
CEE 251L. Uncertainty, Design and Optimization
Department of Civil and Environmental Engineering

Duke University
Homework 3, due: Tuesday, January 27, 2025

This course considers engineering design as an application of engineering analysis in which the
design specification (i.e., the design plan) is quantified by a set of design variables

v =
[

v1, v2, v3, · · · , vn

]
and through which performance, utility, safety, equity, and sustainability can be quantified and opti-
mized or constrained.

A design that meets performance, utility, safety, equity, and sustainability requirements can be
called functional. In the approach adopted for this course one of these design requirements is selected
to be the primary design objective, and is to be optimized. This is quantified by an objective function,
which is a function of the design variables.

f(v1, v2, · · · , vn) or, more compactly, f(v) ,

by collecting the n individual design variables into a single vector v. A common objective is to simply
minimize the total cost of the design, possibly including externalities. In other design problems the
objective could be to maximize an aspect of performance.

The functionality of a design depends on more than the primary objective (performance, profits,
etc.). Most designs must also meet a number of other criteria (e.g., reliable enough, safe enough, stable
enough, strong enough, equitable enough, sustainable enough). These criteria also depend upon the
values of the design variables, and are expressed as inequalities. By convention, a set of m inequality
constraints can be written as

g1(v1, v2, v3, · · · , vn) ≤ 0
g2(v1, v2, v3, · · · , vn) ≤ 0

...
gm(v1, v2, v3, · · · , vn) ≤ 0

or, more compactly, g(v) ≤ 0 ,

by collecting the m individual inequalities into a single vector inequality. Design constraints confine
the design variables to domains (or sub-spaces) of admissible alternatives.

In this framework, the admissible and optimal design v∗ minimizes (or maximizes) the primary
design objective while satisfying the design constraints:

minimize
v1, v2, . . . , vn

f(v) such that g(v) ≤ 0 .

In certain rare cases, we can write simple equations for f(v) and g(v) and use calculus to derive
equations for the constrained optimum. In the vast majority of practical problems, however, these
equations are much too complicated to be solved with pencil and paper. In such cases computer-aided
analysis can automate the evaluation of the objective and admissibility of any particular trial design.
Further, computer-aided optimization allows designers to automatically iterate on candidate designs
in order to converge rapidly to an admissible and possibly “optimal” solution. But don’t expect too
much from optimization. In very challenging design optimization problems it can be computationally
impractical to converge to an admissible or feasible design that is perfectly optimal and robust to
uncertainties.

Sometimes, feasibility suffices; being ok is enough.
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1. (5 points) engineering ethics
Engineering Ethics Question 3

2. (10 points) dimensionality
Some numerical optimiztation methods are better suited for a particular problem than
others. The suitability of the method often depends on the number of design variables (the
dimensionality of the problem ). Try using ors, nms and sqp to solve the unconstrained
optimization problem, minimize

v
f(v)

where
f(v) =

n∑
k=1

1
k

(vk − k)2

for n = 2, 10, 50 and −2n ≤ vk ≤ 2n

To solve this unconstrained problem within a computational framework for solving con-
strained problems, simply set g = np.array([-1]) in order to prevent the constraint
from ever binding the solution.
Discuss your results.

3. (30 points) quadratic programming
This question involves matrix mathematics. Re-read “A little matrix math” and sections
2 and 4 of “Quadratic Programming and Lagrange Multipliers” for background.
Consider a quadratic objective function in terms of three variables v1, v2, v3,

f(v1, v2, v3) = 12v2
1 + 35v2

2 + 18v2
3 − 12v1v2 + 3v1v3 − 18v2v3 + 10v1 − 20v2 − 26v3 + 151

(a) Derive three equations for ∂f/∂v1, ∂f/∂v2 and ∂f/∂v3.
(b) This objective function may be written in a form

f(v) = 1
2vTHv + cTv + d (1)

where H is a 3 × 3 Hessian matrix, c is a 3 × 1 vector and d is a constant. The
Hessian matrix represents the curvature of the objective function.

Hij = ∂2f

∂vi∂vj

= ∂

∂vi

∂f

∂vj

Find the numerical values for the Hessian matrix H and the vector c corresponding
to the objective function f(v), above.

