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Choice designs traditionally have been built under the assumption that
all coefficients are zero. The authors show that if there are reasonable
nonzero priors for expected coefficients, then these can be used to gen-
erate more statistically efficient choice designs, because the alternatives
in their choice sets are balanced in utility—they have more similar choice
probabilities. The authors demonstrate that the appropriate measure of
choice design efficiency requires probability centering and weighting of
the rows of the design matrix, and they illustrate how this criterion
enables the analyst to appropriately trade off utility balance against three
other principles: orthogonality, level balance, and minimal overlap. Two
methods, swapping and relabeling attribute levels, provide complemen-
tary ways to increase the utility balance of choice designs. The authors
apply a process for generating utility-balanced designs to five different
choice designs and show that it reduces by 10-50% the number of
respondents needed to achieve a specific error level around the parame-
ters. A sensitivity analysis reveals that these gains are diminished, but still
substantial, despite strong misspecifications of prior parameter estimates.

Choice Designs

The Importance of Utility Balance in Efficient

Because of their ability to mimic realistic market deci-
sions, choice experiments are increasingly used to model
market demand (Carson et al. 1994). Choice experiments
allow an estimate of the impact of product features on
choice in a competitive context (Louviere and Woodworth
1983) and an assessment of the differential impact of price
for brands in the presence of different competitors
(Anderson and Wiley 1992; Batsell and Louviere 1991).
What choice experiments gain in realism, compared to rat-
ings-based conjoint, they lose in reliability. That is, reliable
parameter estimates require pooling the choices from differ-
ent respondents. A typical choice experiment might require
pooling the choices of 100 respondents each of whom
makes eight choices.

There are various ways to decrease the number of respon-
dents necessary for reliable within-segment analysis. One
way is to “explode” rank order data into a greater number of
inferred choices (Chapman and Staelin 1982). Reliability
also can be increased by adjusting ratings-based conjoint to
correspond to choices (Huber et al. 1993). However, both of
these methods depend on the correspondence between
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choices and either ranking or rating, which may not be jus-
tified (Ben-Akiva, Morikawa, and Shiroshi 1992).

Within the context of choice designs, several authors have
proposed designs that decrease the number of respondents
or choices per respondent needed to achieve an expected
level of accuracy. For example, Bunch, Louviere, and
Anderson (1994) provide statistically efficient main-effect
designs, and Anderson and Wiley (1992) and Lazari and
Anderson (1994) provide statistically efficient cross-effect
designs. Kuhfeld, Tobias, and Garratt (1994) demonstrate
the use of a computerized search to find nearly optimal
designs for large, complex, and asymmetric problems.
Choice-Based Conjoint Analysis (CBC) (Sawtooth
Software 1993) provides computer-implemented random-
ized tasks that are reasonably efficient for main effects and
allow for the estimation of all interactions.

All of these techniques generate reasonable designs if a
person does not use prior information about the expected
coefficients—that is, if the analyst expects all of the coeffi-
cients to be zero. However, with the level of knowledge typ-
ically available in most marketing studies, this strategy is
certainly too conservative and may be inappropriate. We
often know, for example, that low prices are generally pre-
ferred to high ones, that some brands are consistently
desired over others, and that rankings of some product fea-
tures are shared by different consumers. Furthermore, in
practical marketing research, most surveys are tested with a
small-sample pretest, the outcome of which provides rea-
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sonable priors for the choice model. We show how this prior
information can be used to generate choice designs that are
substantially more efficient than those heretofore available.
The primary mechanism by which this improvement is
achieved is by balancing the utilities of the alternatives
offered in the choice sets. That is, we define alternatives
within each choice set to have more equal choice
probabilities.

Although it has not been reflected in published choice
designs, the idea of utility balance is not new. The pair com-
parisons in the popular conjoint package, Adaptive Conjoint
Analysis (ACA) (Johnson 1987), balance profiles so that
respondents are as nearly indifferent to a pair as possible. In
the pure choice realm, Thurstone’s (1927) law of compara-
tive judgments develops a discriminal process for choices
among pairs of objects. The process, which is the intellectu-
al precursor of contemporary choice models, seeks to place
objects such that the probability of selecting one over anoth-
er corresponds to their Euclidean distance, thus ensuring
that objects with large preference differences will be far
apart on the scale. To efficiently generate such a scale,
Torgerson (1958, p. 138) provides strategies that focus on
similar pairs while also undersampling dissimilar ones. The
justification for undersampling dissimilar pairs derives from
the nonlinearity of the cumulative normal distribution in the
Thurstone model, and in general from any S-shaped cumu-
lative probability function such as the logistic. In particular,
the choice among a pair in which one alternative is chosen
almost all of the time anchors the extreme values of the S-
shaped cumulative probability function but provides little
information on the “slope” of that function. Generally,
choice sets that generate extreme probabilities are less effec-
tive at constraining the parameters of the choice model than
are moderate ones.

Much in the spirit of Torgerson’s (1958) sampling strate-
gies, Krieger and Green (1991) recommend permuting
attribute levels in choice sets to minimize instances of dom-
inated alternatives. Dominated alternatives within a choice
set are an extreme case in which the choice provides no new
information, but the problem also occurs with nondominat-
ing choice sets in which one alternative is an easy choice.
The utility-balanced choice designs that we discuss subse-
quently similarly limit the number of dominated alterna-
tives, but they do so in a general context of improving the
efficiency of the entire choice design. We provide two utili-
ty-balance strategies and demonstrate how increasing utility
balance with these operations can produce designs with
smaller expected error around the estimated parameters. At
some point, however, balancing the utilities of the alterna-
tives in each choice set can increase the colinearity in the
design and thereby deteriorate its efficiency. To resolve this
conflict between greater utility balance and nonorthogonal-
ity, we provide criteria for identifying the level of utility bal-
ance that produces more efficient choice designs.

