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Design variables, objective function and constraint inequalities

Design optimizations problems are conventionally defined in terms of n bounded design variables
v = [v1, ..., vn], a scalar design objective, f(v), and m design constraints g(v) = [g1(v), ..., gm(v)].

minimize
v1,v2,...vn

= f(v1, v2, ..., vn) such that
g1(v1, v2, . . . , vn) ≤ 0

...
...

gm(v1, v2, . . . , vn) ≤ 0
and

vlb,1 ≤ v1 ≤ vub,1
...

...
...

vlb,n ≤ vn ≤ vub,n

where [v1, . . . , vn] is a vector of n design variables, f(v1, . . . , vn) is the scalar-valued design objective
to be minimized, gi(v1, . . . , vn) ≤ 0 is the i-th out of m design constraints to be satisfied, and
vlb,i ≤ vi ≤ vub,i provide lower bounds (lb) and upper bounds (ub) on each of the design variables
individually.

Convention for inequality constraints and constraint scaling

By convention, all constraints are expressed as an inequality compared to zero. And by convention,
positive constraint values are “not ok.” A standard (conventional) constraint function g(v) for an
inequality

p(v) ≤ q(v)

is an inequality compared to zero

g(v) = p(v) − q(v) ≤ 0

If the numerical values of one constraint equation are much much larger or smaller than numerical
values of other constraint equations, it is helpful to scale the constraints so that they all have values
roughly around the range (-1,1). To do so ...

If p is a positive constant, use g(v) = 1 − q(v)/p ≤ 0. In code this is written g = 1 - q/p;
If q is a positive constant, use g(v) = p(v)/q − 1 ≤ 0. In code this is written g = p/q - 1;
If p is a negative constant, use g(v) = q(v)/p − 1 ≤ 0. In code this is written g = q/p - 1;
If q is a negative constant, use g(v) = 1 − p(v)/q ≤ 0. In code this is written g = 1 - p/q;



2 multivarious.opt : ors, nms, sqp – Duke University – H.P. Gavin

An example optimization problem

This document demonstrates the use of three numerical algorithms for constrained optimization to
solve the following constrianed optimization problem:

minimize
v1, v2

[
f(v1, v2; c) = (v1 − c1)2 + (v2 − c2)2 + c0N

]
such that: g1(v1, v2; a) = a0 + a3(v1 − a1)2 + a4(v2 − a2)2 ≤ 0 ,

g2(v1, v2; b) = b0 + b3(v1 − b1)2 + b4(v2 − b2)2 ≤ 0 ,

and 0 ≤ vi ≤ 1 i ∈ (1, 2)

where [a0, a1, a2, a3, a4], [b0, b1, b2, b3, b4], and [c0, c1, c2], are numerical constants and N is
an uncertain value modeled by a standard-normal distribution. The coefficient c3 determines the
level of uncertainty in the objective. In this example, the unconstrained minimum of f(v) is at
(v∗

1, v∗
2) = (c1, c2).
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Figure 1.
Surfaces and contours of the objective, f(v) (red), and the constraints g1(v) (green) and g2(v) (blue).
Constant values: a = [−0.4, 0.2, 0.5, 1.4, 1.4 ]; b = [ 1.0, −0.5, 0.5, −1.4, −1.4 ]; c = [ 0.0, 0.8, 0.2 ]
(max headroom)
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Three algorithms for constrained optimization

The numerical solution to an optimization problem depends on the algorithm used to obtain the
solution. For some optimization problems, the choice of the algorithm can make a significant
difference.

The constrained optimization algorithms provided by the multivarious library are:

Optimized Random Search ors.py
Nelder-Mead Simplex nms.py
Sequential Quadratic Programming sqp.py

The three optimization methods are used with the similar function calls.

