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Split awards, procurement, and innovation

James J. Anton*
and

Dennis A. Yao**

In many procurement settings, it is possible for a buyer to split a production award between
suppliers. In this article, we develop a model of split-award procurement auctions in which
the split choice is endogenous. We characterize the set of equilibrium bids and allocations
for optimizing agents in an environment in which suppliers are fully informed about each
other’s costs. Split-award equilibria simultaneously exhibit strong collusive features and
cost-efficiency properties. Despite the former property of the equilibria, upstream investment
considerations may lead a buyer to prefer a split-award auction format to a winner-take-all
auction format.

1. Introduction

B Auctions are used to award contracts for a variety of product and service requirements
in the public (e.g., defense systems and municipal services) and private sectors (e.g., input
supply and franchising). These auctions can result in a sole-source award, in which a single
producer provides all of the required production, or in a split award, in which production
is divided between two or more firms. Split-award auctions have been employed by buyers
to procure a wide range of complex technologies, including missiles by the U.S. government
and computer chips by IBM. With the notable exceptions of Wilson (1979) and Bernheim
and Whinston (1986), research on auctions has focused on winner-take-all (or unit)
auctions.!

Our major concern in this article is the price performance of split-award procurements.?
Can a buyer expect to pay a price that closely reflects the underlying costs of the suppliers,
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** The Wharton School, University of Pennsylvania.

We wish to thank Ken Hendricks, Preston McAfee, Paul Milgrom, Bob Rosenthal, Andrea Shepard, Ralph
Winter, a referee, and workshop participants at the AEA meetings, Bell Communications Research, EEA meetings,
the Federal Trade Commission, GTE Laboratories, the Hoover Institution, the Rand Conference on Issues in the
Economics of Defense Procurement, SUNY Stony Brook, U.C. Davis, and the University of Pennsylvania for
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! Winner-take-all auctions explicitly exclude the possibility of a divided production award, whereas split-
award auctions allow for divided production awards as well as sole-source awards.

2 In the last section of the article, we consider the indirect benefits of maintaining dual-source production
(e.g., enhancing the prospect of increased future competition). Our model suggests that bidders will be able to
capture any value the buyer may attribute to these indirect benefits.
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TABLE 1 A Split-Award Bidding Equilibrium
Costs Bid Prices
Award A B A B
50/50 Split 4 4 6 6
Sole Source to 4 10 0 12 —
Sole Source to B 0 10 — 12

or will strategic bidding allow suppliers to earn supranormal profits?* To address this issue,
we develop a formal model of split-award auctions and characterize the equilibrium bidding
behavior.

The most striking feature of split-award auctions is the existence of bidding equilibria
that involve the efficient or cost-minimizing split of the total production award. These
equilibria have the properties that the price to the buyer is maximized and that the individual’s
and joint suppliers’ profits are maximized relative to all other equilibria. Thus, not only do
split-award auctions fail to promote competition, they effectively present bidders with an
invitation for implicit price collusion.*

In Table 1 we provide a simple example of a split-award equilibrium in which two
bidders, A and B, support a “collusive” outcome. As indicated, the buyer can make one of
three possible awards. Each supplier submits a sealed bid with price offers for its share of
the split award and for a sole-source award. In the equilibrium, the buyer pays 12, each
supplier earns a profit of 2, and the 50/50 split is selected by the buyer. Neither supplier
has an incentive to reduce its sole-source price to win the entire production award, and the
buyer’s price is well above the supply cost. While simple in structure, this example captures
a number of features that are general properties of split-award auctions.

The ability to support collusive prices does not arise from any limitations on the range
of splits (divisions of the total award). To see this, add to the example the possibility of two
additional splits of 25/75 and 75/25. The 50/50 outcome with a price of 12 can still be
supported as long as both suppliers offer a “high” bid price (e.g., 12) for their 25% share.
This example illustrates that a single bidder can effectively veto any non-sole-source split
by submitting a relatively high price for its share of the split, thereby rendering the split
unattractive to the buyer. Later, we will demonstrate that the sole-source prices provide
competitive pressure on the bidding and establish a ceiling on equilibrium split-award prices.

In the next section, we present a bidding model of split-award auctions. The model
structure corresponds to one method employed by the government to procure defense tech-
nologies: the government specifies a set of “step-ladder” (split-award ) quantities; contractors
submit sealed bids that specify prices for those quantities; and the government then chooses
a split of the total requirement that minimizes the procurement price.’

3 The potential that split-award auctions raise for noncompetitive bidding has attracted some attention in
the defense management literature (e.g., Meeker (1984) and Boger and Liao (1988)). Bidding in such auctions is
seen as involving “reverse competition,” in which suppliers are content to obtain a small share of the total award
at a relatively high price and do not bid aggressively for larger shares.

“ Collusive equilibria have also been found by Wilson (1979) for a share auction in which, when translated
into our setting, the buyer must pay each supplier the same price per unit, where the price is set to equate supply
and demand. In our model, the buyer can act as an optimizing agent, selecting any combination of price bids that
will minimize the total procurement price. Allowing the buyer to act with this freedom eliminates the collusive
equilibria that can occur in Wilson’s complete information case.

