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Abstract

This paper presents a new constitutive model that unifies the behavioral characterizations of rubber-like materials in
a broad range of loading regimes. The proposed model combines a selection of existing components that are known
to reflect, with suitable accuracy, two fundamental aspects of rubber behavior in finite strain: (i) rate-independent
softening under deformation, also known as the Mullins effect, and (ii) hyper-viscoelasticity, including at high strain
rates. The evolution model is further generalized to account for multiple rates of internal dissipation (or material
time-scales). Suitable means of identifying the system’s parameters from simple uniaxial extension tests are explored.
Several aspects of the model’s behavior are shown in virtual experiments of uniaxial extension, at different stretch
rates. A possible directional approach extending the model to handle softening induced anisotropy is briefly discussed.
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1. Introduction and background

Several classes of models have been proposed to characterize the constitutive behavior of rubber-like materials
(e.g. Boyce and Arruda, 2000). Micro-mechanical models are founded on the physics of polymer chain networks and
statistical methods (e.g. Arruda and Boyce, 1993; Drozdov and Dorfmann, 2004). Alternatively, phenomenological
models rely on mathematical developments that are associated with conceptual representations or analogies with the
purpose of replicating the material’s behavior as observed at the macroscopic scale (e.g. Dorfmann and Ogden, 2004;
Dorfmann and Pancheri, 2012; Gent, 1996; Hoo Fatt and Ouyang, 2007, 2008; Huber and Tsakmakis, 2000; Liu, 2010;
Liu and Hoo Fatt, 2011; Ogden and Roxburgh, 1999; Pioletti et al., 1998). In some mixed approaches, constitutive
equations are founded on macroscopic models that contain statistical parameters reflecting a certain representation of
the microscopic structure (e.g. D’Ambrosio et al., 2008; De Tommasi et al., 2006; Horgan et al., 2004).

Most existing material descriptions were developed under specific loading conditions. For instance, in the work
of Brown (1997), the nonlinear dynamic behavior of filled elastomers is characterized at small strain amplitudes.
Alternatively, Hoo Fatt and Ouyang (2008) propose a finite strain constitutive model for virgin Styrene Butadiene
rubber subjected to a high strain rate monotonic loading. Furthermore, Liu and Hoo Fatt (2011) present constitutive
equations, in finite strain, for the dynamic response of rubber under cyclic loading while D’Ambrosio et al. (2008),
De Tommasi et al. (2006) and many others (e.g Chagnon et al., 2004, 2006; Dorfmann and Ogden, 2004; Dorfmann
and Pancheri, 2012; Horgan et al., 2004; Marckmann et al., 2002; Ogden and Roxburgh, 1999) focus on character-
izing main features of the rate independent softening behavior of elastomers, i.e. the Mullins effect (Mullins, 1969).
Valuable reviews of the Mullins effect as well as of existing viscoelastic and hyperelastic constitutive laws were pro-
vided by Diani et al. (2009), Boyce and Arruda (2000); Drapaca et al. (2007) and Marckmann and Verron (2006)
respectively.

A careful inspection of the relevant literature furthermore reveals that a pertinent distinction can be made between:
(i) models focusing on the rate independent softening behavior of the virgin material (e.g. D’Ambrosio et al., 2008;
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De Tommasi et al., 2006), (ii) models describing its instantaneous response at high strain rates (e.g. Hoo Fatt and
Ouyang, 2007, 2008), and (iii) models relating the repeatable dynamic behavior of the non-virgin material under
cyclic loading (e.g. Liu and Hoo Fatt, 2011).

However, in many applications, rubbers are exposed to diverse loading conditions acting on the material in differ-
ent states. This is the case, for instance, of elastomeric structural bearings and expansion joints which are subjected
to prescribed displacements and tractions of various origins. While applied loads of increasing amplitude damage the
polymer chain network and cause material softening, intermittent unloading conditions associated with temperature
fluctuations can induce partial healing of the network and material stiffening by reentanglement and recross-linking
of the chains. At an appropriate time scale, part of the applied load is monotonic and, depending on the previous
loading history, may be acting on a partially-healed polymeric network. Conversely, cyclic loads typically engage a
repeatable behavior of the non-virgin material. Both monotonic and cyclic loads can be slowly varying thus gener-
ating an equilibrium behavior (e.g. prescribed displacements due to material shrinking, creep, or thermal strains), or
change rapidly hence engaging an instantaneous and rate-dependent response (e.g. passing train, emergency breaking,
accidental shock, wind gust, or earthquake).

When rubber-like materials are subjected to mechanical loading cycles, their hyper-viscoelastic response expe-
riences stiffness and damping degradations. Alternatively, full or partial recovery of the material’s initial properties
can occur following favorable changes in temperature and pressure. In many applications, the accurate prediction
of such variations in the material’s behavior is of paramount importance in addressing system reliability as well as
human safety issues. Failing to account for such changes in behavior, with sufficient accuracy, can result in tragic out-
comes with potentially disastrous consequences. Unfortunately, existing constitutive models have a restrictive range
of application and limited predictive ability. Because in engineering practice material characterizations are often used
unconnectedly while most viscoelastic models do not track the variations in the material’s behavior, current designs
involving rate dependent responses tend to overlook the Mullins effect and therefore rely on inaccurate predictions
of the levels of degradation. This trend is further enhanced by the fact that, despite the abundance of tentative theo-
ries, consensus has not yet been reached on the actual physical sources of the Mullins effect (e.g. Diani et al., 2009).
Consequently, the softening of rubbers under first deformation is frequently eluded in practical applications and no
distinction is made between the primary response of the virgin material and its repeatable behavior under subsequent
loadings.

