An Example of Running Constrained Optimization Codes

multivarious.opt: ors, nms, sqp
Civil and Environmental Engineering
Duke University

Henri P Gavin
Spring 2026

Design variables, objective function and constraint inequalities

Design optimizations problems are conventionally defined in terms of n bounded design variables

v = [v1, ..., U], ascalar design objective, f(v), and m design constraints g(v) = [g1(v), ..., gm (V)].
gi(vi,v2,...,vn) < 0 Upr < U1 < Ugba

rir}llqumlvzne = f(v1,v2, ..., v,) such that : © and : :
Im(v1,v2,.. ;) <0 Vbn < Un < Vubp

where [v1,...,v,] is a vector of n design variables, f(v1,...,v,) is the scalar-valued design objective

to be minimized, g;(vi,...,v,) < 0 is the i-th out of m design constraints to be satisfied, and

Ulb,i < v; < vyb,; provide lower bounds (Ib) and upper bounds (ub) on each of the design variables
individually.

Convention for inequality constraints and constraint scaling

By convention, all constraints are expressed as an inequality compared to zero. And by convention,
positive constraint values are “not ok.” A standard (conventional) constraint function g(v) for an
inequality

p(v) < q(v)

is an inequality compared to zero

g(v) =p(v) —q(v) <0

If the numerical values of one constraint equation are much much larger or smaller than numerical
values of other constraint equations, it is helpful to scale the constraints so that they all have values
roughly around the range (-1,1). To do so ...

If p is a positive constant, use  g(v) =1—¢q(v)/p < 0. In code this is written g =1 - q/p;
If ¢ is a positive constant, use  g(v) =p(v)/q—1<0. In code thisis written g = p/q - 1;
If p is a negative constant, use g(v) =¢q(v)/p—1<0. In code thisis written g = q/p - 1;
If g is a negative constant, use g(v) =1—p(v)/qg <0. In code this is written g = 1 - p/q;



2 multivarious.opt : ors, nms, sqp — Duke University — H.P. Gavin

An example optimization problem

This document demonstrates the use of three numerical algorithms for constrained optimization to
solve the following constrianed optimization problem:

minimize [ f(vi,v95¢) = (v1 —c1)? + (va — c2)® + N }

U1, U2
such that:  g1(vi,v95@) = ag +ag(vy — a1)? + as(va —az)* <0
g2(v1,v2;b) = by + by(vy —b1)? +ba(va —b2)2 <0

and 0<v; <1 i€e(1,2)

where [ag, a1, a2, a3, a4], [bo, b1, b2, b3, bs], and [co, c1, co], are numerical constants and N is
an uncertain value modeled by a standard-normal distribution. The coefficient c3 determines the
level of uncertainty in the objective. In this example, the unconstrained minimum of f(v) is at

(vf,v3) = (c1,c2)-

1.0

AL
AR
X \\‘»"\}:‘«)'
R
NN IRRNRRRRY

X1
XRIISON 7
ERBERR
NN €%

AN

AN
N N AN S, 2
NN
NN s S
\§\§§\\\\“
> \\\§§\\
A SN

NN NS S O S % ”’III’;
RN ROEL TSI AITEAT A,
NN R A K7 &"74’4;

Constrained
Optimum
o
Unconstrained
Optimum

. . 0.8 1.0
0.0 0.0 v

Figure 1.
Surfaces and contours of the objective, f(v) (red), and the constraints g1 (v) (green) and ga2(v) (blue).
Constant values: @ =[-0.4, 0.2, 0.5, 1.4, 1.4]; b=[1.0, —=0.5, 0.5, =14, —14]; ¢=1[0.0, 0.8, 0.2 ]

(max headroom)

CC|BY-NC-ND | HP Gavin January 15, 2026


https://www.youtube.com/watch?v=VI1tipuZHuU
http://creativecommons.org/licenses/by-nc-nd/4.0/

V)

An Example of Running Constrained Optimization Codes 3

Three algorithms for constrained optimization

The numerical solution to an optimization problem depends on the algorithm used to obtain the
solution. For some optimization problems, the choice of the algorithm can make a significant

difference.

