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Optimal Performance of Constrained
Control Systems

Philip S Harvey, Henri P Gavin, and Jeffrey T. Scruggs

Abstract

This paper presents a method to compute optimal open-loop trajectories for systems subject to state and control
inequality constraints in which the cost function is quadratic and the state dynamics are linear. For the case in
which inequality constraints are decentralized with respect to the controls, optimal Lagrange multipliers enforcing
the inequality constraints may be found at any time through Pontryagin’s minimum principle. In so doing, the
set of differential algebraic Euler-Lagrange equations are transformed into an unconstrained nonlinear two-point
boundary-value problem for states and costates whose solution meets the necessary conditions for optimality. The
optimal performance of inequality constrained control systems is calculable allowing for comparison to previous,
sub-optimal solutions. The method is applied to the control of damping forces in a vibration isolation system
subjected to constraints imposed by the physical implementation of a particular controllable damper.
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I. INTRODUCTION

In this paper we develop and evaluate open-loop controlled responses for systems in which each control
is individually constrained. Optimal control problems involving inequality constraints are encountered in
a wide range of applications [1], [2], [3], [4], [5]. In the time domain, solutions to nonlinear optimal
control problems involve solving sets of Euler-Lagrange equations, i.e., differential algebraic two-point
boundary value problems [6], and require iterative methods. Various methods have been proposed to
find the optimal solution to inequality constrained problems. Penalty functions [7] approximately enforce
constraints and require the selection of weighting constants and penalty functions. If the weighting constant
is too small the constraint may not be enforced, but if it is too large, it will dominate the optimization.
Sage [8] proposed introducing additional states and using Heaviside functions to convert the inequality
constraint to an equality constraint. Ma and Levine [9] used a gradient descent method to iteratively
converge upon the optimal controller. More recently, model predictive control or receding horizon control
has become popular whereby control decisions are made online over a finite horizon [10], [11]. Johansen
et al. [12] and Sznaier and Damborg [13] partition the state-space into regions where different feedback
laws, calculated offline, are implemented. The latter method is only applied to free response control, i.e.,
in the absence of external, noncontrollable inputs, where the LQR solution is applicable. In many civil
engineering applications, a sub-optimal solution is implemented in which the external input is neglected
to derive the controller but then applied to the disturbed system [14]; this method is common referred
to as “clipped-optimal” control and will be discussed further in this paper. Common shortcomings of the
aforementioned methods are the simplicity of the constraint (i.e., linear) and/or absence of an exogenous
disturbance.

Semi-active control is a class of control systems in which a small amount of external power is required
to modulate mechanical properties of the actuators, i.e., stiffness [15], [16] and damping [14], [17]. Semi-
active actuators are dissipative and, thus, stability constraints are not required in synthesizing controllers for
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asymptotically-stable, open-loop systems. Implementation of semi-active control involves controls acting
through actuators that exhibit saturation limits [18], [19]. Therefore, the controls are sector-bounded.

Various approaches have been used in the past to synthesize control laws for semi-active vibration
control problems [20]. Dating back to the early 1970’s [21], [22], semi-active force generation has been
studied as a means for vibration suppression for a range of applications. In particular, vehicle suspension
systems [23] were of interest from the 1980’s into the early 1990’s. More recently semi-active control has
been studied for civil engineering applications of seismic isolations of structures [18], [24], [25], [26].
This paper presents an extension of the optimal control method of Tseng and Hedrick [27] and Butsuen
[28] for a more general constraint on control forces.

In this study, trajectories for optimal damping rates are calculated for vibration isolation systems that
operate on the principle of a rolling pendulum. The isolated components are supported by large ball
bearings (2 cm in diameter) that roll on rigid dish-shaped bowls with a quadratic profile. The period
of motion is determined by the curvature of the dish, independent of the mass. Damping force is
modulated in the isolation system in order to minimize a quadratic performance functional that weights
total response accelerations and control efforts in order to improve the isolation system transmissibility
at high frequencies while simultaneously suppressing resonant behavior. This method requires a priori
knowledge of the disturbance and cannot be implemented in non-autonomous systems. However, from
optimal control trajectories, parameterized feedback control laws may be deduced.

II. METHODOLOGY

This section presents the formulation and solution to optimal control problems with nonlinear decentral-
ized constraints. The solution to the unconstrained finite-horizon linear-quadratic (LQ) problem is found
by solving a two-point boundary-value problem (TPBVP) [7]. Numerical methods to solve unconstrained
TPBVPs are well established, e.g., shooting methods, finite-differences, finite-elements. The method
applied here is a collocation with a piecewise cubic polynomial function, which satisfies the boundary
conditions for each subinterval, and is implemented by the Matlab function bvp4c.m [29]. This method
requires an initial guess for the trajectories – states and costates – from which the nonlinear algebraic
equations for the coefficients of the cubic polynomial solution are solved iteratively by linearization [30].
The contribution of this paper is to show that systems in which controls are individually constrained can
be cast as an unconstrained TPBVP. In the method introduced here the constraints are enforced through
Lagrange multipliers. Because controls are individually constrained, the Lagrange multipliers required to
enforce constraints may be determined individually.

