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traction is stress at a point on a plane



Sunday! SUNDAY!! SUNDAY!!!
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traction forces in equilibrium
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nonuniform distribution of traction stress components

σ(x)

τ(x)
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a small volume under traction stress vectors,~tx ,~ty

x

y

z

σ

σ

∆A

ty

tx

∆A

yy

xx

τxy

yxτ

I Traction is a stress vector acting on a plane.
I The traction stress vector~tx acts on the x-normal plane and

has components σxx and τxy .

I The traction stress vector~ty acts on the y-normal plane and
has components τyx and σyy .
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the state of stress is coordinate invariant



the state of stress in 2D

I The state of stress on an infinitesimal cubic volume is completely
described by the traction vectors acting on the faces of the cube.

I In 2D (plane stress), the complete set of traction stresses is

S =

[
~tx
~ty

]
=

[
σxx τxy

τyx σyy

]
I S is called the stress tensor
I τxy = τyx ... S is a symmetric tensor
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∑
MP = 0 :

+σxx(∆A)(dl/2) − σxx(∆A)(dl/2)

+σyy(∆A)(dl/2) − σyy(∆A)(dl/2)

+τxy(∆A)(dl) − τyx(∆A)(dl) = 0

Stress Transformation 2D stress EGR 201L. Duke H.P.G Spring 2017 5 / 36



traction stress vectors on coordinate planes
I The traction stress vector~tx is the first row of S.

~tx = [1 0] ·

[
σxx τxy

τyx σyy

]
= ~ı · S

Note: ~ı is the unit normal to the x-plane.
I The traction stress vector~ty is the second row of S.

~ty = [0 1] ·

[
σxx τxy

τyx σyy

]
= ~ · S

Note: ~ is the unit normal to the y-plane.
I Just as~tx = ~ı · S and~ty = ~ · S, the stress vector on any other plane

(with unit normal ~n) is given by

~tn = ~n · S

This is what the stress tensor does.
It defines tractions on any plane.
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traction stress vectors on any plane: ~tn = ~n · S
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equilibrium on the wedge:

A~tn = (A cos θ)~tx+(A sin θ)~ty

~tn = [cos θ sin θ] ·

[
~tx
~ty

]
~n = [cos θ sin θ]

S =

[
~tx
~ty

]
~tn = ~n · S

The traction~tn = ~n · S is expressed in the xy coordinate system.

note: (A cos θ) = Anx and (A sin θ) = Any

Stress Transformation 2D stress EGR 201L. Duke H.P.G Spring 2017 7 / 36



traction stress vectors in other coordinates: ~t ′n = ~tn · T
I Let’s express this traction~tn in a new coordinate system x′y′,

where x′ is along the unit normal ~n and y′ is perpendicular to x′.
I These rotated components of~tn are the normal stress and shear

stress on the plane with normal ~n: t ′n = [σx′x′ , τx′y′ ]
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c = cos θ

s = sin θ

σx′x′ = tnxc + tnys

τx′y′ = −tnxs + tnyc

[
σx′x′ , τx′y′

]
=

[
tnx , tny

] [ c −s
s c

]
; ~t ′n = ~tn · T ; T−1 = TT
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unit vectors and coordinate transformation in 2D
I The unit vectors along x and y are

~ı = [1 , 0] and ~ = [0 , 1]

I The unit vectors along x′ and y′ ... rotated by θ (ccw) ... are

~i′ = [cos θ , sin θ] and ~j′ = [− sin θ , cos θ]

I The coordinate transformation
from a vector~t (in xy) to the vector~t ′ (in x′y′) is[

t ′x t ′y
]

=
[

tx ty
] [ cos θ − sin θ

sin θ cos θ

]
=

[
tx ty

]  ~ı ·~i′ ~ı ·~j′

~ ·~i′ ~ ·~j′


I The coordinate transformation

from a vector~t ′ (in x′y′) to the vector~t (in xy) is[
tx ty

]
=

[
t ′x t ′y

] [ cos θ sin θ
− sin θ cos θ

]
=

[
tx ty

]  ~i′ ·~ı ~i′ · ~
~j′ ·~ı ~j′ · ~


I Tractions (stress vectors) can be transformed by coordinate rotation.
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summary
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I In the xy coordinate system, the
traction on a plane with unit
normal n is

~tn = ~n · S

= [cos θ , sin θ] · S

I The coordinate transformation
from~tn (in xy) to~t ′n (in x′y′) is

~t ′n = ~tn · T

I Unit vectors can be similarly
transformed, ~n′ = ~n · T ... and ...

