y, followed by a truncated 
SVD. As @, is unknown, it is natural to instead 
subtract an estimate of it. An unstructured 
least-squares estimate 

;in IIY - @,,Ullk (21) 
” 



1840 M. Viberg 

where II * IIF denotes the Frobenius norm,? leads 
to the matrix 

Y - 8,u = YrI&) (22) 

where TINT is the orthogonal projection onto the 
nullspace of U: 

n&r = I - U=(UU=)-‘U. (23) 

The indicated inverse exists if the input is 
persistently exciting and N > m(~. Since 

un:r = 0, 

we have in effect removed the part of the output 
y(t), (15), that did not emanate from the state x,. 
The remaining part is 

Yri$T = r,xn:,, (24) 

and, provided XII& is of full rank ~1, the signal 
subspace (i.e. the range space of F,) can be 
recovered from a truncated SVD of YII~T. The 
required rank condition can be shown to hold 
under mild conditions on the input sequence 
(Liu, 1992). Partition the SVD as 

YrI& = Q&?: + Q,$,?:, (25) 

where Q, contains the n principal left singular 
vectors and the diagonal matrix $ the 
corresponding singular values. It is clear that 
8, = 0 in the absence of noise. However, in 
practice, a decision on the number of significant 
singular values must be made. The estimate of 
the observability matrix (for some state-space 
realization) is then taken as 

f, = 6,. (26) 

A column scaling by, for example, 8”’ is often 
applied to the above, but note that this does not 
change the estimated system poles. Once r, is 
known, C can be read from its first block row, 
whereas A can be computed by solving (13). To 
unravel B and D, premultiply (17) by a and 
postmultiply by Ut = UT(UUT)-1 to yield (in the 
ideal case) 

Q;yu+ = &a,. (27) 

In the presence of imperfect data, the above 
yields an overdetermined system of linear 
equations that can be solved in a least-squares 
sense with respect to B and D (note that the 
impulse response matrix a,, (16), depends 
linearly on B and D). For details we refer to 
DeMoor et al. (1988) and DeMoor (1988). 

t The Frobenius norm of a matrix is the square root of the 
sum of squared moduli of all elements. 

A more efficient implementation of the basic 
scheme is proposed in Verhaegen (1991) and 
Verhaegen and Dewilde (1992). Rather than 
explicitly forming the quantity YIII:T, the 
following QR factorization (or rather, LQ 
factorization) is used: 

[:I = [f:: ,“,,lc$* (28) 
Note that the matrix Q2 spans the part of the 
nullspace of U that is not shared by Y. It follows 
that 

YH:T = YQ2Q; = R,,Q;. 

Since QTQ, = I, the left singular vectors of Rz2 
coincide with those of R,,Qz, and hence also 
with the left singular vectors of YII&r. 
Verhaegen’s approach is to compute the SVD 

(where the notation is compatible with (25)). 
The algorithm then continues analogously to 
DeMoor et al. (1988), and consequently pro- 
duces identical estimates. Another variation of 
the theme is presented in Liu (1992). There, an 
eigendecomposition (or SVD) of the matrix 

ii = iyy - h&;iiuy 

is performed. Using the natural covariance 
estimates, we have 

ii = ;YY= - $YU=(UU=)-%JY= 

= hYrI&TYT. (29) 

Clearly, the eigenvectors of fi coincide with the 
left singular vectors of YII~T, and we conclude 
that also the ORSE (observability range space 
extraction) method of Liu (1992) computes 
estimates identical to those of DeMoor et al. 
(1988). The method proposed in Moonen et al. 
(1989) is different (and more computationally 
demanding) than the basic 4SID scheme. 
However, similarly to the latter technique (see 
the next section), the approach by Moonen et al. 
(1989) requires restrictive assumptions on the 
noise for yielding consistent estimates (Moonen 
and Moor, 1992). A remedy is possible if the 
noise color is known, as demonstrated in 
Moonen and Vandewalle (1990). 

