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ABSTRACT

The star-spar buoy employed in this study is a small buoy system for omni-

directional wave energy harvesting, and it has been designed for the system to resonate

at a dominant period of 2.25 seconds in heave motion. However, this design frequency

must be verified through experiments. The objective of this study is thus to obtain the

frequency and damping, associated with the heave motion of the star-spar buoy through

tank and sea experiments. Two specific time domain modal identification techniques

to be utilized in this study are eigensystem realization algorithm (ERA) and stochastic

subspace identification (SSI). ERA is a deterministic (input-output) modal identification

technique and SSI is a stochastic (output-only) technique.

Traditionally, the discrete Fourier transform of a digital signal has been employed

as a signal decomposition technique, as well as a modal identification technique by pick-

ing the peaks from its Fourier spectrum. However, the purposes and concepts of signal

decomposition and modal identification are very different. While the performance of

a signal decomposition technique would be judged based on the fitting between the re-

constructed signal and the original signal, that of a modal identification technique could

be judged based on whether identified modal parameters are close to the true modal

parameters. When true modal parameters are unknown, the performance of a modal

identification technique usually would be judged based on a stabilization diagram.

When a response signal, from either the tank test or the sea test, is modeled as

the sum of many damped harmonic components, the numerical studies in this thesis

demonstrates that using ERA to estimate component frequencies and damping ratios,

together with a least-squares solution for getting amplitudes and phase angles, is an

excellent signal decomposition technique. For modal identification, SSI is found to be

better than ERA, and is a very efficient method for both the tank and the sea test data.

In their theoretical derivations, both ERA and SSI methods assume that the dynam-



ic system is a time-invariant linear system. However, the real buoy-fluid system under

investigation must be a nonlinear system, thus to apply ERA or SSI, a first approxima-

tion is to treat the dynamic system to be piecewise linear, i.e. linear within a short peri-

od. In this study, introducing a sliding window is for assuming that the system is linear

within the window duration. With this sliding window, an ERA-based time-frequency

analysis, in parallel to the short time Fourier transform (STFT), has been conducted. It

was concluded that using ERA-based analysis could overcome the frequency resolution

and leakage problems.
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CHAPTER 1

Introduction

1.1 Star-spar buoy

The star-spar buoy employed in this study, designed by the University of Rhode

Island (URI) and Electro Standards Laboratories Inc. (ESL), is a small buoy system for

omni-directional wave energy harvesting. The targeted application for this system is not

large energy production for single units, but instead the development of simple, easily

deployable, and storm resilient systems, to provide a renewable wave power source of

1 kW for distributed marine surveillance and instrumentation systems [1]. Shown in

Fig.1 is a 1:4 scale model that is to be studied for its dynamic characteristics in this

thesis. This star-spar is a self-contained (water tight) resonating buoy, in which a longer

central spar is surrounded by shallower, satellite spars, providing both form stability and

a reduced overall average draft (necessary to achieve a proper heave resonance period).

The longer central spar, equipped with an embedded Linear Electric Generator (LEG)

whose armature motion is excited primarily by the buoys wave-induced heave. Hence,

LEG oscillations are maximized by matching buoy heave and LEG natural periods.

Figure 1. Star-spar buoy model
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The employed star-spar buoy has been designed for the system to resonate at a dom-

inant period of 2.25 seconds. However, this design frequency must be verified through

experiments. Beside the system frequency, another important design parameter which

would effect the efficiency of the power generator is the damping of the buoy system

as the damping would reduce the amplitude of the oscillation of the buoy system [2].

The only way to find out the damping of the system is through experiments. In other

words, it requires dealing with an inverse problem mathematically, that is, to estimate

the system parameters from the measured response time history of the buoy.

1.2 Experimental modal analysis

The main objective of this study is to obtain the frequency and damping associated

with the heave motion of the star-spar buoy through tank and field experiments. Exper-

imental modal analysis (EMA) [3, 4] is a process of determining the modal parameters

(natural frequencies, damping factors and mode shapes) of a dynamic system using the

measured data. With the estimated modal parameters, we can validate and update ana-

lytical and numerical models, and also gain the knowledge of the true dynamics of the

designed structure, thus also monitor the health of the structure [5]. In the past decades,

many modal parameter identification methods have been developed, and they can be

divided into two broad categories: frequency domain and time domain methods. Early

methods of modal identification were developed for the frequency domain. The simplest

frequency approach to estimate the modal parameters of a structure subjected to ambient

loading is the so-called peak-picking (PP) method [6]. The basic peak-picking method

finds the eigenfrequencies as the peaks of non-parametric spectrum estimates. This fre-

quency selection procedure becomes a subjective task in case of noisy operational data,

weakly excited modes and relatively close eigenfrequencies. Furthermore, for damping

estimation, the related half-power bandwidth method is not reliable at all. Partially be-

cause of limitations in the frequency resolution of spectral estimates and leakage errors

2



in the estimates for the frequency domain methods, the new trend is to employ either

input-output or output-only time-domain modal identification methods [7]. Although

many time-domain techniques have been employed for estimating the modal properties

of mechanical and civil structures, such as cars, aircrafts, bridges, offshore platforms,

etc, none of these methods, to the best knowledge of the author, have been utilized for

ocean buoys.

To be utilized in this study are two specific time domain modal identification tech-

niques: eigensystem realization algorithm (ERA) and stochastic subspace identification

(SSI). ERA is a deterministic (input-output) modal identification technique, while SSI

is a stochastic (output-only) technique.

1.3 ERA and SSI methods

Although ERA and SSI techniques are intended for different testing conditions,

they share a number of similarities in mathematics. For example, both methods use a

state-space model for the equation of motion, both must pre-determine the number of

modes that have contributed to measured response signal, and both employ truncated

singular value decomposition (TSVD) to reduce the model order. A brief description of

both methods is given below to show their similarities and differences, and the detailed

description of ERA and SSI methods is provided in chapter 2.

ERA

The eigensystem realization algorithm is a modal analysis technique which gener-

ates a system realization using pulse response data. ERA was first proposed by Juang

and Pappa (1985) for modal parameter identification and model reduction of linear dy-

namical systems. In the early eighties when multi-input multi-output (MIMO) testing

became popular, ERA was developed to handle MIMO test data. Today, ERA method

has become one of the most popular methods in civil engineering applications for ex-

3



perimental modal analysis. Based on a deterministic input-output mathematical model,

ERA begins with the discrete-time version of the state-space representation:

xk+1 = Axk + Buk (1)

yk = Cxk

where k is the time index, and x ∈ Rn, u ∈ Rm and y ∈ Rl are the state, input, and out-

put vectors, respectively. The system model order is n, number of input m, and number

of output l. The eigen values of the system matrix A ∈ Rn×n contain the information

of modal frequencies and damping factors. The fact that ERA is based on the Markov

parameters (i.e., pulse response) makes it possible to construct a block Hankel matrix as

the basis for realization of a discrete-time state-space model. Developed based on the

minimum realization theory, ERA identifies A ∈ Rn×n within the similarity transfor-

mation. In handling noisy signals, ERA partitions the realized model into principal and

perturbational (noise) portions so that the noise portion can be disregarded. Although

ERA method was theoretically developed on the basis of the excitation being impulsive

loading, ERA method is also theoretically applicable to step relaxation testing. Both

impulsive loading and step relaxation testing procedures do not impose external loading

to the testing structure after the initial time.

SSI

Output-only modal identification methods became very useful when the input is un-

known or unmeasurable. Without the knowledge of the real input, mathematically it is

logical to assume that the excitation input is a zero-mean Gaussian white noise process.

Because of this random white noise assumption, all output-only modal identification

methods fall into the category of stochastic system identification. The stochastic sub-

space identification (SSI) employed in this study is one of the most advanced stochastic

system identification techniques. The major break-through of SSI algorithms happened

4



in 1996 with the publishing of the book by van Overschee and De Moor. SSI is a

projection-driven method which has been a proven method for a variety of engineering

applications.

When no deterministic forces except the stochastic components (noise) are includ-

ed, the equation of motion for the dynamic system can be written in a discrete-time

stochastic state-space model as:

xk+1 = Axk + wk (2)

yk = Cxk + vk

where wk ∈ Rn is the process noise due to disturbances and modelling inaccuracies and

vk ∈ Rl is the measurement noise due to sensor inaccuracy. They are both unmeasurable

vector signals, but it is assumed that they are zero mean, stationary, Gaussian white noise

processes.

Because SSI method has been theoretically developed for the excitation term being

a zero-mean Gaussian white noise process, this method has been often perceived be to

only valid for the ambient white noise testing procedure. However, when the input white

noise process in SSI method is interpreted as ”system noise”, instead of ambient noise,

SSI method is also theoretically applicable to the impact loading and step relaxation

testing procedures.

1.4 Tests

Both tank and sea tests will be conducted for identifying the modal frequency and

damping corresponding to the heave motion of the scaled star-spar buoy. In the tank

test, a step relaxation testing procedure is to be followed, thus ERA will be the primary

method to be used. For the sea test, the wave load acting on the tested buoy is difficult

to measure, thus SSI will be utilized for estimating the modal frequency and damping.

Since real wave excitation can be expressed as the output of a suitable filter excited

5



with white noise input, some additional computational poles (frequencies and damping

ratios) unrelated to the buoy may appear as a result of the white noise assumption.

Tank Test

The tank test of star-spar buoy was conducted in the acoustics tank of Middleton

Building in the URI bay campus. The tank is 4 m wide, 7.6 m long, and 3.6 m deep.

In the step relaxation test, the buoy was pulled upward to a certain height above its

equilibrium position then released, and 60 sec of free decay heave acceleration data with

a sampling rate 640 Hz were collected. Due to the small size of the tank, the measured

response of the buoy would be affected by reflected waves. Thus, the measured response

data are corrupted free response data. During the tank test, the LEG was fixed and would

not oscillate under the buoy heave motion.

Sea Test

The sea test of the star-spar buoy was conducted in southwest of URI Narragansett

Bay campus. The buoy was transported from the laboratory to the pier and deployed by

a forklift jib crane into the water. It was then taken under tow by the R/V McMaster

to the test location. A colocated spherical waverider buoy was concurrently deployed

to measure the wave field in which buoy was operating. The star-spar buoy was instru-

mented to measure and record accelerometer data for buoy motion, electrical generator

output, electrical generator position, generator loading, and charging circuit conditions.

The buoy was released and allowed to heave and drift in an un-tethered fashion. During

the test, the tide was ebbing with a mean current flow to the South. The wind was SSW

at 10-15 knots. 3600 second of acceleration data with a sampling rate 64 Hz were col-

lected. The LEG is free in the sea test and it oscillates as a result of buoy heave through

coupled resonance.

6



1.5 Thesis Layout

This thesis consists of 5 chapters. Chapter 1 presents an introduction on the

star-spar buoy under investigation, the deterministic and stochastic modal identifica-

tion methods employed to estimate the modal properties of the star-spar buoy, and tank

and field tests. Chapter 2 provides the mathematical background for those methods to

be utilized in the following chapters, including Short Time Fourier Transform (STFT),

Eigensystem Realization Algorithm (ERA) and Stochastic Subspace Identification (S-

SI). Chapters 3 and 4 analyze the data collected from the tank and sea test, respectively.

Because the interaction between buoy and surrounding fluid, the buoy-fluid system is a

highly nonlinear system. It is a first approximation to treat this nonlinear system to be

piecewise linear; consequently, a time-frequency analysis using short time Fourier trans-

form will be conducted. It can be shown that a similar time-frequency analysis using

ERA concept can also be performed. Both ERA and SSI methods will be implemented

for estimating the modal frequency and damping ratio of the buoy-fluid system using

tank and sea test data. Chapter 5 contains the conclusions of the presented work. Since

the research in modal identification for buoy-fluid system is far from being well-studied,

the major open problems are also listed.
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CHAPTER 2

Preliminaries

This chapter provides the necessary mathematical background to conduct the sig-

nal analysis and modal identification for chapters 3 and 4. It includes a review of the

short-time Fourier transform (STFT) for time-frequency signal analysis, Eigen-system

realization algorithm (ERA) for deterministic system identification and stochastic sub-

space identification (SSI) for deterministic system identification, together with the in-

troduction of Prony series for signal reconstruction.

2.1 Short Time Fourier Transform

Due to the fluid-structure interaction, the dynamics of any ocean buoy is likely to be

nonlinear in nature. Thus, to analyze the frequency of the measured response signals of

an ocean buoy is better to provide information on how the frequency changes over time.

Among a number of time-frequency analysis techniques, the simplest and most popular

one is the short-time Fourier transform (STFT) [8], which determines the sinusoidal

frequency and phase content of local sections of a signal as it changes over time.

2.1.1 Continuous STFT

In the continuous-time case, the function to be transformed is simply multiplied

by a window function which is nonzero for only a short period of time. The Fourier

transform (a one-dimensional function) of the resulting signal is taken as the window is

sliding along the time axis, resulting in a two-dimensional representation of the signal.

Mathematically, this is written as:

STFT(τ, ω) ≡ X(τ, ω) =

∫ ∞
−∞

x(t)ω(t− τ)e−jωtdt (3)

where ω(t) is the window function, and x(t) is the signal to be transformed. X(τ, ω) is

essentially the Fourier Transform of x(t)ω(t − τ), a complex function representing the

8



phase and magnitude of the signal over time and frequency.