The constrained optimization algorithms provided by the multivarious library are:

Optimized Random Search ors.py

Nelder-Mead Simplex

nms. py

Sequential Quadratic Programming sqp.py

The three optimization methods are used with the similar function calls.

v_opt, f_opt, g_opt,

cvg_hst, _, _
v_opt, f_opt, g_opt, cvg_hst, _, _
3| v_opt, f_opt, g_opt, cvg_hst, 1lmda, H

ors( func, v_init, v_1lb, v_ub, opts, C )
nms ( func, v_init, v_1b, v_ub, opts, C )
sqp( func, v_init, v_1b, v_ub, opts, C )

INPUT
func the name of the function to be optimized in the form
[objective, constraints] = func(v,C)
v_init the initial guess for the design variable values, v
v_1b lower bound on the design variables, v
v_ub upper bound on the design variables, v
opts an optional array or list of algorithmic options
opts[0] = msg level of displayed intermediate information
opts[0] = 0: display no intermediate results
opts[0] = 1: display a synopsis of results at each iteration
opts[0] = 2: display comprehensive results at each iteration
opts[0] = 3: plot the convergence with respect to variables opt [10] and opt [11]
opts[1] = tol_x tolerance on convergence of design variables
opts[2] = tol_f tolerance on convergence of the design objective
opts[3] = tol_g tolerance on convergence of constraints
opts[4] = max_evals limit on number of function evaluations
opts[5] = penalty on constraint violations
opts[6] = exponent on constraint violations
opts[7] = m_max max number of function evaluations to estimate the mean of f(v, C)
opts[8] = cov_F desired accuracy of the estimate of the mean of f(v,C) (as a c.0.v.)
opts[9] = 1: stop when the solution is feasible j
C an optional array, list, set, simple namespace, or tuple of constants used by func(v,C)
OUTPUT
v_opt a set of design variables at or near the optimal value
f_opt the objective associated with the optimal design variables
g-opt the constraints associated with the optimal design variables
cvg hst record of v, f, g, function_count, and convergence criteria
lmbda the set of Lagrange multipliers at the active constraints (SQP only)
Hess the Hessian of the objective function at the optimal point (SQP only)

To install the multivarious library: git clone https://github.com/hpgavin/multivarious

pip install -e multivarious

CC|BY-NC-ND | HP Gavin January 15, 2026


https://github.com/hpgavin/multivarious/
https://github.com/hpgavin/multivarious/blob/main/multivarious/opt/ors.py
https://github.com/hpgavin/multivarious/blob/main/multivarious/opt/nms.py
https://github.com/hpgavin/multivarious/blob/main/multivarious/opt/sqp.py
https://github.com/hpgavin/multivarious
https://github.com/hpgavin/multivarious
http://creativecommons.org/licenses/by-nc-nd/4.0/

46

multivarious.opt : ors, nms, sqp — Duke University — H.P. Gavin

Code to define and solve the example optimization problem (with comments)

#! /usr/bin/python3 -1

import numpy as np
from types import SimpleNamespace
multivarious.
multivarious.
multivarious.
multivarious.

from
from
from
from

ors
nms

sqp
plot_cvg_hst

opt
opt
opt
utl

import
import
import
import

# Define the optimization problem.
def opt_example_analysis( v, C ):

wun

Relate the design objective, and the d

the design vartables,
mwnn

fs

v, and constants,

vl
v2

v [0]
v[1]

description
description

description
description
description

o

]
QaQaQ
oow

**

design objective
vl - c[1] J**x2 + ( v2 -

Hh
[
~

cl[2] )**x2 +

3

the array of design constraints
= np.array ([

a[0] + a[3]1*( vi -
b[0] + b[3]*( v1 -

o]

D

return f£[0], g # end of opt_

Set-up and Solve the optimization problem.

C = SimpleNamespace() # items
Constants wused
,a=1[ -0.4, O.
.b=[ 1.0, -0.
.c=10[ 0.0, O.

in the design objective and
2, 0.5, 1.4, 1.4 1]

5, 0.5, -1.4, -1.4 1]

8, 0.2 1]

# lower b
# upper b

v_1lb =
v_ub =

np.array ([ O.
np.array ([ 1.

n len(v_1b) # the num

.random. rand (n) *(v_ub
0.8 1)

