
CEE 251L. Uncertainty, Design, and Optimization
Department of Civil and Environmental Engineering

Duke University
Homework 2 - search methods. due: Wednesday, January 21, 2026

This course considers engineering design as an application of engineering analysis in which
the design specification (i.e., the design plan) is quantified by a set of design variables

v =
[

v1, v2, v3, · · · , vn

]
and through which performance, utility, safety, equity, and sustainability can be quantified and
optimized or constrained.

A design that meets performance, utility, safety, equity, and sustainability requirements can
be called functional. In the approach adopted for this course one of these design requirements
is selected to be the primary design objective, and is to be optimized. This is quantified by an
objective function, which is a function of the design variables.

f(v1, v2, · · · , vn) or, more compactly, f(v) ,

by collecting the n individual design variables into a single vector v. A common objective is to
simply minimize the total cost of the design, possibly including externalities. In other design
problems the objective could be to maximize an aspect of performance.

The functionality of a design depends on more than the primary objective (performance,
profits, etc.). Most designs must also meet a number of other criteria (e.g., reliable enough, safe
enough, stable enough, strong enough, equitable enough, sustainable enough). These criteria also
depend upon the values of the design variables, and are expressed as inequalities. By convention,
a set of m inequality constraints can be written as

g1(v1, v2, v3, · · · , vn) ≤ 0
g2(v1, v2, v3, · · · , vn) ≤ 0

...
gm(v1, v2, v3, · · · , vn) ≤ 0

or, more compactly, g(v) ≤ 0 ,

by collecting the m individual inequalities into a single vector inequality. Design constraints confine
the design variables to domains (or sub-spaces) of admissible alternatives.

In this framework, the admissible and optimal design v∗ minimizes (or maximizes) the pri-
mary design objective while satisfying the design constraints:

minimize
v1, v2, . . . , vn

f(v) such that g(v) ≤ 0 .

In certain rare cases, we can write simple equations for f(v) and g(v) and use calculus to derive
equations for the constrained optimum. In the vast majority of practical problems, however, these
equations are much too complicated to be solved with pencil and paper. In such cases computer-
aided analysis can automate the evaluation of the objective and admissibility of any particular
trial design. Further, computer-aided optimization allows designers to automatically iterate on
candidate designs in order to converge rapidly to an admissible and possibly “optimal” solution.
But don’t expect too much from optimization. In very challenging design optimization problems it
can be computationally impractical to converge to an admissible or feasible design that is perfectly
optimal and robust to uncertainties.

Sometimes, feasibility suffices; being ok is enough.

2 Homework 2

1. (5 points) engineering ethics
Engineering Ethics Question 2

2. (5 points) Martin Luther King day reflection
On Martin Luther King day, please enjoy time reading something by Martin Luther
King, listening to one of his speeches, or participating in a Martin Luther King day
event. Write a paragraph about your thoughts on your experience.

3. (5 points) update your copy of multivarious
VS Code > Terminal > New Terminal ... or ... Ctrl+Shift+‘ ... a.k.a. ... Ctrl+˜
cd to the directory in which you cloned multivarious
. . . for example . . . cd ˜/Desktop/UDO/Code/multivarious
git pull
pip install .

4. (10 points) the Optimized Random Search (ors) method
Consider iterations of the Optimized Random Search algorithm for minimizing a func-
tion of several variables.
In each iteration, call the starting point u(0). The first step from the starting point is

u(1) = u(0) + r,

where the components of the step vector r are selected at random. The magnitude
and direction of r are random. The expected value of ||r|| should be about one-tenth
of the “diameter” of the design space. For example, if the upper and lower bounds of
(appropriately normalized) design variables are +1 and -1, then the first step of the
first iteration should be around 0.2 ... give or take. Since the direction of the first step
of each iteration is taken at random, there’s a 50/50 chance that it is an uphill step (in
the wrong direction). It’s perfectly ok for the first step to be in the wrong direction.
The second step is a downhill double-step. If the direction of the first step is uphill,
then the second step is in the opposite direction. If the direction of the first step
is downhill, then the second step is in the same direction. And the length of the
second step (from u(0) to u(2)) is twice as long as the first step. The design objective
corresponding to these three points [u(0), u(1), u(2)] has values [f (0), f (1), f (2)].
The three points [u(0), u(1), u(2)] lie on the same line,