In the current state of engineering practice, the prediction of a system’s response under combined loading regimes,
engaging a rate-dependent response and a softening behavior simultaneously, requires combining separate material
models, each addressing a different aspect of material behavior. However, constitutive model libraries in commercial
codes are far from exhaustive. Model combination rules and modalities are also limited, sometimes poorly doc-
umented and therefore opaque to the user. These facts often result in poorly-controlled modeling approximations
which undermine prediction reliability and accuracy.

There are currently very few predictive models for the behavior of elastomers that also account for their degrada-
tion and can therefore be considered as potential candidates to be used for the safe design of engineered components.
Three-dimensional finite strain behavioral laws comprising hyperelastic, viscoelastic and elastoplastic components
were proposed by Lin and Schomburg (2003), Lion (1996) and Miehe and Keck (2000). These formulations are
based on the theory of thermodynamics with internal state variables (Coleman and Gurtin, 1967) and retain different
choices of such variables to characterize the evolution of internal dissipative processes. The Mullins stress-softening
effect is assumed to act isotropically on all their components and it is accounted for within the framework of contin-
uum damage mechanics (Kachanov, 1986; Lemaı̂tre, 1996) using a unique damage parameter. Despite their relative
rheological completeness, these elaborate models continue to show notable imperfections in replicating true rubber
behavior: common shortcomings in modeling the Mullins effect are described for instance by Diani et al. (2009)
while further predictive limitations can be directly seen upon comparing observed and fitted behaviors (e.g. Lin and
Schomburg (2003, figure 8);Lion (1996, figures 2.1 and 4.1)). Clearly, more alternatives are needed as much remains
to be done in modeling elastomers.

2. Objective

In the absence of a unique and perfectly-accurate behavioral characterization of rubber-like materials, it is clear
that significant improvements in design efficiency as well as substantial reductions in engineering resources and com-
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putational costs may be achieved by the provision of a greater number of unified formulations, valid under multiple
loading conditions. Developing such models further would also contribute to reaching higher levels of accuracy by
eliminating the need for approximate prediction combination techniques.

In order to address these goals, alternative constitutive formulations must be considered and their modeling capa-
bilities explored. Building on the current state of knowledge in modeling elastomers, this paper puts forward a new,
mixed, three-dimensional, constitutive description of rubbers, in finite strain. The proposed model is based on a care-
ful selection of preexisting components accurately reflecting key rubber behavior in two different loading regimes: (i)
the rate-independent softening under deformation, also known as the Mullins effect, and (ii) hyper-viscoelasticity, in-
cluding high strain rates. This new model complements the set of existing mixed formulations and is believed to have
a significant potential in meeting the aforementioned needs, particularly in applications involving those two regimes.

3. Proposed model

Building on the work presented in D’Ambrosio et al. (2008) and De Tommasi et al. (2006) for a low strain rate
characterization of the Mullins effect, as well as on existing high-speed constitutive modeling approaches, as addressed
for instance in Hoo Fatt and Ouyang (2008), the new prototypical model shown in figure 1 is proposed as a unified
description of the behavior of isotropic incompressible rubber-like materials, under multiple loading conditions.

η

µ1, γ1

µ2, γ2

µ3, γ3sa, δs

1

2

3

Figure 1: 1D representation of the full 3D prototypical model

The proposed model corresponds to an isotropic three-dimensional formulation in finite strain. Three model com-
ponents contribute additively, in terms of stored energy and stress, to the global response: 1© a permanent nonlinear
hyperelastic component characterized by a stored energy function U1, 2© a permanent hyper-viscoelastic compo-
nent characterized by a viscosity η and a stored energy function U2 (i.e. a nonlinear Maxwell element), and 3© a
non-permanent component composed of nonlinear hyperelastic links characterized by a distribution of activation and
breaking thresholds, as well as a stored energy function U3. The model is further generalized in section 9 to include
multiple components of type 2© and a possible directional approach extending the model to handle softening induced
anisotropy is briefly discussed in section 10.

4. General kinematics

Addressing the hyper-viscoelastic component 2© first, the total deformation gradient F1 is divided into a viscous
component Fv and an elastic component F2 by means of a multiplicative decomposition

F1 = F2Fv. (1)

The intermediate configuration shown in figure 2 is generally not kinematically consistent. It corresponds to
locally relaxed elements of continuum which are conceptually isolated from each other. Furthermore, the intermediate
configuration is not unique: any combination of rigid body motions, in the local sense, would still yield an admissible
alternative. Consequently, strain measures that are independent of the choice of intermediate configuration are used
to describe the constitutive behavior of the material at hand.

Another set of multiplicative decompositions applies to the non-permanent links of type 3©. As described in figure
3, the global deformation gradient F1 of each activable link is written as

F1 = F3Fa, (2)
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Figure 2: Multiplicative decomposition applying to links of type 2©

Reference
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Activation

Current
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Fa
F3

F1 = F3Fa

Figure 3: Multiplicative decomposition applying to links of type 3©

where Fa is a partial deformation gradient that puts the link in a state of activation, while F3 corresponds to the
complement of deformation associated with the strain energy U3. The elastic energy stored in any given link of type
3© is lost when the link reaches a deformation gradient Fb putting it in a state of rupture.