Specifically, we seek to answer three questions:

1. What is the theoretically appropriate efficiency measure for a
choice design?
2. What processes can be used to generate more efficient choice
designs given prior knowledge of the parameter estimates?
. How large is the efficiency gain from these modifications in
utility balance, and how robust are these gains to misspecified
priors?

(58]
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To answer the first question, we show that the efficiency
of a choice design depends on the design matrix in which
alternatives are “‘centered” within choice sets. To answer the
second question, we provide two mechanisms to generate
more efficient designs through utility balance: attribute rela-
beling and swapping. Finally, to answer the third question,
we show that efficiency gains of 10-50% are achieved for
typical choice designs and that these gains are not sensitive
to monotone misspecifications of the prior parameter
estimates.

THEORETICAL DEVELOPMENT

We derive the measure of efficiency for a choice design
that has a set of priors on the coefficients. The calculation of
this measure is illustrated in the Appendix in conjunction
with the first example design. The derivation basically fol-
lows the seminal work of McFadden (1974) and is summa-
rized in a variety of sources (Ben-Akiva and Lerman 1985;
Bunch, Louviere, and Anderson 1994; Madalla 1983). The
standard random utility framework posits that choice proba-
bilities are derived from a fixed and variable component that
is associated with the evaluation of each alternative, namely,

(1) u=xB+ep

Here, u, is the momentary utility of alternative i, x; is a row
vector of K characteristics describing i, B is a column vector
of weights associated with each of those K characteristics,
and e, is a random error term with expectation zero and vari-
ance G,2.

Next, consider a choice experiment with N choice sets,
C,, indexed by n = 1.....N, where each set is characterized by
a set of altemnatives C, = [Xjp,...X5,,}. Under the logit
assumption that the e;’s are independently, identically
Gumbel-distributed, the probability that a consumer will
choose alternative i from the choice set C; is

e"lllB
(2) l;‘in(xn’B )= T,

Zelmﬂ .

j=l

Within choice set C,, let x;, denote the ji row of a matrix
X,, where x;, is the K-dimensional row vector associated
with an alternative, jeC,. If M = E?z 1 I is the total num-
ber of alternatives in the choice experiment, then the choice
design matrix, X, reflecting the concatenation of all subma-
trices, X,, is of size M x K. Furthermore, if Y is a matrix of
choices with elements y;,, each of which equals one if alter-
native i is chosen in C,, and equals zero otherwise, and if we
assume that each choice reflects an independent draw from
a multinomial distribution, then the log-likelihood of a
given sample, Y, is

N 3y
(3) LY | X.B) = Z Z Yin I(Pyy (X, B)) + constant,

n=1j=1

Here, P, (X,.B), generated from Equation 2, is the choice
probabiiity of alternative j in set C,, which depends on the
characteristics of the alternatives, X, and the true parame-
ter vector f.
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Maximizing Equation 3 yields the maximum likelihood
estimator, B, of a choice model, with a particular choice
design. McFadden (1974) shows that the distribution of 8 is
asymptotically normal with mean B and covariance matrix

N 14
o) Q' =@ P2 =Y Y ZuPuz, ),

n=1j=1
where P is an M x M diagonal matrix with elements P;,, and
Z is an M x K matrix with rows

J
(4b) 2y =Ry =

i=1

xinPin'

Equation 4 takes a particularly simple form when the best
guess is that the B’s are equal to zero. In this case, the choice
probabilities of each alternative in choice set C,, are equal to
1/, and the covariance matrix simplifies to

N i
= ; = 1 ' _
(5a) Q' =@z p2z)! = [Z J_'sznzjn] Y
w=1 % j=]
where
| &
(5b) Zj, = Xjy — X, with X, = R Xig:
n

Thus, the appropriate design matrix with p = 0 centers
each attribute within each choice set. To emphasize the two
different ways in which the choice probabilities affect the
covariance matrix of 8, we denote Equation 4 as a proba-
bility-centered estimate of error, and Equation 5 as a zero-
centered or utility-neutral estimate of error.

Equations 4 and 5 are valuable in two ways. First, though
the zero-centered estimate of error derives directly from the
original McFadden (1974) article, to our knowledge it has
not been put in this form. Indeed, zero centering the design
matrix provides a general way to estimate efficiencies of
choice designs under the null hypothesis that § = 0, and thus
it is an appropriate first step in evaluating any choice design.
Second, Equation 4 is routinely used in an ex post sense to
estimate the accuracy of a choice model once a person has a
set of coefficients, B, and uses these to estimate the P’s.
However, we demonstrate its usefulness ex ante in generat-
ing efficient choice designs with prior estimates of J.