2.1.2 Discrete STFT

In the discrete time case, the data to be transformed could be broken up into chunks

of frames. Each chunk is Fourier transformed, and the complex result is added to a

matrix, which records magnitude and phase for each point in time and frequency. This

can be expressed as:

STFTx[n](m,ω) ≡ X(m,ω) =
∞∑
−∞

x[n]ω[n−m]e−jωn (4)

likewise, with signal x[n] and window ω[n]. In this case, m is discrete and ω is contin-

uous, but in most typical applications the STFT is performed on a computer using the

Fast Fourier Transform, so both variables are discrete and quantized.

2.2 Eigensystem Realization Algorithm

In the derivation of the Eigensystem realization algorithm, a time-invariant system

is described by its state-space representation as [9]:

ẋ = Acx + Bcu (5)

y = Cx

where x ∈ Rn, u ∈ Rm and y ∈ Rl are the state, input, and output vectors, respectively;

and n, m and l are the corresponding numbers of those vectors. The constant matrices

Ac, Bc, C with appropriate dimensions represent the internal operation of the linear

system.

The discrete-time version of the state-space representation is expressed as:

xk+1 = Axk + Buk (6)

yk = Cxk

where k is the time index, and constant matrices A and B are derivable from Ac and Bc.

When a unit impulse excitation is taken for each input element, the results from Eq. 6

9



can be assembled into a pulse-response matrix Yk ∈ Rm×l as follows:

Y1 = CB, Y2 = CAB, · · · ,Yk = CAk−1B (7)

The constant matrices in the sequence are known as Markov parameters. A system re-

alization is the computation of a triplet [A,B,C] from the Markov parameters shown

in Eq. 7, for which the discrete-time model, Eq. 6, is satisfied. Any system has an infi-

nite number of realizations which will predict the identical response for any particular

input, and a minimum realization means a model with the smallest state-space dimen-

sions among all realizable systems that have the same input-output relations. The basic

development of the state-space realization is attributed to Ho and Kalman [10] who in-

troduced the important principles of minimum realization theory.

System realization begins by forming the generalized αl × βm Hankel matrix,

composed of the Markov parameters from Eq. 7:

H(k − 1) =


Yk Yk+1 · · · Yk+β−1

Yk+1 Yk+2 · · · Yk+β

· · · · · · · · · · · ·
Yk+α−1 Yk+α · · · Yk+α+β−1

 (8)

where α is the number of block rows in block Hankel matrix and β is the number of

block columns. In contrast to classical system realization methods which use the gen-

eralized Hankel matrix given in Eq. 8, the ERA algorithm begins by forming an ERA

block data matrix which is obtained by deleting some rows and columns of the general-

ized Hankel matrix of Eq. 8, but maintaining the first block matrix, Yk, intact. Further-

more, the standard ordering of entries in the generalized Hankel matrix does not need

to be maintained. However, for the simplicity of presentation in this paper, we use the

block Hankel matrix given in Eq. 8 as the ERA block data matrix.

After substituting the Markov parameters from Eq. 7 into Eq. 8, H(k − 1) can be

decomposed into three matrices:

H(k − 1) = PαAk−1Qβ (9)
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where the block matrix Pα is the observability matrix

Pα =


C

CA
CA2

· · ·
CAα−1

 ∈ Rαl×n (10)

and the block matrix Qβ is the controllability matrix:

Qβ = [ B AB A2B · · · Aβ−1B ] ∈ Rn×βm (11)

In particular, substituting k = 1 and k = 2 into Eq. 9 yields

H(0) = PαQβ (12)

and

H(1) = PαAQβ (13)

The ERA process starts with the factorization of H(0), which is obtained by re-

placing k = 1 in Eq. 8, using singular value decomposition [11],

H(0) = USVT = [ U1 U2 ]

[
S1 0
0 0

] [
VT

1

VT
2

]
(14)

where the columns of matrices U and V are orthonormal and U1 and V1 are the matrices

formed by the first n columns of U and V, respectively; S1 = diag[σ1, σ2, · · · , σn] with

monotonically non-increasing σi, i.e. σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Comparison of Eqs. 12 and 14 suggests that Pα is related to U1 and Qβ is related

to VT
1 . Indeed, one possible choice is Pα = U1S

1/2
1 and Qβ = S

1/2
1 VT

1 . This choice

appears to make both Pα and Qβ balanced. With substituting these choices for Pα and

Qβ into Eq. 13, one obtains that

H(1) = PαAQβ = U1S
1/2
1 AS

1/2
1 VT

1 (15)

Premultipling S
1/2
1 U1 and postmultiplying V1S

1/2
1 at Eq. 15 yields a minimum realiza-

tion of A as

Â = S
−1/2
1 UT

1 H(1)V1S
−1/2
1 (16)
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Here the quantities with “Â” mean estimated quantities to distinguish from the true

quantities.

From Eqs. 10 and 11, it is clear that the first m columns form the input matrix B

whereas the first l rows form the output matrix C.

2.2.1 Postprocessing

The realized discrete-time model represented by the matrices [Â, B̂, Ĉ] can be

transformed to the continuous-time model. The system frequencies and dampings may

then be computed from the eigenvalues of the estimated continuous-time state matrix.

Assuming that the state matrix A of order n has a complete set of linearly in-

dependent eigenvectors Ψ = [ψ1,ψ2, · · · ,ψn] with corresponding eigenvalues Λ =

diag(λ1, λ2, · · · , λn) which are not necessarily distinct, we have

AΨ = ΨΛ (17)

or

Λ = Ψ−1AΨ (18)

The realization [A,B,C] can then be transformed to the realization [Λ,ψ−1B,Cψ] in

the modal coordinates. The diagonal matrix Λ contains the information of modal damp-

ing rates and damped natural frequencies. The matrix ψ−1B defines the initial modal

amplitudes and the matrix Cψ the mode shapes at the sensor points. All the modal

parameters of a dynamic system can thus be identified by the triplet [Λ,ψ−1B,Cψ].

Because of the relation

A = exp(Ac∆t) (19)

or

Λ = exp(Λc∆t) (20)
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The desired modal damping rates and damped natural frequencies are simply the real

and imaginary parts of the eigenvalues Λc, after transformation from the discrete-time

domain to the continuous-time domain using the relation Λc = ln(Λ)/4t.

The values of Λc occur in complex conjugated pairs and can be written as

λcq , λ
∗
cq = −ξqωq ± jω′q (21)

where ξq is the modal damping ratio of mode q, and ωq, ω′q = ωq
√

1− ξ2
q are the

undamped and damped eigenfrequencies of mode q (rad/s). Form the above equation,

we have

ω′q = Im(λq) (22)

ωq = |λq|

ξq =
−Re(λq)

|λq|

In this section, it has been shown how the modal parameters could be extracted analyti-

cally from the identified system matrices A and C.

2.3 Stochastic Subspace Identification

The stochastic subspace identification (SSI) method has been a proven method for

a variety of engineering applications [12]. The detailed description of the SSI method is

provided in [13], and a brief of the SSI method is presented below [14].

When no deterministic forces except the stochastic components (noise) are includ-

ed, we have the following discrete-time stochastic state-space model for a dynamic sys-

tem:

xk+1 = Axk + wk (23)

yk = Cxk + vk

where A ∈ Rn×n and C ∈ Rl×n are the system and measurement matrices, respectively;

n is the number of state variables and l is the number of the output sensors; wk ∈ Rn
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is the process noise due to disturbances and modelling inaccuracies and vk ∈ Rl is the

measurement noise due to sensor inaccuracy. They are both unmeasurable vector signals

but we assume that they are zero mean, stationary, white noise vector sequences with

covariance matrices:

E

[(
wp

vp

)
(wT

q vTq )

]
=

(
Q S
ST R

)
δpq (24)

where E is the expected value operator and δpq is the Kronecker delta. The matrices Q ∈

Rn×n, S ∈ Rn×l and R ∈ Rl×l are the auto- and cross-covariance matrices associated

with the noise sequences wk and vk.

In the first step of the SSI method, the output measurements yk ∈ Rl are gathered

in a block Hankel matrix H with 2 i block rows and j columns:

H =



y0 y1 · · · yj−1

y1 y2 · · · yj
· · · · · · · · · · · ·
yi−1 yi · · · yi+j−2

yi yi+1 · · · yi+j−1

yi+1 yi+2 · · · yi+j
· · · · · · · · · · · ·

y2i−1 y2i · · · y2i+j−2


=

(
Yp

Yf

)
(25)

where the time index k = 0, · · · , s and s = 2i + j − 2. The matrices Yp and Yf are

defined by splitting H into two parts of i block rows, in which the subscripts p and f

stand for past and future. The projection of the row space of future outputs into the row

space of past outputs is defined as:

Pi = Yf/Yp = YfY
T
p (YpY

T
p )†Yp (26)

Numerically, a more effective way to obtain Pi is via the QR-factorization of H, instead

of implementing the above equation directly.

Applying the singular value decomposition of Pi yields:

Pi = ( U1 U2 )

(
S1 0
0 0

)(
VT

1

VT
2

)
= U1S1V

T
1 (27)
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The order of the system, n, is equal to the number of singular values in Eqn. (27) dif-

ferent from zero, i.e. rank(Pi) = n. We have U1 ∈ Rli×n, S1 ∈ Rn×n and V1 ∈ Rj×n.

For theoretical data, the singular values should go to zero when the rank of the matrix is

exceeded. For measured data, however, due to random errors and small inconsistencies

in the data, the singular values will not become zero but will become very small [15].

The main theorem of stochastic subspace identification states that the projection

Pi is equal to the product of the observability matrix Γi and the Kalman filter state

sequence X̂i:

Pi = ΓiX̂i (28)

where the extended observability matrix Γi is

Γi =


C

CA
CA2

· · ·
CAi−1

 ∈ Rli×n (29)

and the forward Kalman filter state sequence

X̂i =
(

x̂i x̂i+1 · · · x̂i+j−2 x̂i+j−1

)
∈ Rn×j (30)

This theorem can algebraically be summarized as follows: (1) rank of Pi = n, (2)

row space of Pi = row space of Γi, and (3) column space of Pi = column space X̂i.

This summary is the essence of why the projection-based algorithm has been called a

subspace algorithm: it retrieves system related matrices as subspaces of projected data

matrices.

Our focus on using the SSI is to obtain realizations for system matrices A and C,

as the modal frequency, damping and mode shape, can be extracted analytically from

the realized Â and Ĉ. While one possible way of obtaining Γi is

Γi = U1S
1/2
1 (31)
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a possible realization Â can now be determined from the extended observability matrix

by making use of the shift structure of the matrix Γi. Denote Γi as the extended ob-

servability matrix Γi without the first l rows, and Γi the extended observability matrix

Γi without the last l rows. Observing Eqn. (29), we can easily show Γi = ΓiA, which

suggests a possible realization being:

Â = Γ†iΓi (32)

where “†” is the pseudo inverse operation. Furthermore, one possible realization for the

measurement matrix Ĉ can be obtained from the first l rows of Γi.

2.4 Using Prony Series for Signal Reconstruction

The so-called Prony series [16] is a linear combination of exponentials with real-

valued and/or complex-valued exponents for the signal:

y(t) =

p∑
n=1

γne
λnt 0 ≤ t ≤ T (33)

where p is the number of terms. In Eq. 33, because y(t) is a real-valued signal, λn

must either be real numbers or occur in complex conjugate pairs (not limited to be pure

imaginary). Let λn ≡ −αn + iωn, then αn is the damping factor in seconds−1 and ωn

is the frequency in radians. The coefficients γn corresponding to complex exponents

λn must also appear in complex conjugate pairs. Let γn ≡ An exp(iθn), then An is the

amplitude and θn is the sinusoidal initial phase in radians associated with eλnt.

Eq. 33 is a continuous time series. In digital signal analysis, the continuous y(t) is

not known, and only equally spaced samples are available. Denoting sampling interval

∆t, tk = k∆t, and yk = y(tk), where k = 0, 1, ..., N − 1, we have the Prony series in

discrete time as:

yk =

p∑
n=1

γnz
k
n (34)

where zn = eλn∆t.
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In this study, once zn, n = 1, ..., p, have been obtained by either ERA or SSI

method, γn can be estimated by solving the matrix equation
z0

1 z0
2 . . . z0

p

z1
1 z1

2 . . . z1
p

...
... . . . ...

zN−1
1 zN−1

2 . . . zN−1
p




γ1

γ2
...
γp

 =


y0

y1
...

yN−1

 (35)

in the least-squares sense. The matrix form given in Eq. 35 has been derived from

repeatedly using Eq. 34. From γn, the corresponding amplitude and phase angle can

then be calculated. After obtaining the frequency, damping ratio, initial amplitude and

phase angle for each component, a reconstructed signal can be obtained by adding up

all components.
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CHAPTER 3

Tank Testing

3.1 Tank Experiment Set Up

The buoy under investigation is a self contained (water tight) multiple-spar buoy

(Fig.2), in which the longer central spar is surrounded by shallower, satellite spars, pro-

viding both form stability and a reduced overall average draft of the system (necessary

to achieve a proper heave resonance period). Inside of the longer central spar, a Linear

Electric Generator (Fig.3) is housed and suspended and has a massive ballast simply

suspended to the bottom of its magnetic armature.