5. Hyperelastic formulation

5.1. General theory
Assuming that each component undergoes an isochoric transformation, J j = det(F j) = 1 and the corresponding

stored energy is a function of the first and second invariants of the appropriate measure of strain

U j = U j(Ib j , IIb j ), (3)

where b j = F jFT
j is the left Cauchy-Green deformation tensor associated with the transformation defined by F j. The

hyperelastic formulation used in this work builds on the fact that, for each component j ∈ {1, 2, 3}, the rate of change
of the Lagrangian Green deformation tensor Ė j is work conjugate to the second Piola-Kirchhoff stress tensor S j (i.e.
the pull-back of the Cauchy stress tensor σ j)

U̇ j =

(
∂U j

∂Ej

)
:Ė j

U̇ j = S j:Ė j

⇒
(
∂U j

∂Ej
− S j

)
:Ė j = 0. (4)

Due to incompressibility, the rate of change of J j, which can be expressed in terms of the right Cauchy-Green defor-
mation tensor C j = FT

j F j, is equal to zero (e.g. Bonet and Wood, 2008)

J̇ j =
(
J jC−1

j

)
:Ė j = 0. (5)

Comparing equations (4) and (5) shows that both left hand sides are collinear, which, for J j = 1, yields the following
expression of the second Piola-Kirchhoff stress in component j

S j =
∂U j

∂E j
+ p jC−1

j , (6)

where the coefficient of proportionality p j corresponds to an undetermined pressure term arising from incompress-
ibility. Alternatively, a generic form of the Cauchy stress tensor in each component j is obtained by pushing forward
S j, in expression (6), to the current configuration and applying the chain rule to ∂U j/∂E j (see appendix A)

σ j = 2
(
∂U j

∂Ib j

+ Ib j

∂U j

∂IIb j

)
b j − 2

∂U j

∂IIb j

b2
j − p jI. (7)

It should be noted that the term −p jI in expression (7) does not always correspond to the full stress axiator (i.e. the
spherical part of σ j).
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5.2. Specialized formulation
Numerous expressions of stored energy density functions are proposed in the literature (e.g. Marckmann and

Verron, 2006). The dependence of Ui on Ibi was found to be dominant in the case of incompressible rubber-like
materials (e.g. Yeoh, 1990). The following form will be retained for the purposes of this work

U j = µ j

(
Ib j − 3

)γ j
, (8)

where µ j and γ j are constant parameters, with j ∈ {1, 2, 3}. The underlying expression in (8) was reported capable
of capturing the initially-stiff behavior of the material at high strain rates, without oscillating in the range of large
deformations by Hoo Fatt and Ouyang (2008). Substituting (8) into (7) yields the corresponding Cauchy stress in
each component

σ j = 2µ jγ j

(
Ib j − 3

)γ j−1
b j − p jI. (9)

6. Characterization of the non-permanent links

For simplicity, scalar activation and breaking criteria are retained for the non-permanent links: letting s(F1) be a
scalar function of the global deformation gradient F1, each link is activated when s(F1) reaches its activation threshold
sa and breaks when s(F1) exceeds its breaking threshold sb ≥ sa. The active range of a non-permanent link is therefore
characterized by the following expression

sa = s(F1 = Fa) ≤ s(F1) ≤ s(F1 = Fb) = sb, (10)

where Fa and Fb correspond to the values taken by F1 when s(F1) = sa and s(F1) = sb, respectively. Referring back
to equation (2), the elastic deformation incurred by an active link is characterized by the partial deformation gradient
F3 = F1F−1

a .
It is further assumed (see De Tommasi et al., 2006) that all the breakable links are active in a range of deformation

of constant amplitude δs. Consequently, sb = sa − δs and only a marginal distribution needs to be defined for sa.
Figure 4 shows the proportions of active and broken links deduced from a generic probability density function p(sa)
of the activation threshold: sM is the maximum value taken by s(F1) in the material’s loading history, while s f is the
value of s(F1) corresponding to the observed failure.

sa

p(sa)

δs

sfsM

δs

s

broken links

active links

smin β

Figure 4: PDF of the activation threshold

Consistently with the form of hyperelastic potentials in expression (8) of section 5.2, a first-invariant-dependent
measure of the state of the non-permanent links 3© is retained

Ia ≤ s(F1) = Ib1 ≤ Ia + δI. (11)

The above choice is supported by a recent analysis conducted by Machado et al. (2010) on existing isotropic models
for the Mullins effect, showing that the first invariant of strain is a good measure of stress-softening.
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7. Global response

Components 1©, 2© and 3© of the proposed model (figure 1) contribute additively, in terms of internal energy and
stress, to the global material response. The total stored energy density U and Cauchy stress σ are given by

U = U1 + U2 + Ū3, (12)
σ = σ1 + σ2 + σ̄3. (13)

where Ū3 and σ̄3 correspond to the total contributions of the active links of type 3©, obtained following De Tommasi
et al. (2006) by integration over the active range

[
β, s

]
(see figure 4), with β = min{s,max{smin,max{s, sM} − δs}}, i.e.

