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SUMMARY

We examine a bubble-stabilized finite element method for enforcing Dirichlet constraints on embedded
interfaces. By embedded we refer to problems of general interest wherein the geometry of the
interface is assumed independent of some underlying bulk mesh. As such, the robust imposition of
Dirichlet constraints with a Lagrange multiplier field is not trivial. To focus issues, we consider a
simple one-sided problem that is representative of a wide class of evolving interface problems. The
bulk field is decomposed into coarse and fine scales, giving rise to coarse-scale and fine-scale one-
sided sub-problems. The fine-scale solution is approximated with bubble functions, permitting static
condensation and giving rise to a stabilized form bearing strong analogy with a classical method.
Importantly, the method is simple to implement, readily extends to multiple dimensions, obviates the
need to specify any free stabilization parameters, and gives rise to a symmetric, positive-definite system
of equations. The performance of the method is then examined through several numerical examples.
The accuracy of the Lagrange multiplier is compared to results obtained using a local version of the
domain integral method. The variational multiscale approach is shown to both stabilize the Lagrange
multiplier and improve the accuracy of the post-processed fluxes. Copyright c© 2006 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Recently, much attention has focused on finite element methods employing “embedded” or
“immersed” interfaces, i.e. surfaces that aren’t fitted or aligned with some underlying bulk
mesh. Such techniques aim to circumvent or alleviate the difficulties associated with remeshing
the bulk domain as the interface evolves. These methods find application in a wide range
of problems of interest to the engineering and materials science communities. For example,
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consider the recent work on fluid-structure interaction [1], cohesive crack growth [2], and sharp
phase transitions [3], just to name a few. In this paper, we present a technique that successfully
addresses the difficult issue of robustly enforcing Dirichlet constraints on such interfaces. It
bears emphasis that our technique is also applicable to “stiff” Neumann constraints, such as
those arising from many cohesive models.

For finite element methods that explicitly fit the mesh to the surface of interest, Dirichlet
constraints are often enforced through simple collocation at the nodes on the surface. In many
cases, this is sufficient to guarantee convergence. For embedded interfaces, however, such a
simple approach is not readily available. Most formulations resort to a mixed method, and
introduce a Lagrange multiplier to enforce the constraint. Unfortunately, the design of finite-
element subspaces for the bulk and Lagrange multiplier fields that satisfy the classical inf-sup
condition proposed by Babuška [4] is not a trivial undertaking. The most convenient choice
for the discrete subspaces is often one that cannot be guaranteed stable.

In light of these difficulties, Barbosa and Hughes [5] turned to least-squares stabilization
as a means of circumventing the inf-sup condition. Stenberg [6] subsequently showed that
Nitsche’s method, a classical approach for enforcing Dirichlet constraints, could be derived from
the stabilized forms proposed by Barbosa and Hughes. Nitsche’s method [7] may be viewed
as a variationally consistent penalty method, and only requires the specification of a single
parameter α to ensure stability. This classical method has garnered much attention of late, for
both meshfree methods [8] and finite element methods with embedded interfaces [9]. The issue
with Nitsche’s method, particularly for evolving interface methods, concerns the practicality
of identifying or selecting the stability constant α. Fernandez-Mendez and Huerta [8] proposed
solving a local eigenvalue problem to identify the stability constant, but this is not an efficient
strategy if required at every time step. Methods that do not rely on the specification of such
a parameter are obviously desirable.

Additional emphasis has been placed on this issue by the recent work of Ji and Dolbow [10]
and Moës et al. [11] with regard to the eXtended Finite Element Method (X-FEM). The X-
FEM is designed to address moving boundary value problems such as crack growth and phase
transitions without remeshing. This is effected through a combination of basis enrichment and
a separation of computational and physical domains. The origins of the method can be traced
back to the work of Belytschko and Black [12] on simulating crack growth with a minimal level
of remeshing. Ji and Dolbow showed that for interfacial problems with Dirichlet constraints,
the most convenient choice for Lagrange multiplier fields likely violates the inf-sup condition
for many choices of enrichment. Moës and coworkers subsequently developed a technique for
tailoring a Lagrange multiplier field to the X-FEM. They cited a sensitivity to the stabilization
constant in Nitsche’s method, and demonstrated that their method is more robust. We note,
however, that the method is not straightforward to implement, and further that it remains
unclear how to readily adapt the basic construction of their multiplier approximation to three-
dimensional problems. Finally, the use of the classical Galerkin formulation to the problem
gives rise to a linear algebraic system that is symmetric but not positive definite—which
precludes the use of some fast and efficient solvers, e.g. conjugate gradient.

