
CEE 251L. Uncertainty, Design and Optimization
Civil and Environmental Engineering

Duke University
Homework 1, due: Wednesday, January 14, 2026

This assignment asks you to run Python commands and to write short Python functions. You
may prepare your Python code as .py-files using VScode or as a Jupyter notebook. It is convenient
to save your .py-files to a GitHub repository, since GitHub saves previous versions.

Always explain your code with detailed comments. Include your name as a comment within
each of your .py-files.

1. (5 points) engineering ethics
Engineering Ethics Question 1

2. (5 points) Martin Luther King day reflection
On Martin Luther King day, please enjoy time reading something by Martin Luther King,
listening to one of his speeches, or participating in a Martin Luther King day event. Write a
pargraph about your thoughts on your experience.

3. (4 points) Python

(a) Read Using the Terminal.
(b) Read Python language skills and debugging.
(c) Install git, VS Code and Python from the instructions in section 2.

4. (6 points) multivarious
Install multivarious using git and pip (for example, open a terminal, navigate to a folder
like Desktop/UDO/Code) and clone the repository:

1 cd ˜/ Desktop /UDO/Code
2 git clone https :// github .com/ hpgavin / multivarious
3 pip install -e multivarious

Verify that VS Code has access to multivarious:

(a) VS Code > File > Open Folder ... > navigate to your multivarious/examples folder >
Open

(b) VS Code > File Explorer > select verify path import.py > click the right arrow in the
Edit window [Run Python File]

(c) This will open a new Terminal Window within VS Code which should display ...
hello
verifying that PYTHONPATH has been set ...
PYTHONPATH env: /home/USERNAME/Desktop/UDO/Code/multivarious
... and yes, yes it has. Great!
verifying that multivarious can be imported ...
... and yes, yes it can. Great!

(d) Click on in the VS Code terminal panel or CTRL-D at the >>> Python prompt to exit
the Python Interactive mode and return to the VS Code terminal.

https://www.duke.edu/~hpgavin/cee251/cee251-EthicsQuestions.pdf
http://www.duke.edu/~hpgavin/TerminalReferenceSheet.pdf
http://www.duke.edu/~hpgavin/pythonSkills+Debugging.pdf
https://github.com/hpgavin/multivarious

2 Homework 1

5. (10 points) make computing mistakes in Python and fix them.
Type in each command, one at a time, and after each command check the value of the result,
i.e., after typing the first line below, type a1 to see the value of the variable a1

Here is a tutorial on Python, NumPy, and MatPlotLib
1 # import package (s) and create aliases
2 import numpy as np # np instead of numpy
3 from np import array # array instead of numpy . array
4 from numpy . linalg import inv as inv # inv instead of numpy . linalg .inv
5
6 # create arrays and do math on them ---------------------------------------
7 a1 = [5 , 8 , 13] # ok. but this is a " list " not a mathematical array
8 a = array ([5 , 8 , 13]) # ok? this neither a row nor a column
9 b1 = a.T # !!. .T transpose - does not work with a 1D array