Ū3 =

∫ s

β

U3 p(sa)dsa, (14)

σ̄3 =

∫ s

β

σ3 p(sa)dsa. (15)

8. Identification of model parameters

A feasible procedure is sought to determine the model parameters from simple uniaxial tension tests. In addition to
the unknown probability density function p(sa) of the activation threshold for the links of type 3©, relevant parameters
are: η, δs, µ j and γ j for j ∈ {1, 2, 3}. In isochoric uniaxial tension, the generic deformation gradient F j writes

F j =


λ j 0 0
0 1√

λ j
0

0 0 1√
λ j

 , (16)

where λ j is the principal stretch in the direction of the applied traction σ j. Substituting expression (16) into equation
(9) and eliminating the pressure term p j yields the generic scalar expression for σ j

σ j = 2µ jγ j

(
λ2

j −
1
λ j

) (
Ib j − 3

)(γ j−1)
, (17)

where Ib j and λ j are in one to one correspondence, since Ib j = λ2
j + 2/λ j increases monotonically with the stretch

λ j ≥ 1.

8.1. Low strain rate response
The material’s quasi-static behavior is first examined in order to determine the parameters characterizing the dis-

tribution of activable links of type 3©. When deformation occurs at a sufficiently low strain rate, the hyper-viscoelastic
component 2© flows while remaining fully relaxed. As shown in figure 5, the conceptual representation corresponding
to this case reduces to branches 1© and 3© of the prototypical model.

µ1, γ1

µ3, γ3sa, δs

1

3

Figure 5: Reduced model at low strain rate

To simplify notations, let λ = λ1 and I(λ) = Ib1 (λ). A virgin dumbbell-shaped sample of rubber is loaded and
unloaded, at a sufficiently low constant strain rate, up to increasing values of the maximum stretch λM corresponding
to IM = I(λM). This may be done following the increasing triangular strain-history profile shown in figure 11(a) while
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I(λ)

σ(I)

primary loading path

I∗MIM
δI

Figure 6: δI corresponds to the global elastic range of the virgin
material

λ

σ(λ)

primary loading curve

generic path

σ1(λ) + σ̄3(λ)

σ1(λ)

λM

σ̄3(λ)

Figure 7: Illustration of material softening at low strain rate: σ(λ) =

σ1(λ) + σ̄3(λ)

keeping strain amplitudes globally small. As may be seen on figure 6, the parameter δI defines the global elastic
range of the virgin material and may hence be determined from the value λ∗M of the maximum stretch for which the
unloading path differs from the primary loading curve: δI = I∗M = I(λ∗M).

Referring back to figure 4, with s = I and β = min{I,max{Imin,max{I, IM} − δI}}, equations (13) and (15) can be
specialized to uniaxial extension, in the absence of component 2© (i.e. σ2 = 0), as follows

σ(λ) = σ1(λ) + σ̄3(λ), (18)

σ̄3(λ) =

∫ I

β

σ3

(
λ(I)
λ(Ia)

)
p(Ia)dIa. (19)

Figure 7 illustrates equation (18) in relation to the Mullins effect (e.g. Diani et al., 2009; Mullins, 1969), i.e. the soft-
ening incurred by a virgin sample of rubber-like material upon deformation. The Cauchy stress σ3 appears in equation
(19) as a function of the ratio λ(I)/λ(Ia) which corresponds to the one-dimensional formulation of the multiplicative
decomposition applicable to links of type 3© and described in figure 3. By differentiating equations (18) and (19) with
respect to λ, using Leibniz’s rule, it can be shown that the probability density function of the activation threshold can
be expressed as

p(Ia) =
g (λ (Ia + δI))

σ3

(
λ(Ia+δI)
λ(Ia)

) , (20)

where g(λ) can be interpolated from measured values of the slope dσ/dλ at various λM along the primary loading
curve (L) and the unloading path (U), as illustrated in figure 8

g(λM) =
λ2

M(
2λ3

M − 1
) (

dσ
dλ

∣∣∣∣∣U
λM

−
dσ
dλ

∣∣∣∣∣L
λM

)
. (21)

For this purpose, the increasing sawtooth strain-history profile shown in figure 11(b) may be applied at a very low
strain rate, to a virgin sample of material, until rupture is reached.

Substituting equation (20) into (19) and then (19) into (18), the latter may be written as∫ I

I−δI
h (λ, Ia, γ3)dIa = σ(λ) − σ1(λ), (22)
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Figure 8: Determining data points
(
λMi , g

(
λMi

))

where the quantity on the right-hand-side can be deduced from the measured data (see figure 7). The parameter µ3
simplifies in the expression of h (λ, Ia, γ3), which is given by the ratio

h (λ, Ia, γ3)
g (λ (Ia + δI))

=
σ3

(
λ(I)
λ(Ia)

)
σ3

(
λ(Ia+δI)
λ(Ia)

) . (23)

The parameter γ3 can be obtained from equation (22) by prediction error minimization. Once γ3 is known, equation
(20) can be normalized such that

∫ I f−δI
Imin

p(Ia)dIa = 1 which yields the parameter µ3.
It may hence be concluded that all the parameters characterizing the distribution of activable links of type 3©,

including the probability density function of their activation threshold, can be determined by performing a multistage
uniaxial tension test, at low strain rate, on a sample of virgin rubber. It remains to determine the parameters governing
the behavior of the links of type 1© and 2©, which is precisely the goal of the following section.

8.2. Repeatable response
In this section, we consider the constitutive behavior of the non-virgin material in a range of deformation such

that all remaining non-permanent links of type 3© are kept below their activation threshold. As shown in figure 9 the
conceptual representation corresponding to this case reduces to branches 1© and 2© of the prototypical model.

η

µ1, γ1

µ2, γ2

1

2

Figure 9: Reduced model in the repeatable range

8.2.1. Nonlinear hyper-viscoelastic formulation
With j ∈ {1, 2, v}, let C j = FT

j F j and b j = F jFT
j be right and left Cauchy-Green deformation tensors and denote by

E j and e j the corresponding Green and Almansi strain tensors, respectively. Furthermore, let T and Γ be intermediate
measures of the global stress and strain, i.e.