u(1) = u(0) + d1r̂ and u(2) = u(0) + d2r̂ ,

where r̂ is the unit vector in the direction of the first step and d1 is the coordinate
of u(1) from u(0) along r̂, d1 = ||u(1) − u(0)|| and r̂ = (u(1) − u(0))/d1. And d2 is the
coordinate of u(2) from u(0) along r̂, d2 = ±||u(2) − u(0)||. If the first step is uphill,
d2 < 0, and if the first step is downhill, d2 > 0.

https://www.duke.edu/~hpgavin/cee251/cee251-EthicsQuestions.pdf

CEE 251L. Uncertainty, Design, and Optimization — Duke University — 2026 — H.P. Gavin 3

If a parabola passing through the three coordinates [(0, f (0)), (d1, f (1)), (d2, u(2))] is
concave-up a super-good third step along the same line can be attempted. The coeffi-
cients c of the parabola

f̃(d) = c0 + c1d + c2d
2

solve the linear matrix equation 1 0 0
1 d1 d2

1
1 d2 d2

2


 c0

c1
c2

 =

 f (0)

f (1)

f (2)


If c2 > 0 the parabola is concave-up and is minimized at d3 = d∗ = −c1/(2c2), so,

u(3) = u(0) + d3r̂ .

Quadratic steps can be super-good when the quadratic fit extrapolates to u(3). Some-
times the quadratic extrapolation succeeds and u(3) is an excellent point. Sometimes
the extrapolation overshoots and u(3) doesn’t work out.
If the minimum of

[
f (0), f (1), f (2), f (3)

]
is smaller than the best value found in all

prior iterations, the starting point for the next iteration is the point that has the lowest
objective function value.

u(0) = u(i∗) where i∗ = argmin
[
f (0), f (1), f (2), f (3)

]
Otherwise, the algorithm proceeds to the next iteration with the same values in u(0).
The magnitudes of the random steps (r) naturally fluctuate randomly from one itera-
tion to the next. The algorithm intentionally reduces the expected magnitude as the
solution iteratively improves. Tiny steps and huge steps are very unlikely.
This problem asks you to graphically carry out five iterations of the ORS method. Use
a ruler to measure and draw each iteration using the contour plot given on page 5.
Start at any vertex of the triangle.
No numbers are involved. So use your best judgment as to how the super-good step
(step (3) for u(3)) would be carried out. For example, if the “middle point” of [u(0), u(1),
u(2)] is at a lower contour than the other two points think about how an interpolation
to the minimum of a quadratic would lie within the range of these three points.
Quadratic extrapolations might be tricky to do graphically. Feel encouraged to give
it your best shot, or to avoid quadratic extrapolations for this assignment. Just know
that the potential for super-good quadratic extrapolations is the secret sauce of the ORS
method.
Within an iteration, is the best point of the three points (almost) always improved?
(yes/no)

To hand in:
A copy of the figure on page 5 annotated with five iterations of the ORS method.

4 Homework 2

5. (15 points) the Nelder-Mead Simplex (nms) method

Consider iterations of the Nelder-Mead algorithm for minimizing a function of several
variables.

(a) Using the figure on page 5, trace out five iterations of the Nelder-Mead algo-
rithm. Each iteration starts with a reflection. Use a straight-edge to draw your
triangle-shaped simplexes. Within each triangle write “R” for reflection; “RE” for
reflection+extension; “CI” for inside contraction; “CO” for outside contraction;
and “S” for shrink.

(b) Within an iteration, is the best point of a “simplex” ever updated? (yes/no)

(c) If a “reflection” point is selected, does the “volume” of the “simplex” remain un-
changed? (In 2D, the “simplex” is the triangle and the “volume” of the “simplex”
is the area of the triangle.) (yes/no)

(d) Suppose that after several consecutive contraction steps of the Nelder-Mead method,
the three vertices of a 2D simplex become nearly co-linear (or the four vertices
of a 3D simplex become nearly co-planar). What implication would this have for
subsequent steps?