5 Ralph Winter suggested to us that the model might also be used to explore pricing in exclusive dealing
arrangements. For example, in Mathewson and Winter (1987) two upstream wholesalers can offer a single retailer
prices for an exclusive dealing arrangement (sole-source bid) or a competitive arrangement (split-award bid).
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We develop a complete characterization of the bidding equilibria, along with the as-
sociated set of equilibrium split-award outcomes and payoffs, in Sections 3 and 4. The split-
award auction is set in a framework that involves a general reduced-form cost function and
two suppliers who are fully informed about each other’s costs. The share of production
awarded to each supplier is a choice variable of the buyer. The bidding results can be applied
in a straightforward way to explore a variety of structural models. We present an example
that features production economies and process innovation, a setting in which the choice
of the split has endogenous consequences that involve downstream strategic interaction
between the suppliers.

Section 5 presents a comparison between the split-award and the winner-take-all formats
for procurement auctions and highlights the impact of the choice of format on upstream
investment. An example is provided in which the split-award format induces prebid inno-
vation that would not occur under a winner-take-all format. We conclude in Section 6 with
a discussion of related policy issues.

2. The model

B A buyer must procure a given quantity of x units. There are two potential suppliers,
labelled D (developer) and S (second source); any division of x between the suppliers is
feasible. The buyer minimizes the procurement costs, and the suppliers maximize profits.

In a split-award auction, each supplier submits a sealed bid that specifies prices for
varying splits of the total award of x. To simplify the notation, all variables are expressed
in terms of the share of x that is awarded to one of the bidders. Letting « € [0, 1] denote
the share of x that supplier D produces, a bid is a function P;: [0,1] = #. Thus, for a pair
of bids, (Pp, Ps), a split of a implies that D produces ax units for a payment of Pp(a),
while S produces (1 — a)x units for Ps(a). Bids are not required to be smooth (e.g.,
continuous or differentiable).

The costs of the suppliers at an arbitrary o € [0, 1] are given by Cp(«a) and Cs(a).
These cost functions are interpreted as the expected present discounted value of all costs
incurred by a bidder, conditional on the split «. For instance, Cp and Cs may consist of
the expected direct production costs plus the investment costs associated with process in-
novation.®

The profits of each bidder are defined by

II;(a) = P(a) — Ci(a), a€[0, 1], i=D,S.

We assume that Cp(0) = 0 and Cs(1) = 0. Since neither supplier can expect to receive
a payment for zero production, we set Pp(0) = 0 and Pg(1) = 0. Furthermore, we restrict
our attention to bids for which P; > C; for each bidder. This restriction rules out equilibrium
payoffs that are supported by threats involving negative profits. Suppliers are assumed to
be fully informed about each other’s costs when they bid.’

The joint cost function of the suppliers is given by

B(a) = Cp(a) + Cs(a), a€[0, 1].

Given the cost functions, Cp and Cgs, the joint cost function as defined by B provides
a simple cost-efficiency criterion for comparing various splits. Clearly, whenever
B(a) < B(a), there exists a reallocation such that all parties would benefit from a switch
from the split « to the split a.

6 Cpand Cs can also be defined to incorporate the possibility of repeated auctions. See Anton and Yao (1987).

7 This assumption allows us to abstract from complications associated with uncertainty about relative costs.
The assumption does not appear to be essential to the qualitative results of the model; an example with asymmetric
cost information between the suppliers is provided in Section 4.
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Given a pair of bids, (Pp, Ps), the buyer determines the outcome of the split-award
auction as follows. The total payment by the buyer at an arbitrary split of « is given by

G(a) = Pp(a) + Py(a), a € [0, 1].

The buyer selects a split to minimize the procurement costs, so

a € argmin {G(a)} (1)
a<(0,1]

is the buyer’s optimal choice.® In (1), the buyer is making an ex post comparison of the
submitted bid prices, which does not require any information about the suppliers’ costs.

When there are ties and the award choice from (1) is not unique, the appropriate tie-
breaking rule is to select an « randomly from among those splits in the set argmin G(-)
with the smallest B(-) value. As discussed in Milgrom (1986), this procedure mimics the
outcome that occurs when bid prices are discrete instead of continuous because a lower-
cost bidder will avoid a tie by reducing his bid by a small amount.

If the awarded split is « = 0 or @ = 1, it is called a sole-source outcome. A split-award
outcome refers to a case in which « € (0, 1), in which both suppliers produce a positive
amount.

A Nash equilibrium is a pair of bids, (P}, P%), that are mutual best responses for the
suppliers. If a* satisfies (1) and the tie-breaking rule for these bids, then it is an equilibrium
outcome. The best-response property means that neither bidder can increase his profits
above their realized values of

by altering P} while taking his opponent’s bid as given. Note that a bidder can change the
prices at many splits simultaneously by altering a bid. For example, by raising his price at
o* and by lowering his price at some &, a bidder can try to induce the buyer to select a.
Finally, let

g* = G(a*) = Pp(a*) + Ps(a*)

denote the equilibrium procurement price.

A number of economic situations are consistent with the above model. These situations
are specified by describing the factors that determine Cp and Cs. We explore these possibilities
in later sections by considering the roles of production economies, process innovation after
o is awarded, and prebid R&D. While the determination of Cp and Cs may be quite com-
plicated, the equilibrium structure of a split-award auction is completely determined by B,
the joint production cost of the suppliers.

3. Properties of equilibrium bids

B This section provides a simple method for finding the set of Nash equilibrium bids and
associated outcomes. Equilibrium split-award outcomes are then examined in the following
section.