4. STATISTICAL FRAMEWORK 

Up to this point, we have mainly considered 
purely deterministic systems. Of course, any 
practical system is subject to uncertainty and 
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model mismatch. The question of sensitivity of 
the different algorithms then naturally arises. We 
shall focus here on the statistical variability of 
the estimates, owing to the necessity of 
processing only a finite number of noisy 
measurements. Thus assume that the system (2), 
(3) is corrupted by additive noise. Let the 
innovations representation (see Kailath, 1980) of 
the system be 

x,+, = Ax, + Bu, + Ke,, (30) 

y, = Cx, + Du, + e,, (31) 

where e, is the unmeasurable, temporally white, 
innovation process and K is the Kalman gain. 
The transfer functions from U, and e, to y, are 
denoted by H(q-‘) and N(q-‘) respectively, 
where q-’ is the delay operator. Hence an 
alternative description of (30) and (31) is 

y, = H(q-‘)u, + N(qp’)e,, (32) 

where the transfer functions are given by 

H(q-‘) = C(qZ -A)-% + D, (33) 

N(q -‘) = C(qZ - A)-‘K + I. (34) 

It is possible that the dynamics of (30) are (31) 
are more complex than those of (2) and (3), i.e. 
the number of states may be larger. This is 
apparent from (32) because any dynamics of 
N(q-‘) that are not shared by H(q-‘) will 
increase the dimension of the noisy state-space 
description. These extra ‘noise states’ are 
cancelled when (33) is computed. In the case 
K = 0 the outputs are corrupted by additive 
white noise only. Such a model is termed output 
error (Ljung, 1987). In general, the disturbances 
may be temporally correlated rendering K Z 0. 
The noise may also share dynamics with the 
plant-for example in the case where a wind 
gust acts as a disturbance on an aircraft. The 
distinction between an output error model and a 
full noise model is relevant when comparing 
different algorithms and their usefulness in 
different applications. With some abuse of 
notation, we shall let n denote the dimension of 
the state vector in both cases. 

The following further assumptions are 
introduced. 

Assumption 1. The innovation process is as- 
sumed to be a stationary, ergodic white random 
process, with zero mean and positive-definite 
covariance matrix 

E te,eTl = r,,%,. (35) 

Assumption 2. The eigenvalues of A are strictly 

inside the unit circle. The pair {A, C} is 
observable and {A, [B K]} is controllable. 

Assumption 3. The system input is modeled as 
an arbitrary, quasistationary (Ljung, 1987) 
deterministic sequence. The ‘covariance matrix’ 
of the input is denoted by 

r 1‘11 = E[u,uT], 

where the averaging operator E is defined by the 
relationt 

E[z,] = )F* y$ g E[z,]. (36) 
I I 

The ma X ma covariance matrix of the stacked 
input vectors is similarly defined as 

R,,, = %(+rT(~)l. 

The input is assumed to be persistently exciting 
in the sense that 

R,,, ’ 0. (37) 

4. I. Consistency 
For the realization-based 4SID methods, 

consistency$ is essentially a question of whether 
or not a sufficient number of impulse response 
parameters are consistently estimated, since, 
whenever a consistent estimate of the Hankel 
matrix is obtained, any reasonable realization- 
based method will lead to consistent estimates 
of the system matrices. However, it should be 
noted that only the purely deterministic sub- 
system (i.e. the transfer function H(q-‘)) is 
identified using this approach. Any additional 
dynamics due to nonwhite disturbance signals 
are ignored. The resulting model is therefore 
always in output-error form, although the ‘true’ 
data-generating system may not be so. It is of 
course possible to apply a stochastic realization 
algorithm (see e.g. Aoki, 1990; VanOverschee 
and DeMoor, 1993; Deistler er al., 1994) to the 
residuals y, - Z?(q-I). A complete deterministic- 
stochastic state-space model can then be 
obtained by lumping the deterministic and 
stochastic states, possibly followed by a model 
reduction step to identify the common dynamics. 
However, this way to proceed appears unneces- 
sarily complicated. Therefore the realization- 
based 4SID methods are recommended only 
when an output-error model is desired. 

t The .i? operator is convenient for simultaneously treating 
deterministic and stochastic sequences (Ljung, 1987). In 
practice, the expectation in (36) has no effect when the 
operator is applied to deterministic quasistationary and/or 
stochastic ergodic processes. 

t An estimate is said to be (strongly) consistent if it 
converges w.p.1 to the true value as the number of data tends 
to infinity. 
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Consider next the basic direct 4SID method 
of Section 3.2. The simplest version to analyze is 
that of Liu (1992). By ergodicity, and using the 

first equality in (29) a converges 
the limiting matrix 

R = Ryy - R,, R,;,‘R, 

as N+= ~0, where Ryu = ,!?[y(t)uT(t)]. 
the noise terms as in (30) and 

w.p.1 to 

(38) 