2. Star-spar buoy model 3. LEG model.

While conducting the laboratory and field testing, three three-axis (WIFI) ac-

celerometers were mounted within the buoy models: one measured the central spar and

another two measured satellite spars motions. For this thesis, however, only the heave

motion data from the central spar is utilized for analysis.
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In the tank test, the buoy is released from an initial position which is upwards

from its equilibrium position in still water. Under an ideal situation, the buoy would

undergo a clean damped free oscillation. However, due to the small size of the testing

tank(4m× 7.6m× 3.6m), the measured response signal would be contaminated by the

reflected waves. A 60-sec of acceleration data, with sampling rate 640 Hz, is shown in

Fig. 4. The signal seems to exhibit the beating phenomenon which might be caused by

the summation of components with close frequencies.
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Figure 4. Tank Test Data

3.2 Short Time Fourier Transform Analysis

A plot of the STFT of the signal presented in Fig. 4 is shown in Fig.5, which has

been obtained by using a sliding window with length 10 s (thus the frequency resolution

is 0.1 Hz), and the sliding distance (time resolution) 0.1 s. The image of the STFT

is not only limited by its frequency resolution, but also suffers the leakage problem

inherited from using discrete Fourier transform (DFT). The effect of leakage suggests

also that the peak amplitude associated with the STFT image is most likely smaller than

the corresponding true amplitude.
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Figure 5. Short Time Fourier Transform of Tank Test Data

3.3 Tank Test Data Analysis by ERA
3.3.1 System Identification

While carrying out the eigensystem realization algorithm for the tank data, the Han-

kel matrix has been chosen close to a square matrix for the purpose of rejecting much

noise in the modal identification. Determining the model order (or number of modes)

that have contributed to the analyzed acceleration signal is by estimating the rank of the

chosen Hankel matrix. For a response signal contributed only by M modes, the rank

of the Hankel matrix should be 2M , which is twice the number of modes contained to

the signal. Estimating the rank of a matrix (based on a chosen singular value threshold)

could be done if the singular values of the matrix have been ordered sequentially from

the largest to the smallest. A conventional way to choose the noise threshold is to find

a significant gap of the normalized singular values, but the choice of the noise threshold

is always subjective because the weak signals and noise components are hard to sepa-

rate. The normalized singular value diagram in Fig. 6 indicates that the measured signal

might have one dominant component (at rank=2), one weak component (at rank=4), and
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one very weak component (at rank=6), together with much noise. Table.1 lists the es-

timated frequency and damping ratio from the tank test data by ERA when the model

order is chosen equal to 2, 4 and 6, respectively.
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Figure 6. Normalized Singular Value Diagram of Tank Data by ERA

Table 1. Estimated frequency and damping ratio from the tank test data by ERA
Model Order Frequency (Hz) Damping ratio

2 0.4971 0.0257
4 0.4983 0.0691

0.4830 0.0282
6 0.4619 0.0120

0.4901 0.0245
0.5021 0.1523

Often a better way to identify all poles should be through the combined usage of

a stabilization diagram though. The stability diagram shown in Fig.7 is obtained from

implementing ERA method by selecting the model orders ranged from 2 to 30, in which

21



poles are labeled as stable when they are within the limitations of 1% difference for

frequency and 5% for damping ratio among two consecutive model orders, namely:

|f (n) − f (n+1)|
f (n)

< 1%
|ξ(n) − ξ(n+1)|

ξ(n)
< 5%

where f (n) and ξ(n) denote an estimated frequency and damping ratio with model

order n. Throughout this study, the same stability criteria are applied to all stability

diagrams. Fig.7 suggests that increasing the model order would not result in a better

modal identification. When the model is taken equal to 4, two close frequencies are

estimated to be about 0.49 and 0.48 Hz. The blue curve in the background of stability

diagram is the DFT of the signal.
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Figure 7. Stability Diagram of Tank Data by ERA
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3.3.2 Time-Frequency Domain Analysis

The underlying assumption of ERA is that the dynamic system must be linear,

but the buoy-fluid system is most likely to be highly nonlinear. Using the concept of

a sliding window is to assume that the system is linear within the adopted window

length. Clearly, the sliding window should be small enough to ensure that the system

is approximately linear within the window length, but should be big enough to have

enough data to reliably estimate the system frequencies and damping ratios. Larger

windows also result in increased temporal smoothing. In any statistical undertaking,

there is usually some trade-off between accuracy and reliability. Generally, any increase

in accuracy comes at the expense of reliability.

With the sliding windows having length equal to 2s, 4s and 6s, and sliding distance

0.078125 s, Figs. 8(a) and 8(b) show the difference of estimated frequency and damping

ratio, respectively. Notice that the curves corresponding to the 2s window exhibit much

larger fluctuation in the estimated frequency and damping ratio. When the window

length increases, the corresponding curves for the estimated frequency and damping

ratio become smoother. As to be demonstrated later in the signal reconstruction, a

segment of 6 s reconstruction can match well with the measured segment. Thus, a

reasonable window length could be 6 s, since it reduces the undesirable fluctuation

while still preserving some of the temporal dynamics of interest. As the fluctuation

of the damping ratio is much higher than that of the frequency, this suggests that the

estimated damping ratio is less reliable than the estimated frequency.
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Figure 8. Testing the Influence of the Window Size using Tank Test Data by ERA

Time-frequency Image plots for amplitude and damping

Fig. 8(a) shows the variation of the estimated frequency over time, but it does not

provide the information about the corresponding amplitude of the component. Similar

to the STFT image plot, Fig.9 presents the amplitude image while using ERA with

the model order set equal to 10. The color intensity in the plot represents the initial

amplitude of each damped components. Whereas the signal contains energy over a

range of frequencies up to 3 Hz, the dominant frequency component is close to 0.5 Hz.

Fig.10 is a enlarged plot Fig.9, with the frequency range of interest from 0.45Hz to

0.55Hz.
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Figure 9. Time series of amplitude image (model order=10) of tank test by ERA

Shown in Fig.11 is the amplitude image for the frequency range from 0.45Hz to

0.55Hz when the model order is set equal to 2. A direct comparison between Fig. 10

(for model order equal to 10) and Fig. 11 (for model order equal to 2) suggests that

they have very similar variation of the estimated frequency over time, but Fig. 11

corresponding to a lower model order exhibits a smoother variation than Fig. 10. The

significant variation of the estimated modal frequency over time also suggests that

either the buoy-fluid system is nonlinear or the free oscillation response has been

contaminated by reflected waves, or both.
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Figure 11. Time series of amplitude image (model order=2) of tank test by ERA

For completeness, Fig.12 shows the estimated damping image for the frequency

range from 0.45Hz to 0.55Hz when the model order is set equal to 2. It is difficult

to explain in physics why a negative damping occurs at the time around 20 s, but the
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signal shown in Fig. 4 certainly indicates that a negative damping (i.e. signal grows in

amplitude over time) is possible at the time around 20 s.
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Figure 12. Time series of damping image (model order=2) of tank test by ERA

3.3.3 Signal Reconstruction using ERA estimates

Fig.13(a) through Fig.13(d) display 4 reconstructed signals, together with the mea-

sured signal, generated by using Prony series (see Eq. 34) with the component param-

eters estimated by using ERA with model order set equal to 2. These 4 reconstructed

signals are based on window sizes equal to 1, 2, 4 and 6 seconds, respectively. The

results suggest that the reconstruction of a 6-second signal can still match the original

signal well.
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Figure 13. Comparison of reconstruction from different length of data by ERA

For a 6-second window, we also investigate the influence of the model order on

the curve fitting of the reconstructed signals. In Fig.14, the green and red curves are

based on model order equal to 10 and 2, respectively. Clearly, the curve fitting based

on model order 10 is much better than that model order 2. The black curve in Fig.14 is

the dominant component of the reconstructed signal with model order 10. Although the

measured signal is mainly contributed by this dominant component (black curve), the

fitting of the black curve (to the measured signal) is not as good as that of the red curve.
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Figure 14. Comparison of the reconstruction signal by ERA from tank data(6s)

3.4 Tank Test Data Analysis by SSI
3.4.1 System Identification

While implementing SSI-data method, an issue is related to the dimension of the

Hankel matrix H, i.e. i and j in Eq. 32 , produced from the measured signal. When H is

closer to a square matrix, it is more time consuming to perform the QR-factorization of

H and the SVD of Pi, and produces more number of singular values. On the other hand,

When 2i << j, performing the SVD of Pi is more computationally efficient, but might

yield the model order too low to absorb signal noise. In this study, a Hankel matrix with

i = 100 has been employed. The selection of i = 100 has not been completely arbitrary,

but a choice according to prior evaluation on various selections of i and j.
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Figure 15. Normalized Singular Value Diagram of Tank Data by SSI
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Figure 16. Stability Diagram of Tank Data by SSI

Fig.15 and Fig.16 show the normalized singular value diagram and stabilization

diagram, respectively. From Fig.15, it suggests that just one system pole would be

extracted from the measured signal. Clearly, Fig. 16 by SSI method gives a much

cleaner stabilization diagram than Fig.7 by ERA method. When the model order is set

equal to 2, the modal frequency and damping estimated by SSI method are 0.5025 Hz

and 0.0581, respectively.

3.4.2 Time-Frequency Domain Analysis

Similar to Fig. 8(a) and Fig.8(b) by using ERA, Fig.17(a) and Fig.17(b) by using

SSI show the the difference of the estimated frequency and damping ratio, respective-

ly, when the sliding windows are taken equal to 2s, 4s and 6s, with sliding distance
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0.078125 sec. As expected, when the window size is larger, the estimated curve will

become smoother.
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Figure 17. Testing the Influence of window size using Tank data by SSI

Image of Amplitude and Damping

Fig. 18 for SSI is the counterpart of Fig. 9 for ERA, when the model order has been

set equal to 10. The observation that Fig. 18 is much cleaner than Fig. 9 is not surprising

at all because just one system pole would be extracted from the measured signal while

using SSI method (see Fig.15). Furthermore, a zoom-in image from Fig. 18 is shown

in Fig.19 where the frequency range is from 0.45Hz to 0.55Hz. When the model order

has been set equal to 2, a similar image to Fig. 19 is shown in Fig. 20. Overall, the

difference between them is not much.
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Figure 18. Time series of amplitude image (model order=10) of tank test by SSI
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Figure 19. Time series of zoom in amplitude image (model order=10) of tank test by
SSI
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Figure 20. Time series of amplitude image (model order=2) of tank test by SSI

Fig. 21 shows the damping image when the model order is equal to 2, and it agrees

with Fig. 12 (by ERA) that negative damping occurs at the time around 20 s.
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Figure 21. Time series of damping image (model order=2) of tank test by SSI
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3.4.3 Signal Reconstruction using SSI estimates

Fig.22(a) through Fig.22(d), produced by the same way as Fig.13(a) through

Fig.13(d) except with the component parameters estimated by using SSI, suggest that

the reconstruction of a 6-second signal can still reasonably match the original signal.
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(b) Two Second
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(c) Four Second
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(d) Six Second

Figure 22. Comparison of reconstruction from different length of data by SSI

In a 6-second reconstruction, the green and red curves at Fig.23 are based on

model order equal to 10 and 2, respectively. The difference between these two curves is

insignificant, and neither curve matches the measured signal as good as the ERA curve

based on model order 10 (the green curve in Fig.14).
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Figure 23. Comparison of the reconstruction signal by SSI from tank data(6s) of tank
test by SSI

3.5 Summary and Discussion

The discrete Fourier transform of a signal can be viewed as a signal decomposi-

tion technique which decomposes a “periodic” signal into many harmonic components.

Sequentially, picking the peaks from the Fourier frequency spectrum has also been em-

ployed as a simple “modal identification” technique. However, the concept of modal

identification should not be confused with that of the signal decomposition. While the

performance of a signal decomposition technique can be judged based on the fitting

between the reconstructed signal and the original signal, that of a system identification

technique can be judged based on the evaluation of stabilization diagram if no true so-

lution is available.

Although ERA has long been perceived to be an effective modal identification

technique for dealing with free oscillation signal, it was found that ERA is not the best

modal identification technique if the free oscillation signal has been contaminated. In

dealing with the distorted free oscillation signal measured from a small tank, where
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the measured free oscillation signal would be affected by reflected waves, it was found

that SSI outperforms ERA for modal identification. While the stabilization diagram

associated with SSI exhibits one clean and stable pole, that associated with ERA does

not. While analyzing the whole 60-second response signal of the star-spar buoy, the

estimated modal frequency is 0.4971 Hz by ERA, and 0.5025 Hz by SSI when the

model order has been preset equal to 2. The corresponding damping ratios are 0.0257

and 0.0581, respectively. The agreement between ERA and SSI on the estimated modal

frequency is excellent, and that on the estimated damping ratio seems also reasonable

in view of the facts that the buoy-fluid system is nonlinear and that the free oscillation

data has been polluted by reflected waves.

The numerical study in this chapter also demonstrates that using ERA to estimate

component frequencies and damping ratios, together with a least-squares solution for

getting amplitudes and phase angels, is an excellent signal decomposition technique.