1 v_opt , f_opt , g_opt , cvg_hst , _, _ = ors( func , v_init , v_lb , v_ub , opts , C )
2 v_opt , f_opt , g_opt , cvg_hst , _, _ = nms( func , v_init , v_lb , v_ub , opts , C )
3 v_opt , f_opt , g_opt , cvg_hst , lmda , H = sqp( func , v_init , v_lb , v_ub , opts , C )

INPUT
func the name of the function to be optimized in the form

[objective, constraints] = func(v,C)
v init the initial guess for the design variable values, v
v lb lower bound on the design variables, v
v ub upper bound on the design variables, v
opts an optional array or list of algorithmic options

opts[0] = msg level of displayed intermediate information
opts[0] = 0: display no intermediate results
opts[0] = 1: display a synopsis of results at each iteration
opts[0] = 2: display comprehensive results at each iteration
opts[0] = 3: plot the convergence with respect to variables opt[10] and opt[11]
opts[1] = tol x tolerance on convergence of design variables
opts[2] = tol f tolerance on convergence of the design objective
opts[3] = tol g tolerance on convergence of constraints
opts[4] = max evals limit on number of function evaluations
opts[5] = penalty on constraint violations
opts[6] = exponent on constraint violations
opts[7] = m max max number of function evaluations to estimate the mean of f(v, C)
opts[8] = cov F desired accuracy of the estimate of the mean of f(v, C) (as a c.o.v.)
opts[9] = 1: stop when the solution is feasible j

C an optional array, list, set, simple namespace, or tuple of constants used by func(v,C)
OUTPUT
v opt a set of design variables at or near the optimal value
f opt the objective associated with the optimal design variables
g opt the constraints associated with the optimal design variables
cvg hst record of v, f , g, function count, and convergence criteria
lmbda the set of Lagrange multipliers at the active constraints (SQP only)
Hess the Hessian of the objective function at the optimal point (SQP only)

To install the multivarious library: git clone https://github.com/hpgavin/multivarious
pip install -e multivarious
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https://github.com/hpgavin/multivarious/
https://github.com/hpgavin/multivarious/blob/main/multivarious/opt/ors.py
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Code to define and solve the example optimization problem (with comments)
1 #! /usr /bin / python3 -i
2
3 import numpy as np
4 from types import SimpleNamespace
5
6 from multivarious .opt import ors
7 from multivarious .opt import nms
8 from multivarious .opt import sqp
9 from multivarious .utl import plot_cvg_hst

10
11 # Define the optimization problem . =========================================
12 def opt_example_analysis ( v, C ):
13 """
14 Relate the design objective , f, and the design constraints , g, to
15 the design variables , v, and constants , C.
16 """
17
18 v1 = v[0] # description of design variable "v1", units
19 v2 = v[1] # description of design variable "v2", units
20
21 a = C.a # description of constant a, units
22 b = C.b # description of constant b, units
23 c = C.c # description of constant c, units
24
25 # the design objective
26 f = ( v1 - c[1] )**2 + ( v2 - c[2] )**2 + c[0]* np. random . randn (1)
27
28 # the array of design constraints
29 g = np. array ([
30 a[0] + a [3]*( v1 - a[1] )**2 + a [4]*( v2 - a[2] )**2 , # "g1"
31 b[0] + b [3]*( v1 - b[1] )**2 + b [4]*( v2 - b[2] )**2 # "g2"
32 ])
33
34 return f[0] , g # end of opt_example_analysis ()
35
36 # Set -up and Solve the optimization problem . ===============================
37
38 # Constants used within the optimization analysis ...
39 C = SimpleNamespace () # items in C can be lists , nparrays , text ... anything
40
41 # Constants used in the design objective and the design constraint functions
42 C.a = [ -0.4, 0.2 , 0.5 , 1.4 , 1.4 ]
43 C.b = [ 1.0 , -0.5, 0.5 , -1.4, -1.4 ]
44 C.c = [ 0.0 , 0.8 , 0.2 ]
45
46 v_lb = np. array ([ 0.0 , 0.0]) # lower bound on the design variables
47 v_ub = np. array ([ 1.0 , 1.0]) # upper bound on the design variables
48
49 n = len(v_lb) # the number of design variables
50
51 # v_init = v_lb + np. random . rand (n)*( v_ub - v_lb ) # a random initial guess
52 v_init = np. array ([ 0.8 , 0.8 ]) # a specific initial guess
53
54 # optimization options ...
55 # 0 1 2 3 4 5 6 7 8
56 # msg tol_v tol_f tol_g max_evals pnlty expn m_max cov_F
57 opts = [ 3, 2e-2, 2e-2, 1e-3, 50*n**3 , 0.7 , 0.5 , 1, 0.05 ]
58
59 # Solve the optimization problem using one of ... ors , nms , sqp
60 v_opt , f_opt , g_opt , cvg_hst , _,_ = ors( opt_example_analysis , v_init , v_lb , v_ub , opts , C )
61
62 # plot the convergence history
63 plot_cvg_hst ( cvg_hst , v_opt , opts , pdf_plots = True )
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Optimized Random Search (ors) Results
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Optimized Random Search (ors) Results