Including 
(31), the 

input-output relation (15) is replaced by 

y(t) = ra.xt + @J+) + v&t), (39) 

where the noise vector e(r) is defined analogo- 
usly to (14), and Ya is the matrix of impulse 
responses from e, to y,, i.e. the lower 
block-triangular and block Toeplitz matrix 

r I . . . 0 07 

Using (38) and (39) a straightforward calcula- 
tion shows that 

R = T’,(r,, - r,,,RGfr,)r~ + vJ,,yz, 

with obvious definitions of the various covari- 
ante matrices. Now, partition the eigendecom- 
position of R as 

R = Q.&Q: + Q,LQ;S, 

where Q, contains the II principal eigenvectors, 
and the diagonal matrix L, the corresponding 
eigenvalues. It is not difficult to see that the 
range spaces of r, and Q, coincide ift 

r x - ~.JL’r,,x > 0, (40) 

Y,R,Y: = a21 (41) 

for some scalar g*. It is also easy to see that (40) 
is equivalent to 

While (40) can be shown to hold under mild 
conditions (see Liu, 1992), the requirement (41) 
imposes a serious restriction, pointed out in 
DeMoor (1988) Verhaegen (1991) and Viberg et 
al. (1991). The condition (41) holds essentially 
only for output-error systems with r,, 
proportional to the identity matrix. 

t There are other possibilities; for example, W,R,,Yz can 
contain an additive term orthogonal to re. However, since 
we wish to keep the requirements on the noise independent 
of the system matrices, (41) is regarded as a necessary and 
sufficient condition. 

In summary, we have the following result. 

Theorem 1. Assume that K = 0, r,, = (r21 and 
that (40) holds true. Then the basic 4SID scheme 
produces a consistent estimate of the input- 
output transfer function H(q-‘). 

An expression for the variance of the pole 
estimates is derived in Viberg et al. (1991). If 
(41) does not hold, the basic 4SID method can 
yield accurate estimates of the system matrices 
only if the signal-to-noise ratio (SNR) is high 
enough. Hence the technique is not applicable to 
more general systems. 

5. INSTRUMENTAL VARIABLE METHODS 

During the past few years, a number of 4SID 
techniques that are similar in spirit to the IVM 
have been proposed. The term ‘instrumental 
variables’ was mentioned in connection with 
4SID methods in Aoki (1990), VanOverschee et 
al. (1991) and Verhaegen (1991). More recent 
developments are presented in Verhaegen 
(1993b, 1994). In Viberg ef al. (1993) an IV 
interpretation of (a variation of) the N4SID 
method of VanOverschee and DeMoor (1994b) 
is presented, although less explicit related ideas 
are also provided in Larimore (1983, 1990). The 
referenced techniques all operate directly on the 
input-output equation (39). Consequently, this 
type of methods also belong to the class of direct 
4SID methods. 

The problem with the basic direct 4SID 
methods is that the geometrical properties of 
(15) are lost in the presence of noise (39). 
Therefore the IVs are used as ‘instruments’ for 
removing the effects of the noise term. The 
informative part of the signal term must, 
however, be left intact. Letting c(t) denote the 
vector of instruments, we should have 

The latter 
guaranteeing 
estimate of 

E[e(QiT(t)] = 0, (42) 

rank (_~?[x&~(t)]) = n. (43) 

requirement is necessary for 
that I, can be recovered from an 

~]Y(OST(Gl. A natural candidate 
instrument is the input signal, which is 
uncorrelated with the noise (in open-loop 
applications), and which should be sufficiently 
correlated with the state. However, the problem 
here is quite different from that of traditional 
IVMs, which only demand conditions similar to 
(42) and (43). In order to enable a direct 
estimate of r,, the IVs should also be 
orthogonal to the input in (39)! Clearly, this is 
incompatible with the requirement (43). A 
solution to this dilemma is to partition the 
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output into two parts, termed the past and the 
future: 

y(t) = [ g]T y = [ ;I . (4) 

The number of block rows in y,(t) and Y, is 
denoted by p, and the number of block rows in 
ydt) and Yr is then y = (Y - /3. The quantities p 
and y are user-defined and can be chosen quite 
arbitrarily. However, y will be the number of 
block rows in the estimated observability matrix; 
thus y > II is required. As will be seen later, 
/3 I n/(m + I) is a necessary condition for 
recovering TV. Note that in Verhaegen (1993b, 
1994) and VanOverschee and DeMoor (1994b) 
only the case y = p is considered. The model for 
the future outputs is 

Yf = r,X, + @,U, + ‘I’,Er, (45) 

whereX,=[xp+, . . . x0+,,,], and where U and 
the matrix of innovations E have been 
partitioned conformably with (44). Now, a 
possible choice of instrumental variable is the 
past inputs q,(t). For simultaneously removing 
the U, term of (45) and decorrelating the noise, 
Verhaegen (1993b) proposed to consider the 
quantity 

YJI&W; = K’yXJI:;U; + ‘&EJI:,U;, (46) 

where “6; denotes the orthogonal projector 
onto the nullspace of Uf, i.e. 