In this work, we approach the problem by seeking a suitable enhancement to the bulk
field. To fix ideas, we consider a simple one-sided problem involving the Laplace equation
for a bulk field on a domain with an embedded interface. The bulk field is specified on the
interface through a Dirichlet condition. We decompose the bulk field into coarse and fine scales
and introduce a model for the fine-scale field with bubble functions. Such a decomposition is
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BUBBLE STABILIZED METHOD FOR CONSTRAINTS ON EMBEDDED INTERFACES 3

inspired by the variational multiscale framework developed by Hughes [13, 14], and is related
to the class of bubble-stabilized formulations proposed by Brezzi et al. [15] for advection-
diffusion. This allows the method to correct for the lack of stability in the standard Galerkin
variational formulation of the problem. Upon making particular choices for the finite element
approximations to the bulk field and Lagrange multiplier, we show how one can recover a form
that is very similar to Nitsche’s method. A significant feature of our approach, however, is that
it yields an element-level stabilization term αe that appears naturally via the solution of the
fine-scale problem.

The use of element-level bubble functions to stabilize finite element computation originated
over twenty years ago (see, e.g., [16]). Bubble-enhanced methods [17], related to stabilized
finite element methods [15], are seen as arising from a separation of scales according to the
numerical mesh size [18]. Methods such as the residual-free bubbles method [19, 20, 21] (related
to the bubble-enriched nearly optimal Petrov-Galerkin method [22]), may be viewed as a
localized approach to represent the fine, unresolved, scales, within the variational multiscale
framework [13, 14]. A similar result is obtained by employing an element Green’s function [13],
and the link to residual-free bubbles was explored in [23]. The obvious limitation related to
the loss of essential global effects inherent in local approaches may be overcome by employing
nonconforming methods [24, 25]. The relationship of variational multiscale methods based on
fine-scale Green’s functions to optimal stabilized methods with global and local character is
described in [26].

This paper is outlined as follows. In the next Section, we define the boundary-value problem
that will be used to study the proposed method and we provide its standard variational form.
In Section 3, the details of the numerical discretization, stabilization with the variational
multiscale method, and relationship to Nitsche’s method are presented. We also review a
recent domain-integral method for computing the interfacial normal flux, considered to be
an important quantity of interest for many embedded interface problems. Section 4 provides
several numerical examples that illustrate the accuracy and robustness of the proposed method.
Finally, we provide a summary and comment on future work in the last section.

2. PROBLEM STATEMENT

Consider the “one-sided problem” described by an interface Γ∗ partitioning the domain Ω into
the disjoint sets Ωc and Ω∗, as shown in Figure 1.

Perhaps the simplest one-sided boundary-value problem is given by

∆u = 0 in Ω∗ (1a)

u = ud on Γ∗ (1b)

∇u · no = h on Γh (1c)

where ∆ is the standard Laplace operator, and no is the outward unit normal to Γh, as shown
in Figure 1. The above is a simplification of classical one-sided Stefan problems that arise from
models for a wide range of evolving interface phenomena. Such models normally include an
evolution equation for the geometry of the interface in which the interfacial flux

j = ∇u · n on Γ∗ (2)
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Ω∗

Ωc

Γ∗

Γh

n

no

Figure 1. Notation for the one-sided problem. A domain Ω partitioned into regions Ωc and Ω∗ by
the interface Γ∗. The normal to the interface, n, is defined such that it points outward from the Ω∗

subdomain, as shown.

is a quantity of interest. For example, in many one-sided solidification problems, the normal
velocity of the interface is proportional to the interfacial flux.