A. Problem Statement
An admissible control trajectory u(t) ∈ Rm is to be applied to a non-autonomous system

ẋ = f(x,u, t), x(0) = x0, x(t) ∈ Rn (1)

in order to minimize a Lagrange-type cost function of the states and controls

J =

∫ T

0

L(x(t),u(t)) dt (2)

subject to the equality constraint (1) and an `-component state-control inequality constraint

c (x,u, t) ≤ 0 . (3)

Each constraint in c(·) involves only one control. Hereinafter, vectors and matrices will be denoted by
bold lowercase and uppercase letters, respectively. Following the calculus of variations, we define the
Hamiltonian as

H ≡ L+ pT f + λTc (4)
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where p(t) ∈ Rn is a Lagrange multiplier vector or costate for the dynamic constraint (1) and λ(t) ∈ R`

are Lagrange multipliers for the inequality constraint (3). Note that all λi(t) ≥ 0. In the usual way,
adjoining the constraints with multipliers to the performance index J , we have

JA =

∫ T

0

H − pT ẋ dt . (5)

Setting the first variation of JA with respect to independent increments δx, δu, δp, and δλ, i.e. δJA = 0,
we obtain the necessary conditions for optimality. That is

0 = − pT δx
∣∣T
0

+

∫ T

0

(
∂H

∂x
+ ṗ

)T
δx +

∂H

∂u
δu +

(
∂H

∂p
− ẋ

)T
δp +

∂H

∂λ

T

δλ dt . (6)

Note that perturbations δλ about the optimum λ∗ are constrained: if λ∗(t) = 0, then δλ(t) must be
greater than or equal to zero, otherwise δλ(t) is unconstrained. The corresponding variation in the cost
δJA(δλ) ≤ 0, i.e. perturbations in λ reduce the cost at (local) maxima. The first-order necessary conditions
for optimality are thus

ẋ =
∂H

∂p
= f(x,u, t), x(0) = x0 (7a)

−ṗ =
∂H

∂x
=
∂L

∂x
+
∂fT

∂x
p +

∂cT

∂x
λ, p(T ) = 0 (7b)

0 =
∂H

∂u
=
∂L

∂u
+
∂fT

∂u
p +

∂cT

∂u
λ (7c)

0 ≥ ∂H

∂λ
= c(x,u, t) . (7d)

Equations (7a)–(7d) constitute a constrained TPBVP which, in general, can be extremely hard to solve.
In the case of linear, time-invariant (LTI) state dynamics

ẋ = f(x,u, t) = Ax(t) + Bu(t) + Gw(t), x(0) = x0, x(t) ∈ Rn (8)

where w(t) is an exogenous input, and the Lagrangian is quadratic

L(x(t),u(t)) =
1

2

[
x
u

]T [
Q S

ST R

] [
x
u

]
(9)

the necessary conditions (7a)-(7d) reduce to

ẋ =
∂H

∂p
= Ax + Bu + Gw, x(0) = x0 (10a)

−ṗ =
∂H

∂x
= Qx + Su + ATp +

∂cT

∂x
λ, p(T ) = 0 (10b)

0 =
∂H

∂u
= Ru + STx + BTp +

∂cT

∂u
λ (10c)

0 ≥ ∂H

∂λ
= c(x,u, t) . (10d)

Henceforth, the linear quadratic (LQ) problem will be handled, but the proposed methods are viable for
nonlinear dynamics and arbitrary Lagrangians.

Though these necessary conditions are well-known, methods to find solutions are not well represented
for complex constraints c(·), i.e., non-linear and/or state constraints. Here, we present a saturation method
in which knowledge of the decentralized structure of the constraint boundaries allows for closed-form
expressions for the optimal Lagrange multiplier values. This is an extension of Butsuen’s work [28]
which involved linear constraints on the a single actuator system with only state weight in the cost.
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The extensions presented here allow for exogenous disturbances and multiple controls subject to a much
broader class of constraints involving controls and states. By recognizing that control constraints are
decentralized, i.e., each constraint equation involves only one control input, it will become evident in the
following that optimal values of the constraint Lagrange multipliers may be found in closed form from
∂H
∂u

= 0.

B. Optimal Constrained Control Law
Numerical solutions to (10a)–(10d) are represented by four trajectories—u(t), x(t), λ(t), and p(t).

Controls and Lagrange multipliers that satisfy the stationarity condition (10c) and control constraints
(10d) may be evaluated for each time step and inserted into the state and costate dynamics, (10a) and
(10b), thereby resulting in an unconstrained TPBVP. This method involves a saturation procedure described
below.

At the optimal solution, the complementary slackness condition

λj(t)

{
= 0, cj(x, uj, t) < 0
≥ 0, cj(x, uj, t) = 0

(11)

must hold, i.e., improvements can only come by violating the constraint. Pontryagin’s Minimum Principle
[6] states the optimal control is the one that minimizes the value of the Hamiltonian H(·) at any particular
instant:

u∗(t) = arg min
u(t)

{H(x,u,p,λ, t)} (12)

or equation (10c). This minimization must respect constraint (10d), but is essentially an algebraic problem
at each instant in time [31]. The difficulty arrises in computing the solution to the state/costate system of
equations in the form of a TPBVP.

