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Consider a prismatic beam with a rectangular cross section (b × d) carrying
a bending moment, M ,

We will assume that:

1. Plane sections remain plane;

2. The stress-strain behavior is ideally elastic-plastic; and

3. The deformations are small.

In the first part of this analysis, we will examine the moment-curvature rela-
tionship of this beam in three different cases:

1. There is no material yielding in the beam cross section;

2. There is some material yielding in the beam cross section; and

3. The material is yielding everywhere.

1 Elastic Cross-Section

When the beam is elastic, recall that the moment, M is proportional to the
curvature, M = EIy′′ = EIφ and that the curvature is given by φ = ε/(d/2).
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When the beam first starts to yield, the stress at the top and bottom of the
beam equals the yield stress. We will define the yield moment, My, to be
the moment that causes initial yielding in the cross section, σy = My(d/2)/I,
or My = σyI/(d/2). The yield curvature, φy, is the corresponding curvature,
φy = εy/(d/2). Now, dividing both sides of the elastic moment-curvature
relationship by My we get

M = EIφ (1)
M

My
= EIφ

EIφy
(2)

M

My
= φ

φy
(3)

2 Partially Plastic Cross-Section

Even after the cross section starts to yield it can still carry additional moment.
The curvature is now given by φ = εy/yo. The moment that the beam carries

when the cross section is partially plastic can be found by integrating σy over
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the cross section.
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Now, substituting yo = εy/φ, we can obtain the moment, M as a function of
curvature, φ.
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Dividing both sides by My = σyI/(d/2),
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Now, taking the limit as φ→∞,

M
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= 1.5 (14)
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The moment, M asymptotically approaches a limiting moment, which is

called the plastic moment, Mp. The plastic moment is always greater than the
yielding moment. Beams therefore have an ability to carry loads beyond the
initial yielding of the beam. For all rectangular cross sections, Mp/My = 1.5;
for circular cross sections, Mp/My = 1.7; and for I-beams Mp/My ≈ 1.12 .
Thus, for I-beams in particular, the moment curvature relationship can be
conveniently idealized as being bi-linear without much loss of accuracy.

3 Fully Plastic Cross Section

The plastic moment, Mp can be found directly, without resorting to the more
difficult analysis of a partially plastic cross section. When the cross section
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is fully plastic, all of the material is yielding (yo → 0). The plastic bending

stresses are in compression above the plastic neutral axis and are in tension
below the plastic neutral axis. The total compressive force must equal the
total tensile force, and the plastic neutral axis is defined as the location in
the cross section for which the area above the axis equals the area below. For
symmetric cross sections, the plastic neutral axis is the same as the elastic
neutral axis (which is the same as the centroid). However, for a-symmetric
cross sections, the plastic neutral axis is not the same as the centroid.

For any rectangular cross section,

Mp = 2
[
σyb

d

2

(
d

4

)]
(15)

= bd2

4 σy (16)

As an example of an a-symmetric cross section, let’s consider a triangular
cross section. We must first find the location of the plastic neutral axis, i.e.,

the location in the cross section for which the area above, Ac equals the area
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below, At.

Ac = At (17)
1
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With the location of the plastic neutral axis found, we can find the plastic
moment by finding the distance between the centroids of Ac and At. For this
triangular shape, this distance is
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and the plastic moment is given by

Mp = AtLσy (24)
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In general, to find the plastic moment of a rectangular cross section, follow
these three steps:

• Find the location of the plastic neutral surface:
Divide the cross sectional area into two areas, At and Ac, such that
At = Ac.

• Find the distance, L, between the centroids of the two areas.

• The plastic moment is Mp = σy · L · Ac.

CC BY-NC-ND H.P. Gavin

http://creativecommons.org/licenses/by-nc-nd/3.0/

	Elastic Cross-Section
	Partially Plastic Cross-Section
	Fully Plastic Cross Section