+-+-+-+-+-+-+-+-+-+-+- ORS -+-+-+-+-+-+-+-+-+-+-+-+-+
iteration = 6 *** feasible ***
function evaluations = 24 of 400 ( 6.0%)
e.t.a. = 07:48:37
objective = 2.901e-02
variables = 6.620e-01 2.998e-01
max constraint = -4.509e-02 (1)
objective convergence = 7.3974e-05 tol_f = 0.020000
variable convergence = 6.7523e-03 tol_v = 0.020000
c.o.v. of F_A = 0.000e+00
step std.dev = 0.040 uphill reduction
+-+-+-+-+-+-+-+-+-+-+- ORS -+-+-+-+-+-+-+-+-+-+-+-+-+
line quadratic update successful

* Woo-Hoo! Convergence in variables and objective in 24 function evaluations!
* Woo-Hoo! Converged solution is feasible!
* objective = 2.901e-02
* --------------------------------------------------------------
* v_init v_lb < v_opt < v_ub
* --------------------------------------------------------------
* v[ 0] 0.8000 0.0000 0.66197 1.0000
* v[ 1] 0.8000 0.0000 0.29978 1.0000
* Constraints :
* g( 0) = -0.04509
* g( 1) = -0.94638
*
* --------------------------------------------------------------
* Completion : 07:48:23 (0:00:01) (1.11 s)
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Nelder Mead Simplex (nms) Results
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Nelder Mead Simplex (nms) Results

======================= NMS ============================
iteration = 19 *** feasible ***

reflect
function evaluations = 55 of 400 (13.8%)
e.t.a. = 07:55:48
objective = 1.849e-02
simplex : vertex 1 vertex 2 vertex 3

-2.790e-01 -3.044e-01 -3.046e-01
-1.942e+00 -1.995e+00 -1.980e+00

f_A 1.849e-02 1.853e-02 1.895e-02
max(g) = 5.782e-04 9.955e-04 -1.692e-03
cov(F_A) = 0.000e+00 0.000e+00 0.000e+00
objective convergence = 1.2126e-02 tol_f = 0.020000
variable convergence = 1.8926e-02 tol_v = 0.020000
c.o.v. of F_A = 0.0000e+00
======================= NMS ============================

* Woo-Hoo! Convergence in variables and objective in 55 function evaluations!
* Woo-Hoo! Converged solution is feasible!
* objective = 1.849e-02
* --------------------------------------------------------------
* v_init v_lb < v_opt < v_ub
* --------------------------------------------------------------
* v[ 0] 0.8000 0.0001 0.68030 1.0000
* v[ 1] 0.8000 0.0001 0.26455 1.0000
* Constraints :
* g( 0) = 0.00058 ** binding **
* g( 1) = -1.02797
*
* --------------------------------------------------------------
* Completion : 07:55:36 (0:00:02) (2.07 s)
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Sequential Quadratic Programming (sqp) Results
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Sequential Quadratic Programming (sqp) Results