~n = ~n′ · TT

[cos θ , sin θ] = [1 , 0] · TT
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putting it all together ... stress transformation
I Given:

• stress in an xy coordinate system, S.
• a unit vector ~n along x′ in an x′y′ coordinate system.

I Find: The stress S′ in the x′y′ coordinate system.
I Substitute ...

~t ′n = ~tn · T
~t ′n = ~n · S · T
~t ′n = ~n′ · TT · S · T
~t ′n = ~n′ · S′

S′ = TT · S · T

In 2D, the stress transformation formula for a CCW rotation θ is:[
σx′x′ τx′y′

τy′x′ σy′y′

]
=

[
c s
−s c

] [
σxx τxy

τyx σyy

] [
c −s
s c

]
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carry out the matrix product S ′ = TT · S · T[
σx′x′ τx′y′

τy′x′ σy′y′

]
=

[
c s
−s c

] [
σxx τxy

τyx σyy

] [
c −s
s c

]

=

[
σxxc2 + σyys2 + 2τxycs (σyy − σxx)cs + τxy(c2 − s2)

(σyy − σxx)cs + τxy(c2 − s2) σxxs2 + σyyc2 − 2τxycs

]
(simplified using symmetry ... τxy = τyx )
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σ
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For what angle θ is τx′y′ = 0?
1. On what planes is the shear stress zero?
2. What is the transformation matrix T that diagonalizes S′?
3. What are the normal stresses on planes with no shear stress?[

c s
−s c

] [
σxx τxy

τyx σyy

] [
c −s
s c

]
=

[
σ1 0
0 σ2

]
[

c s
−s c

] [
σxx τxy

τyx σyy

]
=

[
σ1 0
0 σ2

] [
c s
−s c

]
[

c s
] [ σxx τxy

τyx σyy

]
= σ1

[
c s

]
[
−s c

] [ σxx τxy

τyx σyy

]
= σ2

[
−s c

]
1. Planes with no shear stress are normal to eigenvectors of S.
2. The transformation matrix T of eigenvectors of S diagonalizes S.
3. The normal stresses on planes with no shear stress are the

eigenvalues of S, σ1 and σ2. These are called principle stresses.
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principle stresses are the eigenvalues of the stress tensor
That sounds impressive.
But what does it mean?
Let’s look at an example in 2D.

S =

[
~tx
~ty

]
=

[
σxx τxy

τyx σyy

]
=

[
2 −5
−5 4

]
kPa

Here’s a plot of~tn(θ) = ~n(θ) · S for all values of ~n(θ) = [cos θ , sin θ]
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principle stresses are the eigenvalues of the stress tensor
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I At θ = 0, ~n(θ) = [1 , 0] and~tn = ~tx = [S11,S12] = [2,−5]
I In general, the traction vector is not in line with the normal vector.
I There are two normal vectors for which the traction vectors align with

the normal vector. These are the eigenvectors of S.
I For normal vectors aligned with the eigenvectors of S, the traction

vector~tn is in line with the normal vector ~n, and has a length equal to
the eigenvalues of S. These are the principal stresses. (red lines).
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Mohr’s Circle (for plane stress)



trigonometry and algebra lead to Mohr’s circle
Substitute:

cos2 θ = (1 + cos 2θ)/2

sin2 θ = (1 − cos 2θ)/2

2 sin θ cos θ = sin 2θ

into:
σx′x′ = σxx cos2 θ + σyy sin2 θ + 2τxy sin θ cos θ

τx′y′ = (σyy − σxx) sin θ cos θ + τxy(cos2 θ − sin2 θ)

square equations, add them, and do some algebra to obtain:(
σx′x′ −

σxx + σyy

2

)2

+ τ2
x′y′ =

(σxx − σyy

2

)2
+ τ2

xy

and compare to:
(x − c)2 + y2 = r2

to recognize the equation for a circle with center (c, 0) and radius r !
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Mohr’s circle of stress
I The center of Mohr’s circle is at

(
σxx +σyy

2 , 0
)

.
I The radius of Mohr’s circle is the maximum shear stress, τmax

τmax =

[(σxx − σyy

2

)2
+ τ2

xy

] 1
2

I There exists a plane on which the shear stresses are zero. This plane
is inclined at an angle α from the xy axes. The normal stresses acting
at this orientation are called the principle stresses, σ1 and σ2.

I From Mohr’s circle:

σ1 =
σxx + σyy

2
+ τmax σ2 =

σxx + σyy

2
− τmax

I The angle, α, is given by:

2α = arctan
(

2τxy

σxx − σyy

)
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Mohr’s Circle Procedure - draw the circle

1. Draw the stress element aligned with the original x, y axes.
Show the known stresses, σxx , σyy , and τxy on the stress element.
Tension is positive.
Compression is negative.