Whereas the time-frequency analysis by employing STFT is often limited by the fre-

quency resolution and suffers the frequency leakage problem, that by using ERA can

overcome both frequency resolution and leakage issues.
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CHAPTER 4

Sea Testing

4.1 Sea Experiment Set Up

The sea test of the star-spar buoy was conducted on July 2010 in Narragansett Bay,

RI. The buoy was taken under tow to the test location, then released and allowed to

heave and drift in an un-tethered fashion. A co-located spherical “waverider” buoy was

concurrently deployed to measure the wave field in which the buoy was operating. The

test location and ship track (in proximity to the buoy’s) is shown in Fig.24.

Figure 24. Test Location and Boat Track of the Sea Test

During the test, the tide was ebbing with a mean current flow to the South. The

wind was SSW at 10-15 knots. For the present study, a 3600-second acceleration data

(see Fig. 25) with a sampling rate 64 Hz will be utilized. It was noticed that several

sharp “spikes” are evident that occur concurrently on all data channels. The sharp

spike in the signal Fig. 25 is not noise, but is in fact, the mass-spring oscillator driving

the LEG reaching the maximum extent of its displacement and slamming into the top
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and bottom of its support structure. This impulsive acceleration vibrates the entire

structure and is detectable on all other data channels, including the satellite spars. This

phenomenon also represents energy that is lost to extraction.
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Figure 25. Sea test data

4.2 Short Time Fourier Transform Analysis

Fig.26(a) and Fig.26(b) are the image plots of the STFT of the sea test data,

using a 50-second sliding window and sliding distance 1 second each time. Due to the

50-second sliding window, the frequency resolution has been limited to 0.02 Hz [i.e.,

1/(window size in seconds)], and the Nyquist frequency is 32 Hz (a half of the sampling

frequency). These image plots indicate that most energy of the response signal is

around 0.5 Hz.
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Figure 26. Spectrum of STFT for sea test data

4.3 Sea Test Data Analysis by ERA
4.3.1 System Identification

Only the first 300 seconds of the above sea test signal is analyzed while implement-

ing ERA, and the normalized singular value diagram computed from the corresponding

square Hankel matrix associated with the 300-second signal is presented in Fig.27. From

this figure, we conclude that the 300-second signal has only one major damped harmon-

ic component, and a subjective noise threshold could be set at rank equal to 14 (i.e., 7

signal components). The stabilization diagram of using ERA for the 300-second signal

is shown in Fig.28, where 7 stable poles are clear, all with frequency between 0.4 and

0.52 Hz. Obviously, the discrete Fourier spectrum (see the background curve) can not

identify those 7 poles.
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Figure 27. Normalized Singular Value Diagram of sea test data (0∼300s) by ERA
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Figure 28. Stability Diagram of sea test data (0∼300s) by ERA

4.3.2 Signal Reconstruction

The part of signal from 135 to 175 second is taken to demonstrate the performance

of signal decomposition and reconstruction by using ERA. Observing the singular value
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diagram (Fig. 29) and the stabilization diagram (Fig. 30) suggests that there are 3 or

5 significant components. To have a better reconstruction, many more components are

necessary.
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Figure 29. Normalized Singular Value Diagram of sea test data (135∼175s) by ERA
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Figure 30. Stability Diagram of sea test data (135∼175s) by ERA

Shown in Figs. 31(a) through 31(d) are the reconstructed signals based on the first 3,

5, 9 and 16 components, respectively. Indeed, the first 3 components are most significant

to the reconstruction of the signal. When the first 16 components are included, it can

almost fully recover the measured signal.
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(b) 5 components
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Figure 31. Comparison of the reconstruction signals by using various numbers of com-
ponents

4.3.3 Time-Frequency Domain Analysis

While using ERA with the model order set equal to 20, Fig. 32 displays the ampli-

tude image for the time-frequency analysis, where the amplitude intensity is the initial

amplitude of each damped components. For the first 300 seconds of the sea test signal, it

contains components mainly having frequencies between 0.1 and 0.7 Hz, and most dom-

inant components between 0.4 and 0.5 Hz. This image plot is a significant improvement

over that of using STFT.
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Figure 32. Amplitude image of time-frequency analysis using sea test data (0 ∼ 300s)
by ERA

4.4 Sea Test Data Analysis by SSI
4.4.1 System Identification

Let the 3600-second sea test data be divided into 4 equal-length segments: 900

seconds for each segment. In this section, each 900-second segment is treated as an

independent test, and the results of modal identification from these four segments are

compared against each other. First, the normalized singular value curves associated

with those four segments are presented in Fig. 33. All 4 cures drop sharply between the

second and third singular values, an indication that all four segments are dominated by

a major component.
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Figure 33. Normalized Singular Value curves for four segments of the Sea Test Data
while using SSI method

The stabilization diagrams for those four segments are shown in Fig. 34 through

Fig. 37. They all are very clean, and have a stable pole at frequency near to 0.47 Hz.

For three out of those four figures, a less stable pole which is close to either 0.4 Hz or

0.3 Hz is likely associated with the dominant wave frequency.
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Figure 34. Stabilization diagram of segment I (from 0 to 900s) of the sea test data by
using SSI
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Figure 35. Stabilization diagram of segment II (from 900 to 1800s) of the sea test data
by using SSI
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Figure 36. Stabilization diagram of segment III (from 1800 to 2700s) of the sea test data
by using SSI
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Figure 37. Stabilization diagram of segment IV (from 2700 to 3600s) of the sea test data
by using SSI

Table 2 lists the estimated modal frequency and damping ratio from each of the four

segments. The estimated frequencies are in excellent agreement, ranged from 0.4711 to
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0.4786 Hz; the estimated damping ratios are very reasonable, ranged from 0.1450 to

0.2189. While the modal frequency would be affected by the added mass of the buoy-

wave system, the damping ratio would be affected by not only the added hydrodynamic

damping, but also the internal energy loss to the LEG power extraction.

Table 2. Estimated frequencies and damping ratios from four segments

Segment I II III IV
Frequency (Hz) 0.4717 0.4739 0.4786 0.4711
Damping ratio 0.2189 0.1450 0.1746 0.1804

4.4.2 Time-Frequency Domain Analysis

Because of the irregular wave motion and the highly nonlinear buoy-wave interac-

tion, the modal parameters of the buoy-wave system are expected to be time-varying. As

the modal frequency and damping ratio have been first estimated by using SSI method,

Figs. 38(a) through 39(b) show the amplitude and damping ratio images for the time-

frequency analysis.
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Figure 38. Time series of amplitude image of sea test data by SSI
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(a) Damping Image

 time

Fre
que

ncy

 

 

500 1000 1500 2000 2500 3000 3500
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0

0.05

0.1

0.15

0.2

0.25

(b) Zoom in Image

Figure 39. Time series of damping image of sea test data by SSI

4.5 Summary and Discussion

In this chapter, the same star-spar buoy which had been employed for the tank test-

ing study (in Chapter 3) was used for a sea testing study. The only different arrangement

for this power-generation buoy is that its LEG was “parked” (no oscillation for the LEG

device allowed) during the tank test and was in operation to generate power during the

sea test. The response level of the buoy-wave system would reduce whenever there is an

energy dissipation mechanism involved, and it makes no difference whether the energy

dissipation is due to the hydrodynamic damping or the conversion of mechanical power

to electric power through the LEG device. Due to the different arrangements for the

LEG, it is reasonable that the modal damping estimated from the sea test data is larger

than that estimated from the tank test data.

51



Using the sea test data, we conducted the signal decomposition/reconstruction,

time-frequency analysis, and modal identification for the buoy-wave system in this chap-

ter. The major findings and conclusions related to the ERA and SSI methods on signal

decomposition/reconstruction, time-frequency analysis and modal identification concur

with those stated in Chapter 3. First, it was demonstrated that using ERA to estimate

component frequencies and damping ratios, together with a least-squares solution to

compute amplitudes and phase angels, is an excellent technique for the signal decompo-

sition/reconstruction. Second, for the time-frequency analysis, applying STFT is simple

and fast, but often suffers a coarse frequency resolution and frequency leakages. In con-

trast, applying the ERA-based method for the time-frequency analysis can yield sharp

frequencies corresponding to a small number of components. Third, SSI is a very ef-

ficient modal identification method for the sea test data. The stabilization diagram of

using SSI exhibits one clean and stable pole. After breaking the whole 1-hour response

signal into 4 segments, the estimated modal frequencies from these four segments are in

excellent agreement with each other, ranged from 0.4711 to 0.4786 Hz. This is a little

bit smaller than 0.5025 Hz estimated by using SSI for the tank test data. An explanation

for the cause of the small discrepancy is that the buoy-wave system in the sea testing

had a larger added (hydrodynamic) mass than the buoy-fluid system in the tank testing.

The estimated damping ratios from the 4 segments are ranged from 0.1450 to 0.2189,

which are significantly larger than the estimated damping ratio 0.0581 from using SSI

for the tank test data. This larger damping ratio is likely caused by not only the added

hydrodynamic damping, but also the internal energy loss to the LEG power extraction.
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CHAPTER 5

Concluding Remarks

Understanding the dynamic characteristics of an ocean buoy through experiments

is important for achieving the intended goals of its designs. The simplest technique to

gain the knowledge of the dynamic characteristics of an ocean buoy is by observing the

Fourier spectrum (or power spectrum) of the buoy’s response. This thesis employed

the eigensystem realization algorithm (ERA) and stochastic system identification (SSI)

methods for estimating the modal properties of a small star-spar buoy system intended

for wave energy harvesting, while response data of the buoy collected from both tank

testing and sea testing were analyzed.

Traditionally, the discrete Fourier transform of a digital signal has been employed

as a signal decomposition technique, as well as a modal identification technique by pick-

ing the peaks from its Fourier spectrum. However, the purposes and concepts of signal

decomposition and modal identification are very different. While the performance of

a signal decomposition technique would be judged based on the fitting between the re-

constructed signal and the original signal, that of a modal identification technique could

be judged based on whether identified modal parameters are close to the true modal

parameters. When true modal parameters are unknown, the performance of a modal

identification technique usually would be judged based on its stabilization diagram.

When a response signal, from either the tank test or the sea test, is modeled as

the sum of many damped harmonic components, the numerical studies in this thesis

demonstrated that using ERA to estimate component frequencies and damping ratios,

together with a least-squares solution for getting amplitudes and phase angels, is an

excellent signal decomposition technique.

Overall, SSI was found to be a very efficient modal identification method for both
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the tank and the sea test data. The stabilization diagram of using SSI exhibits one clean

and stable pole. Although ERA has long been perceived to be an effective modal iden-

tification technique for dealing with free oscillation signal, it was found that ERA is not

the best modal identification technique if the free oscillation signal has been contami-

nated. In dealing with the distorted free oscillation signal measured from a small tank,

where the measured free oscillation signal would be affected by reflected waves, it was

found that SSI outperforms ERA for modal identification.

In their theoretical derivations, both ERA and SSI methods have been under the

assumption that the dynamic system is a time-invariant linear system. However, the real

buoy-fluid system under investigation must be a nonlinear system, thus to apply ERA

or SSI, a first approximation is to treat the dynamic system to be piecewise linear, i.e.

linear within a short period. In this study, introducing a sliding window is for assuming

that the system is linear within the window duration. With this sliding window, an ERA-

based time-frequency analysis, in parallel to the short time Fourier transform (STFT),

has been conducted. It was concluded that using ERA-based analysis could overcome

the frequency resolution and leakage problems.

For the sea test data, the one-hour response signal was divided into 4 segments.

From these four segments, the estimated modal frequencies by using SSI were found

in excellent agreement, ranged from 0.4711 to 0.4786 Hz. This frequency range was

a little bit smaller than 0.5025 Hz estimated by using SSI for the tank test data. The

small discrepancy is likely because the buoy-wave system in the sea testing had a larger

added (hydrodynamic) mass than the buoy-fluid system in the tank testing. The esti-

mated damping ratios from the 4 segments are ranged from 0.1450 to 0.2189, which are

significantly larger than the estimated damping ratio 0.0581 from using SSI for the tank

test data. This larger damping ratio is likely caused by not only the added hydrodynamic

damping, but also the internal energy loss to the LEG power extraction, noting that the
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power-generation buoy’s LEG was “parked” during the tank test and was in operation

to generate power during the sea test.

55



Appendix I: QR-decomposition to get a projection matrix

general formula using numerical notations AB>(BB>)†B

Orthogonal projections can be easily expressed in function of the RQ decomposi-

tion. We first treat the general case A/B, where A and B consist of any number of rows

of H, which implies that they can be expressed as linear combinations of the matrix QT

H =

[
B
A

]
=

[
RB

RA

]
QT =

[
R11 0
R21 R22

] [
QT

1

QT
2

]
(36)

A = RAQT (37)

B = RBQT

we thus get the projection A on B:

P = A/B = ABT (BBT )†B (38)

Since A = RAQT , B = RBQT and QTQ = I, from the Eq.38 we have

P = (RAQTQRT
B)(RBQTQRT

B)†RBQT (39)

= RART
B(RBRT

B)†RBQT

Note that RB = [ R11 0 ], we thus have RART
B = R21R

T
11, RBRT

B = R11R
T
11

and RBQT = R11Q
T
1 .