For a Fisher information matrix, Q, several established
summary measures of error are useful in comparing designs
(Bunch, Louviere, and Anderson 1994; Kuhfeld, Tobias, and
Garratt 1994). We focus on minimizing error around the
estimated parameters. Two measures, inversely related to A-
and D-efficiency are

(6) A-error = (trace Q~1)V/K,
and
7 D-error = (det Q~!)"%,

Our results are substantially unchanged with either measure;
50, in keeping with previous practice (Bunch, Louviere, and
Anderson 1994; Kuhfeld, Tobias, and Garratt 1994), we use
D-error in the summaries of our results. We denote Dp-error
as the probability-centered estimate of error, and D-error as
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the utility-neutral estimate of error that is appropriate when
all B’s are zero.

We next discuss general properties of efficient choice
designs and show how prior information about the expected
utilities can generate choice designs that are 10-50% more
efficient.

WHAT MAKES CHOICE DESIGNS EFFICIENT?

Four properties characterize efficient choice designs. Two
of these, level balance and orthogonality, also characterize
linear designs. The third, minimal overlap, becomes relevant
for choice designs, because each attribute level is only
meaningful in comparison to others within a choice set. The
fourth property is utility balance. We discuss the first three
criteria and then show how our new criterion can improve
designs still further.

Level balance is often just termed balance (Kuhfeld,
Tobias, and Garratt 1994), but we retain the prefix to distin-
guish it from utility balance. Level balance is the require-
ment that the levels of an attribute occur with equal fre-
quency. For example, each level of a three-level attribute
should occur in precisely one-third of the cases.

Orthogonality, the second criterion, is satisfied when the
joint occurrence of any two levels of different attributes
appear in profiles with frequencies equal to the product of
their marginal frequencies (Addelman 1962). Thus, if there
is level balance, the joint occurrence of any combination of
a three- and a four-level attribute must occur in exactly one-
twelfth of the cases. However, for many design specifica-
tions, level balance and orthogonality conflict so that one
cannot be satisfied without degrading the other. Consider,
for example, a design with one three-level and one four-
level attribute in which the number of alternatives is not a
multiple of twelve. To create such a design with, say, 16 pro-
files, Addelman (1962) recommends taking a 44 - 2 design
and creating a three-level attribute by collapsing two of its
four levels into one; for example, by making all level 4s be
level 3. Collapsing levels preserves orthogonality but vio-
lates level balance, because the collapsed level occurs eight
times, whereas the others occur only four times. Kuhfeld,
Tobias, and Garratt (1994) show how the OPTEX procedure
(SAS Institute 1995) can produce more efficient designs
while achieving neither perfect level balance nor orthogo-
nality. Note that, except for special cases, optimality for lin-
ear designs involves trading off incompatible criteria of
level balance and orthogonality.

Minimal level overlap becomes important for choice
designs, because the contrasts between attribute levels are
only meaningful as differences within a choice set. The
impact of this requirement is expressed in the centering of
attributes within each choice set found in equations 4 and 5.
Minimal overlap means that the probability that an attribute
level repeats itself in each choice set should be as small as
possible. The cost of violating this criterion can be seen most
clearly when the levels of one attribute are the same across
all alternatives within a choice set. Here, the choice set pro-
vides no information on the attribute’s value. We use the cri-
teria of level balance, orthogonality, and minimal overlap to
generate optimal utility-neutral choice designs—designs that
minimize Dy-error. We then show, based on Dp-error, that we
can improve the efficiencies of these designs by balancing
the utilities of the alternatives in each choice set.
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Table 1
COMPARISION OF ORIGINAL AND SWAPPED 33/3/9 DESIGN
Original 33/3/9 Design Swapped 3Y/3/9 Design
Set Alternative  Attribute A Attribute B Attribute C - Sum Probability  Astrribute A Autribute B Attribute C - Sum  Probability
I [ 1 1 1 3 002 3 | 3 7 665
11 2 2 2 6 047 2 2 2 6 .245
il 3 3 3 9 951 I 3 1 5 090
2 I | 2 2 5 045 3 1 2 6 333
I 2 3 3 8 910 2 3 1 6 333
1 3 1 1 5 045 I 2 3 6 333
3 1 | 3 3 7 .488 3 2 1 6 333
2 1 | 4 024 2 1 3 6 333
Il 3 2 2 7 488 | 3 2 6 333
4 1 2 1 3 6 333 3 1 1 5 090
II 3 2 1 6 333 1 3 3 7 665
1 1 3 2 6 333 2 2 2 6 .245
5 i 2 2 | 5 045 2 1 3 6 245
1l 3 3 2 8 910 3 3 1 7 665
11 1 1 3 5 045 I 2 2 5 090
6 1 2 3 2 7 488 2 3 1 6 245
11 3 1 3 7 488 3 2 2 7 665
I 1 2 1 4 024 1 1 3 5 090
7 I 3 1 2 6 333 1 3 2 6 245
u 1 2 3 6 333 3 1 | S 090
il 2 3 1 6 333 2 2 3 T 665
8 | 3 2 3 8 910 2 3 2 7 665
1 1 3 1 5 045 3 2 1 6 .245
il 2 1 2 5 .045 1 1 3 5 090
9 | 3 3 I 7 488 I 2 3 6 333
n 1 1 2 4 024 3 1 2 6 333
m 2 2 3 7 488 2 3 1 6 333
Dyp-error 381 .280

GENERATION OF EFFICIENT CHOICE DESIGNS

We denote a choice design that is characterized by, say,
three attributes each at two levels, and four alternatives in
each of nine choice sets, by 23/4/9. More complex design
families can also be described: 32 x 43/2/16 + 22 x 43/3/15
is a mixed design with 16 pairs and 15 triples in which attri-
butes have different numbers of levels in the different
subdesigns.