The optimal control u(t) and inequality constraint multiplier λ(t) are found from (10c) as follows:
define the proposed control to be

ũ(t) ≡ −R−1
(
STx(t) + BTp(t)

)
. (13)

This is the optimal unconstrained (or active) control given by (10c) where λ(t) ≡ 0. Unless constraints
are redundant or over-specified, no more than one constraint per control input is invoked at any point in
time; we saturate the control to the most restrictive constraint. Furthermore, each constraint is assumed to
be decentralized with respect to its control, i.e. c(x,u, t) =

[
c(1)(x, u1, t)

T · · · c(m)(x, um, t)
T
]T where

c(k)(·) ∈ R`k and
∑

k `k = `. Similarly, the inequality constraint Lagrange multipliers can be partitioned
as follows: λ(t) = [λ(1)(t)T · · · λ(m)(t)T ]T . This allows for determination of each optimal control uk(t)
independently of the other controls. So at most, only one multiplier λ(k)j (t) will be activated at any time for
a given control uk(t). If c(k)j (x, ũk, t) ≤ 0 ∀ j, accept uk(t) = ũk(t); otherwise, λ(k)j (t) must be determined
such that the violated constraint c(k)j (x, uk, t) = 0. To this end, we define the saturation function as follows:

Sat(x, uk; t) ≡
{
uk : c

(k)
j (x, uk, t) ≤ 0 ∀ j

ûk : c
(k)
i (x, uk, t) > 0

(14)

such that c
(k)
i (x, ûk, t) = 0 .

A visualization of the saturation function is given in Figure 1. The leftmost figure, Figure 1(a), shows a
feasible proposed control, i.e., c(k)j (x, uk, t) ≤ 0 ∀ j; therefore, we accept uk(t) = ũk(t). Next, Figure 1(b)
depicts a simple saturation of an infeasible proposal constraint, c(k)2 (x, ũk, t) > 0; ũk(t) is saturated to ûk
such that c(k)2 (x, ûk, t) = 0. Finally, Figure 1(c) shows a scenario where two constraints are not satisfied;
in this case, we saturate to the most restrictive constraint, c(k)1 (x, ûk, t) = 0.
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Fig. 1. Saturation function visualization in extended state space. (a) Accept ûk = ũk; (b) saturate ũk to nearest constraint boundary,
c
(k)
2 (x, ûk) = 0; and (c) saturate ũi to most restrictive constraint, c(k)1 (x, ûk) = 0.

Once all optimal uk(t) have been determined, it’s a matter of finding the corresponding optimal λ(k)j (t).
Note that because the constraints are decentralized and each control will adhere to at most one active
constraint, at most m Lagrange multipliers λ

(k)
j (t) need to be determined. In the case where ũk(t)

is feasible, Lagrange multipliers λ(k)(t) = 0; if ũk(t) violates constraint c(k)i (x, uk, t), then Lagrange
multiplier λ(k)i (t) is found from the kth equality in (10c) with all other λ(k)l (t) = 0, l 6= i.

The unconstrained TPBVP to be solved is now given by

d

dt

[
x
p

]
=

[
A 0
−Q −AT

] [
x
p

]
+

[
B
−S

]
u∗ +

[
0

∂cT

∂x

∣∣∣
u∗

]
λ∗ +

[
G
0

]
w,

[
x(0)
p(T )

]
=

[
x0

0

]
(15)

where u∗(t) = Sat(x, ũ; t) and λ∗(t) is the vector of corresponding optimal Lagrange multipliers. By
introducing the saturation function and solving for λ∗(t), we have transformed the differential algebraic
equation (10a)–(10d) to an unconstrained TPBVP. Note, however, that the saturation operation makes the
TPBVP nonlinear.

III. A SEMI-ACTIVE ISOLATION MODEL AND CONTROL LAWS

To clarify and illustrate the method, open-loop controls are optimized for a vibration isolation sys-
tem controlled via variable damping forces. Control trajectories are optimized to minimize peak total
response accelerations when the system is excited by a pulse-like acceleration at the base. Pulse response
spectra are compiled and compared to passive linear viscous damping for the single-degree-of-freedom
system. Potential parameterized feedback control laws are deduced from optimal control trajectories for
different excitation frequencies. Performance metrics are compared between the proposed method for a
multi-degree-of-freedom isolation system, a passively-damped system, and the “clipped-optimal” feedback
control [23].

Isolation systems can considerably reduce the base acceleration transmitted to objects by mechanically
decoupling the object from the ground [17], [32]. Seismic equipment isolation systems are typically of
two types—friction-pendulum or rolling-pendulum [33], [34], [35]—with natural periods between 2 and
4 s [32], [36]. During low-level seismic events, passive equipment isolation systems perform extremely
well [37], [38], [39], [40]. Whereas, when subjected to earthquakes with high-amplitude near-fault ground
motions, considerable amplification will produce excessive isolator displacements endangering the isolated
object [37]. Passive damping is effective in reducing isolator drifts but at the expense of increasing
equipment accelerations at high frequencies [41]. Another drawback of passive damping is the inability
to adjust system parameters to achieve the desired performance objectives without a priori knowledge of
the external excitation. Therefore, it would be desirable to be able to adaptively adjust system parameters
in order to optimize the performance of equipment isolation systems for both near- and far- field ground
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Fig. 2. Isolation platform geometry

motions. To this end, structural control, or smart isolation systems, has been proposed. In particular semi-
active control systems are attractive due to their guaranteed stability and low power consumption [42],
[32], [43].