#vu_1init =
v_init =

v_lb + np
np.array([ 0.8 ,

- w_

# optimization options
# 0 1

# msg tol_w
opts = [ 3, 2e-2,

2
tol_f
2e-2,

3
tol_g
le-3,

4

# Solve the optimization problem wusing one of
v_opt, f_opt, g_opt, cvg_hst, _,_ =

# plot the convergence history

plot_cvg_hst( cvg_hst , v_opt, opts,

al1] )**x2 + al[4]l*( v2 -
bl[1] )**2 + b[4]1*x( v2 -

maz_evals
50*n**3,

ors( opt_example_analysis,

pdf_plots =

esign constraints, g,

c.

untts
units

"yl
2",

of
of

design wvariable
design wvariable

untits
units
untits

constant a,
constant b,
constant c,

of
of
of

c[0]*np.random.randn (1)

al[2] )**x2 ,
b[2] ) **x2

#
#

//91 "
"92”

ezample_analysis ()

Constants used within the optimization analysis
in C can be lists,

nparrays, text anything

the design constraint functions

ound on the design variables
ound on the design variables

ber of design wvariables

1b) # a random

# a specific

initial guess
initial guess

5 6
pnlty ezxzpn
0.7, 0.5,

7 8
m_max cov_F
1, 0.05 ]

ors , nms , sqp

v_init, v_1b, v_ub, opts, C )

True )

CC|BY-NC-ND | HP Gavin January 15, 2026



https://github.com/hpgavin/multivarious/blob/main/examples/opt_example.py
http://creativecommons.org/licenses/by-nc-nd/4.0/

An Example of Running Constrained Optimization Codes

25

20

15
function evaluations

10

15 20 25

function evaluations

10

el
o~
L ©
o
o
o
(=
N
")
-
>
L Il
~— 3
c
©
K
c
>
©
Q
o
T
| ©
— [a)
=
[®]
=
>
)
O
O
F
T T T o T T T T T
nmv ind J. :.J < o un o [Ta} o
o~ — — o o
- 1 = 1 1 S = S = =
2duabianuod anldalgo 2duabianuod s|gelen
el n
o~ o~
o
c g ] ]
T
o)
o
.B o o
= c 4N
2 ¥
(%)
(] I
o M i n
2
g 5
8 £
N—r
<
o 8 S =
© @
A g
(2] &
m o~
o 1
w
E . . s
&
o
(0]
N
m Fo o
= © ¥ N o ® ~ © 0 ¥ M N+ o o
-+ > r o — o o [=] o ©o © o o o o o o o o
g — — vy aAd3[qo sa|qenen !
o Ahiactive  fa(va, V2) (surensuoa)xew


http://creativecommons.org/licenses/by-nc-nd/4.0/

multivarious.opt : ors, nms, sqp — Duke University — H.P. Gavin

Optimized Random Search (ors) Results

+—+—+—+—+—+—+—+—+—+-+— QRS —+—+—+—F+—t+—+—+—+—F+—+—+—+—+

iteration

function evaluations
e.t.a.

objective

variables

max constraint
objective convergence
variable convergence
c.o.v. of F_A

step std.dev

6 *kx feasible k*x*
24 of 400 ( 6.0%)
07:48:37
2.901e-02
6.620e-01 2.998e-01
-4.509e-02 (1)
7.3974e-05 tol_f = 0.020000
6.7523e-03 tol_v = 0.020000
0.000e+00
0.040 uphill reduction

+—+—+—+—+—+—+—+—+—+-+— QRS —+-+—+—F+—t+—+—+—+—F—+—+—+—+

line quadratic update successful

* Woo-Hoo! Convergence in variables and objective in 24 function evaluations!
* Woo-Hoo! Converged solution is feasible!

* objective = 2.901e-02

* v_init v_1b

*

* v[ 0] 0.8000 0.0000
* v[ 1] 0.8000 0.0000
* Constraints :

* g( 0) = -0.04509

* g( 1) = -0.94638

*

*

* Completion

v_opt < v_ub
0.66197 1.0000
0.29978 1.0000

: 07:48:23 (0:00:01) (1.11 s)