2.1. Standard weak formulation

We write S for the space of admissible bulk fields, and V for the corresponding space of
variations. We choose to enforce the constraint (1b) on Γ∗ weakly, using a Lagrange multiplier
λ belonging to the space L. The weak form reads: Find (u, λ) ∈ S × L such that

∫

Ω∗

∇w · ∇u dΩ −

∫

Γ∗

wλdΓ =

∫

Γh

wh dΓ (3a)

−

∫

Γ∗

µu dΓ = −

∫

Γ∗

µud dΓ (3b)

for all (w, µ) ∈ V ×L. The Euler-Lagrange equations associated with this weak form are given
by (1) and

λ = ∇u · n (4)

3. DISCRETIZATION WITH FINITE ELEMENTS

We consider a quasi-uniform partition Ωh of the domain Ω into non-overlapping element
domains Ωe with boundaries ∂Ωe. We assume that the interface Γ∗ is approximated with a
partition Γh

∗
that has a particular structure; namely, the vertex set for Γh

∗
is taken as the set of

intersection points between Γ∗ and the set of element edges {∂Ωe}. We consider an “unfitted” or
“embedded” interface method in the sense that no further assumption concerning the structure
of the partition Ωh and the interface partition Γh

∗
is made. For the sake of concreteness, an

example of Ωh and Γh
∗

is shown in Figure 2.
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Figure 2. Two-dimensional example of a bulk partition of the domain into a finite element mesh
and corresponding partition of the interface. Closed circles represent the vertex set for the interfacial

partition.

The difficulties associated with designing finite element subspaces Sh ⊂ S and Lh ⊂ L
that satisfy the classical inf-sup condition proposed by Babuška [4] have been examined in
several studies; e.g. see Pitkäranta [27], Dahmen and Kunoth [28]. Stabilized methods which
can circumvent these difficulties are therefore desirable.

3.1. Stabilization via bubble enrichment

We decompose the approximation uh to the bulk field u into coarse and fine scales, denoted
by

uh(x) = ū(x)
︸︷︷︸

coarse

+u′(x)
︸ ︷︷ ︸

fine

(5)

and similarly for the weight functions wh. For the moment, we only assume that the fine-scale
functions, u′ and w′, vanish on the boundary Γh. Furthermore, we only consider one scale for
the approximate Lagrange multiplier λh and its associated weight function µh. The Galerkin
approximation to (3) thus consists of the coarse-scale equations

∑

e

∫

Ωe
∗

∇w̄ · ∇(ū + u′) dΩ −
∑

e

∫

Γe
∗

w̄λh dΓ =
∑

e

∫

Γe

h

w̄h dΓ (6a)

−
∑

e

∫

Γe
∗

µh(ū + u′) dΓ = −
∑

e

∫

Γe
∗

µhud dΓ (6b)

and the fine-scale equation

∑

e

∫

Ωe
∗

∇w′ · ∇(ū + u′) dΩ −
∑

e

∫

Γe
∗

w′λh dΓ = 0 (6c)

where Ωe
∗

:= Ωe ∩ Ω∗ and Γe
∗

:= Γ∗ ∩ Ωe.
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6 H. M. MOURAD, J. DOLBOW AND I. HARARI

We now consider an approximation for the coarse scale of the form

ū(x) =
∑

i∈I

Ni(x)ui (7a)

w̄(x) =
∑

i∈I

Ni(x)wi (7b)

where Ni are the nodal shape functions, and I denotes the set of nodes

I = {j | ω̄j ∩ Ω∗ 6= ∅} (8)

which have some portion of their supports ωj (with closure ω̄j) intersecting the domain Ω∗.
For additional detail and insight into this approach, see Daux et al. [29] and other work on
the eXtended Finite Element Method. For the fine-scale approximation, we write

u′(x) =
∑

e∈B

be(x)βe (9a)

w′(x) =
∑

e∈B

be(x)γe (9b)

where be denotes the element-level bubble function and B is a subset of the elements in the
mesh given by

B = {s |Ωs ∩ Γh
∗
6= ∅} (10)

In other words, the fine-scale solution is nonzero only in the interior of elements whose domains
intersect the interface. We remark that this restriction is only made for efficiency, and that
the developments which follow could just as easily be applied to situations where the fine scale
contributes over all of Ω∗.

Substituting (9) into (6c) and invoking the arbitrariness of γe leads to an expression of the
form

βe

∫

Ωe
∗

∇be · ∇be dΩ =

∫

Γe
∗

beλh dΓ −

∫

Ωe
∗

∇be · ∇ū dΩ (11a)

or, equivalently

βe

∫

Ωe
∗

∇be · ∇be dΩ =

∫

Γe
∗

be
(
λh − ∇ū·n

)
dΓ +

∫

Ωe
∗

be∆ū dΩ (11b)

for each e ∈ B. The above can easily be solved for the element-level fine-scale degrees of
freedom βe in terms of the coarse-scale variables, yielding

βe(ū, λh) =

∫

Γe
∗

be
(
λh − ∇ū·n

)
dΓ +

∫

Ωe
∗

be∆ū dΩ

∫

Ωe
∗

∇be · ∇be dΩ
(12)

It is clear from this expression that the fine scales are driven by the coarse-scale residuals.