“&,I = I - u~(u,u~)-‘u,. (47) 

It is not difficult to see that 

~rn~~E,II@J~=O, w.p.1, 

and, by definition, Urn&: = 0. The rank 
condition (43) is, however, more elaborate. 
Indeed. the rank of the matrix 

1 x,n+u; 
N 

is, under fairly general conditions (Verhaegen, 
1993b), equal to the number of purely 
deterministic states. In other words, with only 
past inputs as IVs, we can only identify the 
transfer function H(q-‘). Any additional dyna- 
mics due to colored disturbances are lost in the 
IV correlation. The PI-MOESP (past inputs 
multivariable output-error state-space) method 
of Verhaegen (1993b) consists in first applying 
an SVD to the matrix (46). The latter matrix is 
calculated using a QR factorization similar to 
(28). The principal left singular vectors form the 
estimate of rv, from which A and C are obtained 
using its shift invariance. The system matrices B 

and D are finally obtained by solving an 
overdetermined system of equations, analogous 
to (27). 

In some applications, a complete state-space 
model is desired, incorporating both determinis- 
tic and stochastic states. To fulfill (43) with II 
equal to the dimension of the complete state, we 
must also involve the past outputs as instru- 
ments. The approach of Verhaegen (1994) and 
VanOvershee and DeMoor (1994b) is to use past 
inputs and outputs as IVs. The first step of 
Verhaegen’s PO (past outputs) MOESP algo- 
rithm is to compute the following QR 
factorization: 

where the Ri; are lower-triangular and the 
column-unitary matrix Q is partitioned confor- 
mably with the lower-triangular matrix as 

Q = [Q, Qz Q3 Q,]. 

The next step is to compute the SVD 

[Rdz, R4J = Q,$,+: + Q,S,+;. (48) 

The extended_ observability matrix is then 
estimated by Q,, and A and C are extracted in 
the usual way. For finding B and D, Verhaegen 
argues that the least-squares solution to the 
overdetermined system of equations 

[Rw Ral = @JR, I W 

provides a consistent estimate of a,, from which 
B and D are easily calculated. To connect (48) to 
IVs, observe first from the QR factorization that 

]R~z %,I = YfQm 

where QZy3 denotes the compound matrix 
[Q, Q,]. Next, note that the left singular vectors 
of YfQ2:3 coincide with those of Y,Q,,,Qzi,, 
because QTZ3 is column-unitary. Consider now 
the projections 

where 

Uf 
z= u, . [1 YP 

The above relations show that 

JbQ,:,Q;, = Y,(Cq - fLh) 
= Y,(rI,l - II,). 
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The projection decomposition theorem implies 
that 

where 

2’ = rI&TPT, 

and where the matrix P represents the past: 

P= :* 
[ 1 

P 

It follows that the observability matrix estimate 
obtained in the PO-MOESP method can be 
found equivalently from the SVD of the matrix 

Y&T = Yfn~~P=(Pn:~P=)-‘Pn~~. (49) 

A derivation similar to the above is presented in 
VanOverschee and DeMoor (1994a). A natural 
interpretation of (49) is that YJI& represents 
the ‘data equation’ (or, rather, the residual of a 
least-squares problem similar to (21)), P is the 
matrix of instrumental variables, whereas 
(PII&PT)-‘PH$ represents a column weight- 
ing of the IVs. We shall elaborate somewhat on 
this interpretation in Section 7, where consis- 
tency will also be investigated. Let us, however, 
mention that a slightly different point of view is 
pursued in Viberg (1994), where z is considered 
the ‘instrumental variable matrix’. 

The subspace estimate of VanOverschee and 
DeMoor (1994b) is very similar. They proposed 
to use an oblique projection along UT on PT. 
Hence their N4SID (numerical algorithms for 
4SID) method uses the SVD of the matrix 

YJk/:, (50) 

where the oblique projection can be expressed as 

l-I p’,u; = n+Pr(PII:;PT)-‘P. 