T = FvSFT
v = F−1

2 σF−T
2 , (24)

Γ = F−T
v E1F−1

v = FT
2 e1F2. (25)
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The tensors S and σ in expression (24) correspond to measures of the global stress in the reference and current
configurations respectively. Alternatively, Γ may be written as

Γ =
1
2

(
FT

2 F2 − I
)

+
1
2

(
I − F−T

v F−1
v

)
= E2 + ev, (26)

where E2 and ev are seen as intermediate measures of strain associated with the hyperelastic and viscous parts of
component 2©, respectively. Differentiating (26) with respect to time yields the relationship between the corresponding
strain rates

Γ̇ = Ė2 + ėv. (27)

The Lie derivative Γ̂ of Γ corresponds to the push-forward of Ė1 to the intermediate frame, i.e.

Γ̂ , F−T
v Ė1F−1

v = Γ̇ + lTv Γ + Γlv, (28)

where lv is the velocity gradient in the intermediate system of coordinates xv, i.e.

lv ,
∂v
∂xv

= ḞvF−1
v . (29)

Let Dint be the internal power dissipation due to the viscous effects. The second law of thermodynamics may be
expressed pointwise, in the reference frame, by means of the Clausius-Planck inequality (e.g. Holzapfel, 2000)

Dint = S:Ė1 − U̇ − SΘ̇ ≥ 0, (30)

where S is the entropy density, Θ̇ denotes the rate of change in temperature and U̇ corresponds to the rate of change
in free energy density. Assuming a constant temperature, inequality (30) specializes into

Dint = S:Ė1 − U̇ ≥ 0. (31)

Expression (31) may be pushed forward to the intermediate frame as

T:Γ̂ − U̇ ≥ 0. (32)

The total Helmholtz free energy density U is then written as the sum of the energy densities stored in the hyperelastic
portions of components 1© and 2©, each depending on the appropriate measure of strain

U = U1(E1) + U2(E2). (33)

The rates of change of U1 and U2 may now be expressed as follows

U̇1 =
∂U1

∂E1
:Ė1, (34)

U̇2 =
∂U2

∂E2
:Ė2. (35)

Inverting equation (28) for Ė1 and substituting into equation (34) yields the rate of change in U̇1 as

U̇1 =

(
Fv
∂U1

∂E1
FT

v

)
:Γ̂. (36)

On the other hand, manipulating equations (27) and (28) it can be shown that Ė2 satisfies

Ė2 = Γ̂ − dv − lTv E2 − E2lv, (37)

where dv is the rate of deformation of the viscous component in 2©

dv =
1
2

(
lv + lTv

)
= ėv + lTv ev + evlv. (38)
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Comparing the right-hand-sides of expressions (28) and (38) shows that dv is the Lie derivative of ev. Plugging
equation (38) into (37) and then (37) into (35) yields the rate of change in U̇2 as

U̇2 =
∂U2

∂E2
:Γ̂ −

(
C2

∂U2

∂E2

)
:dv, (39)

where, in the case of an isotropic material, the Mendel stress (C2∂U2/∂E2) is symmetric. Defining intermediate
measures of partial stress in components 1© and 2© respectively as

T1 = Fv
∂U1

∂E1
FT

v and T2 =
∂U2

∂E2
, (40)

then substituting equation (36) and (39) into (32) yields the following inequality (e.g. Hoo Fatt and Ouyang, 2008;
Huber and Tsakmakis, 2000)

Dint = [T − (T1 + T2)] :Γ̂ + [C2T2] :dv ≥ 0, (41)

where the history of the global deformation gradient F1, and hence the tensorial quantity Γ̂, can be chosen arbitrarily.
A standard procedure due to Coleman and Noll (1963); Coleman and Gurtin (1967) is applied to satisfy inequality
(41):

• In the particular case where the rate of deformation of the viscous component is equal to zero (i.e. dv = 0), the
transformation process is reversible and inequality (41) reduces to

Dint = [T − (T1 + T2)] :Γ̂ = 0. (42)

Equality (42) is satisfied for every choice of F1 if and only if

T = T1 + T2 ⇐⇒ σ = σ1 + σ2. (43)

• Assuming that local equilibrium (43) is satisfied in the general case where dv , 0, expression (41) reduces to

(C2T2) :dv ≥ 0. (44)

It is noteworthy that inequality (44) is independent of the choice of intermediate configuration. For an isotropic
material, the “Mandel” stress tensor C2T2 is symmetric. The following evolution law was proposed by Huber and
Tsakmakis (2000) as a simple condition that satisfies inequality (44)

dv =
1
η

(C2T2)d , (45)

where the superscript (.)d denotes a deviatoric component. Using (45) and denoting the velocity gradients by l j =

Ḟ jF−1
j , it can be shown that

ḃ2 = l1b2 + b2lT1 −
2
η

b2σ
d
2. (46)

8.2.2. Practical subsystem identification (saturation method)
Following a procedure proposed by Hoo Fatt and Ouyang (2008), the parameters µ1 and γ1 can be determined first

by a nonlinear regression analysis based on equation (17) with j = 1. The corresponding equilibrium response σ1 (see
figure 10) is obtained by loading a non-virgin material sample in uniaxial extension at a suitably low constant strain
rate (ramp-up) and holding it at increasing values of constant strain (plateau) to allow for relaxation of the overstress
σ2 in component 2©. This combined constant strain rate and incremental stress relaxation test is illustrated in figure
11(c). Intervals of constant strain must be adjusted according to the material’s relaxation spectrum.