Our process of generating utility-balanced choice designs
starts with an efficient utility-neutral design. Although there
are many ways to generate Dy-efficient designs, we focus on
shifted or cyclic designs, first developed for choice experi-
ments by Bunch, Louviere, and Anderson (1994). Cyclic
designs are easily generated and have perfect level balance,
orthogonality, and minimal overlap. We consider five fami-
lies of designs, beginning with simple designs to illustrate
the principles, and then moving to more complex, but more
managerially useful, designs.

The first design we consider is the 33/3/9 design shown in
the left-hand panel of Table 1. It has three attributes, each
defined with three levels, and nine choice sets comprised of
three alternatives. The first alternatives within each choice
set represent a classic nine-profile, 33 - | orthogonal array
(Addelman 1962). Subsequent alternatives are constructed

by adding cyclically generated alternatives to each set. The
attribute levels of these new alternatives add one to the level
of the previous alternative until it is at the highest level, at
which point the assignment re-cycles to the lowest level. In
this way, designs with the same number of alternatives as (or
fewer alternatives than) the maximum number of levels can
be generated easily.

These cyclically generated alternatives are beneficial
because they mirror the perfect level balance and orthogo-
nality of the seed array. That is, the frequency of occurrence
of each pair of attribute levels is equivalent to the product of
their marginal frequencies. In the design shown, each level
occurs in one-third of the profiles, and any pair of levels
occurs in precisely one-ninth of the profiles. Finally,
because of the symmetry of the design, there is minimal
overlap—each level occurs only once for each attribute
within a choice set.

The three properties—level balance, orthogonality, and
minimal overlap—mean that the original 33/3/9 design is
optimal with respect to the criterion of Dy-error. The appli-
cation of equations 5 and 7 result in a Dy-error of .19, which
assumes P = 0. To illustrate the impact of nonzero B’s, we
initially space the partworths for each of the attributes even-
ly between —I and 1. This equal spacing is convenient,
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because the partworths become a translation of the level
labels. Thus, a partworth of —I corresponds to level I, 0 to
level 2, and 1 to level 3. Given this scaling, a measure for
the utilities of each alternative is the sum measure shown in
Table 1. We evaluate the logit probabilities that follow,
using Equation 2 in which the }’s are the original partworth
levels. In the Appendix, we show some intermediate results
in calculating Dp-error.! Note that the Dp-error of .38 is not
directly comparable with the Dy-error of .19, because the
former reflects errors around the partworths —1,0,1, whereas
the latter reflects errors around the partworths 0,0,0.

In the second panel of Table 1, we show that the Dp-error
can be improved by what we call a swap. A swap involves
switching one level of an attribute within a choice set. Note
that in the original design the first choice set is out of bal-
ance; alternative III dominates the first two, gamering 95%
of the expected choices. The swaps shown switch the first
and third levels of attributes A and C, thereby resulting in
more equal choice probabilities. A computer program gener-
ated the design shown in Table 1 by evaluating all possible
swaps for a given choice set and then executing that swap if
it could improve Dp-error. The program then examined sub-
sequent choice sets in the same way and continued to make
swaps until no more improvement was possible. Although

IThe SAS code to calculate Dp-error is available from the second author.
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this sequential method did not guarantee the optimal design,
one iteration consistently provided designs with efficiencies
within 98% of the optimal swapped design.

In the first column of Table 2, we show the net gain from
these swaps. Given the prior coefficients, Dp-error decreas-
es from .38 to .28. Thus, the swapped design can use 27%
fewer respondents and still have the same expected error
around the parameters as does the original design. Note,
however, that though Dp-error improves with swaps, Dy-
error becomes 18% worse, which implies that if B is zero,
swapping could reduce efficiency. Thus, the analyst must
decide whether to set 3 to some nonzero prior vector. Any
value, including zero, entails costs if it is wrong. We subse-
quently show that an analyst can have broad errors in nonze-
ro priors and still gain from their use, thereby implying that
there is generally a net benefit from using priors.

The analysis of the 33/3/9 family is predicated on a par-
ticular set of coefficients with partworths arbitrarily ranging
from -1 to 1. How big are the efficiency gains from utility
balance if this range is increased or decreased? In general,
the logit coefficients increase if respondents are more inter-
nally consistent and more homogeneous or if the model bet-
ter specifies their choices. In any of these cases the scale of
the solution increases (cf. Ben-Akiva and Lerman 1985;
Swait and Louviere 1993). Looking horizontally across
Table 2 shows what happens to the gain from utility balance
if the coefficients are made larger or smaller by 25%.