Assume(for simplicity) the RB is of full row rank, Eq.39 can be simplified to be

P = R21R
T
11(R11R

T
11)−1R11Q

T
1 (40)

= R21Q
T
1

This suggests that the projection P can be obtained from RQ-decomposition of

H.
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Appendix II: Realization in modal coordinates

The state space model is written as:

xk+1 = Axk + Buk (41)

yk = Cxk

Introduce the transformation between xk and zk as:

xk = Ψzk (42)

where Ψ = [Ψ1,Ψ2, · · · ,Ψn] ∈ Rn×n contains the eigenvectors of A. It is realized

that zk represents the magnitude in the modal coordinates.

Substituting Eq. (42) into Eq. (41) yields

Ψzk+1 = AΨzk + Buk (43)

yk = CΨzk

Premultiplying Ψ−1 at the top equation of Eq. (43) leads to:

Ψ−1Ψzk+1 = Ψ−1AΨzk + Ψ−1Buk (44)

yk = CΨzk

Rewrite Eq. (44) as:

zk+1 = Λzk + B∗uk (45)

yk = C∗zk

where Λ = Ψ−1AΨ, B∗ = Ψ−1B and C∗ = CΨ.

The realization [A,B,C] associated with state variables x is now transformed into

the realization [Λ,Ψ−1B,CΨ] in the modal coordinates.
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Appendix III: Physical and State-space models

The equations of motion for an N -degree-of-freedom linear-dynamic are a set of

N second-order differential equations. Let M, ζ, K ∈ RN×N be the mass, damping and

stiffness matrices, respectively. These equations can be expressed in matrix notation as:

Md̈(t) + ζḋ(t) + Kd(t) = f(t) (46)

where d̈(t), ḋ(t) and d(t) ∈ RN are vectors of generalized acceleration, velocity, and

displacement, respectively, and f(t) ∈ RN is the forcing function over the period of

interest at certain specific locations. Let force vector f(t) = B2u(t) be factorised into

a matrix B2 ∈ RN×m describing the inputs in space and a vector u(t) ∈ Rm describing

the m inputs in time.

We can rewrite a first-order system of differential equation in a number of ways.

Introducing

x =

[
d

ḋ

]
(47)

we formulate a classical state space model as:

ẋ(t) = Acx(t) + Bcu(t) (48)

where

Ac =

[
0 I

−M−1K −M−1ζ

]
(49)

and

Bc =

[
0

M−1B2

]
(50)

When the response of dynamic system is measured by l output quantities in the out-

put vector yt using sensors such as accelerometers, strain gages, etc., a matrix output

equation can be expressed as:

y(t) = Cx(t) + Du(t) (51)
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where C ∈ Rl×n is the output matrix and D ∈ Rl×m is the direct transmission matrix.

Equations 48 and 51 constitute a continuous-time deterministic state-space model.

When measurements are available at discrete time instants k4t, k ∈ N with 4t, the

sample time, after sampling, the state-space model looks like

xk+1 = Axk + Buk (52)

yk = Cxk + Duk (53)

where xk = x(k4t) is the discrete-time state vector, A = exp(Ac4t) is the discrete

state matrix and B = [A − I]A−1
c Bc is the discrete input matrix. In continuous time

system D is most often 0, which is not the case in discrete time systems due to the

sampling.

There are an infinite number of state-space representations that produce the same

input-output description. Let a new state vector z be defined such that

x = Tz (54)

where T is any nonsingular square matrix. Substitution of Eq. (54) into Eqs. (52) and

(53) yields

zk+1 = T−1ATzk + T−1Buk (55)

and

yk = CTzk + Duk; k = 0, 1, 2, . . . (56)

It is obvious that the effect of the input uk on the output yk is unchanged for the new

system, i.e., Eqs. (55) and (56). Thus, the matrices T−1AT, T−1B, CT, and D in

Eqs. (55) and (56) describe the same input-output relationship as the matrices A, B, C,

and D in Eqs.(52) and (53). Note that the D matrix does not change in the coordinate

transformation, Eq.(54).
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The stochastic components (noise) are included and we obtain the following

discrete-time combined deterministic-stochastic state-space model:

xk+1 = Axk + Buk + wk (57)

yk = Cxk + Duk + vk (58)

where wk ∈ Rn×1 is the process noise due to disturbances and modelling inaccuracies

and vk ∈ Rl×1 is the measurement noise due to sensor inaccuracy. They are both

unmeasurable vector signals but we assume that they are zero mean, white and with

covariance matrices:

E

[(
wp

vp

)
(wT

q vTq )

]
=

(
Q S
ST R

)
δpq (59)

where E is the expected value operator and δpq is the Kronecker delta. The matrices

Q ∈ Rn×n, S ∈ Rn×l and R ∈ Rl×l are the covariance matrices of the noise sequences

wk and vk.

Since there are an infinite number of state-space representations, the state vector

xk ∈ Rn containing the numerical values of n states does not necessarily have a direct

physical interpretation. Of course, one could always find a similarity transformation of

the state space model to convert the states to the modal coordinates.

The state space model associated with ERA is assuming no noise terms wk, vk,

and having impulsive loading for uk. In the case of ambient vibration testing the input

uk remains unmeasured and it disappears from equation (6). The input is now implicity

modelled by the noise terms wk, vk. However, the white noise assumptions of these

terms cannot be omitted: it is necessary for the proofs of the system identification meth-

ods of next sections. The consequence is that if this white noise assumption is violated,

for instance if the input contains some dominant frequency components in addition to

white noise, these frequency components cannot be separated from the eigenfrequencies

of the system and they will appear as poles of the state matrix A.
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MATLAB Files
Short Time Fourier Transform

1 %This program i s t h e main program of p l o t t i n g t h e STFT

image u s i n g t a n k t e s t d a t a .

2 c l o s e a l l

3 c l c

4 c l e a r a l l

5 %−−l o a d t h e t a n k t e s t d a t a and remove t h e mean va lue

−−−−−−−

6 l o a d tank495 −4. t x t

7 s igZZ =( t a n k 4 9 5 4 ( : , 4 )−mean ( t a n k 4 9 5 4 ( : , 4 ) ) ) / 6 6 8 ;

8 %−−−p l o t t h e t a n k t e s t da t a−−−−−−−−−−−−−−−−

9 d t =1/640

10 t t =1∗640∗ d t : d t :60∗640∗ d t ;

11 s igZZ=sigZZ ( 1∗6 4 0 : 6 0∗6 4 0 ) ;

12 f i g u r e

13 p l o t ( t t , s igZZ )

14 g r i d on

15 l e g e n d ( ’ A c c e l e r a t i o n Z ’ )

16 f c =640;

17 %d u r a t i o n o f t h e s i g n a l

18 T=60;

19 %z e r o padd ing f a c t o r

20 my zero =1;

21 x=sigZZ ;

22 [ s p e c t r o g r a m , a x i s f , a x i s t ]= s t f t ( x , 3 2 0 0 , 6 4 , fc , ’ blackman ’ ,

my zero ) ;
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23 f i g u r e , imagesc ( a x i s t −5, a x i s f , s p e c t r o g r a m )

24 y l a b e l ( ’ f r e q u e n c y [ Hz ] ’ ) ,

25 x l a b e l ( ’ t ime [ s ] ’ ) ,

26 % s e t ( gca , ’ t i c k d i r ’ , ’ out ’ ) ;

27 % h= g e t ( g , ’ P a r e n t ’ ) ;

28 s e t ( gca , ’ YDir ’ , ’ normal ’ )

29 c o l o r b a r ;

1 f u n c t i o n [ s p e c t r o g r a m , a x i s f , a x i s t ] = s t f t ( s , w i n s i z e ,

my step , fc , win , z e r o p a d )

2 % This MATLAB f u n c t i o n r e s i d e s i n :

3 % h t t p : / / commons . wik imed ia . o rg / w ik i / User : Ale jo2083 /

S t f t s c r i p t

4 % P r o d u c e s t h e f o l l o w i n g images :

5 % h t t p : / / commons . wik imed ia . o rg / w ik i / F i l e :

S T F T c o l o r e d s p e c t r o g r a m 2 5 m s . png

6 % h t t p : / / commons . wik imed ia . o rg / w ik i / F i l e :

S T F T c o l o r e d s p e c t r o g r a m 1 2 5 m s . png

7 % h t t p : / / commons . wik imed ia . o rg / w ik i / F i l e :

S T F T c o l o r e d s p e c t r o g r a m 3 7 5 m s . png

8 % h t t p : / / commons . wik imed ia . o rg / w ik i / F i l e :

S T F T c o l o r e d s p e c t r o g r a m 1 0 0 0 m s . pn

9 %

10 %[ s p e c t r o g r a m , a x i s f , a x i s t ] = s t f t ( s , w i n s i z e , my step , fc ,

win , z e r o p a d )

11 %

12 % c a l c u l a t e t h e s p e c t r o g r a m of t h e s i g n a l s
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13 %

14 % I n p u t s= s i g n a l t o p r o c e s s ;

15 % w i n s i z e = s i z e o f t h e window t o c a l c u l a t e t h e FFT ;

16 % my step = s h i f t o f t h e window ;

17 % f c = s a m p l i n g f r e q u e n c y ;

18 % win= t y p e o f window ( b o x c a r , h a m m i n g , b l a c k m a n

) ;

19 % z e r o p a d = z e r o p a d d i n g f a c t o r ;

20 %

21 %Outpu t : s p e c t r o g r a m = time−f r e q u e n c y m a t r i x

22 % a x i s f = v e c t o r o f f r e q u e n c i e s ;

23 % a x i s t = v e c t o r o f t ime ;

24

25 i f n a r g i n <6

26 z e r o p a d =1;

27 end

28 i f n a r g i n <5

29 win= ’ bo xc a r ’ ;

30 end

31

32 N= l e n g t h ( s ) ;

33

34 %number o f i t e r a t i o n s

35 i t o t = f l o o r ( ( N−w i n s i z e ) / my s tep ) ;

36

37 %i n i t i a l i z a t i o n o f t h e o u t p u t m a t r i x
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38 s p e c t r o g r a m = z e r o s ( f l o o r ( w i n s i z e ∗ z e r o p a d / 2 ) , i t o t ) ;

39

40 %c r e a t e t h e r i g h t window

41 i f i s e q u a l ( win , ’ b ox c a r ’ )

42 my window= ones ( w i n s i z e , 1 ) ;

43 e l s e i f i s e q u a l ( win , ’ hamming ’ )

44 my window=hamming ( w i n s i z e ) ;

45 e l s e i f i s e q u a l ( win , ’ blackman ’ )

46 my window=blackman ( w i n s i z e ) ;

47 end

48 % my window=hamming ( w i n s i z e ) ;

49 my window=my window ;

50

51 f o r i i =1 : i t o t

52 %s t a r t i n g i n d e x

53 a =1+( i i −1)∗my s tep ;

54 %en d i ng i n d e x

55 b= w i n s i z e +( i i −1)∗my s tep ;

56 %p a r t o f t h e s i g n a l t o be p r o c e s s e d

57 temp=s ( a : b ) ;

58 %s c a l e wi th t h e chosen window

59 temp=temp .∗my window ;

60 %i n i t i a l i z e t h e zero−padded v e r s i o n

61 z e r o p a d d e d = z e r o s ( 1 , w i n s i z e ∗ z e r o p a d ) ;

62 %c r e a t e t h e zero−padded v e c t o r

63 z e r o p a d d e d ( 1 : w i n s i z e ) =temp ;
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64 %FFT

65 z e r o p a d d e d = abs ( f f t ( z e r o p a d d e d ) ) ∗2 / l e n g t h ( z e r o p a d d e d ) ;

66 %g e t f r e q u e n c i e s on ly once

67 z e r o p a d d e d = z e r o p a d d e d ( 1 : f l o o r ( w i n s i z e ∗ z e r o p a d / 2 ) ) ;

68 %s t o r e i n t h e f i n a l m a t r i x

69 s p e c t r o g r a m ( : , i i ) = zeropadded ’ ;

70 end

71

72 %c r e a t e a x i s t o be used t o p l o t t h e o u t p u t

73 a x i s f = l i n s p a c e ( 0 , f c / 2 , f l o o r ( w i n s i z e ∗ z e r o p a d / 2 ) ) ;

74 a x i s t = l i n s p a c e ( w i n s i z e / fc ,N/ fc , i i ) ;
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Eigensystem Realization Algorithm

1 f u n c t i o n [ f req Hz , damping , Amp, t h e t a c o m p l e x ]=

ERA willow damped ( a lpha , dt , s i g , LENG, Ni , No , r H0 )

2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

3 %This program i s t h e main program t o c a l c u l a t e t h e v a l u e

o f e i g e n f r e q u e n c y ,

4 %damping , a m p l i t u d e , phase a n g l e u s i n g t h e ERA method .

5 %

6 % i n p u t :

7 %

8 % s i g : s i g n a l s ( Nt x Ns ) Nt : number o f t ime s t e p s ; Ns=

number o f s i g n a l s

9 % d t : t ime i n t e r a l

10 % Ns= No∗Ni

11 % r H0 : model o r d e r

12 % No : number o f o u t p u t

13 % Ni : number o f i n p u t

14 % The f i r s t No column of s i g s h o u l d be a s s o c i a t e d wi th

one e x i t a t i o n

15 % a l p h a : number o f b l o c k rows

16 % b e t a : number o f b l o c k colums

17 %

18 % o u t p u t :

19 %

20 % f r e q H z : e s t i m a t e d f r e q u e n c y i n Hz

21 % damping : e s t i m a t e d damping f a c t o r
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22 % Amp: e s t i m a t e d a m p l i t u d e ( a t i n i t i a l t ime )

23 % t h e t a : e s t i m a t e d phase a n g l e ( r a d i a n )

24 % Ref : Juang ’ s book c h a p t e r 5 ; SSI p a p e r : ” r e f e r e n c e−

based s t o c h a s t i c

25 % s u b s p a c e i d e n t i f i c a t i o n f o r o u t p u t−on ly modal

a n a l y s i s ” ( ) .