(c) Is H always symmetric (Hij = Hji), (H = HT)?
(d) Show that in this example (as in all quadratic problems) the vector ∂f/∂v1

∂f/∂v2
∂f/∂v3


is the same as Hv + c.

https://www.duke.edu/~hpgavin/cee251/cee251-EthicsQuestions-2024.pdf
https://www.duke.edu/~hpgavin/cee251/MatrixMath.pdf
https://www.duke.edu/~hpgavin/cee251/QP_Lagrange.pdf
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(e) Compute the values of v∗
1, v∗

2, v∗
3 that minimize f([v1, v2, v3]). This is an uncon-

strained minimization. What is the value of the objective function f(v∗)? You may
use Python to solve this linear system of three equations and three unknowns.

(f) Suppose that in addition to minimizing f , the parameter values must also satisfy
two inequality constraints:

g1(v1, v2, v3) = −6v1 + 4v2 − 2v3 + 8 ≤ 0

and
g2(v1, v2, v3) = 7v1 − 5v2 + 3v3 − 9 ≤ 0

Find the numerical values of the matrix A (2×3) and the vector b (2×1) representing
these two constraints as g(v) = Av − b ≤ 02×1.
Show that Aij = ∂gi/∂vj.

(g) Using a column-vector of Lagrange multipliers, λ and the augmented objective func-
tion and assuming both constraints are binding,

fA(v, λ) = f(v) + λTg(v) = 1
2vTHv + cTv + d + λT(Av − b) (2)

show that the two necessary conditions for optimality

∂fA

∂v

∣∣∣∣∣
T

v = v∗

λ = λ∗

= 03×1 and ∂fA

∂λ

∣∣∣∣∣
T

v = v∗

λ = λ∗

= 02×1

may be expressed in the following KKT matrix equation,[
H AT

A 0

] [
v∗

λ∗

]
=

[
−c
b

]
.

Note that since fA is a scalar

fA = fT
A = 1

2vTHv + vTc + d + (vTAT − bT)λ

(h) Using the numerical values for H , c, A and b, compute values for the optimal
parameter vector v∗ and the Lagrange multipliers λ∗. You may use Python to solve
this linear system of five equations and five unknowns. Confirm that Av∗ − b = 0.
Are both Lagrange multipliers positive? What is the value of the objective function
f(v∗

(h)) for which Av∗ − b = 0?
(i) If a constraint g(v) = Av − b is increased from a value g to a value g + δg =

Av − b + δg, this is equivalent to writing Av = b − δg. So, decreasing b by δg
increases g by δg.
Repeat part (h) using b − [∆g1, 0]T in the KKT system. Use ∆g1 = 0.1. This
increases g1 (and decreases b1) by ∆g1. What is the new value of the objective
function, f(v∗

(i))? Compare the difference between f(v∗
(h)) and f(v∗

(i)) to the average
of the λ∗

1 values by confirming that

∆f

∆g1
=

f ∗
(i) − f ∗

(h)

∆g1
≈

λ∗
1(h) + λ∗

1(i)

2
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(j) Repeat part (h) using b − [0, ∆g2]T in the KKT system. Use ∆g2 = 0.1. This
increases g2 (and decreases b2) by ∆g2. What is the new value of the objective
function, f(v∗

(j))? Compare the difference between f(v∗
(h)) and f(v∗

(j)) to the average
of the λ∗

2 valaues by confirming that

∆f

∆g2
=

f ∗
(j) − f ∗

(h)

∆g2
≈

λ∗
2(h) + λ∗

2(j)

2

(k) If f has units of e and gi is a constraint related to the mass of the object (with units
of kg), what must be the units of λi?

(l) Are you getting convinced that the values of the Lagrange multipliers indicate the
sensitivity of the objective function to changes in the constraints?

4. (20 points) fit a constrained function to data
Many constrained optimization problems can be solved in one step by using the KKT
equations instead of using numerical optimization. Constrained curve fitting is one such
example.