As noted in VanOverschee and DeMoor 
(1994a), the different projections are related by 

In the above-mentioned IV interpretation, the 
PO-MOESP and N4SID methods use identical 
instruments, but different weighting matrices. 
The difference is only the extra projection IT:: 
in (49). The resulting subspace estimates should 
therefore have very similar properties. However, 
the scheme proposed in VanOverschee and 
DeMoor (1994b) for unraveling the systemmat- 
rices is quite different. It is based upon 
reconstructing the state variables and generating 
an overdetermined system of equations, which 
delivers A, and C directly and B and D from a 
relation similar to (27). An interesting property 
of their method is that it also delivers estimates 

of the noise covariance matrices. The property 
that all relevant quantities are obtained in ‘one 
shot’ is quite attractive, at least from a 
computational point of view. However, it has 
been observed in simulation studies that the pole 
estimates obtained by applying the usual 
shift-invariance technique to the estimated 
observability matrix appears to yield the same 
accuracy (up to first order) as the N4SID pole 
estimates (see Viberg et al., 1993). 

6. A RELATED SIGNAL-PROCESSING PROBLEM 

As an inspiration for further advancing the 
4SID methods and their relation to more 
traditional techniques, we direct readers’ atten- 
tion to the area of sensor array signal processing. 
In this field, subspace methods have been 
successfully used since Pisarenko, (1973) and 
Schmidt (1979), and the relation to ML 
estimation is well established (see Stoica and 
Nehorai, 1989; Stoica and Sharman, 1990; 
Ottersten et al., 1992). However, the array 
problem is considerably simpler than the one 
considered here, at least from a theoretical 
point of view. Consider an array of m sensors, 
receiving narrowband planar wavefronts from d 
far-field emitters. The complex-valued array 
output y(t) (which consists of quadrature- 
sampled induced voltages in the sensor ele- 
ments) is modeled by the relation 

y(t) = A(O)x(t) + e(t). (51) 

Here the d-vector x(t) contains the transmitted 
signals, e(t) is the measurement noise and 

A(e) = [a(&) . . . a(&>1 (52) 

is the so-called array propagation matrix. The 
columns of A(8) are the array propagation 
vectors. The kth element of a(@) models the 
gain and phase of a narrowband signal at the kth 
sensor, relative to some reference point, 
assuming the signal arrives from the DOA 
(direction-of-arrival) 8,. Given a batch of data, 

Y(l), *. * 7 y(N), the problems of interest in 
sensor array signal processing include 

(i) determination of d, the number of signals; 

(ii) estimation of the DOAs 8 = [f3, . . f3,]; 

(iii) reconstruction of the signal waveforms x(t). 

We observe that problem 1 corresponds to the 
model order determination problem, problem 2 
is related to system modeling and problem 3 is 
essentially Kalman filtering. 

Let us now compare the data model (51) with 
the ‘static’ relation (15). Apparently, A(0) 
corresponds to the extended observability matrix 
and x(t) is the state variable. However, (51) has 
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no term corresponding to the input. This is a 
blessing in that the computation of the signal 
subspace estimate is greatly simplified. However, 
it is also a curse because problems l-3 cannot be 
solved by any algorithm without additional 
assumptions. For Gaussian data, all information 
is conveyed by the array convariance matrix 

R,, = E[y(t)y*@)l = NVLA*@) + Ret. (53) 

Clearly, if R,, were not restricted in any way, we 
would get a perfect data fit by taking d = 0 and 
iiyy = R,,, where 

fiyy = ; $ y(t)y*(t) (54) 
f I 

is the sample covariance matrix. The usual 
assumption for allowing an identifiable para- 
meterization of the data is to model e(t) as being 
spatially white, i.e. 

R,, = (+*I. (55) 

This assumption is reasonable-at least in 
situations where the array output can be 
measured in the absence of signals. The noise 
covariance matrix can then be estimated, and the 
noise in (51) can be prewhitened through 
multiplication by R,“*. 