The subsystem in figure 9 may be further identified using monotonic strain-history profiles of (preferably) constant
strain rates (see figure 11(d)). Subjecting the sample to a sufficiently high strain rate will induce locking of the viscous
component (i.e. λv = 0) and yield the saturation response σsat (see figure 10) corresponding to λ1 = λ2 = λ. A
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λ

σ(λ)
saturation response

(large strain rate)

equilibrium response

(low strain rate)

(λ ≤ λM − δλ)

Figure 10: The material’s repeatable response lives between the equilibrium curve and the saturation curve

nonlinear regression analysis based on equation (17) with σsat = σ1(λ) + σ2(λ) determines the parameters µ2 and γ2.
The remaining parameter η can be determined at any intermediate elongation rate λ̇1 from equation (46) which, in
uniaxial tension writes

η =
2λ1λ2σ2

3
(
λ̇1λ2 − λ1λ̇2

) . (47)

The viscosity η may show to be practically constant. Conversely, as reported for instance by Hoo Fatt and Ouyang
(2008) for Styrene Butadiene, viscosity may be governed by deformation. In the latter case, the dependences on
deformation amplitude and rate can be characterized using the state variables Ib1 and Ib2 respectively: proposed
analytical expressions of η

(
Ib1 , Ib2

)
may be fitted to the observed results using nonlinear regression analysis.
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Figure 11: Examples of strain-history profiles suitable for material characterization in uniaxial extension
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8.2.3. Practical subsystem identification (PEM method)
The methodology described in section 8.2.2 relies on an ability to achieve sufficiently high (constant) strain rates,

in order to provoke saturation of the viscous component. Practically obtainable rates using commercially available
servohydraulic test machines are limited. Higher rates in traction can be acheived with specifically-designed testing
apparatus like the modified Charpy impact machine described by Hoo Fatt and Ouyang (2008) or the falling weight
apparatus proposed by Roland (2006).

In case technical difficulties are encountered in this regard, one alternative approach would be to determine the
parameters of components 1© and 2© simultaneously, by prediction error minimization (PEM) with respect to the
repeatable behavior, as observed within the range of achievable strain rates. Indeed, expressions for the overstress σ2
resulting from equations (17) and (47) may be equated to obtain a nonlinear ordinary differential equation (ODE) in
the elastic component of the stretch λ2(t) in branch 2©. For the purpose of numerical computations, a convenient ODE
formulation is obtained in terms of the proxy variable y = λ1/λ2, i.e.

dy
dt

=
2y
3η
σ2

(
λ1

y

)
. (48)

Given a global stretch history λ1(t) = λ(t), the aforementioned ODE can be solved for λ2(t) using current iterates
for the model’s parameters. The predicted history of the total stress σ(t) is obtained by adding its two components
evaluated using expressions ((17) with j ∈ {1, 2}) and compared, at each iteration, to the observed response.

9. Generalized model

The prototypical model shown in figure 1 can be generalized further to include a number n ≥ 1 of nonlinear hyper-
viscoelastic Maxwell elements of type 2©. The procedure described in section 8.1 for characterizing the low strain rate
response remains unchanged. However, for n > 1, the saturation method of section 8.2.2 cannot be applied to identify
the repeatable behavior. A generalized version of the alternative method based on prediction error minimization (see
section 8.2.3) may be used instead.

The ith type 2©Maxwell element (1 ≤ i ≤ n) is characterized by a viscosity ηi and a free energy density U2,i. It is
further associated with a proper intermediate configuration Ii and the corresponding multiplicative decomposition

F1 = F2,iFv,i. (49)

Following a similar derivation to the one presented in section 8.2.1, it can be shown that inequality (41) generalizes
into a set of n equivalent inequalities of the formTi −

Ti
1 +

n∑
j=1

Ti
2, j


 :Γ̂i +

n∑
j=1

(
C2, jT j

2, j

)
:dv, j ≥ 0, (50)

where the partial stress Ti
2, j in the jth hyperelastic component and the total stress Ti are expressed in Ii. The quantity

Γ̂i corresponds to the Lie derivative of the ith intermediate measure of global strain and dv, j denotes the rate of
deformation of the jth viscous component, expressed in I j. Following the Coleman-Noll procedure, expression (50)
reveals the general additivity of partial stresses, i.e.

Ti = Ti
1 +

n∑
j=1

Ti
2, j (∀ j) ⇐⇒ σ = σ1 +

n∑
j=1

σ2, j, (51)

as well as a generalized dissipation inequality:

Dint =

n∑
j=1

(
C2, jT j

2, j

)
:dv, j ≥ 0. (52)

12



Inequality (52) can be satisfied simply, by retaining for the n viscous components, uncoupled evolution laws of the
form given by expression (45), i.e.

dv, j =
1
η j

(
C2, jT j

2, j

)d
. (53)

Using the laws in (53), expressions (46), (47) and (48) can be generalized to the jth component of type 2© as follows

ḃ2, j = l1b2, j + b2, jlT1 −
2
η j

b2, jσ
d
2, j, (54)

η j =
2λ1λ2, jσ2, j

3
(
λ̇1λ2, j − λ1λ̇2, j

) , (55)

dy j

dt
=

2y j

3η j
σ2, j

(
λ1

y j

)
. (56)

In a stretch-driven uniaxial extension test, the global stretch history λ1(t) = λ(t) is known. Assuming an initial guess
for the parameters characterizing component 1© and the components of type 2©, the n uncoupled ODE’s given by
expression (56) can be solved for the elastic portions λ2,i(t) of the stretch in each Maxwell element. The partial
stress in each hyperelastic component can be determined from its constitutive equation, i.e. equation (17) in the
present case. A predicted history of the total stress σ(t) is obtained by summation according to expression (51). The
difference between the predicted response and the observed response can be minimized by iterating on the model’s
parameters.