(a) Re-read “Constrained Linear Least Squares”
(b) Download constrained least squares.py and confirm that it runs without error.
(c) Revise constrained least squares.py in order to fit the equation

ŷ(t; c) = c0 + c1t
2 + c2 sin(2πt) + c3 cos(πt) + c4 exp(−(t2))

to a set of simulated noisy data over the domain 0 ≤ t ≤ 10 such that the initial
value y(t = 0), the final value y(t = 10) and the rate of change of the initial value
y′(t = 0) are known with certainty, and are therefore constraints to this problem.
ŷ(0; c) = 9, ŷ′(0; c) = 56, and ŷ(10; c) = 35.
To generate the measured data, use “true” coefficients
(c0 = 1, c1 = 0.5, c2 = 4, c3 = 5, c4 = −15) .

To solve this problem, you need only edit the lines ending with . . . # *

(d) Include the numerical results and a plot of figure 1 generated by the program
(e) Run constrained least squares.py a few times.

i. Which coefficient for the unconstrained fit seems most variable?
How variable is it?

ii. Which coefficient for the constrained fit seems most variable?
How variable is it?

https://people.duke.edu/~hpgavin/cee251/constrained-least-squares.pdf
https://people.duke.edu/~hpgavin/cee251/constrained_least_squares.py
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5. (30 points) minimize the total potential energy (Π) subject to constraints
Two discs of mass m1 and m2 can roll along ramps with slopes a1 < 0 and a2 > 0 and
are connected by a spring with spring constant k. The position coordinates of the disk
centers are (x1, y1) and (x2, y2). (For the moment, disregard the existence of the ramps.
The ramps will come into play as constraints on the heights y1 and y2 of the two disks.)

The total potential energy of the system is the elastic potential energy in the spring 1
2kd2

plus the gravitational potential energy of the disks m1gy1 + m2gy2. Assuming the un-
stretched length of the spring is zero, the stretch of the spring is d =

√
(x1 − x2)2 + (y1 − y2)2

(a) Derive an expression for the total potential energy Π of the system, which is the sum
of the elastic potential energy and the gravitational potential energy.

(b) The equilibrium configuration of this system minimizes the total potential energy
Defining the coordinate vector q of this system as

q =
[

x1, y1, x2, y2
]T

express
∂Π
∂q

∣∣∣∣∣
T

q=q∗
= 04×1 as Hq∗ + c = 04×1

What is the matrix H in terms of k and what is the vector c in terms of m1, m2 and
g? What is the rank of H? So, is q∗ unique? Why does this make sense, physically?

(c) Now consider the constraints y1 ≥ a1x1 and y2 ≥ a2x2. Write these two constraint
equations as Aq − b ≤ 02×1. What is A in terms of a1 and a2? What is b?
Adjoining the total potential energy Π with the constraints multiplied by the La-
grange multipliers,

ΠA = 1
2qTHq + λT(Aq − b)

This should look very similar to problems 2 and 3.
Without computing any other derivitives write the KKT equations that maximizes
ΠA in terms of λ and minimizes ΠA in terms of q.

∂ΠA

∂q

∣∣∣∣∣
T

q = q∗

λ = λ∗

= 04×1 and ∂ΠA

∂λ

∣∣∣∣∣
T

q = q∗

λ = λ∗

= 02×1

(d) Write the KKT matrix equation for this problem in terms of k, a1, a2, m1, m2, g, q∗

and λ∗. What is the rank of the KKT matrix? Feeling better?
(e) Using numerical values of m1 = 3 kg, m2 = 2 kg, a1 = −3 m/m, a2 = 4 m/m,

k = 20 N/m and g = 9.81 m/s2, solve the system of six equations and six
unknowns for (optimal) equilibrium values of x∗

1, y∗
1, x∗

2, y∗
2, λ∗

1 and λ∗
2.



6 Homework 3

(f) What is the force in the spring?
(g) Does the solution satisfy the constraints y1 ≥ a1x1, y2 ≥ a2x2? Are both Lagrange

multipliers positive? Are both constraints binding? Are you surprised by the values
of q? Now that you see the numerical values, can you explain why they actually
make sense? This is an example of, “Be careful what you ask for, it may not be
what you want.”

(h) The constraint forces are −ATλ. Do these forces act perpendicularly to the ramps?

This method finds the static equilibrium forces and the coordinate displacements of elastic
systems that are statically determinate or statically indeterminate without the need to
derive equilibrium equations (like ∑

Fx = 0 or ∑
Fy = 0).

... cool? ... you’re welcome.