O Calculating equilibrium bids. The bid prices for « at zero and one, Ps(0) and Pp(1),
correspond to the sole-source outcomes in which one supplier produces all x units. Since
an opponent’s sole-source bid price places a ceiling on the prices for alternative splits that
a bidder can induce the buyer to accept, the sole-source prices are pivotal in determining
the equilibrium bids, profits, and the procurement price. A necessary condition for a par-

8 If a minimum does not exist, use the infimum.
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ticular split to be an equilibrium outcome is that the procurement price for this split equals
each of the sole-source prices.

Lemma 1 (Price equivalence). Suppose that (P}, P¥) is a Nash equilibrium, and let g* be
the associated total price to the buyer. Then, the equilibrium bids satisfy g* = PH(1)
= P5(0).

Proof. Suppose the bids do not. Then, one of the bid prices must be larger than g* as, by
definition, g* is the price to the buyer at his optimal choice. If P¥(0) > g*, then the
outcome of zero is not optimal for the buyer. Let ¢ = P%(0) — g*, and consider D’s bid,
defined by

PH(a) + €/2, o F o, a¥F0

P =
n{e) [Pf)(a)+e/3, a = a¥,

and Pp(0) = 0, where o* is an optimal choice for the buyer in the original equilibrium.
Given the other supplier’s bid, D’s bid guarantees that o* is the buyer’s unique choice and
also that D’s profits are higher than they are with PJ. Thus, P} is not a best response, and
we have a contradiction. The case for P5(1) > g* is analogous. Q.E.D.

In equilibrium, the buyer is always indifferent with respect to at least two outcomes—
and at least three if o* € (0, 1), a split-award outcome. The intuition is simple. If the price
equivalence property (Lemma 1) fails to hold, then one bidder’s sole-source price is strictly
greater than g*. The other bidder can then increase his profit by raising all of his bid prices
slightly (except, of course, at the sole-source price of the opponent) without disturbing the
original «* choice of the buyer.

Now, consider the incentive of a supplier to alter his bid. Let (Pp, Ps) be an
arbitrary pair of bids, and let « be a candidate outcome. If a bidder, say D, can find
a price, p, for some other outcome, &, such that p + Psg(a) < Pp(a) + Ps(a) and
p — Cp(a) > Pp(a) — Cp(a), then the buyer faces a lower total price at &, and D
earns greater profits. The existence of such a p is equivalent to the fulfilling the equality
Ps(a) — Ps(a) > Cp(a) — Cp(a). Since IIg = Ps — Cs, we have

Os(a) + [Cp(a) + Cs(a)] > Os(a) + [Cp(a) + Cs(a)].

The same argument applies to bidder S.
Because joint production costs are B = Cp + Cgs, we see that if the deviation condition

IIj(a) + B(a) > (&) + B(a), j=S8,D (2)

holds, then supplier i can profitably induce the buyer to switch from « to &. Note that the
profit level of an opponent and the joint cost of production together determine this incentive.

We use (2) and Lemma [ to construct a procedure for calculating the equilibrium bids.
Formally, a pair of bids, (P}, P%), is a Nash equilibrium if and only if, for all « € [0, 1]
andi=D, S,

g* < Pp(a) + Pi(a)  with<if  B(a)< B(a*), (3)
O,(a) + B(a) = I} + B(a*), (4)

and
g* = P5(1) = P5(0), (5)

where g* and II} refer to the values at o*.
The conditions are clearly necessary. Condition (3) states that o* is an optimal choice
for the buyer and that the tie-breaking rule is satisfied, while Condition (5) follows directly
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from Lemma 1. Finally, Condition (4) ensures that neither bidder can profitably deviate
from P} (-) by using one of the simple alternative bids discussed above (Condition (2)).

Now consider the sufficiency of Conditions (3), (4), and (5). Clearly, (3) ensures that
a* is the award outcome at the bids (P}, P%). It remains to show that each bidder is at a
best response. From (5), we see that neither bidder can alter his bid and unilaterally force
the buyer to pay more than g*. Since each bidder must take g* as given (due to the sole-
source price offered by his opponent), the only relevant alternative bids are those which
induce the buyer to switch to an outcome of o # o*. Any such bid for / must entail a price
that, given P} (-), results in a total price at « for the buyer that is below g*. From above,
we know that (4) ensures that such a price offer is not profitable.’

Bernheim and Whinston (1986) developed a model of menu auctions under complete
information in which bidders submit offers for each item (or action) in a set of choices that
is available to an auctioneer. While the economic focus is different, the formal structure of
the equilibria in split-award auctions is similar in a number of ways to the structure of
equilibria in these menu auctions. For example, by relaxing the bounds on bid prices in a
menu auction, one can obtain a version of our Lemma 1 as a limiting case.

O Efficiency and sole-source outcomes. If a sole-source award is the equilibrium outcome,
then one supplier produces all x units, and the joint costs are B(0) = Cs(0) for o = 0 and
B(1) = Cp(1) for « = 1. The sole-source supplier will be the supplier with the lower costs.
Suppose, without loss of generality, that this is bidder D.

Proposition 1. Suppose B(1) < B(0). Then, a* = 1 is an equilibrium outcome, and D is
the sole-source supplier. Equilibrium bids satisfy

g* = B(0) = P5(0) = Ph(1),
I3 = B(0)— B(1), and n%=o.

Furthermore, if B(1) < B(«a) for all « € [0, 1), then o* = 1 is the unique equilibrium
outcome.

Proof. See the Appendix.