10 b = np. array ([a]).T # ok. .T transpose - works with a 2D array
11 c1 = a1 * 2 # surprised ? intrigued ?? correct ??
12 c = a * 2 # ok. mathematically correct .
13 x = bˆ3 # ?? bitwise XOR
14 d = b**3 # ok. use ** for exponentiation
15 p1 = a * b # ok. element - wise multiplication
16 p2 = b * a # ok. element - wise multiplication a*b = b*a
17 p3 = a * b.T # ok. element - wise multiplication (1 x3) ... like .*
18 p4 = a.T * b # ok. element - wise multiplication (3 x1) ... like .*
19 q1 = a @ b # ok? correct inner product (? x3)(3 x1) not (1 x1) ?
20 q2 = np. array ([a]) @ b # ok correct inner product (1 x3)(3 x1) = (1 x1)
21 q3 = b @ a # ?? not an outer product (3 x1)(? x3) not (3 x3)
22 q4 = b @ [a] # ok. correct outer product (3 x1)(1 x3) = (3 x3)
23 q5 = [a].T @ b.T # ?? can not transpose a list
24 q4 = np. array ([a]).T @ b.T # ok. correct transpose of outer product
25 r1 = a / b # ok. element - wise operation , (1 x3) like "./"
26 r2 = a / b.T # ok. element - wise operation , (3 x1) like "./"
27 r3 = a \ b # !!. there ’s no " left divide " in Python
28 # multi - dimensional arrays (matrices) ---
29 A1 = [a , a+21 , a**2] # !!. list of 2D arrays
30 A2 = array (a , a+21 , a**2) # !!. syntax error
31 A = np. array ([a, a+21 , a**2]) # ok. preferable !
32 x = inv(A) @ b # ok. solves A*x=b for x
33 z = A @ x - b # ok. ... should be very close to zero
34 AtA = A.T @ A # a symmetric non - negative definite matrix
35 # stacking arrays horizontally and vertically ----------------------------------
36 B = np. array ([b , b**2]) # ok. --- but it will not work with np. block ...
37 B = np. hstack ([b , b**2]) # ok. --- this will work with np. block
38 C = np. array ([c+13 , c**2]) # ok. ... even though the first try at B woudn ’t work
39 D = np. zeros ([2 ,2]) # ok.
40 S = np. block ([[A, B], ([C, D])]) # [A, B ; C, D]
41 # indexing arrays --
42 u = [0 : 10] # !!. syntax error
43 u = np. linspace (1 ,10 ,10) # ok! much better ...
44 v = u[10] # !!. Python array indices start at zero
45 v = u[0] # ok. Python array indices start at zero
46 v = u[-1] # ok. ... the last element of u
47 v = u[-2] # ok. ... the next to last element of u
48 v = u [2:5] # ??. starting at index 2 and going to the 5th value
49 v = u [2:5+1] # ok. starting at index 2 and going to index 5
50 v = A[2 ,0] # ok. ... row 2, column 0 of A
51 v = A [2][0] # ok. C- syntax
52 v = A[1 ,:] # ok. row 1 of A ... (the second row of A "index -0")
53 v = A[1:2 ,:] # ok. rows 2 and 3 and all columns
54 v = A[1:2 ,1:2] # ok. rows 2 and 3 and columns 2 and 3
55 v = u[6: -2:2] # !?!. not at all what matlab users would expect !
56 v = u[[6 ,4 ,2]] # ok. ... what we would expect , in any case .

Think of two more vector mistakes and two more matrix mistakes. Call them y , z , E , and
F. And fix those mistakes

https://www.duke.edu/~hpgavin/pythonSkills+Debugging.pdf

Uncertainty, Design and Optimization — Duke University — 2026 — H.P. Gavin 3

6. (10 points) the golden ratio
pS&D section 7.11 help on Python functions and matplotlib examples
In the Fibonacci sequence, Fj , each number is the sum of the previous two numbers. The first
two values of a Fibonacci sequence are [1, 1]. The ratio of consecutive Fibonacci numbers,
Fj/Fj+1, converges to the golden ratio ϕ as j gets large. The golden ratio solves the quadratic
1/ϕ = 1 + ϕ.
In this problem you are asked to write a .py-file called fibo.py (a.k.a. a Python module)
that contains two function called seqnce and plot. Each of these two functions takes an
argument N for the length of the Fibonacci sequence. A sketch of the code is ...

1 # add comments indicating the purpose of this code and your name
2 import numpy as np
3 import matplotlib . pyplot as plt
4
5 def seqnce (N):
6 """
7 returns a Fibonacci sequence of any length N, N greater than 1.
8 """
9

10 # ... write code to
11 # (a) compute the Fibonacci sequence F_0 ... F_N
12 # ... without typing in any Fibonacci number except for ... F_0 = 1 and F_1 = 1
13 # (b) compute the array of indices j = [0 ... N] using np. linspace
14 # ... about five lines of code
15 return j, F
16
17 def plot(N):
18
19 # ... write code to
20 # (a) obtain the Fibonacci sequence F and the array j from the function seqnce (N),
21 # (b) calculates the squence of golden ratio values from F
22 # (c) plots the Fibonacci sequenc and plots the golden ratio sequence
23 # where the plot axes are labled
24 # ... about two lines of code for (a) and (b) plus another dozen for (c)

A rational number a is the ratio of integers n and m: a = n/m. Not all numbers are rational,
eg., π,

√
2, e, etc. How can one irrational number be “more irrational” than another irrational

number? What is the most irrational number? Here are notes showing how the golden ratio
is the most irrational number and a proof from stackexchange.