(e) When enforcing constraint equations via a penalty function, if the optimization
algorithm converges to an infeasible point, should you re-try the optimization
with a larger or a smaller penalty factor?

(f) If the optimization routine reaches its maximum iteration limit before converging,
what changes to the optimization algorithm options:

% display tol_v tol_f tolG MaxEvals Penalty Exponent
options = [2 0.01 0.01 0.01 500 1.0 1.0];

would you try, and why? The meaning of the terms in this vector are explained
in the document “An Example of Running Constrained Optimization Codes.”

To hand in:
A copy of the figure on page 5 annotated with five iterations of the NMS method.

http://people.duke.edu/~hpgavin/cee251/multivarious-opt-example.pdf

CEE 251L. Uncertainty, Design, and Optimization — Duke University — 2026 — H.P. Gavin 5

6 Homework 2

6. (5 points) convergence metrics and criteria
In an iteration of the Nelder-Mead method for n = 5, the simplex V is:

84.80 84.93 84.88 84.92 85.01 85.10
14.89 15.05 14.98 15.12 14.95 15.07
9.97 10.00 9.99 10.09 9.84 9.94

55.91 55.91 56.28 56.16 56.02 56.04
72.98 72.79 72.89 72.95 72.86 72.96

with corresponding objective function values f

99.81 99.93 100.04 100.06 100.10 100.18

Consider convergence tolerances of ϵv = 0.01 and ϵf = 0.01.
(a) Does this simplex represent a solution that is converged in the design variables, v?
(b) Does this simplex represent a solution that is converged in the design objective, f?

7. (40 points) efficiency of numerical optimization methods as compared to a gridded
search
Refer to An Example of Running Constrained Optimization Codes.
This optimization problem features the possibility of disconnected feasible regions. The
objective function in the problem below is one of Nelder’s “favorite” functions.

minimize
v1, v2, v3

[
f(v1, v2, v3) = v2

1 + v2
2 + v2

3 + 103 exp(−(v2
1 + v2

2 + v2
3))

]
(1)

such that

g1(v1, v2, v3) = 0.5 + cos(πv1/4) ≤ 0 (2)
g2(v1, v2, v3) = 0.5 + sin(πv2/3) ≤ 0 (3)

To further constrain the problem, consider design variables within the bounds:
−10 ≤ v1 ≤ 10, −10 ≤ v2 ≤ 10, and −10 ≤ v3 ≤ 10.

(a) (10 points) write a Python function
The Python function uses a trial set of values for v1, v2, and v3. In a file named
udo_HW2P7_2026.py ,

write a function named
udo HW2P7 2026 analysis
to calculate the objective f(v1, v2, v3), and the constraints, g1(v1, v2, v3) and g2(v1, v2, v3),
for a given set of values for the design variables (v1, v2, v3). The function starts
with the line:
def udo_HW2P7_2026_analysis(v, C)

This function uses values in a three-element vector v along with constants in C,
if any, to compute a value of the objective function (the scalar f), and values
of the constraints (the np.array g). In this problem, the Python array g has two
elements: [g(1), g(2)] This .py-function can be as short as around seven to
nine lines of code. A complete template is provided on page 7.

https://www.duke.edu/~hpgavin/cee251/multivarious-opt-example.pdf

CEE 251L. Uncertainty, Design, and Optimization — Duke University — 2026 — H.P. Gavin 7