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 69:1–21
Prepared using nmeauth.cls
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Using (9) with the coarse-scale weak form (6a, 6b) we obtain

∑

e

∫

Ωe
∗

∇w̄ · ∇ū dΩ +
∑

e∈B

βe

∫

Ωe
∗

∇w̄ · ∇be dΩ −
∑

e

∫

Γe
∗

w̄λh dΓ =
∑

e

∫

Γe

h

w̄h dΓ (13a)

−
∑

e

∫

Γe
∗

µhū dΓ −
∑

e∈B

βe

∫

Γe
∗

µhbe dΓ = −
∑

e

∫

Γe
∗

µhud dΓ (13b)

It can be verified, after some algebraic manipulation, that substitution of (12) into (13) leads to
a symmetric, positive-definite system of equations. This is a significant advantage over methods
that simply attempt to design subspaces Sh and Lh such that the standard formulation is BB-
stable.

3.2. Relation to Nitsche’s method

To show the relationship between this method and the classical one due to Nitsche [7], we now
consider a particular choice for the approximate Lagrange multiplier λh and coarse-scale bulk
field ū. Namely, we consider a piecewise-constant Lagrange multiplier, such that

λh
∣
∣
∣
Γe
∗

= λe (14)

and a piecewise-linear coarse-scale field. In this case, the degrees of freedom λe can be obtained
from (12) and (13b) as

λe =

−
∫

Γe
∗

(ū − ud) dΓ
∫

Ωe
∗

∇be · ∇be dΩ

(

∫

Γe
∗

be dΓ

)2
+

∫

Γe
∗

be(∇ū·n) dΓ −
∫

Ωe
∗

be∆ū dΩ

∫

Γe
∗

be dΓ

=

−
∫

Γe
∗

(ū − ud) dΓ
∫

Ωe
∗

∇be · ∇be dΩ

(

∫

Γe
∗

be dΓ

)2
+ ∇ū·ne (15)

where we have used the fact that a piecewise-linear field possesses a constant gradient and
a vanishing Laplacian over each element domain. We have also assumed that each interface
element Γe

∗
possesses a constant normal vector, denoted by n

e. Combining (12), (13a) and (15),
rearranging terms, and performing some additional algebraic manipulations yields

∑

e

∫

Ωe
∗

∇w̄ · ∇ū dΩ −
∑

e∈B

∫

Γe
∗

w̄(∇ū·ne) dΓ −
∑

e∈B

∫

Γe
∗

ū(∇w̄ ·ne) dΓ +
∑

e∈B

αe

∫

Γe
∗

w̄ dΓ

∫

Γe
∗

ū dΓ

=
∑

e

∫

Γe

h

w̄h dΓ −
∑

e∈B

∫

Γe
∗

ud(∇w̄·ne) dΓ +
∑

e∈B

αe

∫

Γe
∗

w̄ dΓ

∫

Γe
∗

ud dΓ (16)
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8 H. M. MOURAD, J. DOLBOW AND I. HARARI

where the element-level penalty parameter

αe =

∫

Ωe
∗

∇be · ∇be dΩ

(

∫

Γe
∗

be dΓ

)2
(17)

A relatively straightforward analysis shows that for an element with characteristic linear
dimension h, this quantity scales like 1/h.

Nitsche’s method is a classical method for consistently penalizing Dirichlet constraints on a
surface. Applied to (1), using piecewise-linear approximations, Nitsche’s method gives rise to
the Galerkin formulation
∑

e

∫

Ωe
∗

∇w · ∇u dΩ −
∑

e∈B

∫

Γe
∗

w(∇u·ne) dΓ −
∑

e∈B

∫

Γe
∗

u(∇w·ne) dΓ +
∑

e∈B

α

∫

Γe
∗

wudΓ

=
∑

e

∫

Γe

h

wh dΓ −
∑

e∈B

∫

Γe
∗

ud(∇w·ne) dΓ +
∑

e∈B

α

∫

Γe
∗

wud dΓ (18)

where α is a constant parameter. Comparing with (16), the only qualitative differences concern
the element penalty parameter αe instead of a constant global parameter α, and the product of
interface integrals versus the integral of a product on the interface. Further, Nitsche [7] showed
that α must scale like 1/h to guarantee convergence, which appears to be satisfied by (17).