Table 2
GAINS IN EXPECTED ERRORS DUE TO UTILITY BALANCE FROM RELABELING AND SWAPPING

Original Values Less Noise Greater Noise
(B =By (B =Pgx 125 (B =By x.75)
Design Family Dp-error [SD] D -error Dp-error [SD] D -error Dp-error [SD] D -error
33319
Original 381 [.002] 192 475 [.012] .192 .305 [.000] 192
Swapped 280 227 311 .223 259 223
Total % Gains 27% ~18% 34% -16% 15% ~16%
342115
Average relabeled® 447 [.072] 163 611 [.140] 163 .325 [.033]) 163
Best relabeled® 297 —d 335 — .256 -
Swappeds< 253 215 .265 224 .231 185
Total % Gains 43% -32% 57% -37% 29% ~14%
43/4/16
Average relabeled .307 |.024] A57 384 [.044] 157 244 [.012] 157
Best relabeled .263 — 301 — 222 —
Swapped .198 178 .208 .180 .188 178
Total % Gains 36% -13% 46% —14% 23% -13%
4 x 33/3/48
Average relabeled 231 [.013] 102 .295 [.024] 102 178 [.006] 102
Best relabeled 199 — 238 — .163 —
Swapped .142 112 146 116 133 113
Total % Gains 39% —9% 50% -13% 25% -11%
9 x 8 x4 x34x233/63
Average relabeled .227 [.025] 068 .302 [.043] 068 .165 [.013]) 068
Best relabeled 161 — .196 — 130 —
Swapped 084 071 .089 071 075 075
Total % Gains 63% 5% 7% 5% 55% -11%

*Average Dp-error of 1000 randomly relabeled designs. Standard deviations in brackets.

bBest design from relabeling.

“Best design from relabeling and subsequent swapping.
9Relabeling has no affect on expected errors when B = 0.
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Enlarging the coefficients increases the efficiency gains
from utility balance, whereas making them smaller has the
opposite effect. This result makes intuitive sense. The large
coefficients generate extreme choice probabilities, thus
exacerbating any initial imbalance within choice sets. In
contrast, when coefficients are close to zero, the choice
probabilities are nearly equivalent, and the choice design
has less need for utility balancing.

To summarize, we have shown that swapping to balance
utilities produces an efficiency gain even for this small
design of three attributes and nine choice sets and that this
gain increases with the scale of the coefficients. However,
the benefit from swaps is not without risk. If the coefficients
are zero, then the lack of orthogonality engendered by the
swapping produces a less efficient design. The next method
we consider to increase utility balance is relabeling.
Relabeling is less risky because it alters utility balance with-
out affecting orthogonality.

Relabeling involves reassigning labels to the levels of a
design, for example, replacing attribute levels I, 2, and 3
with 3, 1, and 2 (Krieger and Green 1991; Kuhfeld, Tobias,
and Garratt 1994). Relabeling can improve utility balance
without degrading Dy-error. Unfortunately, relabeling does
not work for some small designs, such as the 33/3/9 family,
in which it results in virtually the same choice sets in a dif-
ferent order. However, it is effective for larger designs, as is
illustrated on a design of 15 pairs with four attributes each
at three levels (3%/2/15) in Table 3. We generated the 15 core
stimuli for this design with a 3* main effect design in 15 pro-
files by using the OPTEX procedure (SAS Institute 1995),
and we produced the second alternatives within choice sets
using cycles, modulo 3. The three levels of each of the four
attributes then can be relabeled in 3! = 6 different ways,
resulting in 6* = 1296 possible designs. The design shown in
Table 3, part A, is one of these designs, with a Dp-error of
.45, which is the same error as the expected error of a design
chosen at random from the set of relabeled designs. The best
possible relabeled design has a Dp-error of .30—a 33%
improvement of efficiency over the average design.

The probabilities in Table 3 demonstrate the way utility
balance improves the efficiency of choice designs. Although
both designs have some unbalanced choice sets, the original
design has far more. The original design has 11 sets with
maximum probabilities exceeding .85, whereas the rela-
beled design has only 4 sets.

Relabeling provides the best utility balance design while
also preserving orthogonality, level balance, and minimal
overlap. Swapping can result in an even better design by
sacrificing some orthogonality to achieve more utility bal-
ance. In Table 2, we show for the 3%/2/15 family that the
total efficiency gain grows from 33% to 43% with swap-
ping, though Dy-error degrades by 32%, which suggests that
if an analyst were not confident that 3 # 0, he or she might
choose the best relabeled design over the one that includes
both relabeling and swapping.

APPLICATION OF SWAPPING AND RELABELING TO
MORE COMPLEX CHOICE DESIGNS

The purpose of the previous discussion was to introduce,
with simple designs and detailed examples, the concepts of
swapping and relabeling to achieve utility balance. We here
apply the same principles to larger and more complex
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designs in which it is shown that the efficiency gains due to
utility balance are even greater.2

Consider a choice design that might be used for experi-
mental work: four attributes, each at four levels, represented
in 16 choice sets with four alternatives (44/4/16). The design
was developed as before with a core design of 16 profiles
defined from a 44 -2 orthogonal array and supplemented by
competitive alternatives generated with modulo 4 cycles.
We then assumed a B vector with partworth values for each
attribute of —1, —1/3, +1/3, and | and examined the distribu-
tion of Dp-error across 1000 randomly relabeled designs. As
is shown in Table 2, the average error is .31, with a standard
deviation of .024. The best relabeled design has a Dp-error
of .26 resulting in an efficiency improvement of 16%.
Swapping increases this improvement to a total of 36%.

Next, consider a brand-specific choice design. These are
designs with estimable brand-by-attribute interactions. They
are important when an analyst is concerned with modeling
choices among brands that themselves have different attrib-
utes. As an example, we might have four soft drink brands—
Coke, Pepsi, RC, and President’s Choice—each at three dif-
ferent prices and each possibly having different flavors and
containers. Accordingly, we need a choice design in which
brand, brand x price, brand x container, and brand x flavor
are all estimable. This leads to a 4 x 33/3/48 (interaction)
design with 27 parameters (9 parameters for main effects
and 18 for interactions).