If (55) holds and in addition Rx, has full rank 
then the signal subspace, i.e. the range space of 
A(B), can be recovered from the d principal 
eigenvectors of R,,,. Partition the eigendecom- 
position as 

R, = E,A,Ef + En&E:, (56) 

where the m X d matrix E, contains the principal 
eigenvectors. Then it is easy to show that 

A, = (+*I, (57) 

E, 1 A(o), (58) 

span (ES) = span (A(8)). (59) 

The relation (57) is useful for determining d, 
simply by performing a statistical test of the 
multiplicity of the smallest eigenvalue (Ander- 
son, 1984; Wax and Kailath, 1985). Either of the 
relations (58) or (59) can be used for estimating 
the DOAs. The so-called weighted subspace 
fitting (WSF) method (Stoica and Sharman, 
1990; Viberg and Ottersten, 1991) exploits (59) 
as follows; since (59) implies that E, = A(8)T for 
some T, consistent DOA estimates are obtained 
by solving 

(4, %} = arg min ~~~,W”* - A(O)TIIg, (60) 
@.T 

where fi, contains the d principal eigenvectors of 

the sample covariance matrix and II * (IF denotes 
the Frobenius norm. The weighting matrix W is 
chosen as (a consistent estimate of) 

W = (A, - (T*I)*A;‘. (61) 

This choice is dictated by the statistical 
variability of the estimated eigenvectors in E,. It 
is shown in Stoica and Sharman (1990) and 
Ottersten et al. (1992) that the asymptotic 
covariance matrix of the WSF estimates coincide 
with the Cramer-Rao lower bound. Conse- 
quently, the subspace-based method is a large 
sample realization of the ML method for the 
problem at hand. Although the computation of 
the estimates (60) requires a d-dimensional 
nonlinear optimization (note that the problem is 
separable in the linear parameter T), the form of 
the criterion function is considerably simpler 
than that of the ML method. If an efficient 
technique for computing the eigendecomposition 
is employed (Xu and Kailath, 1994), the 
computational requirements may be significantly 
less when using the WSF method. Indeed, for a 
linear array of identical and equispaced sensors, 
the search procedure can be reduced to solving 
two least-squares problems (see Stoica and 
Sharman, 1990). 

7. CURRENT TRENDS 

The area of subspace-based system identifica- 
tion is still rather immature, and a number of 
interesting questions remain unsolved. One of 
the most challenging issues is the estimation 
accuracy. This topic can be split into two parts: 
one concerns the statistical performance, 
whereas the other is the ability of approximating 
general dynamics with finite-dimensional realiza- 
tions. Of particular interest is the relation of the 
4SID methods to more traditional identification 
techniques, such as IVMs and PEMs. The PEM 
is optimal in the sense of providing minimum 
variance estimates, and its approximation per- 
formance (i.e. the bias distribution) is well 
known (Wahlberg and Ljung, 1986; Ljung, 1987). 
In some sense, the connection of 4SID methods 
to IVMs is established through the observations 
presented in the previous section. While the 
statistical relation of IVMs to the optimal PEM 
is well known, less is known about its asymptotic 
bias in the case of undermodeling. 

Initial statistical results are presented in 
Viberg et al. (1991, 1993). Variance expressions 
for the pole estimates of the methods of DeMoor 
et al. (1988) and VanOverschee and DeMoor 
(1994b) are derived. However, the resulting 
expressions are quite involved, and offer little 
insight on how different user’s choices influence 
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the performance. No attempt is made to derive 
an optimal method, like (60). Since subspace- 
based methods involve two steps, one could 
consider optimizing these steps separately. The 
first is the estimation of the extended obser- 
vability matrix. In light of the observations in 
Section 5, the subspace estimate can be 
generalized by introducing row and column 
weighting matrices. We thus define the weighted 
IV4SID estimate as 

W,YtlT+P=W, = &&+I‘ + &gmT: (62) 

f, = w;‘& (63) 

See also VanOverschee and DeMoor (1994a), 
where a slightly different definition of the 
column weighting is used. From the previous 
discussion, we have the following result. 

Theorem 2. Assume that the matrix 

exists and has full rank it. Then any choice of 
positive-definite weighting matrices W, and W, 
in (62) and (63) results in a consistent estimate 
of TV. 

As in previous schemes, the system matrices A 
and C can be consistently estimated from f,, 
whereas the matrices A and C can be 
consistently estimated from f,, whereas the 
matrices B and D can be estimated similarly to 
(27). An alternative is to apply the method 
proposed in VanOverschee and Demoor 
(1994b), which would yield the whole stochastic 
representation (30) (31). 