(b) (15 points) constrained optimization using a gridded search
A continuous parameter space (v1, v2) can be sampled into a finite number of
points (shown as blue circles in the figure below) on a grid from v1,LB to v1,UB and
from v2,LB to v2,UB. The cost f(v1, v2) and constraints g(v1, v2) can be evaluated
at every point on the grid. By keeping track of the best feasible point as each
point is evaluated, the optimal solution from within the set of grid points can be
identified (the green star). In most cases, the true optimal value (black star) is
off of the grid. A finer grid would contain a point closer to the true optimal, but
would also involve more evaluations of f and g. This idea raises the idea of a
method to adaptively refine the grid around (one or more) approximate optimal
solutions.
The figure below is representative of problems that have discontinuous feasible
regions. A local minimizing routine starting within region A might not move
into region B as this would require moving through the infeasible space (hashed).
Numerical optimization methods could move from one feasible region into another,
if the step size of the update of the design variables is larger than the distance
between adjacent feasible regions.
In 3D, the gridded space would be a cube divided into little blocks. The feasible
regions would be 3D objects within the 3D grid. The grid shown below is a regular
grid in which all values of vi are uniformly spaced with the same increment.

★

increment

v

v

v v

2,UB

1,LB 1,UB

2.LB

A

B

★

8 Homework 2

Write a Python script.

The Python script, called udo_HW2P7_2026.py, is provided for you on the next
page. (You’re welcome.) It is a .py-file containing Python commands that use the
analysis function to find the optimal value of the design variables. It implements
a method that is terribly inefficient, but is easy-to-understand, easy-to-program,
and is guaranteed to find a value that is close to the global optimal value.
The first block of code on page 7 and the first three lines of the second block of
code provide a a sketch of the function udo HW2P7 2026 analysis():. Add your
code to compute f and g in the space provided.

Given vectors of values for v1, v2, and v3, the script uses a set of “nested for-
loops” to evaluate your function
f, g = udo_HW2P7_2026_analysis(v , C)

for each and every combination of design variables (lines 28-62). In a gridded
search, the total number of function evaluations is the product of the length of
each parameter-set vector. The script computes the objective f and constraints g
by evaluating the analysis function (line 39) and checks to see if all elements of
g are less than zero and if f is less than the smallest value of f found so far (line
33). If all elements of g are less than zero (feasible) and f is less than the best
value computed so far, the script updates f_opt_gs = f; and v_opt_gs = v;
(lines 39-43). If not, the script simply goes on to the next combination of design
variables. After all combinations have been tried, the optimal values for the design
variables will be v_opt_gs and the associated value of the objective function will
be f_opt_gs (lines 63-66).

Since this method evaluates lots and lots of alternative designs, you may expect
the script to take some time to run. The script keeps track of how much time it
takes using the commands on line 26 and lines 54 to 59.

Note that cutting-and-pasting the typeset code from this .pdf into your .py
file will result in a lot of spaces where there should be none, especially in the
comments. These spaces will cause the code to fail, so, be prepared to look for,
and remove, extra spaces.

CEE 251L. Uncertainty, Design, and Optimization — Duke University — 2026 — H.P. Gavin 9

1 import time
2 from datetime import datetime , timedelta
3
4 import numpy as np
5 from numpy import pi
6 from numpy import sin
7 from numpy import cos
8 from numpy import exp
9

10 from multivarious .opt import ors
11 from multivarious .opt import nms
12 from multivarious .opt import sqp
13 from multivarious .utl import plot_cvg_hst
14
15 def udo_HW2P7_2026_analysis (v , C):
16 # f , g = udo HW2P7 2025 analysis (v , C)
17 # Evaluate an o b j e c t i v e func t i on f (v) and c o n s t r a i n t s g (v) f o r problem #7
18
19 v1 = v[0]
20 v2 = v[1]
21 v3 = v[2]
22
23 ss = v1 **2 + v2 **2 + v3 **2 # sum−squared o f v1 , v2 , v3

...add your equations for f and g here ...
1 return f, g
2
3 # −−− udo HW2P7 2026 analysis
4
5 C = 1 # j u s t a p lace holder , not used in t h i s problem
6
7 v_lb = np. array ([-10.0 , -10.0 , -10.0]) # lower bounds f o r each des ign v a r i a b l e
8 v_ub = np. array ([10.0 , 10.0 , 10.0]) # upper bounds f o r each des ign v a r i a b l e
9 increment = 0.1 # smal l e r increment , more v a l u e s to t r y