CC|BY-NC-ND | HP Gavin January 15, 2026


http://creativecommons.org/licenses/by-nc-nd/4.0/

An Example of Running Constrained Optimization Codes

Nelder Mead Simplex (nms) Results

v

(ZA'TA) BN

objective f,
o °
N o

°
o

variables
° °
o oo

o
IS

o
N

max(constraints)
°
h

o
=3

fopt = 1.849e-02

max(gopt) = 5.782e-04

o
IS

o
w

10 20 30 40 50
10 20 30 40 50
10 20 30 40 50

function evaluations

objective convergence

o
N

variable convergence
o
B

50

10 20 30 40
function evaluations



http://creativecommons.org/licenses/by-nc-nd/4.0/

Nelder Mead Simplex (nms) Results

multivarious.opt : ors, nms, sqp — Duke University — H.P. Gavin

NMS ==== ==
iteration = 19  *x* feasible **x*
reflect
function evaluations = 55 of 400 (13.8%)
e.t.a. = 07:55:48
objective = 1.849e-02
simplex : vertex 1 vertex 2 vertex 3
-2.790e-01 -3.044e-01 -3.046e-01
-1.942e+00 -1.995e+00 -1.980e+00
f_A 1.849e-02 1.853e-02 1.895e-02
max (g) = b5.782e-04 9.955e-04 -1.692e-03
cov(F_A) = 0.000e+00 0.000e+00  0.000e+00
objective convergence = 1.2126e-02 tol_f = 0.020000
variable convergence 1.8926e-02 tol_v = 0.020000
c.o.v. of F_A = 0.0000e+00
NMS

* Woo-Hoo! Convergence in variables and objective in 55 function evaluations!
* Woo-Hoo! Converged solution is feasible!

* objective = 1.849e-02

K
* v_init v_1b < v_opt <

K
* v[ 0] 0.8000 0.0001 0.68030

* v[ 1] 0.8000 0.0001 0.26455

* Constraints :

* g 0) = 0.00058  ** binding *x*

* gC 1) = -1.02797

*

K

* Completion

: 07:55:36 (0:00:02) (2.07 s)

CC|BY-NC-ND | HP Gavin January 15, 2026


http://creativecommons.org/licenses/by-nc-nd/4.0/

An Example of Running Constrained Optimization Codes

Sequential Quadratic Programming (sqp) Results

fopt = 1.514€-02

max(gopt) = 1.261e-04

objective f

10

15 20

25

30

variables

max(constraints)
o o o o

10

15 20

25

30

NoWw s

-

o
o

10

15 20
function evaluations

25

30

106

variable convergence

10764

o
<]
,V3)

objective (v,

1034

1004

10734

10 15 20 25 30
10 15 20 25 30

function evaluations

CC|BY-NC-ND | HP Gavin January 15, 2026



http://creativecommons.org/licenses/by-nc-nd/4.0/

10 multivarious.opt : ors, nms, sqp — Duke University — H.P. Gavin
Sequential Quadratic Programming (sqp) Results

>k 3k 3k 3k >k >k %k 3k 5k >k %k >k %k 5k >k %k %k %k >k 5k *k %k %k SQP >k 3k 3k 3k >k >k %k 5k 3k 5k >k >k %k 5k 3k >k %k %k 5k 5k >k %k >k %k >k % %k %

iteration = 5 *x*x feasible **x
function evaluations = 30 of 400 ( 7.5%)
e.t.a. = 07:57:32

objective = 1.852e-02

variables = -2.823e-01 -1.948e+00

3.724e-04 (1)

max constraint

Step Size = -6.104e-05

BFGS method : modify gradients to ensure Hessian > O, Hessian update
QP method . ok

objective convergence = 1.6857e-07 tol_f = 0.020000

variable convergence = 5.8573e-07 tol_v = 0.020000

3k 5k >k 5k >k 3k 3k >k 5k >k 3k 5k %k 5k >k 5k >k %k 5k >k >k %k SQP 3k 3k >k 5k >k 3k 3k 3k 3k >k 3k >k 5k 3k >k 5k >k %k 5k >k 5k >k >k %k %k >k %k

* Woo Hoo! Converged solution found in 30 function evaluations!

* convergence in design variables

* convergence in design objective

* Woo Hoo! Converged solution is feasible

* objective = 1.852e-02

K

* v_init v_1b < v_opt < v_ub lambda

K
vl 1] 0.8000 0.0000 0.67942 1.0000

* v[ 2] 0.8000 0.0000 0.26306 1.0000

K

* Constraints:

* gl 1] = 0.00037 lambdal[ 1] = 0.10202 ** binding *x*

* g[ 2] = -1.02603 lambdal[ 2] = 0.00000

* Active Constraints: 1

K

* Completion : 07:57:23 (0:00:00) (0.89) s

CC|BY-NC-ND | HP Gavin January 15, 2026


http://creativecommons.org/licenses/by-nc-nd/4.0/

An Example of Running Constrained Optimization Codes 11

Optimization of Design Problems with Uncertainties

The design-based analysis of many systems usually involves imprecise or uncertain information.
These can include uncertainties in the system’s operating environment (loading such as the monthly
rainfall into a watershed, the peak hurricane wind loading on a skyscraper, or the impact velocity
of a car crash), and uncertainties in the system’s intrinsic attributes (behavior such as watershed
dynamics or material strength).