7. (10 points) sums of sinusoids without a for-loop or sum ... pS&D section 14.3
A sum of sinusoids is called a Fourier series. For example,

y(x; n) = 4
π

n∑
k=1

1
2k − 1 sin ((2k − 1)x)

Using a single for-loop calculate three vectors of y for n = 5, 10, and 15. Within the for-
loop: create a row vector k = [1 : N]; and then calculate y in one line of Python by
being clever about using transpose (.T) and vector multiplication (*i and @). Why don’t you
need a for-loop or a sum for this calculation? On the same set of axes, make plots of y(x; 5),
y(x; 10) and y(x; 15) with 500 values of x in the range −π ≤ x ≤ π. Label your axes.

8. (5 points) 3-D plots and contour plots ... pS&D section 17
Make a surface plot and a contour plot of the saddle shape

f(x, y) = 2x2 − 3xy − 4y2

for −10 ≤ x ≤ 10 and −10 ≤ y ≤ 10.

http://www.duke.edu/~hpgavin/pythonSkills+Debugging.pdf
https://www.w3schools.com/python/python_functions.asp
https://matplotlib.org/stable/gallery/index.html
https://slate.com/technology/2021/06/golden-ratio-phi-irrational-number-ellenberg-shape.html
https://slate.com/technology/2021/06/golden-ratio-phi-irrational-number-ellenberg-shape.html
https://math.stackexchange.com/questions/1286593/proof-the-golden-ratio-with-the-limit-of-fibonacci-sequence#1286641
http://www.duke.edu/~hpgavin/pythonSkills+Debugging.pdf
http://www.duke.edu/~hpgavin/pythonSkills+Debugging.pdf

4 Homework 1

9. (5 points) make a beam slope as much as possible ... pS&D section 9
From the beam deflection tables here: https://mechanicalc.com/reference/beam-deflection-tables,
find the equation for the slope at the end of a simply supported beam, with a point load lo-
cated a distance a from the left end.
Calculate a dimensionless end-rotation, (EIθ2/(FL2)) for 100 values of (a/L) in the range
0 ≤ (a/L) ≤ 1, in one line, without using a for loop by being clever about using element-wise
multiplication (*). Use the argmax command to find the value of the loading point (a/L)
that produces the maximum rotation θ2. Plot (EIθ2/(FL2)) vs. (a/L) and plot a ’ro’ (red
circle) on the figure at the plot coordinate (a/L, θ2) that maximizes the end rotation θ2.

10. (25 points) be smart with a guess-and-check approach to minimize a function
In most optimization problems, there is no closed-form mathematical expression relating
design variables (v1, v2, ..., vn) to the objective fuction f(v1, v2, ..., vn).
Most methods of numerical optimization work something like this ...
Given a way to calculate the design objective function f(v1, v2, ..., vn), in terms of n design
variables (v1, v2, ..., vn) and an initial numerical guess for the design variables ...

(a) Compute the value of the function f(v(0)) for the initial numerical guess of v(0).
(b) Somehow, find a new set of n values for (v1, v2, ..., vn) which reduces the value of f(v),

“at least a little bit.”
(c) Repeat (b) until changes in f(v) are “small.”

For the objective function

f(v1, v2) = 2 + v1/40 + v2/30 + cos(v1v2/20)

Within a Python file called udo hw01 pr10.py write a .py-function called fv(v) that is a
function of the list v and computes the resulting value of the objective function f([v1, v2]).
The first line of this .py-file is:
def fv(v):
The last line of the .py-file displays the result:
print(f’ f([v1:7.4f , v2:7.4f]) = f:7.4f ’)
(The six f characters above mean four different things!)
(This function needs numpy for the cosine function and only a few more lines of code.)
Within the Python Terminal window (>>>), import the Python function fv
>>> from udo hw01 pr10 import fv
and compute a value for the objective function for v within the domain −10 ≤ v1 ≤ 10 and
−10 ≤ v2 ≤ 10, for example
>>> fv([3.0 , -4.0])
Now change the values in v a little and re-run the line above.
Did f increase or decrease? Use this to deduce your third guess and run fv(...) again.
Repeat a few more times, and consider the logic you used to update v each time, with
the goal of reducing f(v). Given three consecutive guesses v(k), v(k−1) and v(k−2) and the
associated values f (k), f (k−1) and f (k−2). Write some logic that will give you a value v(k+1)

that is likely to make f (k+1) more negative than f (k).
Now, apply that logic to this problem from some initial guess and iterate a few times.
How does it work out?
(It’s o.k. if it doesn’t.)
Either way, describe why you think it works, or why it doesn’t.

http://www.duke.edu/~hpgavin/pythonSkills+Debugging.pdf
https://mechanicalc.com/reference/beam-deflection-tables