10
11 i f 0: # −−− do HW 2 Problem 7b : a gr idded paramter search . . .
12 v1_set = np. arange (v_lb [0] , v_ub [0] , increment) # the s e t o f v a l u e s f o r v1
13 v2_set = np. arange (v_lb [1] , v_ub [1] , increment) # the s e t o f v a l u e s f o r v2
14 v3_set = np. arange (v_lb [2] , v_ub [2] , increment) # the s e t o f v a l u e s f o r v3
15
16 N_v1 = len(v1_set) # the number o f v1 v a l u e s in v 1 s e t
17 N_v2 = len(v2_set) # the number o f v2 v a l u e s in v 2 s e t
18 N_v3 = len(v3_set) # the number o f v3 v a l u e s in v 3 s e t
19
20 NumberOfAnalyses = N_v1 * N_v2 * N_v3
21
22 f_opt_gs = 1e9 # i n i t i a l i z e a va lue f o r o b j e c t i v e f . . . some b i g number
23 g_opt_gs = 1e9 # i n i t i a l i z e a va lue f o r c o n s t r a i n t s g . . . some b i g number
24
25 function_evals = 0
26 start_time = time.time ()
27
28 for i1 in range (N_v1): # loop over v a l u e s o f v1
29 for i2 in range (N_v2): # loop over v a l u e s o f v2
30 for i3 in range (N_v3): # loop over v a l u e s o f v3
31
32 # t r i a l v a l u e s f o r v1 , v2 , v3
33 v = np. array ([v1_set [i1], v2_set [i2], v3_set [i3]])
34
35 f, g = udo_HW2P7_2026_analysis (v, C) # run the a n a l y s i s
36
37 # p r i n t (f ’ f = { f } g = {g} ’) # f o r debugging
38
39 i f np. a l l (g <=0) and f < f_opt_gs : # b e s t s o l u t i o n , so f a r
40
41 f_opt_gs = f # update o b j e c t i v e

10 Homework 2

42 v_opt_gs = v # update v a r i a b l e s
43 g_opt_gs = g # update c o n s t r a i n t s
44
45 function_evals = function_evals + 1
46 i f (function_evals % 100000 == 0) : # when w i l l t h i s ever f i n i s h ?
47
48 elapsed = time.time () - start_time
49 secs_left = int((NumberOfAnalyses - function_evals)* elapsed /
50 function_evals)
51 eta = (datetime .now () +
52 timedelta (seconds = secs_left)). strftime (’%H:%M:%S’)
53
54 i f f_opt_gs > 1e10:
55 print(f" { function_evals :8d} "
56 f" { secs_left } seconds to go (e.t.a. {eta })")
57 else :
58 print(f" { function_evals :8d} "
59 f" { secs_left } seconds to go (e.t.a. {eta }) "
60 f" f_opt = { f_opt_gs :6.3f} "
61 f" max_g_opt = {np.max(g_opt_gs):6.3 f}")
62
63 print(f’ Number of Analyses = { function_evals }’)
64 print(f’ v_opt_gs = { v_opt_gs }’) # the b e s t des ign v a r i a b l e s found
65 print(f’ f_opt_gs = { f_opt_gs }’) # the a s s o c i a t e d o b j e c t i v e func t i on va lue
66 print(f’ g_opt_gs = { g_opt_gs }’) # the a s s o c i a t e d c o n s t r a i n t v a l u e s
67
68 # time . s l e e p (10)
69
70 i f 1: # −−− do HW 2 Problem 7c : now t r y the ors , nms , and sqp methods
71
72 v_init = np. array ([1, 1, 1]) # an i n i t i a l guess f o r v1 , v2 , and v3
73
74 # msg t o l v t o l f t o l g MavIter Penal ty
75 opts = [1, increment /(v_ub [0] - v_lb [0]) , 1e-2, 1e-4, 1000 , 100]
76
77 v_opt , f_opt , g_opt , cvg_hst , _,_ =
78 ors (udo_HW2P7_2026_analysis , v_init , v_lb ,v_ub , opts , C)
79
80 plot_cvg_hst (cvg_hst , v_opt , opts , pdf_plots = True)

“Consider everything. Keep the good. Avoid evil whenever you notice it.”