The intuition for the sole-source equilibrium is straightforward. The low-cost supplier
wins the total award and earns a profit equal to his cost advantage over the high-cost supplier,
who earns zero profits; the buyer pays a total price equal to the production cost of the high-
cost supplier. The buyer faces the same price at the outcomes of zero and one, and the tie-
breaking rule selects a = 1, since B(1) < B(0). This is appropriate, since bidder D can
always offer a sole-source price that is arbitrarily close to B(0).!°

Proposition 1 indicates that a sole-source outcome is the unique equilibrium outcome
whenever sole-source production is efficient. The proposition also shows, however, that a
sole-source equilibrium exists regardless of the structure of the joint production costs at
split-award outcomes (0 < a < 1). This reflects an important feature of the bids in a split-

® While our analysis deals with the case of two suppliers, many of the equilibrium properties described above
also hold when there are M suppliers. For example, a version of Lemma 1 applies to boundary points in the
M — 1 dimensional simplex such that, in equilibrium, no bidder can unilaterally raise the price paid by the buyer.
Split-award outcomes will still hinge on the behavior of joint costs in the interior and on the boundary of the
simplex.

10 When no cost advantage exists, so B(0) = B(1), a coin toss decides between o* € {0, 1}, and the buyer
procures x at the production cost.
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award auction, namely, that each bidder can unilaterally “veto” any interior split by sub-
mitting a “high” (relative to the sole-source price) price for that split.!'!

Except for the basic insights regarding efficiency, the sole-source equilibrium is of limited
interest whenever split production is efficient. We will demonstrate below that split-award
equilibria always Pareto dominate sole-source equilibria from the viewpoint of the bidders.

4. Impilicit price collusion and split-award outcomes

B In this section we characterize the structure of implicit price collusion in split-award
auctions. We begin with the question of when a split award is an equilibrium outcome.

O Equilibrium outcomes and payoffs. A split-award outcome is efficient relative to a sole-
source outcome when B(a) < B(1). From Proposition 1, we can see that this is necessary
for « to be an equilibrium outcome. It is also sufficient.

Proposition 2. Let N = {a| B(a) < B(1), 0 < a < 1} be the set of outcomes for which
joint production costs are less than sole-source production costs. Then, N is the set of split-
award equilibrium outcomes.

Proof. See the Appendix.

Thus, whenever B(a) < B(1), a can be supported as an equilibrium outcome. For a
specific o* € N, the following corollary describes the structure of the equilibrium bids,
profits, and the price to the buyer.

Corollary 1. Let o* € N. If (P}, P%) is a Nash equilibrium with o* as the equilibrium
outcome, then the following conditions hold.
(i) g%*, the total price to the buyer at o*, satisfies

g* €[B(0), B(0) + B(1) = B(a*)]; (6)
(ii) II%, the profit of S at o*, and II5(0) satisfy
5 € [g* — B(0), B(1) — B(a*)] (7)
and
IIs(0) = g* — B(0); (8)
and (iii) I}, the profit of D at o*, and IIp(1) satisfy
I} = g* — II5 — B(a*) (9)
Hp(1) = g* — B(1). (10)

Furthermore, there is an equilibrium for any g*, 115, and II% that satisfy Conditions
(6)-(10).

Proof. See the Appendix.

11 A5 the proof of Proposition 1 shows, the supporting prices, P} (a), for 0 < a < 1 need only satisfy a lower-
bound restriction and can be arbitrarily smooth. Given these *“high” bid prices from his opponent, a bidder cannot
profitably induce a split award. In fact, given the equilibrium bid of his opponent, the only way a bidder can induce
the buyer to select an « for which B(a) < B(1) is to offer a negative-profit price at a. Thus, the supporting bid
prices in a sole-source equilibrium have the feature that if a bidder is to realize a profit from the “high” bid prices
at o # 1, his opponent must deviate using a dominated strategy bid. Because of this feature, a sole-source equilibrium
is not proper (Myerson, 1978); the proof involves taking a finite approximation of the set of splits, [0, 1], and the
set of bid prices, R*.
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Corollary 1 establishes the range of payoffs that is associated with a given split-award
equilibrium outcome. There are two degrees of freedom here, the price to the buyer, g*,
which by Condition (9) determines the joint profits, I1} + IS, and the division of the joint
profits between the bidders.

Refer to Figure 1. The equilibrium outcomes are a sole-source award to supplier D
and the split-award outcomes in the neighborhood around the split «,,. There are no equi-
libria in which the procurement price is below B(0), no matter how small the joint costs
are at the split-award outcomes. The reason is that, without risking a negative profit, S never
offers a sole-source price below B(0) and D can always increase his profits by raising his
bid prices until the total price for the buyer is at least B(0) for every outcome. The sole-
source price of S cannot police such bids until the price reaches B(0). This observation
underlines the importance of the sole-source threat in containing prices—the sole-source
price is the only limit to the price that a single bidder can impose on the buyer.

In tandem, the sole-source threats of D and S limit the total equilibrium price to
B(0) + B(1) — B(a*). To get an intuitive feel for this price ceiling, refer to Figure 1, and
consider the equilibrium outcome «,,. The price ceiling g,, is the price at which the avail-
able joint profits, II} + II%, just equal the deviation profits of g, — B(0) for S plus
gn» — B(1) for D. To prevent a sole-source deviation by either bidder, it is necessary to
divide the joint profits at the split, so that each bidder gets profits at least as great as the
profits from a sole-source deviation. By the definition of g,,, there are just enough joint
profits to avoid a deviation by either bidder.