Remarks

1. The element-level parameter αe follows automatically upon the choice of basis for the
fine-scale solution. This is consistent with the application of the variational multiscale
method to other classes of boundary-value problems, (e.g. see Masud and Khurram [30]
and the references therein).

2. The bubble functions be in (9) are typically chosen to vanish on element boundaries ∂Ωe.
Under these conditions, the fine-scale solution does not contribute to the approximation
on the interface in the degenerate case when the interface aligns with an element edge.
The consequences of this degenerate case are examined in Section 4, but it bears emphasis
that nothing in the above derivation specifically requires the use of such bubbles.

3. Numerical quadrature rules must be adjusted for bulk elements that are intersected by
the interface such that Ωe is partitioned between Ω∗ and Ωc, to accurately calculate the
contribution of such elements to the matrix system of equations. For details, see Daux
et al. [29].

3.3. Choice of bulk and interfacial approximations

We now discuss the specific choices we will consider for the approximations to the coarse and
fine scales and the Lagrange multiplier. For simplicity, piecewise-linear Lagrange interpolants
are examined for the bulk shape functions Ni in (7). We consider both linear triangular
elements and bilinear quadrilaterals.

Polynomial element bubbles are adopted for the fine-scale approximation (9). Specifically,
for linear triangular elements, the function

be = ζ1 ζ2 ζ3 (19)
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BUBBLE STABILIZED METHOD FOR CONSTRAINTS ON EMBEDDED INTERFACES 9

is used, where ζi are the classical triangular (area) coordinates. The bubble function used with
bilinear quadrilateral elements is given by

be = (1 − ξ2)(1 − η2) (20)

in terms of the natural coordinates ξ and η. It is recognized that these are not necessarily
the optimal choices, and that using the optimal bubbles, or good approximations thereof, can
greatly improve the effectiveness of the overall stabilization strategy (e.g. see the work of Brezzi
and coworkers [17, 31] in the context of advection-diffusion problems).

We consider both piecewise-constant and piecewise-linear (i.e. λh ∈ C0(Γh
∗
)) approximations

to the Lagrange multiplier on Γh
∗
. Practically speaking, discontinuous multipliers are of the

greatest interest due to the difficulty of constructing continuous approximations for embedded
interfaces in multiple dimensions.

3.4. Domain-integral approximation to the interface flux

In Ji and Dolbow [10], the superconvergent flux projection operator advocated by Carey and
coworkers [32, 33] was generalized to embedded interface problems. In essence, this post-
processing technique employs the divergence theorem to recast surface-based evaluations into
volume (or domain) based evaluations that are better suited for weighted-residual methods.

For each node i whose support ωi intersects the interface, we first compute

ji =
1

∫

Γe
∗

Ni dΓ

∑

e

∫

Ωe
∗
∈ωi

∇Ni ·∇uh dΩ (21)

as a projection of the flux over the support of node i, with uh given by (5). The flux at any
point on the interface is then approximated by

jh(x) =
∑

i

Ni(x) ji (22)

In the next section, we will compare the accuracy of this approximation to that of the Lagrange
multiplier field on the interface.

4. NUMERICAL STUDIES

Here, we apply the ideas presented above to the following model problem

∆u = 0 in (0, 1) × (y∗, 1) (23a)

u = sin(πx) v̂(y∗) at y = y∗ (23b)

u = 0 at y = 1 (23c)

∇u · no = −π v̂(y) at x = 0, 1; y∗ < y < 1 (23d)

with known analytical solution (see [8, 34]) given by

û(x, y) = sin(πx) v̂(y) (24)

where v̂(•) := cosh(π•) − coth(π) sinh(π•). In this two-dimensional problem, the embedded
interface Γ∗ is a horizontal line located at y = y∗, with 0 6 y∗ < 1; see Figure 3. We note that
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10 H. M. MOURAD, J. DOLBOW AND I. HARARI

the Dirichlet boundary condition (23c) is enforced by collocation at the nodes lying on the
y = 1 boundary, i.e. the space Sh of admissible bulk fields must be chosen such that all uh ∈ Sh

satisfy (23c); no Lagrange multipliers are introduced to enforce this boundary condition.