CEE 251L. Uncertainty, Design, and Optimization — Duke University — 2026 — H.P. Gavin 11

(c) (15 points) constrained optimization using ors, nms, and sqp
Solve this problem using the Python functions provided in multivarious! The
methods implemented in these functions keep track of the design variables, the
objective function, and the constraints. Each method implements a different
approach in determining what the next guess of the optimal value of the design
variables should be, based on the information it has developed so far by trying
out several different values of the design variables. As information about the
problem accumulates with each successive iteration, the methods converge toward
an optimal solution. To use these optimization functions, use the same function
udo_HW2P7_2026_analysis(): that you wrote for part (a) and used in part (b).
This will be passed to the optimization routines to indicate that the variable
is a function name. These methods, like most optimization methods, require a
decent initial guess at the design variables. The initial guess of the optimal design
variables is specified in the Python array v_init. The lower and upper bounds
of the design variables are given in Python arrays v_lb and v_ub.
To apply the constrained optimization methods in your .py-script file, add the
following lines at the end of udo_HW2P7_2026.py :

1
2 i f 1: # −−− do HW 2 Problem 7c : now t r y the ors , nms , and sqp methods
3
4 v_init = np. array ([1, 1, 1]) # an i n i t i a l guess f o r v1 , v2 , and v3
5
6 # msg t o l v t o l f t o l g MavIter Penal ty
7 opts = [1, increment /(v_ub [0] - v_lb [0]) , 1e-2, 1e-4, 1000 , 100]
8
9 v_opt , f_opt , g_opt , cvg_hst , _,_ =

10 ors (udo_HW2P7_2026_analysis , v_init , v_lb ,v_ub , opts , C)
11
12 plot_cvg_hst (cvg_hst , v_opt , opts , pdf_plots = True)

Note here that the convergence tolerance on the variables, tol v, is set to
increment / (v ub[0] - v lb[0])
used in the gridded search. This value is the precision of the gridded search
relative to the span of the search domain. Setting tol v in this way makes for a
level comparison between the efficiency of the gridded search and more advanced
optimization methods. Normally, smaller values of tol v would be used. Try
each of the three optimization functions. Try various values in the initial design
variable vector v_init to see if the computed solution depends on the initial
design variables. Keep track of the total number of function evaluations made in
each of the three methods. (This information is displayed in the Terminal window.)
Which (if any) of the constraint inequalities are binding the optimum point?

12 Homework 2

To hand in:
(a) your well-commented .py-function udo HW2P7 2026 analysis.py

Every Python file that you write should be well-commented. In the first lines of
the .py-file, write comments that tell a user about your .py-file ... what it does,
how to use it, your name, your e-mail, and the date.

(b) The tables below, filled in. Run two analyses, first with increment = 1.0 and
again with increment = 0.1. In each row, circle the value of the constraint(s)
(g1, g2) that bind(s) the optimum point.

Gridded Search Increment Value = 1.0
number of function evaluations =

optimal values compute

f ∗ g∗
1 g∗

2 v∗
1 v∗

2 v∗
3 time

Gridded Search Increment Value = 0.1
number of function evaluations =

optimal values compute

f ∗ g∗
1 g∗

2 v∗
1 v∗

2 v∗
3 time

Which case resulted in a more-negative (lower) f ∗ , and why does that make
sense?

CEE 251L. Uncertainty, Design, and Optimization — Duke University — 2026 — H.P. Gavin 13

(c) To complete the table below, run three analyses using each of the three methods
ors, nms and sqp, using different initial values of the design variables each time.
In each row, circle the value of the constraint(s) (g1, g2) that bind(s) the optimum
point.

initial values optimal values number of
method v1 v2 v3 f ∗ g∗

1 g∗
2 v∗

1 v∗
2 v∗

3 analyses
ors 5 0 0

ors 0 5 0

ors 0 0 2

nms 5 0 0

nms 0 5 0

nms 0 0 2

sqp 5 0 0

sqp 0 5 0

sqp 0 0 2

In a sentence or two discuss the similarities and differences among the nine solutions.