More explicit requirements on the input 
sequence for guaranteeing (64) to hold appear 
not to be available, although one could loosely 
state that the relation is ‘generically true’. An 
obvious requirement is that the number of rows 
in P be at least n, which yields p 2 nl(m + I). It 
is easy to see that, for example, a white noise 
input fulfills (64) under Assumptions 1 and 2. 
Recently, the problem of how to choose the 
weighting matrices in (62) has attracted some 
attention, although no optimal choice is avail- 
able. Following the general theory of IVMs (see 
e.g. Sijderstrom and Stoica, 1989), natural 
candidates for the weighting matrices are 

w, = (YrII+Y;)-“2, (65) 

w, = (PPT))“2. (66) 

This choice is motivated by the desire to 

prewhiten the data as well as the instruments. 
There is also a clear relation to canonical 
analysis (see Larimore, 1990; VanOverschee and 
DeMoor, 1994a). 

Another possibility for relating 4SID methods 
to classical techniques is suggested in Jansson 
and Wahlberg (1994). The idea is essentially to 
replace the unknown state in (39) by a 
reconstructed state from an optimal observer, 
i.e. a Kalman filter. A similar interpretation is 
given in VanOverschee and DeMoor (1994b). 
Replacing X, in (39) by an estimate derived from 
the known inputs and outputs (but keeping the 
observer gain a free parameter) results in a 
linear regression equation. A ‘standard’ least- 
squares technique or an IVM can be applied to 
this equation, leading to a method with more 
familiar structure than previous subspace 
methods. 

Regarding optimization of the second step, 
namely estimation of the system matrices, an 
initial attempt is presented in Ottersten and 
Viberg (1994). The inspiration is taken from the 
structure of the WSF criterion (60). However, a 
vectorized version of the ‘regression equation’ 
0, = P,,T is considered, because of the more 
complicated nature of the errors in 0,. Clearly, 
this expansion of the dimensions significantly 
increases the computational complexity of the 
resulting algorithm. Furthermore, only estima- 
tion of the system poles is considered in 
Ottersten and Viberg (1994). This brings up a 
dilemma when analyzing the performance of 
4SID methods. One attractive feature of these 
techniques is that no canonical parameterization 
of the system matrices is employed. However, 
when comparing the performance of different 
algorithms, such a parameterization is indeed 
necessary. The simplest possible canonical 
parameters are the system poles, and accurate 
pole estimation is certainly relevant, for instance 
for control design. However, there are other 
important aspects not captured by the system 
poles, and a more complete analysis is of 
interest. A promising possibility is to consider 
the accuracy in the frequency domain. For this 
purpose, a frequency-domain method as pro- 
posed in McKelvey et al. (1994) is a natural 
choice. We expect an interesting development 
along these lines in the near future. 

Deriving formulas for the bias distribution and 
in particular instruments for affecting this 
distribution is perhaps an even more challenging 
problem. An interesting interpretation that 
connects row weighting of the subspace with 
prefiltering is presented in VanOverschee and 
DeMoor (1994a). Promising connections to 
Hankel-norm model reduction are also pointed 
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out. However, the bias distribution is of course 
also better described in the frequency domain 
(Ljung, 1987). Thus also this aspect may be 
easier to answer for methods that operate 
directly in this domain. 

8. EXAMPLES 

In this section the results of some computer 
simulations are presented to illustrate the 
performance of the varius 4SID methods, and to 
compare with PEM’s. The fifth-order SISO 
system depicted in Fig. 1 is used as a benchmark 
plant. The noise sequences w, and u, are 
zero-mean, white and Gaussian, with variances 
r ww and r,,. The numerator and denominator 
polynomials are 

B(q) = q-4(0.0275 + o.o551q-‘), 

A(q) = 1 - 2.3443q-’ + 3.081Oq-* - 2.5274q-” 

+ 1.2415q-4 - 0.3686q-‘. 

This system has a zero at -2 and poles at 
{0.9,0.8e*j, 0.8e*‘.2j}. The simulation results are 
based on 100 independent runs, each using a 
batch of N = 1000 samples of input-output data. 

Example 8.1: White noise input. In the first 
example, u, is chosen as a zero-mean white 
Gaussian noise with variance r,, = 1. The noise 
variances are r,, = 0.1 and r,, = 0.03. In Fig. 2 
the pole estimates for 100 different input and 
noise realizations are plotted. The methods 
considered are basic 4SID, PO-MOESP, 
weighted IV4SID with weights according to (65) 
and (66), and the system identification toolbox 
routine armax (Ljung, 1992), which implements 
a prediction-error method. The time delay in 
B(q) is assumed known when employing the 
PEM method, whereas the only information 
used by the 4SID techniques is the system order. 
For the latter techniques, the number of rows in 
the past and future input-output matrices are 
chosen as y = p = 10. The N4SID estimates are 
not included in the plot, since they are virtually 
identical to those of the MOESP method in this 
example. As expected, the basic 4SID estimates 
show a large bias due to the presence of w,. The 
MOESP and weighted IV-4SID estimates per- 
form similarly. Surprisingly, the pole estimates 
from the PEM method show a larger variability 
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Fig. 1. The simulated plant model. 

in this example. We also tried initializing the 
armax routine using the N4SID estimates, but 
without affecting the result significantly. 