Ω∗

Ωc

Γ∗

n

no

y
∗

1.
0

1.0
x

y

Figure 3. Geometry of the computational domain in the straight-interface model problem.

To evaluate the accuracy in the bulk field, we use the standard L2 error norm and report
normalized, or relative norms. To evaluate the accuracy of the Lagrange multiplier on the
interface, we use the normalized error norm

Ed(λ
h) :=






∫

Γ∗

(λh − ∇û·n)2 dΓ

∫

Γ∗

(∇û·n)2 dΓ






1/2

(25)

Where applicable, we also report the error Ed(j
h) in the normal flux, jh, obtained using the

domain-integral smoothing technique described in Section 3.4.

4.1. Results obtained on structured grids

The first series of tests is performed using structured grids of linear triangular elements. A
typical structured bulk mesh consisting of 32 triangular elements (mesh parameter h = 1/4),
and the corresponding interfacial mesh are shown in Figure 4. In this case, the interface is
located at y∗ = 1/3. It is noted that the bottom row of nodes (and elements) do not contribute
to the approximation uh; see Equations (7–10). The second row of nodes from the bottom,
however, do contribute to the approximation since their support is partially within Ω∗. The
finite-element solution uh obtained on a more refined mesh (h = 1/14) is shown in Figure 5.

To examine the convergence properties of the proposed method, the calculations are carried
out on a sequence of four uniform triangular meshes, with decreasing mesh parameter, h. For
concreteness, the first two meshes are shown in Figure 6. As can be seen from this figure, the
bulk partitions chosen cause the interface to always divide an underlying triangular element
into two parts of equal height. We consider the case with the interface located at y = y∗ = 1/4.
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BUBBLE STABILIZED METHOD FOR CONSTRAINTS ON EMBEDDED INTERFACES 11

Figure 4. Structured mesh consisting of 32 three-node triangular elements and interfacial mesh with
the interface Γ∗ located at y = y∗ = 1/3.
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Figure 5. Contour plot of finite-element solution uh = ū + u′ for the case with y∗ = 1/3.
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12 H. M. MOURAD, J. DOLBOW AND I. HARARI

Figure 6. First two structured bulk and interfacial meshes in convergence study.

The errors in the bulk variable and interfacial flux are calculated and plotted against h for
each mesh. The results of this convergence study are shown in Figure 7. For the purpose
of comparison, convergence results obtained with the standard mixed form (3), i.e. without
stabilization, are presented in Figure 8.

With the bubble-stabilized method, we report linear convergence in the Lagrange multiplier
and quadratic convergence in the L2-norm of the bulk field. The rate of convergence in the
domain-integral approximation to the interfacial flux is O(h1.5). With the standard mixed
method, the error in the Lagrange multiplier increases with mesh refinement, and we note
a marked decrease in the accuracy and rate of convergence in the other quantities. While
somewhat surprising, piecewise-constant multipliers do appear to give rise to overconstraint
for this simple embedded interface problem. This result is consistent with the observations of
Moës et al. [11].

Plots of the Lagrange multiplier, λh, and the domain-integral approximation to the
interfacial flux, jh, are shown in Figure 9 along with the analytical solution ∇û · n. For
comparison, λh and jh, obtained without stabilization, are plotted in Figure 10. Clearly, in
this case, large spurious oscillations pollute the Lagrange multiplier solution. This pathology,
which is exacerbated by mesh refinement (see Figure 8), is evidently mitigated by the proposed
stabilization scheme. It is also clear from the results that the domain-integral approach
effectively smoothes the normal gradient of the bulk field on the interface, providing a much
more accurate approximation to the interfacial flux than the piecewise-constant Lagrange
multiplier.

We also study the sensitivity of λh and jh to the location of the interface relative to the
underlying mesh. For this purpose, the distance d between Γ∗ and the closest (horizontal) row
of nodes is decreased by a factor of 2, starting from d = h/2 (the case depicted in Figure 6),
down to d = h/32. The degenerate case, where the interface coincides with the underlying
element edges (d = 0), is also considered.