2. Draw the σ, τ axes for Mohr’s circle with τ pointing down.

3. Locate the center C of the circle at
(
σxx +σyy

2 , 0
)
.

4. Locate the point X on the circle at (σxx , τxy).

5. Draw the circle passing through point X with center at point C.
The circle will pass through point Y (σyy ,−τxy) 180 degrees from
point X .
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Mohr’s Circle Procedure - draw the circle

yy xy
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Mohr’s Circle Procedure - transform the stress

1. Draw new axes x′y′ rotated an angle θ counter-clockwise from the xy
axes on the stress element from step 1a above.

2. Find numerical values for the principle stresses, the maximum shear
stresses, and the angle, α, from the xy axes to the principle axes.

3. Separate the angle θ into two parts: θ = α + β.

4. Calculate the new stresses:

σx′x′ =
σxx + σyy

2
+ τmax cos(−2β)

σy′y′ =
σxx + σyy

2
− τmax cos(−2β)

τx′y′ = τmax sin(−2β)

5. Points X ′, (σx′x′ , τx′y′) and Y ′, (σy′y′ ,−τx′y′) lie on the circle at an
angle 2θ in the CCW direction from points X and Y , respectively.

Is this easier than S′ = TT · S · T ?
Stress Transformation 2D Mohr’s circle EGR 201L. Duke H.P.G Spring 2017 20 / 36



Mohr’s Circle Procedure - transform the stress

xyxx
(σ  , τ   )
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τ
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notes on Mohr’s circle
I Why is a counter-clockwise rotation of the coordinate axes translated

into a counter-clock-wise rotation on Mohr’s circle?
I Why are the rotations of the coordinate axes doubled when translated

to Mohr’s circle?

The answer to these questions can be answered by considering the state
of stress caused by pure torsion:

α
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yy xy
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xx xy
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y

σσ 2 1σ

τmaxτ
y

2α

Y’
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notes on Mohr’s circle

I This state of stress is described by a Mohr’s circle centered at the
origin of the σ − τ axes with a radius equal to τ̄.

I Points X and Y lie on the τ-axis
I Point X is located at (0,+τ̄).

Point Y is located at (0,−τ̄).
I If a new set of axes (x′y′) are drawn at an angle of 45 degrees

(CCW) to the xy axes, no shear stresses will act on surfaces normal
to the x′y′ axes.

I The normal stress acting along the x′-axis will be in tension. The
normal stress acting along the y′-axis will be in compression.

I These stresses correspond to points X ′ and Y ′, rotated in a CCW
direction of 90 degrees from points X and Y , respectively.

I Point X ′ shows a tensile stress +τ̄.
Point Y ′ shows a compressive stress −τ̄.

Stress Transformation 2D Mohr’s circle EGR 201L. Duke H.P.G Spring 2017 23 / 36



So what’s easier, Mohr’s Circle or S ′ = TT · S · T ?

S = [ 2 -5 ; % 2D stress tensor

-5 4 ];

[ evecS , evalS ] = eig(S) % principle directions & stresses

tau_max = (max(diag(evalS)) - min(diag(evalS)))/2

t = 47; % rotation angle theta (degrees)

T = [ cosd(t) , -sind(t) ; % coordinate transformation matx

sind(t) , cosd(t) ];

St = T’*S*T % transformed stress tensor

... you may decide for yourself.
It’s good to know about Linear Algebra.
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stress transformation in 3D



the continuum potato

cuts on three planes (yz, zx, zy)
and an internal elemental cube with surface areas ∆A .
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The elemental stress cube
showing “positive-facing” faces
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σii = lim
∆A→0

∆Nii

∆Ai

τij = lim
∆A→0

∆Vij

∆Ai

S =

 σxx τxy τxz

τyx σyy τyz

τzx τzy σzz
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the stress tensor

The stresses on the surfaces in the xyz coordinate system are
the rows of the stress tensor.