Probability distributions (e.g., the mean and standard deviation of a normal distribution), provide
a quantification of these intrinsic and environmental uncertainties. A distribution of a system’s
performance can be estimated by computing a statistical sample of the performance from samples
of intrinsic and environmental variables, e.g., a sample of material strength values, and sample of
peak wind speed values. This is done through the process of multiple re-analyses of a candidate
design using different, but statistically representative, values of the uncertain quantities in each
analysis. The mean and variability of the performance of a particular design (in the context
of intrinsic and environmental uncertainties) can be estimated from a statistical sample of the
performance metric (i.e., the objective function). Note that confidence in the statistical estimates
improves with the number of re-analyses. In other words, estimates of statistics like the mean or
the standard deviation improve with larger sample sizes. System analyses can take considerable
computational time, and so it is desirable to limit the number of re-analyses, even at the cost of
poorer estimates of the mean and standard deviation of the performance.

Now, comparing two candidate designs in terms of poor estimates of the mean and the standard
deviation of the performance, could be misleading. The comparative assessment based on statistics
estimated from a small sample of performance metrics depends entirely on the values in the sample,
which might not be truly statistically representative if the sample size is small. Design A could
appear to be better than design B based on a small sample, while a very large sample would indicate
the opposite.

To optimize designs with uncertain performance, search methods (such as the Nelder-Mead method)
can be more robust (less sensitive to sampling variability) than gradient-based methods (such as

sQP).

The implementation of the Optimized Step Size Random Search in ORSopt and the Nelder-Mead
method in NMAopt.m can handle problems with uncertain performance metrics. The use of these
optimization methods for optimization with uncertainty can be tailored (or tuned) by changing
three values in the set of options:

o Uncertain objective functions can be assessed in terms of their statistical properties (for
example, their mean (average) and their standard deviation (or coefficient of variation)).
Estimating the mean Mp(v) and coefficient of variation Cr(v) of the uncertain performance
requires a sample of values of the performance metric fa(v,C) for the same set of design
variables v and constants C, but with different values of the uncertain variables. Given a
sample [fa 1, fa2, ..., fam], from m repeated evaluations of the augmented objective function,
fa(v, C) the estimates of the mean and coefficient of variation can be computed as follows:

Mp = % ZfA,i('Ua C)

=1

CC|BY-NC-ND | HP Gavin January 15, 2026


http://creativecommons.org/licenses/by-nc-nd/4.0/

12

N}

multivarious.opt : ors, nms, sqp — Duke University — H.P. Gavin

and
. | om ARG
—— | ——3 " (fas M
Cr My m_liZI(fA,l(’v7C) F)

How many evaluations should be used in computing Mr and Cr? That is, what value for m
should be specified? The answer to this question depends on the level of inherent variability in
fa(v,C), on the desired statistical error ep in the estimate of Mp, and the level of confidence
we require of our estimate. The inherent variability of fa(v,C) is estimated as Cp.

— Problems with larger inherent variability require larger sample sizes to achieve the same
level of confidence.

— Problems which require higher confidence require larger sample sizes to achieve the same
level of inherent variability.

The equation for m is:
Cr?
m = ZQ/Q ;

where 2, /o = 1.645 for a 90% confidence level on the estimate of Mp.

The option mmax (opts[7]) sets a limit on the sample size m in order to restrict m from
becoming too large, (in cases with very large Cr or very small desired ep).

The option cov_F (opts[8]) sets the value of ep, the desired estimation error for the mean,
Mrp (as a c.0.v.)

Note that optimizing with small values of cov_F (opts[8]) and large values of m_max (opts[7])
could require many (many) function evaluations, but will represent the statistics of the ob-
jective function very well.

Because the estimate of the mean and c.o.v. of Fa requires a sample of m evaluations, the
total number of evaluations for the optimization needed for a desired level of confidence in the
estimate of Mp may require an undesireably large amount of computational time. To allow
for the increased computational burden, the maximum total number of function evaluations,
max_evals (opts[4]) may need to be set larger.