A. Linear Model of an Isolation System
This section describes a LTI model of a semi-actively controlled vibration isolation system. In this

study, control trajectories are found for a three-degree-of-freedom equipment isolation systems under base
excitation.

Consider the semi-active isolation system shown in Figure 2 being exogenously excited by base
accelerations ẅx, ẅy, and ẅθ. Equations of state for this system considering the kinematics of large
rotations and rolling contacts [44] can be linearized in displacements {x̄, ȳ, θ̄}, velocities { ˙̄x, ˙̄y, ˙̄θ}, and
disturbance ẅθ, resulting in the following equations of motion:

m
[
ẅx + ¨̄x− ey(¨̄θ + ẅθ)

]
+ Fdx + Fpx + Fs1 = 0 (16a)

m
[
ẅy + ¨̄y + ex(

¨̄θ + ẅθ)
]

+ Fdy + Fpy + Fs2 + Fs3 = 0 (16b)

mex(ẅy + ˙̄y)−mey(ẅx + ˙̄x) + Ī(ẅθ + ¨̄θ) +Mdθ +Mdpθ − aFs2 + aFs3 = 0 (16c)

where

Fdx ≡ 2cd ˙̄x, Fdy ≡ 2cd ˙̄y, Mdθ ≡ 2cd
˙̄θ
(
b2 + a2

)
Fpx ≡

1

2
mgα

(
x̄− eyθ̄

)
, Fpy ≡

1

2
mgα

(
ȳ + exθ̄

)
, Mpθ ≡

1

2
mgα

(
−eyx̄+ exȳ + a2θ̄ + b2θ̄

)
for parabolic bowls of curvature α, gravitational acceleration g of 9.81 m/s2, and mass m of equipment
resting on the top frame, taken to be 500 kg. The natural period of translational motion is given by
Tnx = 2π

√
2/(αg). In this study α = 2.0/m and Tnx ≈ 2 s. Inherent damping is treated through dissipative

forces acting at the ball location with damping rate cd; the systems is very lightly damped (∼2%).
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The potential forces, Fpx and Fpy, and moment, Mpθ, arrise from changes in height of the center of
mass of the top frame. Dimensions of the top frame are 2a by 2b with the center of mass located at
(ex, ey) and mass moment of inertia Ī about the frame’s centroid, i.e., (x, y) = (0, 0).

The system is actuated by semi-active forces Fsk, k = 1, 2, 3. In this application the damping force is
modeled as a controllable internal force and may be interpreted as a friction coefficient acting with time
lag, Tu. The response of the semi-active force may be approximated as a first order dynamic equation as
follows:

Ḟsk =
1

Tu
(uk − Fsk) (17)

where

uk ≡ a target control force

and Tu is between 0.02 and 0.05 second.
Equations of motion (16a–16c) may alternately be written in matrix form as follows:

M

¨̄x
¨̄y
¨̄θ

+

ẅxẅy
ẅθ

+ C

 ˙̄x
˙̄y
˙̄θ

+ K

x̄ȳ
θ̄

+ F

Fs1

Fs2

Fs3

 = 0 (18)

where

M ≡

 m 0 −mey
0 m mex

−mey mex Ī

 , C ≡

2cd 0 0

0 2cd 0

0 0 2cd(a2 + b2)

 ,
K ≡ 1

2
mgα

 1 0 −ey
0 1 ex

−ey ex a2 + b2

 , F ≡

1 0 0
0 1 1
0 −a a

 .
By defining the state variables for this system as follows:

x =
[
x̄ ȳ θ̄ ˙̄x ˙̄y ˙̄θ Fs1 Fs2 Fs3

]T
(19)

we can rewrite equation (18) in LTI form (8) where

A =

 0 I 0
−M−1K −M−1C −M−1F

0 0 − 1
Tu
I

 , B =

 0
0
1
Tu
I

 , G =

 0
−I
0

 , w =

ẅxẅy
ẅθ


and I is the identity matrix.

B. Semi-active force constraints
Other treatments of the semi-active vibration suppression problem [22], [23], [27] have formulated the

problem as a damping rate control. In doing so, the state dynamics are bilinear in states and controls,
and subsequently the costate dynamics (7b) and stationarity condition (7c) are bilinear as well [31]. The
advantage of damping rate control is a simplified control constraint, i.e., u ∈ [umin, umax]. Using a force
control approach simplifies the dynamics, i.e., linear state dynamics, but at the expense of a more complex
(quadratic, mixed-type) state-control constraint. Unlike previous papers, we will include an additional force
saturation constraint – the proposed device has a maximum damping rate as well as a peak device force
[45]. In the force control framework, such a constraint is a function of the control only while in the
bilinear model, such a constraint would be a mixed-type state-control constraint.
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Feasible control forces are bounded by sectors shown in Figure 3. Constraining the control, ui, con-
sequently constrains the damping force, Fsk. The controllable damper has the performance limitations
described by a maximum achievable damping coefficient ck,max > 0 and control force amplitude uk,max.
The former limitation may be expressed by the nonlinear constraint

uk

(
uk

ck,max

− vk
)
≤ 0, ∀ k (20)

where vk is the velocity across the kth actuator as given by

v1 = ˙̄x

v2 = ˙̄y − a ˙̄θ

v3 = ˙̄y + a ˙̄θ .