10. Mullins effect induced anisotropy

10.1. A brief overview

Based on considerations of material symmetry, but also on the implicit assumption of a directional network alter-
ation (as opposed to an isotropic one), Horgan et al. (2004) argue that the damage associated with the Mullins effect
is inherently anisotropic and briefly discuss a tensorial approach to account for this anisotropy. Experimental data
(e.g. Dargazany and Itskov, 2009; Diani et al., 2006; Dorfmann and Pancheri, 2012; Itskov et al., 2006; Machado
et al., 2012) confirm that stress softening introduces some anisotropy in the material response. Diani et al. (2006) and
Dargazany and Itskov (2009) present micromechanical directional models to handle softening induced anisotropy. The
potential of several finite-directional models in reflecting the behavioral anisotropy induced by the Mullins effect in
initially isotropic hyperelastic materials is tested by Gillibert et al. (2010), based on the models’ initial anisotropy and
their ability to replicate the behavior of a full (i.e. infinite-directional) network. Dorfmann and Pancheri (2012) build
on the tensorial approach outlined by Horgan et al. (2004) and derive a simple phenomenological model accounting
for stress softening and changes in material symmetry. The model applies, in its current form, to pure homogeneous
deformations; however, it may be extended to more general loading conditions by the addition of an evolution law.

10.2. Outline of model extension

The formulation characterizing component 3© of the mixed model presented in this paper can also be extended,
in several ways, to handle softening induced anisotropy. A possible directional approach, preserving the form of
stored energy density given by equation (8), with j = 3, as well as the scalar measure of the active range specified in
expression (11), is outlined hereafter.

To this end, component 3© can be considered as a collection of incompressible directional networks. Each network
N (u) has an elongated shape; it is oriented in a given direction of unit vector u and comprises a very large number
of activable/breakable links characterized by a distribution of activation thresholds similar to the one illustrated on
figure 4. It is further assumed that, under the global deformation gradient F = F1, each directional network N (u) of
component 3© softens isotropically while subjected to a uniaxial deformation characterized by the stretch λ(u) resulting
from F in direction u, i.e.

λ(u) =
√

(Fu) . (Fu) =
√

uT Cu, (57)
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where C = FT F. Under these conditions, the scalar measure of deformation of network N (u) is given by the quantity
I(u) = λ(u)2

+ 2/λ(u). As is usually the case in directional models, the number of spatial directionsN (u) can be finite or
infinite. An infinite-directional formulation is outlined below in analytical form, which can be numerically integrated
on the surface of a unit sphere, for instance, using sets of collocation directions and weights determined by Baz̆ant
and Oh (1986).

The stored energy density and the principal Cauchy stress in the direction of the current unit vector Fu/λ(u),
associated with an active link of network N (u), are given by

U(u)
3 = µ3

(
I(u)
3 − 3

)γ3
= µ3

λ(u)
3

2
+

2

λ(u)
3

− 3

γ3

, (58)

σ(u)
3 = λ(u)

3

dU(u)
3

dλ(u)
3

+ p(u)
3 = 2

λ(u)
3

2
−

1

λ(u)
3

 dU(u)
3

dI(u)
3

+ p(u)
3 , (59)

where p(u)
3 is an undetermined pressure term arising from incompressibility. All active links in a given directional

networkN (u) contribute additively, in terms of stored energy density and stress, to the elastic response of the network.
The latter is hence found by summation over the active range, i.e.

Ū(u)
3 =

∫ I(u)
3

β(u)
U(u)

3 p(Ia)dIa, (60)

σ(u)
3 =

1

λ(u)2

∫ I(u)
3

β(u)
σ(u)

3 p(Ia)dIa (Fu) ⊗ (Fu). (61)

Expressions for the total elastic response of component 3© are finally obtained by integrating equations (60) and (61)
on the surface of a unit sphere S

U3 =
1

4π

∫
S

∫ I(u)
3

β(u)
U(u)

3 p(Ia)dIa

 dS(u), (62)

σ3 = 2F

 1
4π

∫
S

∫ I(u)
3

β(u)

1 − 1

λ(u)
3

3

 dU(u)
3

dI(u)
3

p(Ia)
λ (Ia)2 dIa u ⊗ u

 dS(u)

 FT + p3I. (63)

Assuming a suitable analytical expression for p(Ia) in terms of parameters, the anisotropic stress response of
component 3© to a given global deformation history F(t) can be predicted using equation (63). Consequently, the
model’s parameters can be fitted to experimental data by minimizing the prediction error.