The results of this sensitivity study are presented in Figure 11. For concreteness, d and h are
shown for a typical pair of adjacent elements in the inset of Figure 11(a). From these results, it
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Figure 7. Convergence study results for variational multiscale method on structured triangular grids.

Figure 8. Convergence study results for standard mixed method (without stabilization) on structured
triangular grids.
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Figure 9. Lagrange multiplier, domain integral, and exact flux on the interface. Results were obtained
using a structured triangular mesh.

-40

-20

 0

 20

 40

 60

 0  0.2  0.4  0.6  0.8  1

N
o
rm

a
l 
F

lu
x

x

Lagrange Multiplier

Domain Integral

Analytical

Figure 10. Lagrange multiplier, domain integral, and exact flux on the interface. Results were obtained
without stabilization, using a structured triangular mesh.

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 69:1–21
Prepared using nmeauth.cls



BUBBLE STABILIZED METHOD FOR CONSTRAINTS ON EMBEDDED INTERFACES 15

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  0.2  0.4  0.6  0.8  1

N
o

rm
a

l 
F

lu
x

x

Lagrange Multiplier

Domain Integral

Analytical

d
h

(a) d = h/2

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  0.2  0.4  0.6  0.8  1

N
o

rm
a

l 
F

lu
x

x

Lagrange Multiplier

Domain Integral

Analytical

(b) d = h/4
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(c) d = h/8
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(d) d = h/16
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(e) d = h/32
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(f) d = 0

Figure 11. Sensitivity of the Lagrange multiplier and domain-integral flux approximation to the
location of the interface relative to the mesh. The distance d, between the interface Γ∗ and the
closest node, varies from (a) d = h/2 (see Figure 6) down to (f) d = 0 (the degenerate case). The inset

in (a) conveys the measures d and h for a typical pair of adjacent elements.
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16 H. M. MOURAD, J. DOLBOW AND I. HARARI

is clear that the domain-integral method yields accurate estimates of the interfacial flux, with
all values of d. Conversely, the Lagrange multiplier exhibits a strong sensitivity to the location
of the interface. This can be attributed to the following. First, we note that when d = h/2,
the interface is partitioned into equal segments, each having length ℓe :=

∫

Γe
∗

dΓ = h/2 (see

Figure 6). As d is decreased, the ratio ℓe/h approaches zero in some segments (while, in
neighboring segments, the same ratio approaches unity). This gives rise to overconstraint,
manifested as oscillations in λh, which become more pronounced as d becomes smaller, e.g.
see Figure 11(c). While these oscillations appear quite large, it should be emphasized that the
multiplier obtained with bubble stabilization was nonetheless much more accurate than that
obtained without stabilization. Compare these to the results, for example, shown in Figure 10.

It is important to note that, with d ≪ h, be becomes negligibly small on Γe
∗
, and the fine-scale

solution vanishes, as implied by Equation (12). In other words, due to its reliance on element
bubbles, which vanish on element edges, the proposed stabilized method does not provide an
effective remedy for the issue discussed in the previous paragraph. The possibility of making
use of edge bubbles to address this issue will be examined in a forthcoming paper. Here, we use
a simple heuristic scheme, based on the idea that the Dirichlet constraint need not be enforced
on “short” segments, i.e. where ℓe/h is smaller than a tolerance value. Such a tolerance is
often used with embedded interface methods to determine which elements have been “cut”
by the interface. The results shown in Figures 11(d) and 11(e) suggest that this strategy can
eliminate overconstraint in some cases. Finally, it is observed that, in the degenerate case itself
(Figure 11(f)), λh does not exhibit any large spurious oscillations.

4.2. Results obtained on unstructured grids

Consider the unstructured mesh and interface shown on the left in Figure 12. We perform a
convergence study by systematically refining this mesh by, effectively, tiling it over the domain
as shown on the right of the Figure. What this approach insures, for example, is that if
the characteristic mesh size is decreased by some factor, then so too is the dimension of the
Lagrange multiplier space increased. This does not necessarily occur if the sequence of meshes
are constructed without care.

The convergence results for this case are shown in Figure 13. Comparing these results to
those obtained on a sequence of structured grids, we note a slight decrease in the rates of
convergence in λh and jh to O(h0.85) and O(h0.91), respectively, as well as a slight decrease in
accuracy. The accuracy of the bulk field improves slightly however, and its convergence rate
remains quadratic. We note that in each case, the tolerance discussed in the previous section
was not invoked. In other words, six multiplier degrees of freedom are associated with the mesh
shown on the left in Figure 12, one for each interfacial segment.