To generate such choice designs with estimable interac-
tions requires a modification of cycling used to build alter-
natives from a core choice set. In particular, we must assure
that, for example, Coke at its lowest price is in a choice set
against Pepsi at its lowest price, a combination that would
not normally be built with cycling. To make the interactions
estimable, we modified the choice sets to include several
such contrasts. This design was then further improved by
swapping under the condition that [} is zero. This process
does not appear to generate the optimal (utility-neutral)
design with interactions, but it is sufficient to test whether
utility balance works in the case of a design with interactions.

In Table 2, we show that the average relabeled design has
a Dp-error of .23, which drops to .20 (a 14% gain) if the best
relabeled design is adopted. Subsequent swaps reduce the
Dp-error to .14, resulting in a total efficiency gain of 39%.
Thus, the application of swapping and relabeling to achieve
utility balance also is effective for designs with interactions.

Finally, in Table 2, we show the efficiency gains from a
large design. This complex design (9 x 8 x 4 x 3% x 23/3/63)
involves 63 choice sets with ten factors at varying levels,
requiring 29 main-effect parameters. The nine-level
attribute could be used as a measured factor in its own right
or used to define a blocking variable so that each respondent
receives seven choices comprising one-ninth of the total
design. To build this design, we used the OPTEX procedure
to create a core design with 63 profiles and completed each
choice set by applying cycles with modulos corresponding
to the number of levels of each attribute. The 1000 random-
ly relabeled versions of this design yield an average Dp-
error of .23. The best of these relabeled designs shows an

2In the interest of brevity, the particular designs will not be displayed.
They are, however, available from the authors.
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efficiency gain of 30% over the average, and subsequent
swapping increases the gain to a total of 63%.

To summarize, we have examined the impact of utility
balance on five different designs. It is important to stress
that these results are not unique to the design families shown
but are typical of choice designs generally. Relabeling and
swapping enable an analyst to generate utility-balanced
designs with 10-50% fewer respondents that are just as
accurate as utility-neutral designs. An examination of Table
2 indicates that these gains appear to be greater for large
designs—presumably because, compared to designs with
fewer choice sets, designs with more choice sets can be util-
ity-balanced without greatly distorting their orthogonality.
This conjecture is supported by the observation that the
smallest loss in Dy-error from swapping comes from the
designs that have the most excess degrees of freedom.

Notice that the efficiency gains depend significantly on the
original utility-neutral design that is taken as the starting
design. We took a design with average efficiency as the
base—the expected efficiency with a random selection of one
of the utility-neutral designs. Thus, not using priors subjects
the analyst to both a lower expected efficiency and a substan-
tial variation about that measure. Note further that these gains
in efficiency occur despite minimal efforts on our part to find
the most efficient design. We only sampled 1000 randomly
relabeled designs, and swapping as operationalized is unlike-
ly to find the absolute optimum. Indeed, we found that gains
could have been even greater (though not more than 1-2%) if
more thorough searches had been performed.

Scale of the coefficients is an important determinant of
how much gain in efficiency is due to utility balance. In
Table 2, we show that what was true for the 3%/3/9 family
occurs generally. Multiplying all coefficients by 1.25 results
in an increased efficiency gain of approximately 25%,
whereas multiplying each by .75 reduces the efficiency
gains by approximately 33%. In the extreme case, in which
scale approaches zero, the utility-neutral design is best.
Although scale has a strong impact on the extent of the effi-
ciency gains possible, as will be made clear in the next sec-
tion, being wrong about scale has relatively little impact on
a person’s ability to find an efficient design.

SENSITIVITY OF THESE RESULTS TO
MISSPECIFICATION OF PRIOR BETAS

Because partworths can only be roughly estimated before
the choice experiment, our goal here is to examine how the
gains from utility balance change if the assumed priors are
incorrect. We test the impact of three kinds of monotone mis-
specifications: skewness within attributes, relative weighting
across attributes, and scale of the partworths. Misspecifica-
tions in skewness are generated by halving partworths less
than zero and doubling those greater than zero (e.g., -1, =3,
3,1 =>-.5,-.15, .60, 2); note that this changes the spacing,
but not the ordering, of the levels. Weight misspecifications
are represented by allowing the weights of the attributes to
stretch uniformly between | and 4 (e.g., 1, 1, 1 = 1, 2.5, 4).
These distorted partworths are then normalized so that the
sum of the squared B’s is held constant, thus controlling for
differences in the scale (Bunch, Louviere, and Anderson
1994). In Figure 1, we illustrate how the skewness and
weight distortions greatly modify the partworths. Finally, the
impact of misspecifications in scale are produced by multi-
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Figure 1
COMPARISON BETWEEN TRUE PRIORS AND DISTORTED
PRIORS BY WEIGHTS AND SKEWNESS

44/4/16 Design, True Priors 44/4/16 Design, Distorted Priors

* o

plying the normalized partworths either by .5 or 1.5. To mea-
sure the impact of multiple misspecifications, we generated
12 designs for each design family that reflect all combina-
tions of the three levels of scale and two levels each of at-
tribute weighting and skewness.