Now, consider a buyer price that is z greater than g,,. Lemma 1 requires that the
equilibrium split price and the sole-source bid prices be equal. Thus, to prevent a sole-
source deviation to a price just below g, + z, each bidder must receive a profit of at least
z plus the profit received at g,,. To prevent a sole-source deviation, then, joint profits must

FIGURE 1:
THE HIGHEST-PROFIT EQUILIBRIUM OUTCOME

COSTTOA A
BUYER
= ———— e — e —————— —— | Upper
A Bound
g,,— B(0) nH+ MG
B(0)
B(1)
- 8e,)
1
0 o 1

SPLIT
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be at least 2z higher than the joint profits at g,,, but this is impossible because the new
split price has only increased by z. Thus, there is no split-award equilibrium at a price

above g,,. N '
The above relationships are summarized in Proposition 3. (A formal proof of this

proposition is available from the authors.)

Proposition 3. Let o* € N. Then, over the range of equilibrium payoffs at o*, the highest
procurement price occurs at the bids that generate the highest individual profits for each
bidder and the highest joint profits.

Thus, over the equilibrium payoffs at o*, there is a unique Pareto-optimal (with respect
to the profits earned by each bidder) pair of payoffs. Furthermore, it is easy to identify these
payoffs because they involve charging the buyer the highest possible equilibrium prices.!2

O Highest-price equilibrium. Now, consider the question of how the payoffs vary over N,
the set of equilibrium split-award outcomes. Let «,, = argmin B(a) denote the outcome

for which total production costs are minimized. Clearly, from (6), the price
&n=B(0) + B(1) — B(an)

is the highest equilibrium price that the buyer can pay. This price also leads to the highest
values of individual and joint profits for the suppliers.

Proposition 4. The maxima for the price, joint profits, and individual profits over all equi-
librium outcomes occur at the split-award outcome «,,, for which the joint costs of the
suppliers are minimized.

Proof. A formal proof is available from the authors.

Together, Propositions 3 and 4 reveal that a strong form of implicit price collusion can
be supported in equilibrium. Over the set of equilibria, a,, is the unique Pareto-optimal
outcome from the viewpoint of the bidders. «,, is also the worst equilibrium outcome for
the buyer.!3 :

In this equilibrium, the price to the buyer is g,, = B(0) + B(1) — B(a,,). Note that
B(0) is the price the buyer would pay in a winner-take-all auction (the sole-source cost of
the less-efficient supplier). Relative to D, the efficient sole-source supplier, there is an effi-
ciency gain of B(1) — B(a,,) that arises when the outcome is the split ,,. None of these
gains accrue to the buyer, however, as the equilibrium price is B(0) plus the efficiency gain.

At this price, both suppliers earn positive profits. To support this price, the equilibrium
bids involve sole-source prices of g* and split prices of

P:(am) = B(l) - CD(am)
and
Pp(am) = B(0) — Cs( ).

These prices equate the profits at «,, with the profits at the sole-source awards for each
supplier, so neither opponent has an incentive to capture a sole-source award by reducing

12 The set of highest-price equilibria is huge, but the bids differ only off the equilibrium path.

13 While the a,, outcome is compelling, it is only one equilibrium outcome in a potentially large set. Various
normal-form refinements (for discrete games) can be used to reduce the number of equilibria. For example, suppose
there are three splits, {0, a, 1}, where Cp(1) = Cs(0) = 1 and Cp(a) = Cs(a) = 0, and three prices {2, 1, 2). It
is straightforward to verify that there are four Nash equilibria (two sole-source and two split-award ), but only the
split-award equilibrium corresponding to that in Proposition 4 is perfect. In general, with a richer set of [0, 1] for
splits and [0, oo) for bid prices, there are fewer dominated strategies, and perfection eliminates only those equilibria
that have negative-profit supporting bids; properness is more fruitful. (See footnote 11.)
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his sole-source price below g,,. The split prices also reveal that each supplier earns an
equilibrium profit that equals the efficiency gain at «,, relative to the sole-source cost of the
other bidder. Larger efficiency gains thus relax the sole-source threats and allow the suppliers
to submit higher bid prices in equilibrium.

O Informational considerations. The assumption that suppliers are fully informed about
each other’s costs need not be taken literally. When suppliers are fully informed, extensive
bidding coordination is feasible. In the highest-price equilibrium, for example, each supplier
incorporates the cost information into his calculations in order to structure a bid that accounts
for his opponent’s incentives. The existence of collusive split-award equilibria, however,
does not depend on the suppliers’ having full information. Simple examples with asymmetric
cost information can be constructed in which common knowledge information about the
support (or distribution) of costs is sufficient for split-award bidding equilibria with prices
that exceed winner-take-all values to exist.'¢

The model is easily interpreted in terms of a buyer who views (Cp, Cs) as stochastic,
where the bidding is conditional on the (Cp, Cs) draws of the suppliers. In view of the
implicit price collusion that emerges in a split-award auction, the literature on auction
design suggests that the buyer will, in general, find it valuable to impose reserve prices or
to handicap bidders in order to increase the competitive pressure in the auction. A reserve
price in a split-award auction, for instance, effectively functions as an exogenous sole-source
price and will restrict price collusion for relatively high (Cp, Cs) draws. When the buyer
lacks a reasonable substitute good, however, establishing a commitment to a reserve price
may be difficult.