26 %

27 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

28

29 a l p h a = l e n g t h ( s i g ) / 2 ; b e t a = a l p h a ; No=1; Ni =1;

30

31 bh= b l o c k h a n k e l ( s i g , a lpha , b e t a +1 ,No , Ni ) ;% g e n e r a t e t h e

b l o c k h a n k e l m a t r i x

32 H 0=bh ( : , 1 : end−Ni ) ; % e l i m i n a t e t h e

l a s t b l o c k column

33 H 1=bh ( : , Ni +1: end ) ; % e l i m i n a t e t h e

f i r s t b l o c k column

34

35 [ rowp , c o l p ]= f i n d ( i s n a n ( H 0 ) ) ;

36 % Find t h e row and column i n d e x of t h e rows and columns

which have NaN i n H( 0 )

37 [ rowq , c o l q ]= f i n d ( i s n a n ( H 1 ) ) ;

38 % Find t h e row and column i n d e x of t h e rows and columns

which have NaN i n H( 1 )
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39 row =[ rowp ; rowq ] ;

40 c o l =[ c o l p ; c o l q ] ;

41

42 r o ws ig = f i n d ( i s n a n ( s i g ) ) ;

43 % Find t h e row i n d e x of t h e rows which have NaN i n s i g

44

45 H 0= OnDele t eMat r ix ( H 0 , [ ] , c o l ) ;

46 H 1= OnDele t eMat r ix ( H 1 , [ ] , c o l ) ;

47 s i g = OnDe le t eMat r ix ( s i g , rowsig , [ ] ) ;

48 % C a l c u l a t e t h e new H( 0 ) , H( 1 ) and s i g a f t e r d e l e t i n g t h e

rows and columns which c o n t a i n NaN

49

50 [ u0 , s0 , v0 ]= svd ( H 0 ) ; % SVD of H( 0 )

51 s igma0= d i a g ( s0 ) ; % s i n g u l a r v a l u e s o f t h e o r i g i n a l

Hankel m a t r i x

52 s s 1 = s i z e ( sigma0 , 1 ) ; %s s 1 i s t h e number o f s i n g u l a r

v a l u e s

53

54 %%−−−−− t h e n o r m a l i z e d s i n g u l a r v a l u e s−−−−−−−−−−−−−−%%

55 f o r i =1 : s s 1

56 n o r m a l i z e 1 ( i ) =sigma0 ( i ) / max ( sigma0 ) ;

57 end

58 s i z e ( n o r m a l i z e 1 ) ;

59

60 %%−−−−r ank e s t i m a t i o n o f t h e o r i g i n a l Hankel ma t r ix−−−−%%

61 f i g u r e
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62 s e m i lo g y ( 1 : ss1 , n o r m a l i z e 1 ( 1 : s s 1 ) , ’ r−+ ’ , ’ l i n e w i d t h ’ , 2 )

63 ho ld on

64 g r i d on

65 x l a b e l ( ’ Index of s i n g u l a r v a l u e s ’ , ’ F o n t S i z e ’ , 1 4 )

66 y l a b e l ( ’ Normal ized s i n g u l a r v a l u e s ’ , ’ F o n t S i z e ’ , 1 4 )

67 g r i d on

68 xl im ( [ 0 5 0 ] )

69

70 %−−−−−−− model o r d e r d e t e r m i n a t i o n −−−−−−−−−−−−−−%%

71 r H0= i n p u t ( ’ model o r d e r = ’ )% t h i s i s t h e model o r d e r you

s e t .

72 [ u1 , s1 , v1 ]= svds ( H 0 , r H0 ) ; %ERA

73

74 %%−−−−−−−c a l c u l a t e A, B and C−−−−−−−−−−−−−−−−−−−−−%%

75 A= i n v ( s1 ) . ˆ ( 1 / 2 ) ∗u1 ’∗H 1∗v1∗ i n v ( s1 ) . ˆ ( 1 / 2 ) ;

76 B=s1 . ˆ ( 1 / 2 ) ∗v1 ’ ;

77 B=B ( : , [ 1 : Ni ] ) ;

78 C=u1∗ s1 . ˆ ( 1 / 2 ) ;

79 C=C ( [ 1 : No ] , : ) ;

80

81 %%−−−−−−−c a l c u l a t e lamda −−−−−−−−−−%%

82 [VV, lamda ] = e i g (A) ;

83 l amda c = d i a g ( lamda ) ;

84 l amda c = l o g ( l amda c ) / d t ;

85 %[ lamda c , i n de x2 ]= s o r t ( l amda c ) ;

86 lambda= lamda c ;
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87

88 %−−−−−−−−c a l c u l a t e gamma−−−−−−−−−−−−%

89 f o r m=1: l e n g t h ( s i g )

90 YY(m, : ) =exp ( (m−1)∗ d t . ∗ l amda c ) ;% YY i s t h e c o e f f i c i e n t

m a t r i x

91 end

92 i f l e n g t h ( s i g )<r H0

93 e r r o r ( ’ More d a t a p o i n t s a r e needed ! ’ )

94 end

95 i f l e n g t h ( s i g ) ==r H0

96 gamma= i n v (YY) ∗ s i g ;

97 e l s e i f l e n g t h ( s i g )>r H0

98 gamma= i n v (YY’∗YY) ∗YY’∗ s i g ;

99 end

100 end

101

102 %−−−−−−p i c k j u s t one form e v e r y c o n j u g a t e p a i r o f lambda

−−−−−%

103 i ndex1 complex =1; i n d e x 1 r e a l =1 ; lambda complex = [ ] ;

l a m b d a r e a l = [ ] ;

104 i f abs ( abs ( lambda ( 1 ) )−abs ( lambda ( 2 ) ) )<1e−10

105 l ambda complex ( 1 ) =lambda ( 1 ) ;

106 i ndex1 complex = index1 complex +1;

107 e l s e i f abs ( abs ( lambda ( 1 ) )−abs ( lambda ( 2 ) ) )>1e−10

108 l a m b d a r e a l ( 1 ) =lambda ( 1 ) ;

109 i n d e x 1 r e a l = i n d e x 1 r e a l +1 ;
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110 end

111 f o r m=2: l e n g t h ( lambda )−1

112 i f abs ( abs ( lambda (m) )−abs ( lambda (m−1) ) )>1e−10 & abs (

abs ( lambda (m) )−abs ( lambda (m+1) ) )<1e−10

113 l ambda complex ( index1 complex ) =lambda (m) ;

114 i ndex1 complex = index1 complex +1;

115 e l s e i f abs ( abs ( lambda (m) )−abs ( lambda (m−1) ) )>1e−10 &

abs ( abs ( lambda (m) )−abs ( lambda (m+1) ) )>1e−10

116 l a m b d a r e a l ( i n d e x 1 r e a l ) = lambda (m) ;

117 i n d e x 1 r e a l = i n d e x 1 r e a l +1 ;

118 end

119 end

120 i f abs ( abs ( lambda ( end ) )−abs ( lambda ( end−1) ) )>1e−10

121 l a m b d a r e a l ( i n d e x 1 r e a l ) = lambda ( end ) ;

122 end

123 lambda =[ l a m b d a r e a l lambda complex ] ;

124

125

126 %−−−−−p i c k j u s t one form e v e r y c o n j u g a t e p a i r o f gamma

−−−−−−%

127 i ndex2 complex =1; i n d e x 2 r e a l =1 ; gamma complex = [ ] ; gamma real

= [ ] ;

128 i f abs ( abs ( gamma ( 1 ) )−abs ( gamma ( 2 ) ) )<1e−10

129 gamma complex ( 1 ) =gamma ( 1 ) ;

130 i ndex2 complex = index2 complex +1;

131 e l s e i f abs ( abs ( gamma ( 1 ) )−abs ( gamma ( 2 ) ) )>1e−10
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132 gamma real ( 1 ) =gamma ( 1 ) ;

133 i n d e x 2 r e a l = i n d e x 2 r e a l +1 ;

134 end

135 f o r m=2: l e n g t h ( gamma )−1

136 i f abs ( abs ( gamma (m) )−abs ( gamma (m−1) ) )>1e−10 & abs ( abs (

gamma (m) )−abs ( gamma (m+1) ) )<1e−10

137 gamma complex ( index2 complex ) =gamma (m) ;

138 i ndex2 complex = index2 complex +1;

139 e l s e i f abs ( abs ( gamma (m) )−abs ( gamma (m−1) ) )>1e−10 & abs (

abs ( gamma (m) )−abs ( gamma (m+1) ) )>1e−10

140 gamma rea l ( i n d e x 2 r e a l ) =gamma (m) ;

141 i n d e x 2 r e a l = i n d e x 2 r e a l +1 ;

142 end

143 end

144 i f abs ( abs ( gamma ( end ) )−abs ( gamma ( end−1) ) )>1e−10

145 gamma real ( i n d e x 2 r e a l ) =gamma ( end ) ;

146 end

147 gamma=[ gamma real gamma complex ] ;

148

149 %−−−−−f i n d t h e i n f o r m a t i o n o f t h e s i g n a l components−−−−%

150 % Ampl i tude

151 Amp real= abs ( gamma real ) ;

152 Amp complex= abs ( gamma complex ) ;

153 Amp=[ Amp real Amp complex ]

154 %

155 % e i g e n f r e q u e n c y
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156 f r e q H z r e a l =imag ( l a m b d a r e a l ) / 2 / p i ;

157 f r e q H z c o m p l e x =imag ( lambda complex ) / 2 / p i ;

158 f r e q H z =[ f r e q H z r e a l f r e q H z c o m p l e x ]

159 %

160 % damping

161 d a m p i n g r e a l = r e a l ( l a m b d a r e a l ) ;

162 damping complex= r e a l ( lambda complex ) ;

163 damping =[ d a m p i n g r e a l damping complex ]

164 %

165 % phase a n g l e

166 t h e t a c o m p l e x = a t a n 2 ( imag ( gamma complex ) , r e a l ( gamma complex

) )
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Stochastic Subspace Identification

1 f u n c t i o n [ f req Hz , damping , Amp, t h e t a c o m p l e x ]=

SSI pengyu damped ( i , d t , s i g , n )

2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

3 %This program i s t h e main program t o c a l c u l a t e t h e v a l u e

o f e i g e n f r e q u e n c y ,

4 %damping , a m p l i t u d e , phase a n g l e u s i n g t h e SSI method .

5 %

6 % i n p u t :

7 %

8 % s i g : s i g n a l s

9 % d t : t ime i n t e r a l

10 % n : model o r d e r

11 % i : number o f b l o c k rows

12

13 %

14 % o u t p u t :

15 %

16 % f r e q H z : e s t i m a t e d f r e q u e n c y i n Hz

17 % damping : e s t i m a t e d damping f a c t o r

18 % Amp: e s t i m a t e d a m p l i t u d e ( a t i n i t i a l t ime )

19 % t h e t a : e s t i m a t e d phase a n g l e ( r a d i a n ) .

20 %

21 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

74



22 y= s i g ;

23 f s =1 / d t ;

24 u = [ ]

25 AUXin = [ ]

26 W= [ ]

27 s i l = [ ] ;

28 m=0;

29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

30 [ l , ny ] = s i z e ( y ) ; i f ( ny < l ) ; y = y ’ ; [ l , ny ] = s i z e ( y ) ; end

31 j = ny−2∗ i +1 ;

32 Y = blkhank ( y / s q r t ( j ) ,2∗ i , j ) ; % Outpu t b l o c k Hankel

33 R = t r i u ( q r (Y’ ) ) ’ ; % R f a c t o r

34 c l e a r Y;

35 Rf = R( ( 2∗m+ l ) ∗ i + 1 : 2∗ (m+ l ) ∗ i , : ) ; % F u t u r e o u t p u t s

36 Rp = [R ( 1 :m∗ i , : ) ; R(2∗m∗ i + 1 : ( 2∗m+ l ) ∗ i , : ) ] ; % P a s t ( i n p u t s

and ) o u t p u t s

37 Ob = [ Rf ( : , 1 : l ∗ i ) , z e r o s ( l ∗ i , l ∗ i ) ] ;

38

39 [U, S ,V] = svd ( Ob ) ;

40 s s = d i a g ( S ) ;

41

42 s igma 0 = d i a g ( S ) ; % s i n g u l a r v a l u e s o f t h e o r i g i n a l Hankel

m a t r i x

43

44 c l e a r S ;

45 s s 1 = s i z e ( s igma 0 , 1 ) ;
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46 s ave ’ s v d f o r s t a b i l i t y . t x t ’ s s 1 − a s c i i

47 f o r w=1: s s 1

48 n o r m a l i z e 1 (w) = s igma 0 (w) / max ( s igma 0 ) ;

49 end

50 s i z e ( n o r m a l i z e 1 ) ;

51

52 f i g u r e

53 s e m i lo g y ( 1 : ss1 , n o r m a l i z e 1 ( 1 : s s 1 ) , ’ r−+ ’ , ’ l i n e w i d t h ’ , 2 )

54 ho ld on

55 g r i d on

56 x l a b e l ( ’ Index of s i n g u l a r v a l u e s ’ , ’ F o n t S i z e ’ , 1 4 )

57 y l a b e l ( ’ Normal ized s i n g u l a r v a l u e s ’ , ’ F o n t S i z e ’ , 1 4 )

58 g r i d on

59 xl im ( [ 0 5 0 ] )

60

61 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

62 n= i n p u t ( ’ System o r d e r ? ’ ) ;

63 U1=U ( : , 1 : n )% Dete rmine U1%%%%%%%%%%%%%%% t h e f i r s t n

64

65 % Dete rmine gam and gamm

66 gam = U1∗ d i a g ( s q r t ( s s ( 1 : n ) ) ) ;

67 gamm = gam ( 1 : l ∗ ( i −1) , : ) ;

68 % The pseudo i n v e r s e s

69 gam inv = p inv ( gam ) ; % Pseudo i n v e r s e

70 gamm inv = p inv (gamm) ; % Pseudo i n v e r s e

71 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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72

73 % Dete rmine t h e m a t r i c e s A and C

74 mydisp ( s i l , [ ’ Computing . . . System m a t r i c e s A, C (

Order ’ , num2s t r ( n ) , ’ ) ’ ] ) ;

75 Rhs = [ gam inv ∗R( ( 2∗m+ l ) ∗ i + 1 : 2∗ (m+ l ) ∗ i , 1 : ( 2 ∗m+ l ) ∗ i ) ,

z e r o s ( n , l ) ; . . .