A passivity constraint is a limiting case of equation (20) whereby the damping force is merely dissipative,
i.e.,

lim
ck,max→∞

uk

(
uk

ck,max

− vk
)

= −ukvk ≤ 0 (21)

In the unsaturated passive case, an arbitrarily large force ui can be applied independent of the magnitude of
the velocity. However, the device is further constrained by the force saturation limit uk ∈ [−uk,max, uk,max];
such a constraint is given by the following inequality:

u2k − u2k,max ≤ 0, ∀ k . (22)

Thus, the quadratic state-control constraint is

c(x,u; t) =

c(1)(x, u1; t)c(2)(x, u2; t)
c(3)(x, u3; t)

 ≤ 0 (23)

where

c(k)(x, uk; t) ≡
[
u2k − u2k,max

u2k
ck,max

− ukvk

]
. (24)

velocity, r  [m/s]

controls, u [m/s/s]

.

umax

cmax

-uk,max

v  (t)
ck,max

uk,max

c   (x , u  ;t)1 u  (t)k

k

( k )
k
 

c   (x , u  ;t)2
( k )

k 

vk
^

Fig. 3. Sector bound constraint for semi-active damping device.
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C. Semi-active control to reduce accelerations
Consider the controlled isolation system shown in Figure 2. The equation of motion of this system is

represented by an LTI form (8) with state matrices given above. In this application, the desired forces,
uk(t), are sought to decrease the total acceleration experienced by the isolated mass without using too
much control effort. Thus the quadratic Lagrangian L(·) is given by

L(x,u, t) =
1

2

[
qx(¨̄x+ ẅx)

2 + qy(¨̄y + ẅy)
2 + qθ(

¨̄θ + ẅθ)
2 + ρ1u

2
1 + ρ2u

2
2 + ρ3u

2
3

]
. (25)

Letting N = [−M−1K −M−1C −M−1F], the total accelerations are equal to Nx and the state weight
matrix is Q = NTdiag(qx, qy, qθ)N. There is no cross weight, thus, S = 0. The control weight matrix is
R = diag(ρ1, ρ2, ρ3). Weights (qx, qy, qθ) are chosen such that the total acceleration is dominant in the
cost as opposed to the control effort; this is done because the controls constrained by (23) are inexpensive
and, therefore, need not be overly-weighted.

D. Implementation of saturation function for semi-active systems
For a linear system (8) with quadratic Lagrangian (9) subject to semi-active constraints of the form given

by equation (24) on each k = 1, ...,m controls uk(t), the saturation function Sat(·) can be implemented
as follows:

Define v̂k ≡ uk,max/ck,max to be the intersection of constraints c(k)1 (·) and c(k)2 (·), as shown in Figure
3, for all k = 1, ...,m.

1) At time t, find optimal unconstrained controls ũ(t) from (13).
2) For k = 1, ...,m, find the velocity vk(t) across kth actuator and perform following test:

a) if |vk(t)| ≤ v̂k, perform following checks:

i. if c(k)2 (x, ũk; t) ≤ 0, then u∗k(t) = ũk(t)

λ
(k)
1 (t) = 0 λ

(k)
2 (t) = 0

ii. if ũk(t)vk(t) ≤ 0, then u∗k(t) = 0

λ
(k)
1 (t) = 0 λ

(k)
2 (t) 6= 0

iii. otherwise u∗k(t) = ck,maxvk(t)

λ
(k)
1 (t) = 0 λ

(k)
2 (t) 6= 0

b) if |vk(t)| > v̂k, perform following checks:

i. if c(k)1 (x, ũk; t) > 0, then u∗k(t) = uk,max sgn (vk(t))

λ
(k)
1 (t) 6= 0 λ

(k)
2 (t) = 0

ii. if ũk(t)vk(t) < 0, then u∗k(t) = 0

λ
(k)
1 (t) = 0 λ

(k)
2 (t) 6= 0

iii. otherwise u∗k(t) = ũk(t)

λ
(k)
1 (t) = 0 λ

(k)
2 (t) = 0

where sgn(·) is the signum function
3) With optimal, saturated controls u∗(t), solve for the corresponding optimal, non-zero λ∗(t) from

0 = Ru∗ + STx + BTp +
∂cT

∂u

∣∣∣∣
u∗

λ .

The above procedure is a means of determining the optimal control and inequality constraint Lagrange
multiplier instantaneously. These values are used in a numerical integration scheme such as bvp4c.m
[29] to solve the TPBVP (15).