The loss in efficiency from these somewhat extreme mis-
specifications is gauged relative to the Dp-error of the best
utility-balanced design with the true parameter vector B. We
create the utility-balanced design, Xy, with respect to the
misspecified f’s, and evaluate this ?Iesign under the true
parameters. The ratio of the Dp-error for the best design,
Dp(B,Xp ), divided by the Dp-error for the best design given
we use distorted partworths, DP(B,XE ), is a measure of the
relative efficiency of a design with misspecified prior
coefficients.

We ran a descriptive ANOVA using this measure of rela-
tive efficiency as the dependent variable and using the five
design families x three levels of scale x two levels of skew-
ness and weighting and all two-way interactions as explana-
tory variables. The model accounted for variation extremely
well; the resulting R2 was 96%, and all main effects were
highly significant (p < .01). Weight and skewness account-
ed for the largest variation, whereas design and scale were
less important (percentage of explained variance = 41% and
21% versus 15% and 3%, respectively). The interactions
were significant and accounted for 14% of variation. With
the lack of importance of scale, a good way to display the
results is to average over the three values of scale (.5, 1.0,
1.5). In the first column of Table 4, we indicate that mis-
specifying the scale produces designs approximately 95% as
good as knowing the scale perfectly. Combining scale with
skewness misspecifications results in design efficiencies of
approximately 85%, whereas scale with weight misspecifi-
cations drops efficiencies to approximately 80%. Finally,
combining all three types of misspecifications results in effi-
ciencies of approximately 70% of the perfectly known pri-
ors condition. As bad as these losses may be, they are still
substantially smaller than the efficiency losses from disre-
garding priors altogether, which is shown in the last column
of Table 4. Thus, the analyst is better off being wrong about
priors than disregarding them completely.

It is important to distinguish between the relatively minor
impact of scale shown here and its major impact previously
discussed and shown in Table 2. We showed that scale is
important in determining the potential gain in efficiency from
utility balance. However, in Table 4, we indicate that identi-
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Table 4
RELATIVE EFFICIENCIES GIVEN MISSPECIFICATIONS OF PRIORS

Level of Misspecification Relative Efficiency
Scale, of Utility-Neutral
Scale Scale & Scale & Weight, & Designs
Design Family Only Skewness Weight Skewness (B=0)
3339 95%a 89% 86% 83% 73%
342115 97 86 82 70 57
44/4/16 97 90 85 81 64
4 x 3%/3/48 (interactions) 98 86 84 75 61
9 x 8 x4 x34x 2¥3/63 99 ¢ 71 58 37

3Efficiencies are relative to utility-balanced designs using true priors. The numbers are averages across three scale levels.

fying a good design is not importantly dependent on scale.
Put differently, making the wrong guess on scale means a
person could be wrong about the extent of gain in efficiency,
but this misspecification has relatively little impact on the
relative efficiency of the optimal utility-balanced design.

DISCUSSION

We show that utility balance provides substantial improve-
ment in the efficiency of choice designs. This efficiency gain
arises because choices between similarly-valued alternatives
provide better information about the coefficients. Thus, when
priors are not zero, utility balance joins orthogonality, level
balance, and minimal overlap as principles defining efficient
choice designs. It is important to stress that though these four
principles help us understand what makes a good choice
design, in the region of the most efficient designs, they gen-
erally conflict with each other. Thus, it is necessary to use
search routines coupled with design modification strategies
to find designs that optimize Dp-error.

Prior estimates of the logistic coefficients are required to
generate utility-balanced designs. There are several ways to
generate a coherent and useful set of priors. Perhaps the best
is through a small sample pretest that provides tentative
logit coefficients. In this case, these coefficients can be
entered directly into the estimate of Dp-error in Equation 4.
Alternatively, the analyst could subjectively estimate proba-
bilities for a provisional choice experiment and use the logit
coefficients from that pseudoexperiment to provide priors.
Finally, the analyst might allow experienced managers to
guess the expected partworths for a study and use these
directly as his or her estimate for . The sensitivity analysis
clearly shows that using even distorted estimates of J is bet-
ter than assuming they are zero.

Once prior B's are assessed, it is straightforward, if tedious,
to find an efficient choice design. The cyclic choice designs
generated from orthogonal arrays provide a good starting
point with minimal overlap, level balance, and orthogonality.
From this starting design, zero-centered (D) and probability-
centered (Dp) errors can be estimated. Relabeling attribute
levels then allows for the exploration of designs that reduce
Dp-error without altering Dy-error. Particularly for designs
with large numbers of attributes or levels, relabeling alone
can reduce the number of independent respondents needed to
produce a specified error level by 10-40%.

Although swapping within choice sets normally increases
overall efficiency, it needs to be more closely monitored.
Swapping attribute levels can strongly reduce Dp-error, but
it can increase colinearity and thereby worsen Dg-error.

Thus, swapping is most appropriate when the analyst is con-
fident in the prior fB’s used to estimate Dp-error. If they are
inaccurate, then a less risky strategy might be to use rela-
beling only, which has no effect on Dy-error.