76 R(m∗ i +1:2∗m∗ i , 1 : ( 2 ∗m+ l ) ∗ i + l ) ] ;

77 Lhs = [ gamm inv∗R( ( 2∗m+ l ) ∗ i + l + 1 : 2∗ (m+ l ) ∗ i , 1 : ( 2 ∗m+ l

) ∗ i + l ) ; . . .

78 R( ( 2∗m+ l ) ∗ i + 1 : ( 2∗m+ l ) ∗ i + l , 1 : ( 2 ∗m+ l ) ∗ i + l ) ] ;

79

80 % Solve l e a s t s q u a r e

81 s o l = Lhs / Rhs ;

82 % E x t r a c t t h e sys tem m a t r i c e s A and C

83 A = s o l ( 1 : n , 1 : n ) ;

84 C = s o l ( n +1: n+ l , 1 : n ) ;

85 r e s = Lhs − s o l ∗Rhs ;

86

87 s ave ’ r e s . t x t ’ r e s − a s c i i

88 c l e a r Rhs

89 c l e a r Lhs

90 c l e a r gamm inv

91 c l e a r gam inv

92 c l e a r gam

93 c l e a r gamm

94 %
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

95 r H0 = i n p u t ( ’ System o r d e r ? ’ ) ;%i n p u t ( ’ System o r d e r

? ’ ) ;

96 % r H0 =10;

97 [VV, lamda ] = e i g (A) ;

98 l amda c = d i a g ( lamda ) ;

99 l amda c = l o g ( l amda c ) / d t ;

100 %[ lamda c , i n de x2 ]= s o r t ( l amda c ) ;

101 lambda= lamda c ;

102

103 %−−−−−−−−c a l c u l a t e gamma−−−−−−−−−−−−%

104 f o r m=1: l e n g t h ( s i g )

105 YY(m, : ) =exp ( (m−1)∗ d t . ∗ l amda c ) ;% YY i s t h e c o e f f i c i e n t

m a t r i x

106 end

107 i f l e n g t h ( s i g )<r H0

108 e r r o r ( ’ More d a t a p o i n t s a r e needed ! ’ )

109 end

110 i f l e n g t h ( s i g ) ==r H0

111 gamma= i n v (YY) ∗ s i g ;

112 e l s e i f l e n g t h ( s i g )>r H0

113 gamma= i n v (YY’∗YY) ∗YY’∗ s i g ;

114 end

115 end

116
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117 %−−−−−−−−−−p i c k j u s t one form e v e r y c o n j u g a t e p a i r o f

lambda−−−−−−%

118 i ndex1 complex =1; i n d e x 1 r e a l =1 ; lambda complex = [ ] ;

l a m b d a r e a l = [ ] ;

119 i f abs ( abs ( lambda ( 1 ) )−abs ( lambda ( 2 ) ) )<1e−10

120 l ambda complex ( 1 ) =lambda ( 1 ) ;

121 i ndex1 complex = index1 complex +1;

122 e l s e i f abs ( abs ( lambda ( 1 ) )−abs ( lambda ( 2 ) ) )>1e−10

123 l a m b d a r e a l ( 1 ) =lambda ( 1 ) ;

124 i n d e x 1 r e a l = i n d e x 1 r e a l +1 ;

125 end

126 f o r m=2: l e n g t h ( lambda )−1

127 i f abs ( abs ( lambda (m) )−abs ( lambda (m−1) ) )>1e−10 & abs (

abs ( lambda (m) )−abs ( lambda (m+1) ) )<1e−10

128 l ambda complex ( index1 complex ) =lambda (m) ;

129 i ndex1 complex = index1 complex +1;

130 e l s e i f abs ( abs ( lambda (m) )−abs ( lambda (m−1) ) )>1e−10 &

abs ( abs ( lambda (m) )−abs ( lambda (m+1) ) )>1e−10

131 l a m b d a r e a l ( i n d e x 1 r e a l ) = lambda (m) ;

132 i n d e x 1 r e a l = i n d e x 1 r e a l +1 ;

133 end

134 end

135 i f abs ( abs ( lambda ( end ) )−abs ( lambda ( end−1) ) )>1e−10

136 l a m b d a r e a l ( i n d e x 1 r e a l ) = lambda ( end ) ;

137 end

138 lambda =[ l a m b d a r e a l lambda complex ] ;
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139

140 %−−−−−−−p i c k j u s t one form e v e r y c o n j u g a t e p a i r o f gamma

−−−−−−−−−−−−−−%

141 i ndex2 complex =1; i n d e x 2 r e a l =1 ; gamma complex = [ ] ; gamma real

= [ ] ;

142 i f abs ( abs ( gamma ( 1 ) )−abs ( gamma ( 2 ) ) )<1e−10

143 gamma complex ( 1 ) =gamma ( 1 ) ;

144 i ndex2 complex = index2 complex +1;

145 e l s e i f abs ( abs ( gamma ( 1 ) )−abs ( gamma ( 2 ) ) )>1e−10

146 gamma real ( 1 ) =gamma ( 1 ) ;

147 i n d e x 2 r e a l = i n d e x 2 r e a l +1 ;

148 end

149 f o r m=2: l e n g t h ( gamma )−1

150 i f abs ( abs ( gamma (m) )−abs ( gamma (m−1) ) )>1e−10 & abs ( abs (

gamma (m) )−abs ( gamma (m+1) ) )<1e−10

151 gamma complex ( index2 complex ) =gamma (m) ;

152 i ndex2 complex = index2 complex +1;

153 e l s e i f abs ( abs ( gamma (m) )−abs ( gamma (m−1) ) )>1e−10 & abs (

abs ( gamma (m) )−abs ( gamma (m+1) ) )>1e−10

154 gamma rea l ( i n d e x 2 r e a l ) =gamma (m) ;

155 i n d e x 2 r e a l = i n d e x 2 r e a l +1 ;

156 end

157 end

158 i f abs ( abs ( gamma ( end ) )−abs ( gamma ( end−1) ) )>1e−10

159 gamma real ( i n d e x 2 r e a l ) =gamma ( end ) ;

160 end
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161 gamma=[ gamma real gamma complex ] ;

162

163 %−−−−−f i n d t h e i n f o r m a t i o n o f t h e s i g n a l components−−−−%

164 % Ampl i tude

165 Amp real= abs ( gamma real ) ;

166 Amp complex= abs ( gamma complex ) ;

167 Amp=[ Amp real Amp complex ]

168 %

169 % e i g e n f r e q u e n c y

170 f r e q H z r e a l =imag ( l a m b d a r e a l ) / 2 / p i ;

171 f r e q H z c o m p l e x =imag ( lambda complex ) / 2 / p i ;

172 f r e q H z =[ f r e q H z r e a l f r e q H z c o m p l e x ]

173 %

174 % damping

175 d a m p i n g r e a l = r e a l ( l a m b d a r e a l ) ;

176 damping complex= r e a l ( lambda complex ) ;

177 damping =[ d a m p i n g r e a l damping complex ]

178 %

179 % phase a n g l e

180 t h e t a c o m p l e x = a t a n 2 ( imag ( gamma complex ) , r e a l ( gamma complex

) )
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Stability Diagram Plot

1 % This f i l e i s f o r p l o t t i n g t h e s t a b i l i t y d iagram

2 %−−−−−−−−−INPUT−−−−−−−−

3 % s i g : t h e s i g n a l t o be a n a l y z e d

4 % LENG: l e n g t h o f t h e s i g n a l s i g

5 % L b e g i n : s t a r t i n g model o r d e r

6 % d t : t ime i n t e r v a l

7 % a l p h a : t h e number o f rows of t h e Hankel m a t r i c e s

8 g l o b a l Ni No

9 %Using t h e ERA method

10 [ f r eq Hz , damping , Amp, t h e t a c o m p l e x ]= ERA willow damped (

a lpha , s i g , d t , LENG, Ni , No , L b e g i n )

11

12 p r e f r e q = f r e q H z ;

13 pre damp=damping ;

14

15 f o r L= L b e g in +1: L end

16 [ f r eq Hz , damping ]= ERA willow damped ( a lpha , s i g , LENG, Ni ,

No , L ) ;

17 mm= l e n g t h ( p r e f r e q ) ;

18 f o r j 1 =1:mm

19 c r i t e r i a 1 = abs ( p r e f r e q ( j 1 )−f r e q H z ) . / p r e f r e q ( j 1 )

<1e−2; % f r e q u e n c y l i m i t

20 c r i t e r i a 2 = abs ( pre damp ( j 1 )−damping ) . / pre damp ( j 1 )

<5e−2; % damping l i m i t

21 i f sum ( c r i t e r i a 1 ) ˜=0 & sum ( c r i t e r i a 2 ) ˜=0
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22 p l o t ( p r e f r e q ( j 1 ) ,L−1, ’ r ∗ ’ ) % s t a b l e

23 e l s e

24 p l o t ( p r e f r e q ( j 1 ) ,L−1, ’ bo ’ ) % n o t s t a b l e

25 end

26 ho ld on

27 end

28 p r e f r e q = f r e q H z ;

29 pre damp=damping ;

30 end

31 %

32 x l a b e l ( ’ F requency ( Hz ) ’ )

33 y l a b e l ( ’ Model Rank ’ )

34 g r i d on

35

36 %−−−−−−−−−−−p l o t o f f o u r i e r spec t rum−−−−−−−−−−−−−−−−−

37 f s =1 / d t ;

38 Af0 2= f f t ( s i g ) ; % f f t o f t h e s i g n a l

39 n2= l e n g t h ( Af0 2 ) ;

40 Af0 2=Af0 2 / ( n2 / 2 ) ;

41 f r e 2 = [ 0 : n2−1]∗ f s / n2 ;

42 Af0 2 ( 1 ) = [ ] ;

43 Phase0 2 = a n g l e ( Af0 2 ) ∗180 / p i ;

44 s e m i lo g y ( f r e 2 ( 1 : round ( n2 / 2 ) ) ,100∗ abs ( Af0 2 ( 1 : round ( n2 / 2 ) )

) , ’ b ’ , ’ l i n e w i d t h ’ , 2 )
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Nonlinear Analysis

1 %This f i l e i s c a l c u l a t e t h e v a l u e o f s i g n a l s ’ i n f o r m a t i o n

as t ime s e r i e s

2 %, by 6 s s l i d i n g window s i z e and a moving d i s t a n s e 20 /640

s ( model o r d e r =20) .

3 c l c

4 c l e a r a l l ;

5 c l o s e a l l ;

6 l o a d tank495 −4. t x t

7 s igZZ =( t a n k 4 9 5 4 ( : , 4 )−mean ( t a n k 4 9 5 4 ( : , 4 ) ) ) / 6 6 8 ;

8 d t = 1 / 6 4 0 ;

9 %−−−−−−−−−−p l o t o f t h e t a n k t e s t da t a−−−−−−−−−−−−−−

10 t t =1∗640∗ d t : d t :60∗640∗ d t ;

11 s igZZ=sigZZ ( 1∗6 4 0 : 6 0∗6 4 0 ) ;

12 s igZZ=sigZZ−mean ( sigZZ ) ;

13 f i g u r e

14 p l o t ( t t , sigZZ , ’ b ’ )

15 g r i d on

16 ho ld on

17 %

18 r =1 ;

19 r H0 =20 %model o r d e r i s e q u a l t o 20

20 Amp = [ ] ;

21 t h e t a c o m p l e x = [ ] ;

22 damping = [ ] ;

23 f r e q H z = [ ] ;
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24 t i c

25 f o r l = 1 : 2 0 : 3 3 9 0 1 ;

26 s i g =sigZZ ( l : l +3840) ;

27 t = t t ( l : l +3840) ;

28 LENG= l e n g t h ( s i g ) ;

29 a l p h a = l e n g t h ( s i g ) / 2 ;

30 No=1; Ni =1;

31 [ f r eq Hz , damping , Amp, t h e t a c o m p l e x ]= ERA willow damped (

a lpha , d t , s i g , LENG, Ni , No , r H0 )

32

33 %a m p l i t u d e

34 Amp( r , : ) =2∗Amp

35 %f r e q u e n c y

36 f r e q H z ( r , : ) = f r e q H z

37 %damping

38 damping ( r , : ) =−damping ;

39 %phase a n g l e

40 t h e t a c o m p l e x ( r , : ) = a t a n 2 ( imag ( gamma complex ) , r e a l (

gamma complex ) )

41

42 r = r +1

43 end

44 t o c
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Image plot of ERA and SSI

1 % This f i l e i s t h e a m p l i t u d e image p l o t by ERA and SSI

method when model o r d e r i s e q u a l t o 1 0 .