[
σxx τxy τxz

]
=

[
1 0 0

]  σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


[
τyx σyy τyz

]
=

[
0 1 0

]  σxx τxy τxz

τyx σyy τyz

τzx τzy σzz


[
τzx τzy σzz

]
=

[
0 0 1

]  σxx τxy τxz

τyx σyy τyz

τzx τzy σzz
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stress vectors, or “tractions” on the coordinate planes
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~tx = ~ı · S

~ty = ~ · S

~tz = ~κ · S

Stress Transformation 3D stress EGR 201L. Duke H.P.G Spring 2017 28 / 36



stress vectors, or “tractions” on the coordinate planes
The traction,~t , on a surface has xyz components.
The traction on the surface with unit normal~ı is

~tx = σxx~ı + τxy~+ τxz~k =
[
σxx τxy τxz

]
= ~ı · S

The traction on the surface with unit normal ~ is

~ty = τyx~ı + σyy~+ τyz~κ =
[
τyx σyy τyz

]
= ~ · S

The traction on the surface with unit normal ~κ is

~tz = τzx~ı + τzy~+ σzz~κ =
[
τzx τzy σzz

]
= ~κ · S

Likewise ... (because the stress tensor is a linear operator)
The traction on any surface with unit normal ~n is

~tn = ~n · S
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traction on an arbitrary surface~tn = ~n · S
t

An

An
z

y

A

Anx

x

y

t

tz t

t
x

y

tz

n
t

~tx = ~ı · S

~ty = ~ · S

~tz = ~κ · S

From equilibrium on the tetrahedron,

A~tn = Anx ~tx + Any ~ty + Anz ~tz

recall from 2D: A cos θ = Anx and A sin θ = Any
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traction on an arbitrary surface~tn = ~n · S

I Consider the three coordinate planes passing through a point with
unit normal vectors~ı, ~, and ~κ

I The unit normal vector ~n to any plane can be expressed in terms of~ı,
~, and ~κ.

~n = nx ~ı + ny ~+ nz ~κ

I From equilibrium on the tetrahedron:

~tn = nx ~tx + ny ~ty + nz ~tz

I So the traction~tn on a plane with unit normal ~n

~tn = nx~ı · S + ny~ · S + nz~κ · S = (nx~ı + ny~+ nz~κ) · S = ~n · S
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traction stress vectors in other coordinates: ~t ′n = ~tn · T

I Let’s express this traction~tn in a new coordinate system x′y′z′ where
~ı, ~,~κ are unit vectors in the x, y, z axes, and
~i′,~j′, ~k ′ are unit vectors in the x′, y′, z′ axes.

I These rotated components of~tn are the normal stress and shear
stress in the rotated coordinate system : t ′n = [σx′x′ , τx′y′ , τx′z′ ]

y’ y

x’y’

x’

x

τ

z’

τ
x’z’

i

j

k

i’j’

k’

x’x’σ

nx

nz

t

t

t
z

tnny ~t ′n = ~tn · T

T =


~ı ·~i′ ~ı ·~j′ ~ı · ~k ′

~ ·~i′ ~ ·~j′ ~ · ~k ′

~κ ·~i′ ~κ ·~j′ ~κ · ~k ′


T−1 = TT

recall coordinate transformation matrix in 2D
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transformation of tractions and stresses



apply coordinate transformation to a traction
I the traction on surface “n” is

... ~tn = ~n · S
I the coordinate transformation from unit normal ~n′ to unit normal ~n is

... ~n = ~n′ · TT

I the coordinate transformation from traction vectors~tn to~t ′n is
... ~t ′n = ~tn · T

~t ′n = ~tn · T

= ~n · S · T

= ~n′ · TT · S · T

= ~n′ · (TT · S · T)

= ~n′ · S′

So, the stress tensor S ’ in a coordinate system with axis ~n′ can be
expressed in terms of the stress tensor S in a coordinate system with axis
~n where ~n′ = ~n · T ,

S′ = TT · S · T
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Mohr’s circle in 3D



Mohr’s circle in 3D

I Make three Mohr’s circles,
• one for the xy stress square,
• one for the yz stress square, and
• one for the xz stress square.

I The three circles will share three principle stresses.

I If there is no traction on one face of the stress cube,
then then one of the principle stresses is zero.
In this case:
• If σ1 > 0 and σ2 < 0, then τmax = (σ1 − σ2)/2
• If σ1 > 0 and σ2 > 0, then τmax = +σ1/2
• If σ1 < 0 and σ2 < 0, then τmax = −σ2/2
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Mohr’s circle in 3D for σ1 > 0, σ2 < 0, and σ3 = 0

max 1
τ   = (σ − σ )/2
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Mohr’s circle in 3D for σ1 > 0, σ2 > 0, and σ3 = 0

τ    = σ /2
1max

1
σ

3
σσ

2

σ

(σ )(σ ) > 0
1 2

τ

xy

xz

yz

x

y

What are the 3D coordinate rotations
to get from the x, y, z coordinates to the τmax coordinates?

... (α about z, 45 deg. about y′).
Biaxial tension: ductile shear failure. Triaxial tension: brittle tensile failure.
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