10

IV. DISTURBANCE MODEL

External disturbances ẅx, ẅy and ẅθ represent an idealization of the motions of a floor of a building
subjected to an earthquake ground motion. As such, it is dominated by a single frequency, 2π/Tp, and
grows and decays in amplitude over time. The disturbance applies inertial loads to the isolated mass, and
is therefore specified in terms of an acceleration record,

ẅ(t) = ((t− to)/τ)n exp(−(t− to)/τ) cos(2π(t− to)/Tp − φ) . (26)

Accelerations are zero for t < to. In order for the record to contain N cycles of strong motion, the decay
time constant τ is set to NTp/4. If the exponent n is an integer, ẅ(t) can be modeled as the free response
of a finite-dimensional linear system. In this study tox = 0.25s, toy = toθ = 0.5s, N = 2.5 and n = 2. Floor
acceleration records representative of structures with limited residual deformation should have negligibly
small velocity and displacement at the end of the record. Integrating (26) for n = 2, taking the limit as
t→∞, and setting this final velocity to zero leads to

tanφ =
3(2πτ/Tp)

2 − 1

3(2πτ/Tp)− (2πτ/Tp)3
. (27)

To enforce small residual floor displacements the second derivative of a scaled logistic is iteratively
subtracted from the acceleration record until the displacement at the end of the record is close to zero,

ẅ(t) := ẅ(t)− w(T ) e−s(1 + e−s)3(e−s − 1)/(τ/2)2 , (28)

where w(T ) is the displacement at the end of the record (computed from ẅ(t) via the trapezoidal rule),
and s is a scaled time variable equal to (t − nτ − to)/(τ/2). This procedure for correcting for residual
floor displacements converges in two or three iterations.

For n = 2, N > 1, and 0.5 < Tp < 4 s, accelerations determined from equations (26), (27), and (28)
have a peak value of about 0.54. For n = 2, 1 < N < 5, and 0.5 < Tp < 4 s, peak velocities scale with
Tp and are approximately given by

ẇmax = max
[
4.063N−2.165e−4.403/N , 2.329N−1.336e−5.693/N

]
Tp ± 0.5% . (29)

For N > 5 peak velocities are approximately 0.086Tp ± 0.5%. In this study disturbance waveforms were
scaled to match prescribed peak velocity values, Vp, by scaling accelerations with a factor Vp/ẇmax. Figure
4 illustrates a sample of disturbance records.

The disturbance duration T is selected such that the peak response is captured without accumulating too
much additional cost from transient responses. The controller we seek suppresses peak responses, and with
too long of a disturbance record the optimal control may gain performance by simply damping the transient
response. In all simulations duration T is found from the expression T = 2N max{Tpx, Tpy, Tpθ, Tnx}.

V. SIMULATION RESULTS

The proposed solution method is now applied to the semi-active isolation system previously described.
Values for constants are given in Table I unless otherwise stated. All three devices are assumed to be
identical: ui,max = 981 N and ci,max = 1566 N-s/m, i = 1, 2, 3. These values correspond to 20 percent
self-weight (m = 500 kg) and 50 percent damping in the first mode of vibration.

First, a single-degree-of-freedom system is assessed. Control trajectories are found for a range of pulse
periods. At shorter period pulses (Tpx ∈ [0.4, Tnx] s where Tnx ≈ 2 s) “pseudo-negative stiffness” [46]
appears to be nearly optimal whereas, at longer period pulses (Tpx > Tnx), viscous damping is optimal.
Pulse response spectra are constructed to demonstrate the performance of the optimally controlled system
over a “clipped-optimal” control and two passively controlled systems with respect to four metrics: cost
J , peak control forces max |u1|, peak total acceleration max |¨̄x + ẅx|, and peak relative displacement
max |x̄|.
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Fig. 4. Disturbance records for Vpx = Vpy = 1m/s, Vpθ = 0.5rad/s, Tpx = 1.4s, Tpy = 1.2s, Tpθ = 0.8s, N = 2.5, and n = 2. Legend:
x (blue —); y (green - -); θ (red − · −).

Next, the full three-degree-of-freedom system is analyzed. Twelve cases are investigated for a range of
pulse periods and pulse velocities. Comparisons are made between trajectories found using the proposed
optimal method and the “clipped-optimal” method. Performance metrics are defined and compared for
the optimal method and a “clipped-optimal” scheme which are juxtaposed with a linear-visous, passively
damped system as outlined in the following section.

A. Isolation Control Schemes
Here we define three control schemes, and investigate the corresponding system behaviors in Sections

V-B and V-C. They are now described.
1) Scheme 1 – optimal: This uses the full dynamic optimization outlined in Section II. Finding the

numerical solution of the state/costate TPBVP (15). The Matlab function bvp4c.m [29] is used to
integrate (15).

2) Scheme 2 – clipped-optimal: This is a somewhat ad hoc yet prevalent sub-optimal scheme, based on
linear quadratic regulator theory. In the simpler case of a linear active system model with quadratic cost,

TABLE I
SIMULATION PARAMETERS

bowl curvature α 2.0 1/m
control lag Tu 0.05 sec
ball friction damping rate cd 31.3 N-s/m
mass eccentricity, x ex 0.2 m
mass eccentricity, y ey 0.1 m
frame x-dimension a 0.45 m
frame y-dimension b 0.25 m
mass moment of inertia Ī 385 kg-m2

translational state weights qx, qy m2

rotational state weight qθ Ī2

control weights ρ1, ρ2, ρ3 1.0
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the optimal control equations can reduce to a simpler problem, involving the solution of the Algebraic
Riccati Equation (ARE)–see for example [23], [47]. The optimal infinite-horizon (assuming no exogenous
disturbance) can be given by a simple feedback form uARE(t) = kx(t) where the feedback gain vector k
is found from solving the ARE. In order to be able to implement directly in the compliant damper model,
feedback controls uARE(t) are clipped when the prescribed force is infeasible.