2 c l c

3 c l o s e a l l

4 AMP=Amp complex ;

5 FREQ= f r e q H z ;

6 [ n o t s t e p , no comp ] = s i z e (AMP) ;

7

8 %−−−−−−−−−−−−−−−−remove u n r e a s o n a b l e components

−−−−−−−−−−−−−−−−−−−−−−

9 % [ nr , nc ]= s i z e (AMP)

10 % f o r j =1 : n r

11 % f o r i =1 : nc

12 % i i =AMP( j , i ) ;

13 % i f i i >0 .35 ;

14 % FREQ( j , i ) =0 ;

15 % AMP( j , i ) =0 ;

16 % e l s e i f i i <−0.05;

17 % FREQ( j , i ) =0 ;

18 % AMP( j , i ) =0 ;

19 % end

20 % end

21 % end

22 % % % % % % % % % %

23 % [ nr , nc ]= s i z e (FREQ)
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24 % f o r j =1 : n r

25 % f o r i =1 : nc

26 % i i =FREQ( j , i ) ;

27 % i f i i >10;

28 % FREQ( j , i ) =0 ;

29 % AMP( j , i ) =0 ;

30 % e l s e i f i i <0 .47 ;

31 % FREQ( j , i ) =0 ;

32 % AMP( j , i ) =0 ;

33 % end

34 % end

35 % end

36 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

37

38 t s t a r t =1 ;

39 t e n d =54;

40 d t =( t e n d − t s t a r t ) / ( n o t s t e p −1) ;

41 no comp =5; % how many components a r e t h e r e .

42 f max=max ( max (FREQ) ) ;

43 f min =min ( min (FREQ) ) ;

44

45 d e l t a f =f max−f min ;

46 i f f m in < −1e−1

47 e r r o r ( ’ E r r o r : n e g a t i v e I n f r e q u e n c y a p p e a r s ! ’ ) ;
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48 end

49 f r e q b a n d s =8000;

50 h1= z e r o s ( n o t s t e p −1, f r e q b a n d s +1) ;

51 p= round ( f r e q b a n d s ∗ (FREQ−f min ) / d e l t a f ) +1 ; % p w i l l be

between 1 and ( f r e q b a n d s +1)

52 f o r j 1 =1: n o t s t e p −1

53 f o r i 1 =1: no comp

54 i i 1 =p ( j1 , i 1 ) ;

55 h1 ( j1 , i i 1 ) =h1 ( j1 , i i 1 ) +AMP( j1 , i 1 ) ;

56 end

57 end

58 [ nx , ny ]= s i z e ( h1 ) ;

59

60 Hz= l i n s p a c e ( f min , f max , ny ) ’ ;

61 t ime = l i n s p a c e ( t s t a r t , t e n d , nx ) ’ ;

62 h1= f l i p u d ( r o t 9 0 ( h1 ) ) ;

63 f i g u r e

64 g= imagesc ( t ime , Hz , h1 ) ;

65 c o l o r b a r

66 x l a b e l ( ’ Time ( s ) ’ )

67 y l a b e l ( ’ F requency ’ )

68 s e t ( gca , ’ t i c k d i r ’ , ’ o u t ’ ) ;

69 h= g e t ( g , ’ P a r e n t ’ ) ;

70 s e t ( h , ’ Ydi r ’ , ’ normal ’ ) ;

71 x l a b e l ( ’ t ime ’ )

88



LIST OF REFERENCES

[1] S. T. Grilli, A. R. Grilli, S. P. Bastien, R. B. S. Jr, and M. L. Spaulding, “Smal-
l buoys for energy harvesting: Experimental and numerical modeling studies.” in
Proceedings of the Twenty-first International Offshore and Polar Engineering Con-
ference, 2011.

[2] W. J. Palm, Ed., Mechanical Vibration, 2nd ed. John Wiley and Sons, Inc, 1986.

[3] A. Cunha and E. Caetano, “Experimental modal analysis of civil engineering struc-
tures,” Sound and Vibration, pp. 12–20, 2006.

[4] L. Mangal, V. Idichandy, and C. Ganapathy, “Structural monitoring of offshore
platforms using impulse and relaxation response,” Ocean Engineering, vol. 28, pp.
689–705, 2011.

[5] H. Li, J. Wang, and S. L. J. Hu, “Using incomplete modal data for damage de-
tection in offshore jacket platform structures,” Ocean Engineering, vol. 35, pp.
1793–1799, 2008.

[6] E. O. Brigham, Ed., The fast fourier transform and its application. Prentice-Hall,
Engelwood Cliffs, Engelwood Cliffs, 1988.

[7] B. Peeters and G. D. Roeck, “Comparison of system identification methods using
operational data of a bridge test,” in In Proceedings of The International Confer-
ence on Noise and Vibration Engineering, 1998, pp. 923–930.

[8] M. Greitans, “Adaptive stft-like time-frequency analysis from arbitrary distributed
signal samples,” in International Workshop on Sampling Theory and Application,
213-eoa, Ed., 2005.

[9] J.-N. Juang, Applied System Identification, J.-N. Juang, Ed. Upper Saddle River,
NJ 07458: Prentice Hall PTR, 1994.

[10] B. L. Ho and R. E. Kalman, “Effective construction of linear, state-variable models
from input/output functions,” Regelungstechnik, vol. 14 12, p. 545C548., 1966.

[11] G. Strang, Ed., Linear Algebra and Its Application, 3rd ed. Harcourth Brace
Jovanovich, Inc.,, 1988.

[12] B. Peeters and G. DeRoeck, “Reference-based stochastic subspace identification
for output-only modal analysis,” Mechanical Systems and Signal Processing, vol.
13(6), pp. 855–878, 1999.

[13] P. VanOverschee and B. DeMoor, “Subspace algorithms for the stochastic identifi-
cation problem,” Automatica, vol. 29(3), pp. 649–660, 1993.

89



[14] J. Xin, S. L. J. Hu, and H. Li, “Experimental modal analysis of jacket-type plat-
forms using data-driven stochastic subspace identification method,” in Proceedings
of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic
Engineering, 2012.

[15] S.-L. J. Hu, X. Bao, and H. Li, “Model order determination and noise removal for
modal parameter estimation,” Mechanical Systems and Signal Processing, vol. 24,
pp. 1605–1620, 2010.

[16] S. L. Marple, Ed., Digital Spectral Analysis with Applications. Prentice-Hall,
Engelwood Cliffs, Engelwood Cliffs, NJ, 1987, 1987.

90



BIBLIOGRAPHY

A. Cunha and E. Caetano, “Experimental modal analysis of civil engineering structures,”
Sound and Vibration, pp. 12–20, 2006.

B. L. Ho and R. E. Kalman, “Effective construction of linear, state-variable models from
input/output functions,” Regelungstechnik, vol. 14 12, p. 545C548., 1966.

B. Peeters and G. D. Roeck, “Comparison of system identification methods using oper-
ational data of a bridge test,” in In Proceedings of The International Conference on
Noise and Vibration Engineering, 1998, pp. 923–930.

B. Peeters and G. DeRoeck, “Reference-based stochastic subspace identification for
output-only modal analysis,” Mechanical Systems and Signal Processing, vol.
13(6), pp. 855–878, 1999.

D. Tufts and A. Shah, “Estimation of a signal waveform from noisy data using low-rank
approximation to a data matrix,” IEEE Trans. Signal Process., vol. 41, no. 4, pp.
1716–1721, 1993.

E. O. Brigham, Ed., The fast fourier transform and its application. Prentice-Hall,
Engelwood Cliffs, Engelwood Cliffs, 1988.

G. Strang, Ed., Linear Algebra and Its Application, 3rd ed. Harcourth Brace Jo-
vanovich, Inc.,, 1988.

H. Li, J. Wang, and S. L. J. Hu, “Using incomplete modal data for damage detection in
offshore jacket platform structures,” Ocean Engineering, vol. 35, pp. 1793–1799,
2008.

I. Markovsky and S. V. Huffel, “Overview of total least squares methods,” Signal Pro-
cessing, vol. 87, no. 10, pp. 2283–2302, 2007.

I. S.R., “Application of random time domain analysis to dynamic flight measurements,”
Shock and Vibration Bullatin, vol. Vol.49/2,, pp. 165–170., 1979.

J. J. N and P. R. S., “An eigensystem realization algorithm for modal paremeter identifi-
cation and modal reduction,” Control,and Dynamics, pp. 620–627., 1985.

J.-N. Juang, Applied System Identification, J.-N. Juang, Ed. Upper Saddle River, NJ
07458: Prentice Hall PTR, 1994.

J. Xin, S. L. J. Hu, and H. Li, “Experimental modal analysis of jacket-type platforms
using data-driven stochastic subspace identification method,” in Proceedings of the
ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engi-
neering, 2012.

91



L. Mangal, V. Idichandy, and C. Ganapathy, “Structural monitoring of offshore plat-
forms using impulse and relaxation response,” Ocean Engineering, vol. 28, pp.
689–705, 2011.

M. Greitans, “Adaptive stft-like time-frequency analysis from arbitrary distributed sig-
nal samples,” in International Workshop on Sampling Theory and Application, 213-
eoa, Ed., 2005.

M. MartInez, “Experimental modal analysis in offshore platforms,” in Proceedings of
the International Modal Analysis Conference & Exhibit, 213-eoa, Ed., 1991.

N. Maia, J. Silva, J. He, N. Lieven, R.-M. Lin, G. Skingle, W. To, and A. Urgueira,
Theoretical and Experimental Modal Analysis, N. Maia and J. Silva, Eds. Taunton,
Somerset, England: Research Studies Press, 1997.

N. R.Brincker, P.Andersen, “Output-only modal testing of a car body subject to engine
excitation.” in Proc.of the 18th International Modal Analysis Conference,San An-
tonio,Texas,USA, 2000:, p. 786 792.

P. VanOverschee and B. DeMoor, Subspace Identification for Linear System :Theory -
Implementation - Applications. Kluwer Academic Publishers Boston/London/-
Dordrecht, 1996.

P. VanOverschee and B. DeMoor, “Subspace algorithms for the stochastic identification
problem,” Automatica, vol. 29(3), pp. 649–660, 1993.

S.-L. J. Hu, X. Bao, and H. Li, “Model order determination and noise removal for modal
parameter estimation,” Mechanical Systems and Signal Processing, vol. 24, pp.
1605–1620, 2010.

S. L. Marple, Ed., Digital Spectral Analysis with Applications. Prentice-Hall, Engel-
wood Cliffs, Engelwood Cliffs, NJ, 1987, 1987.

S. T. Grilli, A. R. Grilli, S. P. Bastien, R. B. S. Jr, and M. L. Spaulding, “Small buoys for
energy harvesting: Experimental and numerical modeling studies.” in Proceedings
of the Twenty-first International Offshore and Polar Engineering Conference, 2011.

The MathWorks, Control system toolbox user’s guide, The MathWorks Inc., Natic, MA,
2004.

W. J. Palm, Ed., Mechanical Vibration, 2nd ed. John Wiley and Sons, Inc, 1986.

92


	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Star-spar buoy
	Experimental modal analysis
	ERA and SSI methods
	Tests
	Thesis Layout

	Preliminaries
	Short Time Fourier Transform
	Continuous STFT
	Discrete STFT

	Eigensystem Realization Algorithm
	Postprocessing

	Stochastic Subspace Identification
	Using Prony Series for Signal Reconstruction

	Tank Testing
	Tank Experiment Set Up
	Short Time Fourier Transform Analysis
	Tank Test Data Analysis by ERA
	System Identification
	Time-Frequency Domain Analysis
	Signal Reconstruction using ERA estimates

	Tank Test Data Analysis by SSI
	System Identification
	Time-Frequency Domain Analysis
	Signal Reconstruction using SSI estimates

	Summary and Discussion

	Sea Testing
	Sea Experiment Set Up 
	Short Time Fourier Transform Analysis
	Sea Test Data Analysis by ERA
	System Identification
	Signal Reconstruction
	Time-Frequency Domain Analysis

	Sea Test Data Analysis by SSI
	System Identification
	Time-Frequency Domain Analysis

	Summary and Discussion

	Concluding Remarks
	LIST OF REFERENCES
	BIBLIOGRAPHY