The minimum-price rule for selecting a split award thus represents the case of a buyer
with very limited commitment power. The feasibility of strategic instruments, such as a
reserve price, will depend on the buyer’s ability to commit to actions that sometimes conflict
with his own ex post interest. When bids are considered to be proprietary information and
when only the buyer observes the entire set of bids (as is the case in defense procurement)
or the buyer is unwilling to delegate source selection to a third party, the scope for establishing
such commitments is narrowed.

0O An example with split-award outcomes. This example illustrates that split-award out-
comes can emerge in the presence of scale economies.

Suppose that the suppliers can invest in a cost-reducing innovation after they are awarded
their production shares. In this case, Cp and Cs reflect the strategic interaction between D
and S that occurs after the bidding is completed.

Let « be an arbitrary split, and suppose each of i = D, S can invest I; dollars in a
deterministic cost-reducing innovation. The costs for D are given by

[1 = Ip — uIs]T(ax) + (AI3)/2,
where u € [0, 1]is an innovation spillover parameter and A is an investment cost parameter.
If no investment occurs, the costs are simply I'(ax). The costs for S are symmetric to those
for D.
The investment pair (I35, Is) = (I'(ax)/A, T((1 — a)x)/A) is the unique Nash
equilibrium for the process innovation subgame. Define Cp and Cs as the values of

14 Consider a two-bidder model in which procurement is limited to three awards {0, Y2, 1}, and each supplier
has a private cost parameter, 6;, drawn from a common knowledge uniform distribution on [0.9, 1]. If sole-source
costs are equal to # and the split cost equals 46/9 for each supplier (so, B(1/2) < B(1)), then it is easy to verify
that P(0) = P(1) = 1 and P(1/2) = % is a split-award equilibrium in which both suppliers make positive profits
and the buyer price exceeds the price that would occur in a winner-take-all auction.
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the costs for each bidder at 7} and Is. This yields C;(a) = A7 {[4 — uI]T; — (T'?)/2},
where I'p = I'(ax) and I's = TI'((1 — @)x). Then,

B(a) = A" {A(Ts+ Tp) — 2ul'sTp — (T + T'%)/2}.

Consider some special cases for I'(- ). With constant marginal costs, I'(x) = 7x, and
B is a quadratic function. When large spillovers occur (¢ > ¥2), B is convex, and the split
a,, = x/2 is the profit-maximizing outcome for the bidders. For small spillovers (¢ < %2),
B is concave, and sole-sourcing is the equilibrium outcome. When u = %2, B is flat.

IfT(-) = V_-, so scale (or learning ) economies exist, similar features for B arise, although
the verification is more tedious.!” The interesting feature of this case (when p is large) is
the interaction between investment and scale economies. With scale economies, x units can
be produced for a lower cost by one supplier than by dividing the award between two, other
things being equal. Investment incentives, however, differ across awards. Over the equilibrium
outcomes, «,, = x/2 emerges as the efficient outcome. Thus, split-award outcomes can
emerge in equilibrium even when scale economies characterize the production costs of both
suppliers.

5. Auction formats and investment incentives

B The format for a procurement competition is typically specified by the buyer. In view
of the above analysis, a buyer’s motivation for adopting a split-award (SA ) format is unclear.
Given the cost functions (Cp, Cs), there is no split-award equilibrium in which the buyer
pays less than in a winner-take-all (WTA) auction, and there are equilibria in which the
buyer pays more.

Because the SA format is dominated by the WTA format in a simple price comparison,
a key to understanding why both policies are employed in practice is to identify a dimension
along which the buyer benefits from a SA format. One such dimension is the incentive for
prebid investment in cost-reducing innovations that each procurement format creates.'®

We focus here on cost-reducing activities in a frequently encountered situation in which
there is an asymmetry in the initial cost positions. For example, when one supplier is re-
sponsible for the development of the technology to be produced, as is often the case in
defense procurement, or when there are differences in previous production experiences, the
lead supplier can be expected to have some cost advantage. In such a case, the follower
might, prior to the auction, expend resources to imitate the lead supplier’s manufacturing
techniques or design technology.

The effects of these actions can render split-award auctions superior to winner-take-all
auctions for the buyer. Under a SA format, the follower may anticipate a production award,
whereas under a WTA format, no award would be anticipated. Thus, the potential profits
in a SA auction can provide an incentive to invest in innovation. When this incentive
translates into large innovation expenditures and reductions in joint costs, the resulting
price in a SA auction can be less than the price in the corresponding WTA auction.

For instance, consider a slightly modified version of the single-split example in the
introduction. Let supplier D have costs for no production, split production, and sole-source
production of 0, 4, and 10, respectively, and let supplier .S have corresponding costs of 0,
4(1+0), and 10(1 + 6), 8 > 0. The parameter 8 indexes the cost disadvantage of supplier

!5 For large u, the investment effect dominates the scale effect on B, and split awards occur in equilibrium.
Further, a camel-hump shape for B (as in Figure 1) can emerge, and splits near « = 0 and « = 1 are eliminated
from the equilibrium set.

16 Many auctions are announced long before bids are to be submitted. For example, a period for technology
transfer (possibly including “learning buys™) is often needed before defense contract auctions can be run. During
this period, suppliers have an opportunity to improve their relative cost positions.



ANTON AND YAO / 549

S and can be decreased prior to bidding by investing in imitative R&D for an expenditure
given by T(0) = 10(8 — )2, where 8 is the initial cost disadvantage.