11. Example

Referring to figure 1, with a single component of type 2©, the following set of numerical parameters is chosen to
illustrate some aspects of the isotropic model’s behavior in uniaxial extension at different strain rates: µ1 = 1.1 MPa,
γ1 = 0.8, µ2 = 3.3 MPa, γ2 = 1.1, µ3 = 19.8 MPa, γ3 = 0.7, η = 0.05 MPa.s and δI = 5. The activation threshold Ia

of the first invariant of global strain is taken to follow the probability density function of a beta distribution, which is
bounded (see e.g. Ang and Tang, 2007), i.e.

p(Ia) =
1

β(p, q)
(Ia − Ia,min)p−1(Ia,max − Ia)q−1(

Ia,max − Ia,min
)p+q−1 , (64)

where Ia ∈
[
Ia,min, Ia,max

]
with Ia,min = 3 and Ia,max =

(
I f − δI

)
= 100. The standard beta function appearing in the

denominator of expression (64) is given by

β(p, q) =

∫ 1

0
xp−1(1 − x)q−1dx. (65)

14



3 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

Probability Density Function of Activation Threshold

activation threshold I
a

pr
ob

ab
ili

ty
 p

(I
a)

 

 

p(I
a
) → β distribution
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Figure 13: Virgin models are subjected, in uniaxial extension, to a
standardized history of global stretch at different stretch rates: λ̇1 =

0.1 s−1, 200 s−1 and 600 s−1.

Figure 12 shows the probability density function of Ia for p = 2 and q = 13, which is positively skewed.
The three-component model is subjected, uniaxially, to the normalized history of global stretch defined in figure

13: three sets of two stretch-driven loading cycles are applied to the virgin model, at increasing stretch amplitudes
λM = 3, 4 and 5. This virtual experiment is repeated at three different stretch rates λ̇1 = 0.1 s−1, 200 s−1 and 600 s−1.

The model’s response to the lowest stretch rate λ̇1 = 0.1 s−1 can be seen on the set of figures 14(a). At this rate, the
virtual experiment is performed sufficiently slowly, with respect to the material’s internal time-scale, for the viscous
subcomponent to flow at nearly the same rate and undertake most of the applied stretch. Consequently, the elastic
subcomponent of element 2© remains unloaded with λ2 ≈ 0 and σ2 ≈ 0. On the other hand, the history of the stress in
component 3© is consistent with the deterioration process to which the corresponding links are subjected to. It can be
noted for instance that, over each set (i) of two successive loading cycles of same stretch amplitude λMi , σ3(t) has a
weaker intensity preceding the instant at which the maximum applied stretch λMi occurs, and that it follows the same
pattern past that point. When subjected to a sufficiently low rate of stretch, the system behaves as the reduced model
shown in figure 5 and hence undergoes a pure Mullins effect.

The sets of figures 14(b) and 14(c) show the model’s behavior at higher stretch rates: λ̇1 = 200 s−1 and 600
s−1 respectively. The responses of components 1© and 3© in a stretch-driven experiment are clearly rate-independent.
Element 2© however, behaves differently: the internal rate of dissipation of its viscous subcomponent being limited,
the elastic subcomponent, which responds instantaneously, undertakes larger parts λ2 of the applied stretch λ1, at
larger stretch rates. Upon unloading, and despite a state of global extension with λ1 ≥ 1, the delayed viscous response
results in the compression of component 2© with λ2 ≤ 1 and σ2 ≤ 0.

Further, it is interesting to note that, at sufficiently high strain rates, the peak in total stress σ(t) drops significantly
between the first and the second loading cycles. In the present case, this is less apparent in subsequent sets of larger
global stretch amplitude. However, the magnitude of such drops can be modulated by changing the stretch rate or
introducing time delays between successive loading sets. This phenomenon is clearly a manifestation of the model’s
viscoelastic behavior and should not be mistaken with stress-softening or damage.

12. Conclusions

A new three-dimensional multi-regime evolution model for rubber-like materials is presented in this work. The
proposed model is based on a selection of existing components and unifies two major aspects of rubber behavior, in
large deformations: nonlinear viscoelasticity and the Mullins effect. The prototypical formulation is further general-
ized to include multiple nonlinear Maxwell elements accounting for several internal material time-scales. A detailed
analysis provides practical means of determining the model’s parameters from simple uniaxial extension tests. A
numerical example illustrates several aspects of the model’s behavior in uniaxial extension, at different stretch rates.
A possible directional approach extending the model to handle Mullins effect induced anisotropy is briefly discussed.
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(a) Stretch rate λ̇1 = 0.1 s−1
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1 2 3 4 5

−10

0

10

20

30

Global Cauchy Stress versus Global Stretch

global stretch λ
1

C
au

ch
y 

st
re

ss
  σ

 [M
P

a]

(c) Stretch rate λ̇1 = 600 s−1

Figure 14: Model’s behavior under the normalized loading at different stretch rates
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Appendix A

Intermediate steps between equations (6) and (7) are detailed hereafter: equation (6) is pushed forward to the
current configuration, in the usual way, to yield

σ j = F j
∂U j

∂E j
FT

j + p jI. (66)

The chain rule is then applied to ∂U j/∂E j, for instance in terms of the first two invariants of C j, i.e. IC j = trace(C j)
and IIC j = 1

2

(
I2
C j
− trace(C2

j )
)
, as follows

∂U j

∂E j
= 2

∂U j

∂C j
= 2

∂U j

∂IC j

∂IC j

∂C j
+ 2

∂U j

∂IIC j

∂IIC j

∂C j

= 2
∂U j

∂IC j

I + 2
∂U j

∂IIC j

(
IC j I − C j

)
= 2

(
∂U j

∂IC j

+ IC j

∂U j

∂IIC j

)
I − 2

∂U j

∂IIC j

C j. (67)

Recalling that tensors b j and C j have the same invariants, equation (7) is readily obtained by substituting expression
(67) into (66) and rearranging terms.
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