Example 8.2: Sinusoidal input. For comparison, 
the input is in this example instead choosen as a 
sum of six sinusoids 

6 

u, = A c sin wit, 
i=l 

where the frequencies wi are uniformly spaced in 
the interval (0.1,3) rad s-‘, and where the 
amplitude A is adjusted to yield r,,,, = 1. Note 
that at least five sinusoids are necessary to 
enable consistent estimation of a fifth-order 
system. Since we require (37) to hold, the 
maximum allowable (Y = y + ,0 is 12. Thus, we 
choose y = /3 = 6 for the 4SID methods. The 
noise variances are taken as r,, = r,, = 10p4. 
The results for the N4SID, MOESP, weighted 
IV4SID and PEM methods are displayed in Fig. 
3. As seen in the figure, the 4SID methods 
perform considerably worse than the optimal 
PEM technique for this poorly exciting input 
signal.? Although not shown here, for increasing 
numbers of sinusoids the 4SID estimates become 
more accurate, and for 10 sinusoids the 
difference between 4SID and PEM is again 
negligible. 

9. CONCLUSIONS 

The aim of this paper has been to give a 
guided tour through the somewhat scattered land 
of subspace-based methods for system identifica- 
tion. In an attempt to organize efforts, the 
different methods have been grouped into the 
realization-based and the direct 4SID methods. 
The members of the former class explicitly form 
estimates of the impulse response parameters, 
whereas the direct methods are based on 
geometrical properties of the input-output 
relation (15). A number of similarities between 
different methods are pointed out. In particular, 
the basic 4SID methods considered in Section 
3.2 are all found to produce identical estimates. 
Connections between the instrumental-variable- 
based subspace methods have also been 
presented, and a suggestion for improving the 
accuracy outlined. Some trends in the current 
research efforts have been briefly discussed. 

In our opinion, the most promising type of 
methods for identification of general state-space 
models with both deterministic and stochastic 

t A modification of the N4SID method has been 
developed, resulting in improved performance for this 
example-but still far from that of the PEM method 
(VanOverschee, 1995). 
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Fig. 2. Scatter plot of pole estimates for various methods, with a white noise input signal. True pole locations are indicated by 
crosses. 

states appears to be the instrumental-variable- 
based techniques. If an output-error model is 
desired, a frequency-domain implementation of 
a realization-based method is a strong candidate. 
It should be stressed that the field is still quite 
immature, and further insights that disqualify the 
opinions presented here can be expected. The 
popularity of the subspace methods is to a great 
extent due to their success in a number of 
real-world applications (see e.g. Liu and Skelton, 
1991; Liu et al., 1992; VanOverschee and 
DeMoor, 1994b; Abrahamsson et al., 1994; Zhu 
et al., 1994). The underlying theory is not yet 
fully understood, and much work in terms of 
analysis and performance optimization remains 
to be done. In the simulation scenario of Section 

8, the IV-based 4SID methods are clearly 
competitive compared with the ‘optimal’ PEM 
method when the input signal is chosen as white 
noise. However, if the input is more poorly 
exciting (six sinusoids in Example 2), the 
performance of the 4SID techniques deteriorates 
significantly. This observation suggests that the 
4SID methods are more sensitive to poor 
excitation of the system than are the traditional 
identification methods. Further work for pin- 
pointing the problem and suggesting remedies is 
necessary. 

The connections to the sensor array signal 
processing problem have been pointed out. The 
array problem is considerably simpler than the 
one considered here. With reference to the 
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Fig. 3. Scatter plot of pole estimates for various methods. The input signal is a sum of sinusoids. True pole locations are indicated 
by crosses. 

input-output relation (39), the state variable x, 
can be assumed temporally white in the array 
case, the input u(t) does not appear, and the 
noise term Yr,e(t) is temporally and spatially 
white. For this problem, subspace-based methods 
providing minimum-variance estimates are 
known (see Section6). It remains to be 
discovered whether or not similar results exist 
for the more complicated multivariable system 
identification problem. 
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