*********************** SQP ****************************
iteration = 5 *** feasible ***
function evaluations = 30 of 400 ( 7.5%)
e.t.a. = 07:57:32
objective = 1.852e-02
variables = -2.823e-01 -1.948e+00
max constraint = 3.724e-04 (1)
Step Size = -6.104e-05
BFGS method : modify gradients to ensure Hessian > 0, Hessian update
QP method : ok
objective convergence = 1.6857e-07 tol_f = 0.020000
variable convergence = 5.8573e-07 tol_v = 0.020000
*********************** SQP ****************************

* Woo Hoo! Converged solution found in 30 function evaluations!
* convergence in design variables
* convergence in design objective
* Woo Hoo! Converged solution is feasible
* objective = 1.852e-02
* ----------------------------------------------------------------------------
* v_init v_lb < v_opt < v_ub lambda
* ----------------------------------------------------------------------------
* v[ 1] 0.8000 0.0000 0.67942 1.0000
* v[ 2] 0.8000 0.0000 0.26306 1.0000
* ----------------------------------------------------------------------------
* Constraints:
* g[ 1] = 0.00037 lambda[ 1] = 0.10202 ** binding **
* g[ 2] = -1.02603 lambda[ 2] = 0.00000
* Active Constraints: 1
* ----------------------------------------------------------------------------
* Completion : 07:57:23 (0:00:00) (0.89) s
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Optimization of Design Problems with Uncertainties

The design-based analysis of many systems usually involves imprecise or uncertain information.
These can include uncertainties in the system’s operating environment (loading such as the monthly
rainfall into a watershed, the peak hurricane wind loading on a skyscraper, or the impact velocity
of a car crash), and uncertainties in the system’s intrinsic attributes (behavior such as watershed
dynamics or material strength).

Probability distributions (e.g., the mean and standard deviation of a normal distribution), provide
a quantification of these intrinsic and environmental uncertainties. A distribution of a system’s
performance can be estimated by computing a statistical sample of the performance from samples
of intrinsic and environmental variables, e.g., a sample of material strength values, and sample of
peak wind speed values. This is done through the process of multiple re-analyses of a candidate
design using different, but statistically representative, values of the uncertain quantities in each
analysis. The mean and variability of the performance of a particular design (in the context
of intrinsic and environmental uncertainties) can be estimated from a statistical sample of the
performance metric (i.e., the objective function). Note that confidence in the statistical estimates
improves with the number of re-analyses. In other words, estimates of statistics like the mean or
the standard deviation improve with larger sample sizes. System analyses can take considerable
computational time, and so it is desirable to limit the number of re-analyses, even at the cost of
poorer estimates of the mean and standard deviation of the performance.

Now, comparing two candidate designs in terms of poor estimates of the mean and the standard
deviation of the performance, could be misleading. The comparative assessment based on statistics
estimated from a small sample of performance metrics depends entirely on the values in the sample,
which might not be truly statistically representative if the sample size is small. Design A could
appear to be better than design B based on a small sample, while a very large sample would indicate
the opposite.

To optimize designs with uncertain performance, search methods (such as the Nelder-Mead method)
can be more robust (less sensitive to sampling variability) than gradient-based methods (such as
SQP).