Our focus is to demonstrate the surprisingly strong impact
of utility balance on the efficiency of choice designs.
However, there are several questions that arise as a result of
our explorations, which define an appropriate agenda for fur-
ther research. Although we are confident that utility balance
applies to models similar to those that were explored previ-
ously, more theoretical and empirical work is needed to gen-
erate designs that are appropriate for, say, a nested logit or a
probit model with explicit heterogeneity terms. More work is
also needed to apply utility balance to availability choice
designs (Anderson and Wiley 1992; Kuhfeld, Tobias, and
Garratt 1994; Lazari and Anderson 1994). These designs
allow for the exploration of differential substitutability—the
idea that the presence of one alternative in a choice set affects
the utility of the others in the set. Modeling this common
market behavior requires the use of universal logit
(McFadden, Tye, and Train 1977). We do not consider such
designs because they mainly require the use of a fixed alter-
native that is common to different choice sets. These fixed
alternatives (e.g., “my current brand” or “I would keep shop-
ping”) facilitate the generation of estimable choice models
but complicate the process of utility balance. There are inter-
esting but as yet unanswered questions involved with a fixed
alternative, particularly dealing with its inherent value: How
popular should the fixed alternative be? How should designs
be balanced if there are fixed alternatives? How much impact
does the attractiveness of the fixed alternative have on the
efficiency of the resultant design?

We explore ways to use prior information to generate
more efficient designs. There are other, complementary
ways that use prior knowledge to provide more accurate
estimates. One approach is to use knowledge of functional
forms to substitute linear or quadratic functions for part-
worth functions (Srinivasan, Jain, and Malholtra 1983): for
example, replacing partworth price levels with one linear
price term. Another approach is to use the priors directly in
the estimation of the parameters within a Bayesian frame-
work (Allenby, Arora, and Ginter 1995). Both of these
strategies provide significant gains in design efficiency
when applied to ratings-based conjoint analysis and are like-
ly to increase the efficiency of choice experiments also,
though that conjecture must be tested.

A final research issue concerns validating utility balance
and other efficiency measures on consumers. The results
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presented here are relevant to ideal consumers, and it is
important to assess the change in utility balance, for exam-
ple, on the underlying preferences and error level of actual
consumers. Although further research is always needed on
the impact of human factors on choice designs, the idea that
the task should mimic marketplace choices as closely as
possible (Carson et al. 1994) makes utility-balance strate-
gies appealing. To the extent that marketplace dynamics
tend to force out competitors with low shares, market choice
sets tend to be utility-balanced. Thus, utility balance may
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serve a dual role of increasing both the efficiency and the
realism of a choice experiment.

Choice experiments have created excitement because of
their ability to emulate consumer behavior. We show that bal-
ancing utilities within choice sets can increase the efficiency of
choice designs; we provide a framework for generating such
utility-balanced designs and a way to estimate their expected
gains in efficiency. The utility balance developed here is not a
tool in itself but should be seen as another way in which ana-
lysts can more intelligently explore consumer choices.

Appendix
DERIVATION OF PROBABILITY-CENTERED ERROR FOR A 3%/3/9 CHOICE DESIGN

Effects-Coded Design Matrix of
Original 3%/3/9 Choice Design: X

Probability-Centered Design Matrix: Z
(from Equation 4b)

Probabilities

X1l X12 X210 X22 X3l X32 (from Equation 2) Z11  Z12 721 722 731 732
1 0 I 0 1 o | 002 195 90 195 90 195 90
0 | 0 | 0 1 047 95 190 95 190 95 190
-l -1 -1 -1 -1 951 05 -10 -05 —10 -05 —I0
0 0 1 0 | 045 100 -86 86 186 86 186
0 i -1 -1 - - 910 0.0 14 14 -14 14 14
o 1 0 I 0 045 ~100 -186 186 86 186 26
0 A % - - 488 1.00 46 -S54  -1.00 -S54 -1.00

1 1 0 I 0 024 0.0 146 146 00 146 0.0
- 0 1 0 1 488 ~100 -S54 46 1.00 46 1.00
0 | I 0 -1 -1 333 0.0 100 100 00 -100 -100
-l 0 | 1 0 333 100 -100 00 100 100 00
-1 - 0 1 333 100 00 -100 -100 00 1.00
0 1 0 | 1 0 045 86 186 86 18 100 .86
g = = = 0 1 910 _14 -14 -14 —14 00 14
10 ] 0 - = 045 1.86 86  1.86 86 100 -1.86
0o -1 = 0 I 488 46 100 -100  -54 46 100
T ] 0 -l - 488 54 -100  1.00 46  -54  -1.00
1 0 0 1 1 0 024 146 00 0.0 146 146 00
a0l I 0 0 1 333 Z100 -100 100 00 00 1.00
| 0 0 | -1 -1 333 100 00 0.0 100 -100 -1.00
0 1 - - ] 0 333 0.0 100 -100 -100 100 00
< = 0 1 < -1 910 14  -14 00 a2 =i =
10 = -1 1 0 045 1.86 86 -100 -18 186 86
0 I I 0 0 | 045 86 186 100 86 86  1.86
I -1 -l 1 0 488 _54 100 -S54 -100 100 46
0 | 0 0 I 024 146 00 146 00 0.0 1.46
L 0 1 0 | -1 - 488 46 1.00 46 100 -100 54

Probability-Centered Covariance Matrix
Q) =(ZPZr!
(from Equation 4a)

Z1.1 Z1.2 Z2.1 222 Z3.4 Z3.2
Zl.1 67 =30 .20 .02 .20 02
Z1.2 =30 A4l .02 -.02 .02 =02
Z2.1 .20 02 67 -.30 .20 02
Z2.2 .02 -.02 -.30 41 02 -02
Z3.1 .20 .02 .20 .02 67 =30
Z3.2 .02 -02 02 -.02 =30 41

Dp-error = (det€2 )"0 = .38
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