Letting § = .4, it is easy to calculate that the optimal investment is .4, which results in
6 = .2. Then, using the formulas given in Corollary 1, the buyer pays 13.2 in the highest-
price equilibrium, and both suppliers make positive profits. Under the WTA setting, no
imitative R&D will be undertaken because S anticipates that he will never win, and the
buyer’s price will equal 14, S’s sole-source cost. Thus, the effect on the equilibrium price
of the differential incentive to invest in innovation can lead a buyer to favor SA over WTA
auctions.

The above analysis of SA and WTA auctions is a comparison of two specific policies
that have been employed by buyers, and consequently, should not be taken as a claim that
either policy is optimal for the buyer. A number of potentially superior means of inducing
upstream innovation through the design of auctions have been suggested in the literature.!”
The applicability of such schemes depends on the extent of the buyer’s commitment powers.

6. Related policy issues

B In this section, we consider two extensions of the basic analysis. First, we examine how
the addition of a third bidder might improve price performance for the buyer, and second,
we expand our framework to include the potential nonprice benefits of dual-source pro-
curement.

O Additional bidders. In view of the result that implicit price collusion emerges in a split
award auction with two bidders, a natural question to ask is, What effect will the addition
of a third bidder have on prices? For the buyer, the potential benefit hinges on the additional
competitive pressure that this bidder creates with respect to dual-production outcomes.'?
Because a dual-production award will always exclude one of the suppliers, the rejected
bidder must earn zero profits. Any set of bids that allows the rejected bidder to lower his
bid, win a partial share of the production, and earn a profit cannot form a bidding equilibrium.
This necessary condition implies that the production costs of the least-efficient supplier will
limit the price charged by the next-to-the-most-efficient supplier and, consequently, limit
the total price to the buyer in any equilibrium involving a dual-source outcome.'’
Introducing an additional bidder thus provides at least a partial escape from the pricing
problems in split-award auctions. This benefit, however, must be weighed against the costs
of adding a third bidder. For example, in procurements involving frontier technologies (e.g.,
defense), the design and development firm is frequently the only natural production source.
Qualifying additional firms for production will require substantial expenses for technology
transfer and may involve high-priced “learning buys.”?° In such cases, the buyer will find
it necessary to subsidize a supplier who does not expect to get a production award; when
dual production is cost minimizing, the least-efficient firm in a three-bidder auction is such

'7 Imposing a reserve price or placing a handicap on specific bidders can be used to increase the competitive
pressure on bidders, and, in general, an exogenous ability to commit to these auction rules is valuable to the buyer.
Laffont and Tirole (1988) and Riordan and Sappington (1989) examined optimal policy for source selection and
investment in a winner-take-all setting in which the buyer can employ procurement mechanisms with these features.
Also, see Rob (1986 ) for a discussion of winner-take-all auctions and upstream R&D investment.

18 When production by only one firm is cost efficient, the equilibrium involves a sole-source outcome at the
standard WTA auction price. When production with all three firms active is cost minimizing, it is easy to show
that implicit collusion can be supported in an equilibrium with a three-way split and positive profits for all bidders.
When dual production (only two firms active) is cost efficient, a three-way split cannot be supported in equilibrium.

19 For example, consider a setting with three bidders in which dual production is cost efficient, and the two
least-efficient firms have identical cost functions. Then, only the most-efficient producer will earn positive profits.

20 Daly and Schuttinga (1982) reported a $23 million (in 1972 dollars) cost of initiating competition on the
TOW missile program. This cost was roughly half of the reported discounted savings from competition.
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a supplier. Thus, the attractiveness of the three-bidder strategy will depend on the trade-off
between the expected price reduction and the costs of readying an additional supplier.

O Preference for splits. From a policy perspective, our approach may appear too narrow:
by focusing solely on pricing, our model undervalues dual sourcing by excluding its indirect
benefits. Justifications for dual sourcing often involve nonprice benefits, such as an increase
in the nation’s defense mobilization capability or a long-run benefit based on maintaining
a potential for future (as yet unspecified ) design and production competition.

While the magnitude of these benefits is subject to debate, our model provides a clear
prediction regarding the effects of such future benefits on the equilibrium price in a split-
award auction. Future benefits translate directly into a preference for dual-source production.
To see the impact in our model, one need only adjust the minimum-price selection rule of
the buyer to account for this preference. (The buyer is now indifferent between some lower-
priced sole-source offer and a higher-priced split offer.)

Because the buyer is willing to pay a premium for a split award, sole-source threats are
not as effective in disciplining split prices. In the polar case in which the dual-source pref-
erences of the buyer are known by both bidders, the full value the buyer attaches to dual
sourcing is captured by the suppliers through higher split prices in equilibrium.

This effect reinforces our basic conclusion regarding price formation in split-award
auctions between two well-informed bidders: such auctions perform very poorly from the
viewpoint of the buyer. Implicit bidding coordination by the suppliers not only prevents
the buyer from sharing in the direct efficiency gains associated with dual-source production,
but also effectively offsets any downstream indirect benefits the buyer may attribute to dual
sourcing.

Appendix
B The proofs of Propositions 1 and 2 and of Corollary 1 follow.

Proof of Proposition 1. First, we solve for the values of P}(1)and P3(0) that must prevail if o* = 1 is an equilibrium
outcome. Next, we find bids (P}, P3$) that induce o* = 1 as the outcome and satisfy the best-response property.