For optimization problems with uncertain objective functions, it is sometimes desirable to
recognize the uncertainty of the objective in the cost function. Optimization cost functions
for uncertain objective functions are called risk measures.

The .py-function avg_cov_func.py

takes care of computing Mp, Cr, and implements the the selected risk measure to be op-
timized. A number of risk measures for stochastic optimization problems can be selected
within avg_cov_func.m: the sample average, the sample average plus the sample standard
deviation divided by /m (the 84th percentile of the mean estimate), the sample average plus
the sample standard deviation (the 84th percentile of the objective function), or the sample
max,

# CHOOSE ONE OF THE FOLLOWING RISK-BASED PERFORMANCE MEASURES ...

# F_risk = M_F # average-of-N walues

# F risk = MF * ( 1 + C_F/np.sqrt(m) ) # 84th percentile of the avg. of F
F_risk = M_F * (1 + C_F ) # 84th percentile of F

# F_risk = maz_F; # largest-of-N wvalues

CC|BY-NC-ND | HP Gavin January 15, 2026



http://github.com/hpgavin/multivarious/utl/avg_cov_func.py
http://creativecommons.org/licenses/by-nc-nd/4.0/

An Example of Running Constrained Optimization Codes 13

In the example script on page 4, the uncertainty-level in this example problem is set by the coefficient
c3, so in this example we know in advance that the standard deviation of Fj is equal to the value
we use for ¢z (0.10). Setting cov_F (opts[8]) to 0.05 means that we desire an estimate for the
mean of Fjp that is accurate to within 5%, with a 90% confidence level. Using this information
along with the equation for m, above, we will need a sample size of m = (1.645 x 0.10/0.05)% ~ 11.
So the maximum sample size, m max (opts[7]), can be set to 11.

Overall, the goal in setting values of mmax (opts[7]) and cov_F (opts[8]) is to balance values
that get the overall optimization to consistently converge to sufficiently reliable solutions with a
sufficiently small number of function evaluations.

Note that:

 The risk measure used in this example is Fa risk = Mp(1 + CF).

o The values of the optimized objective functions fopt shown in the figures are all very close to
one another, even for the problem with added uncertainty.

CC|BY-NC-ND | HP Gavin January 15, 2026


http://creativecommons.org/licenses/by-nc-nd/4.0/

multivarious.opt : ors, nms, sqp — Duke University — H.P. Gavin

14

1.50

~ o

objective

<}
falvi, Vv2)

o o
n wn
« «
—
<
g g g
3 ] ]
<
—
]
[}
g
> o °
~ n n
X - =
©
£
o~
b g g
] A A
n
~
@
@
I
gl
W o o
" )
o o
©® © ¥ o o © o~ © < A TR R
000000000000000
vy anndalqo 2|qeL T
(sjuresysuod)xew
o
A
«
o
o
~
o
wn
H
o
o
1
o
b
o
- o o n o wn o
] 3 5 § 2 2 %8 &8
— o o (=] o o
22uabIaAu0d BARIBIGO 6iaAU0d 3)q

250

200

150

100

50

250

200

150

100

50

function evaluations

CC|BY-NC-ND | HP Gavin January 15, 2026


http://creativecommons.org/licenses/by-nc-nd/4.0/

15

An Example of Running Constrained Optimization Codes

50
2

1o£m

o o
ctive fal

IS
Vi, Vv2)

95uabIaAu0d dAI3IB(q0

(=3 o
o o
@ @
o~
9 2 2
4 ~ ~
~
—
Q
~
T
[
= 5 =4
8 & ]
S
X
£
o o
wn wn
- — -
4
[}
©
0
N
< S s
o o
[} = =1
g
)
o o
wn wn
> ® © ¥ &~ o ® © <« . o n g n
00000 5} o 5 M M M W M
) anndalq IqeLe T
& (sjurensuod)xew
X 7
5
z g
= = p ™
€
\
N
- o
0
~
o
o
o~
o
0
-
o
o
—
o
o
< - ] ©o < o~ o
= 61aAU0D 3)q

150 200 250 300
function evaluations

100

50

100 150 00 250 300

50

CC|BY-NC-ND | HP Gavin January 15, 2026


http://creativecommons.org/licenses/by-nc-nd/4.0/