The implementation of the Optimized Step Size Random Search in ORSopt and the Nelder-Mead
method in NMAopt.m can handle problems with uncertain performance metrics. The use of these
optimization methods for optimization with uncertainty can be tailored (or tuned) by changing
three values in the set of options:

• Uncertain objective functions can be assessed in terms of their statistical properties (for
example, their mean (average) and their standard deviation (or coefficient of variation)).
Estimating the mean MF (v) and coefficient of variation CF (v) of the uncertain performance
requires a sample of values of the performance metric fA(v, C) for the same set of design
variables v and constants C, but with different values of the uncertain variables. Given a
sample [fA,1, fA,2, ..., fA,m], from m repeated evaluations of the augmented objective function,
fA(v, C) the estimates of the mean and coefficient of variation can be computed as follows:

MF = 1
m

m∑
i=1

fA,i(v, C)

CC BY-NC-ND HP Gavin January 15, 2026
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and

CF = 1
MF

[
1

m − 1

m∑
i=1

(fA,i(v, C) − MF )2
]1/2

• How many evaluations should be used in computing MF and CF ? That is, what value for m
should be specified? The answer to this question depends on the level of inherent variability in
fA(v, C), on the desired statistical error eF in the estimate of MF , and the level of confidence
we require of our estimate. The inherent variability of fA(v, C) is estimated as CF .

– Problems with larger inherent variability require larger sample sizes to achieve the same
level of confidence.

– Problems which require higher confidence require larger sample sizes to achieve the same
level of inherent variability.

The equation for m is:

m =
[
zα/2

CF

eF

]2

where zα/2 = 1.645 for a 90% confidence level on the estimate of MF .
The option m max (opts[7]) sets a limit on the sample size m in order to restrict m from
becoming too large, (in cases with very large CF or very small desired eF ).
The option cov F (opts[8]) sets the value of eF , the desired estimation error for the mean,
MF (as a c.o.v.)
Note that optimizing with small values of cov F (opts[8]) and large values of m max (opts[7])
could require many (many) function evaluations, but will represent the statistics of the ob-
jective function very well.

• Because the estimate of the mean and c.o.v. of FA requires a sample of m evaluations, the
total number of evaluations for the optimization needed for a desired level of confidence in the
estimate of MF may require an undesireably large amount of computational time. To allow
for the increased computational burden, the maximum total number of function evaluations,
max evals (opts[4]) may need to be set larger.

• For optimization problems with uncertain objective functions, it is sometimes desirable to
recognize the uncertainty of the objective in the cost function. Optimization cost functions
for uncertain objective functions are called risk measures.
The .py-function avg cov func.py
takes care of computing MF , CF , and implements the the selected risk measure to be op-
timized. A number of risk measures for stochastic optimization problems can be selected
within avg cov func.m: the sample average, the sample average plus the sample standard
deviation divided by

√
m (the 84th percentile of the mean estimate), the sample average plus

the sample standard deviation (the 84th percentile of the objective function), or the sample
max,

1 # CHOOSE ONE OF THE FOLLOWING RISK - BASED PERFORMANCE MEASURES ...
2 # F_risk = M_F # average -of -N values
3 # F_risk = M_F * ( 1 + C_F/np. sqrt (m) ) # 84 th percentile of the avg. of F
4 F_risk = M_F * ( 1 + C_F ) # 84 th percentile of F
5 # F_risk = max_F ; # largest -of -N values

CC BY-NC-ND HP Gavin January 15, 2026
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In the example script on page 4, the uncertainty-level in this example problem is set by the coefficient
c3, so in this example we know in advance that the standard deviation of FA is equal to the value
we use for c3 (0.10). Setting cov F (opts[8]) to 0.05 means that we desire an estimate for the
mean of FA that is accurate to within ±5%, with a 90% confidence level. Using this information
along with the equation for m, above, we will need a sample size of m = (1.645 × 0.10/0.05)2 ≈ 11.
So the maximum sample size, m max (opts[7]), can be set to 11.

Overall, the goal in setting values of m max (opts[7]) and cov F (opts[8]) is to balance values
that get the overall optimization to consistently converge to sufficiently reliable solutions with a
sufficiently small number of function evaluations.

Note that:

• The risk measure used in this example is FA,risk = MF (1 + CF ).

• The values of the optimized objective functions fopt shown in the figures are all very close to
one another, even for the problem with added uncertainty.
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