4.3. Curved interface

To further study the robustness of the proposed method, we consider the case of a curved
interface. Bulk partitions consisting of bilinear quadrilateral elements are used with this
model problem, and the accuracy and convergence characteristics are compared to those
obtained for the same problem using linear triangular elements. We consider a modified version
of (23) as model problem, imposing a Dirichlet boundary condition that is consistent with the
solution (24) on a curved interface, in lieu of (23b). Figure 14 shows the interface geometry—a
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Figure 12. First two unstructured bulk and interfacial meshes in convergence study.

Figure 13. Convergence study results for variational multiscale method on unstructured triangular
mesh.
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circular arc centered at (0.5, 1), with radius r = 2/3—and a typical mesh. A contour plot of
the bulk field is shown in Figure 15.

Results pertaining to the spatial convergence of the Lagrange multipliers in this problem are
shown in Figure 16. It can be seen from this figure that, in the case of quadrilateral elements,
convergence is attained even with the conventional mixed method, and that stabilization does
not affect the accuracy or rate of convergence of the results. In the case of triangular elements
however, stabilization is clearly needed to attain convergence. It should be noted that in this
problem, due to the mismatch between the (circular) interface geometry and the (Cartesian)
mesh structure, a reduction in the bulk mesh size, h, does not necessarily cause a comparable
reduction in the interfacial mesh size. Consequently, although convergence is achieved, bulk
mesh refinement is not necessarily accompanied by a monotonic decrease in the error, as is
evident from Figure 16. Regardless, the stabilized results were found to be well behaved for
this problem and did not exhibit any spurious oscillations in the multiplier field.

Finally, we did examine the use of piecewise-linear Lagrange multipliers for this problem in
conjunction with bilinear quadrilateral elements. In this case, the rate of convergence in the
Lagrange multipliers remained at O(h0.3) even with the proposed stabilized method. Combined
with the difficulties associated with constructing continuous multiplier fields for embedded
interfaces in multiple dimensions (where Γh

∗
is composed of polygonal surfaces), these findings

make it difficult to justify pursuing them in the future.

5. SUMMARY AND CONCLUDING REMARKS

In this work, we have examined the use of bubble functions to stabilize a finite element method
for imposing Dirichlet constraints on embedded interfaces. We examined a simple model
problem that is representative of a much wider class of formulations employing embedded
interfaces, including those designed for cohesive crack growth and sharp phase transitions. The
challenge is to develop a method that is stable and robust, regardless of the orientation of the
interface with respect to the underlying bulk mesh. Previous strategies have approached this
problem by redesigning the Lagrange multiplier space or using Nitsche’s method. We showed
that with a particular choice of basis for the bulk and multiplier fields, bubble-stabilization
gives rise to a form that bears strong analogy with Nitsche. The advantage of this approach
is that the stabilization parameter follows directly from the choice of bubble enrichment, and
the most convenient choice of multiplier can be used. Through several numerical examples,
we showed the marked improvement in accuracy in bulk and interfacial fields that follow as
a result. We also examined the accuracy of a recently developed domain-integral method. In
all cases considered, this technique was shown to provide the most accurate means to evaluate
the interfacial flux.

While our findings are promising, we have taken a relatively naive approach in selecting
the form of bubble enrichment. Our studies indicate that it may be more advantageous to
consider bubble functions that are specifically tailored to the orientation of the interface with
respect to the element/mesh. Future work along these lines will consider bubble functions that
do not necessarily vanish along element edges. Such edge bubbles might also prove useful for
stabilizing penalty methods widely used in the computational mechanics community for more
classical, fitted finite element methods.
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Figure 14. Structured mesh consisting of four-node quadrilateral elements and interfacial mesh. Here
the interface Γ∗ is a circular arc centered at (0.5, 1), with radius r = 2/3.
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Figure 15. Contour plot of finite-element solution uh = ū + u′ for the case with a circular interface.
These results were obtained on the uniform mesh of quadrilateral elements shown in Figure 14.
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Figure 16. Convergence study results for triangular and quadrilateral grids with circular interface. All
results shown pertain to the Lagrange multiplier field.
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