The shortcoming of this method arises from the infinite-horizon assumption and neglecting the distur-
bance w(t). However, it does permit a feedback controller which may be implemented in real time.

3) Scheme 3 – passive: This is simple passive damper regulation. The controller is linear viscous
damping, i.e., ui = cpassvi. Two levels of damping are considered: (a) cpass = cmax = 1566 N-s/m and
(b) cpass = 3

5
cmax = 940 N-s/m. In both cases, the passive control force is subject to saturation limit

umax = 981 N to make a fair comparison with the semi-active controller.
Note schemes 1 and 2 are centralized control algorithms which need the full state of the system. In the

case of scheme 1, the costates are required, as well. Whereas, scheme 3 is a decentralized control algorithm
which needs only the states at the actuators’ locations. A decentralized control algorithm is preferable in
large-scale structures where a dense sensor array becomes necessary [48]. Otherwise a nonlinear observer,
e.g., classical Kalman estimator, is required to approximate the full system state. However, the goal of this
project is to determine the optimal performance of a semi-active isolation system, not the most practically
implementable controller.

B. Single-degree-of-freedom system
For the case in which the isolated mass has zero eccentricity and is excited uniaxially, i.e., wy(t) ≡ 0

and wθ(t) ≡ 0 ∀ t, the dynamics (18) decouple. If initial ȳ displacement and θ̄ rotation are zero, the
single-degree-of-freedom equation of motion is

m¨̄x+ 2cd ˙̄x+
1

2
mgαx̄+ Fs1 = −mẅx . (30)

Control trajectories are found for this single-degree-of-freedom system when subjected to the pulse base
excitation. Figure 5 shows the control force u1(t) versus the velocities across the actuator, v1(t) = ˙̄x.
Three pulse periods are shown – 1.4, 2.0, and 2.6 seconds – which are shorter than, at, and longer than,
respectively, the natural period of the system, Tnx ≈ 2 seconds. Also, two levels of excitation – Vpx = 0.5
and 1.0 m/s, termed weak and strong, respectively – are investigated. “Pseudo-negative stiffness” [46]
appears to be optimal at short pulse periods (Tpx < Tnx) when subjected to a weak excitation, whereas
for a stronger excitation, the actuator is saturated, effectively squashing the “pseudo-negative stiffness”
effect. At longer periods (Tpx > Tnx), linear viscous damping is optimal regardless of the input strength.
Near resonance, a transition in optimality between “pseudo-negative stiffness” and linear viscous damping
occurs.

Figure 6 shows four pulse-response spectra for moderate-strength excitations, Vpx = 1.0 m/s. Define
the ratio of the pulse period to natural period to be Πpx ≡ Tpx/Tnx. The proposed control, scheme 1,
outperforms the three other schemes in terms of cost J , as expected; of all admissible controls satisfying
(23), scheme 1 is optimal. We note that at short-period excitations (Πpx < 1) the “clipped-optimal” control
performs better than both the passive controls. However, beyond resonance (Πpx > 1) the passive controls
perform better than the “clipped-optimal.” Also, at long period where linear-viscous damping was seen
to be optimal, the passive control with cpass = cmax performs equivalently to the optimal control.

Smaller device forces are necessary in the short-period regime (Πpx < 0.4); all four control schemes
saturate the device for intermediate- to resonant-period excitations (0.4 < Πpx < 1.3; and at long-period
excitations (Πpx ≥ 1.3), the “clipped-optimal” solution requires larger device forces than both passive and
optimal.

In terms of peak accelerations, the optimal and “clipped-optimal” solutions perform best at shorter
pulse periods while passive and optimal perform better at longer periods. The optimal controller performs
well in terms of peak acceleration because the time horizons were selected such that the peak absolute
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Fig. 5. Single-degree-of-freedom optimal control trajectories. Control force u1 versus (top) velocity ˙̄x and (bottom) displacement x̄ across
actuator 1. (a) Tpx = 1.4 s; (b) Tp = 2.0 s; (c) Tp = 2.6 s. Legend: (red —) Vpx = 0.5 m/s; (blue - -) Vpx = 1.0 m/s.

accelerations are captured but transient responses do not contribute significantly to the integral cost J .
Because we use a quadratic cost, peak absolute accelerations weigh heavily on the cost.

Finally, the fourth spectrum shows the peak displacement of the isolated mass. Recall that displacement
weight was not included in the cost, see Section III-C, and thus the optimal control will not necessarily
perform well in terms of max |x̄|. In the short-period range (Πpx < 1), “clipped-optimal” performs
relatively well but not in the long-period range (Πpx > 1) where the optimal control and passive control
(cpass = cmax) do exceedingly well.