To begin, recall that P5(0) = P3(1) by Lemma 1. Clearly, P3(0) = B(0), as B(0) = Cs(0) and as bids
must yield nonnegative profits. If we also show that P%(0) < B(0), then equality holds, and I1}, IIs, and g*
follow from their definitions.

To see that Pg(0) < B(0), recall that S cannot profitably deviate from P} in equilibrium. Thus, (4) holds,
and (1) + B(1) < II,(0) + B(0). Since I15(0) = 0 and (1) = Pp(1) — Cp(1) = PH(1) — B(1), the above
inequality reduces to P(1) < B(0). As P5(1) = P%(0), we are done.

Now, consider the bids (Ph, P%).From above, the sole-source prices P5(0) = Ph( 1) = Cs(0) establish
g* = Cs(0) as the price a bidder must beat in order to upset o* = 1. Given this, a pair of bids (Pp, Ps) forms a
Nash equilibrium with outcome o* = 1 if (3) and (4) hold. (4) holds for each bidder if

Op(a) + B(a) =I5+ B(1), a€[0,1] (A1)
Os(a) + B(a) = 1% + B(1), a€][0,1]. (A2)
Using the values for I} and II % from above and the definition of II,( - ), the above inequalities reduce to
Pp(a) = Cs(0) ~ Cs(a),  a €10, 1] (A3)
and
Ps(a) = Cp(1) = Cp(a),  a€[0,1]. (A4)

This places a lower bound on (Pp, Ps). The nonnegative profit restriction on bids is also a lower bound, as
is (3). Thus, take (P}, P%) to be two functions on [0, 1] that lie above these lower bounds, and assume that
P3(1)and Pj%(0) equal their stated values. Note that the stated values do not violate the lower bounds.

To show that a* = 1 is the unique equilibrium outcome, suppose some a < 1 is an equilibrium outcome.
By (2), bidder D can profitably induce the outcome 1 with a price p if IIs(a) + B(a) > Og(1) + B(1). Since
II5(1) = 0 and IIg() = 0, the above inequality is valid by hypothesis. Thus, @ < 1 cannot be an equilibrium
outcome. Q.E.D.
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Proof of Proposition 2. As noted above, the proof of Proposition 1 shows that if B(a) > B(1), then « is not an
equilibrium outcome. We now show that if B(a*) < B(1), where 0 < o* < 1, then o* is an equilibrium outcome.
As in the proof of Proposition 1, it is sufficient to exhibit bids (Pp, Ps) such that the outcome is o* and

Op(a) + B(a) = ) + B(a*), a#a* (AS)
Og(a) + B(a) = s + B(a*), a# a*, (A6)

where o* is a given element of N. The conditions of Corollary 1 are used to construct values for the bid prices
when « equals zero, o*, and one. Then, the two inequality conditions above are used to construct the supporting
bid prices.

First, pick values for the cost to the buyer and the profits of S at o*, say g* and II§, such that
g* €[B(0), B(0) + B(1) — B(a*)] and I1§ € [g* — B(0), B(1) — B(a*)].

For these values of g* and Il, construct I13, (1), and II5(0) according to Corollary 1. It is straight-
forward to verify that (A5) and (A6) hold at « = 0 and « = 1 with these constructed values. For an outcome
a & {0, a*, 1}, Conditions (A5) and (A6) reduce to

Pp(a) = I} + B(a*) — B(a) + Cp() (A7)

Ps(a) = I3 + B(a*) — B(a) + Cs(a), (A8)

a pair of lower bounds on bid prices. Thus, take (P}, P%) to be functions on [0, 1] such that the lower bounds
above, the nonnegative profit lower bounds, and the lower bounds in (3) are satisfied, and the bids take on the
constructed values at 0, a*, and 1. Q.E.D.

Proof of Corollary 1. The proof of Proposition 2 demonstrates that the conditions of Corollary 1 are sufficient
to construct bids that form a Nash equilibrium and support the outcome o*. To prove necessity, suppose that
o* € N and (Pp, P%) are the equilibrium bids. Let g* denote the cost to the buyer and I1§ the profit of S at o*.

Lemma 1 implies that IIp(1) = g* — B(1) and that II5(0) = g* — B(0). Thus, (8) and (10) hold. Since
I1%(0) = 0 by the nonnegativity of the bid profits, the lower bound on g* in (6) is established. (9) is an accounting
identity. Thus, the upper bound on g* in (6) and the upper and lower bounds on II in (7) remain to be estab-
lished.

Since P} and P% are equilibrium bids, neither D nor S can profitably induce a sole-source outcome, and (4)
becomes I5(1) + B(1) = II§ + B(a*) and I,(0) + B(0) = I} + B(a*). Since Hg(1) = Ip(0) = 0, these
reduce to B(1) — B(a*) = I1§ and B(0) — B(a*) = IT}.

Now, consider the upper bound on g*. Using (9), we get

g* =M + I} + B(a*)

< [B(1) — B(a*)] + [B(0) — B(a*)] + B(a*)
< B(0) + B(1) — B(a*),
as follows from the I and II% inequalities.

Consider bounding IIs. The II§ inequality immediately implies the upper bound. For the lower bound,
begin with (9) to get

5 = g* — I} — B(a*)
> g* — [B(0) - B(a*)] — B(a*)
= g* — B(0),

as follows from the II} inequality. Q.E.D.
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