C. Three-degree-of-freedom system
For the full three-degree-of-freedom isolation platform with three actuators, twelve cases are investigated

for varying pulse strengths and fundamental periods by varying the disturbance parameters peak-velocities
Vpx, Vpy, and Vpθ and pulse-periods Tpx, Tpy, and Tpθ, respectively. The three pulse strengths investigated
and the four pulse period cases are given in Table II where the natural periods of the system are Tnx = 2.01,
Tny = 2.01, and Tnθ = 0.85 seconds.

TABLE II
SIMULATED PULSE STRENGTHS AND PERIODS

PULSE STRENGTH PULSE PERIOD
Vpx [m/s] Vpy [m/s] Vpθ [rad/s] Tpx [s] Tpy [s] Tpθ [s]

Weak 0.5 0.5 0.3 Short 0.8 0.6 0.5
Moderate 1.0 1.0 0.5 Intermediate 1.4 1.2 0.8

Strong 1.2 1.2 0.6 Resonant 2.4 2.2 1.0
Long 3.0 3.2 1.5

Figure 7 shows control ui(t) trajectories versus the velocity vi(t) across actuator i for four pulse
period scenarios for a Moderate strength excitation. The optimal trajectory is shown along with the
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Legend: (◦) optimal; (black —) “clipped-optimal”; (blue - - -) passive cpass = 1566 N-s/m; and (red − · −) passive cpass = 940 N-s/m.

“clipped-optimal” solution. These two solutions are qualitatively different especially in the longer period
regimes – Resonant-period and Long-period – where the optimal control trajectory mimics linear viscous
damping whereas the “clipped-optimal” solution does not. Also, velocities vi(t) are seen to be larger in
the “clipped-optimal” scheme. For shorter period excitations – Short-period and Intermediate-period –
controlled trajectories are more similar to one another; both controls reside within the feasible domain,
not only on the boundary.

The five additional performance metrics are defined as follows:

Π1 ≡
maxt,k |uk(t)|
maxk uk,max

peak control force normalized (31a)

Π2 ≡
maxt |aabs(t)|
maxt |ẅr(t)|

peak absolute translational acceleration normalized (31b)

Π3 ≡
maxt

∣∣∣ ¨̄θ(t) + ẅθ(t)
∣∣∣

maxt |ẅθ(t)|
peak absolute rotational acceleration normalized (31c)

Π4 ≡
maxt |r(t)|

maxt |wr(t)|
peak relative radial displacement normalized (31d)

Π5 ≡
maxt

∣∣θ̄(t)∣∣
maxt |wθ(t)|

peak relative rotation normalized (31e)

where r(t) ≡ [x̄ ȳ]T is the relative translation of the top frame, wr ≡ [wx wy]
T is the translational

base displacement vector, and aabs(t) ≡ r̈ + ẅr is the absolute translational acceleration vector. These
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five metrics along with the cost J are compared in Table III for four control schemes: (1) optimal, (2)
“clipped-optimal”, and the two aforementioned clipped-passive damping schemes (3a) cpass = 1566 N-s/m
and (3b) cpass = 940 N-s/m. From the table, the following conclusions could be drawn:
• At short period excitations, the optimal controller drastically outperforms linear-viscous passive

systems in terms of J and peak accelerations, Π2 and Π3. “Clipped-optimal” also does well at
short periods, with performance metrics 50% to 80% larger than optimal control.

• At longer period excitations, the optimal controller performs approximately equivalent to a linear-
viscous passive device with the same maximum damping rate, cpass = cmax. This is due to linear-
viscous damping being nearly optimal in the long-period regime. “Clipped-optimal” responses are
notably larger than passive responses in these cases.

• In almost all cases, “clipped-optimal” uses larger device forces than the optimal solution as well as
the two passive schemes. This means that implementing the “clipped-optimal” control in practice
may require larger devices to achieve equivalent performance as a passive damper, especially in the
long-pulse regime.

VI. CONCLUSIONS

In this paper, a general approach to inequality constrained optimal control problems is presented. The
method determines controls and Lagrange multipliers to enforce inequality state and/or control constraints
while satisfying the stationarity condition. Inserting these controls and Lagrange multipliers into the state
and costate equations results in an unconstrained TPBVP.

An easily implementable saturation procedure is described for a semi-active device with damping-
rate and force-saturation constraints. Applying this method, the optimal performance of a semi-actively
constrained isolation system is determined. Two cases were investigated: single-degree-of-freedom isolator
with one actuator and the full three-degree-of-freedom system actuated by three devices. In both cases,
the control force experiences a time lag arising from the modeled devices, thus raising the order of the
system.

Comparisons are made between the responses of the optimal, “clipped-optimal,” and viscous controlled
isolation system. The results show that the responses of the optimal controller are 50% to 60% of those
of the “clipped-optimal” controlled system in the short period regime, and better than those of the viscous
controlled system. In the long-period range, the optimal solution is comparable to the passive viscous
scheme and substantially outperforms the “clipped-optimal” controlled system.

Semi-active control systems offer the promise of far-better performance than achievable using “clipped-
optimal” feedback control rules. Future work may be guided in the direction of nonlinear feedback control.
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