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Abstract

Many regulated industries involve an oligopoly market structure. We examine optimal incentive
regulation for a duopoly model of spatial competition when firms have private cost information. Market
structure is endogenous as regulation determines market segments for firms and output distribution
across consumers in each firm’s market. By varying the assignment of consumers to firms, a relatively
more efficient firm can be rewarded with a larger market, thus reducing quantity incentive distortions. We
derive the optimal policy, assess the impact of asymmetric information relative to full information, and
examine extensions to allow for ex ante asymmetries in firm structure.
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1. Introduction

In many regulated markets we observe an imperfectly competitive or oligopolistic market
structure in which firms sell products differentiated along dimensions such as location or
quality. Often, these firms have local monopoly power over an identifiable ‘‘close’
segment of the market and competition is concentrated on consumers who are located in
“fringe’” segments of the market. Local monopoly power is identified with market

* The authors thank Greg Crawford, Tracy Lewis, Frank Sloan, Dennis Yao, the editor and two referees for
helpful comments and the Business Associates Fund at the Fuqua School of Business for financial support.
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segments for which the products of other firms are a poor substitute while competition
between firms takes place in fringe segments where no firm has a significant advantage.
Markets with these features can be found in several industries. To take a prominent
example, health care involves regulated markets where quality is an important source
of differentiation, leading to specialization and brand loyalty. Providers have an
advantage in their specialty and with their loyal or current patients, but compete at the
fringe of their specialty and for new patients. Strategic market assignment is a central
issue in the debate on national health care market reform in the U.S., with California’s
selective contracting program having been widely emulated and often cited as a model
for the country as a whole (Bamezai et al. 2003). The California program allows the
State Medicaid program as well as private insurers to negotiate price-quantity
schedules with hospitals and others providers. They still contract, however, with
relatively less efficient providers for beneficiaries who have no effective alternative.
Selective contracting has been credited with making the rate of medical care inflation
in California among the lowest in the U.S. (Zwanziger and Melnick 1988).! Markets
for telecommunications provide further examples, as for instance, with cable and
satellite television systems.”

These examples raise a number of questions for incentives and regulation. First, how
should policy be oriented with regard to the allocation or movement of consumers between
firms, and what are the benefits associated with allowing or inducing competition to attract
such consumers? Further, how should changes in market shares associated with the
movement of consumers at the ‘‘fringe’” be allowed to impact the other consumers who
remain with an expanding or contracting firm? Finally, expansions and contractions in
market share lead directly to questions about underlying cost structure (e.g., natural
monopoly) and efficiency when regulation involves multiple suppliers. As applied to
health care, these questions relate to managed care and selective contracting as policy
seeks to allocate consumers to various providers and determine the terms under which
patients are to be served.

In this paper, we examine the potential benefits under optimal incentive regulation from
the strategic assignment of consumers in a simple Hotelling model of horizontal
differentiation. The model involves a duopoly setting in which firms with market power
have private cost information. With regard to policy instruments, the regulator assigns
market segments, which are continuously variable in the spatial dimension, as well as
prices and quantities for individual consumers. At the level of the individual consumer, we

1 This has generally been confirmed in subsequent studies; see Bamezai et al. (2003) for references; see
also Lyon (1997) for analysis of a spatial model of health care quality and (Ma and McGuire 2002) for
an analysis of managed care and networks of providers.

2 The technology of a cable network may provide a significant cost advantage to a company where their
network is dense; satellite networks, however, may be at an advantage for remote or less accessible
locations. Of course, there may also be horizontal differentiation with respect to buyer preferences arising
from programming differences (e.g., DirecTV has an exclusive license to broadcast a package of
National Football League games). As discussed by Hazlett and Spitzer (1997), we also observe direct
entry into cable TV markets by other cable suppliers—an ‘‘overbuild’’—in locations such as San Diego,
CA and Dade County (Miami), FL where it is allowed by regulation.
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allow for variable demand so that consumption may vary across consumers.” We also
allow for a fairly general structure of production costs and assess the role of constant,
increasing and decreasing returns. Firms distribute output to consumers and costs rise with
distance from the firm’s location (equivalently, value falls as the horizontal quality match
deteriorates); thus, each firm necessarily has a cost advantage with nearby consumers
(local monopoly).

We focus on the structure of optimal incentive regulation regarding the trade-off
between assignment of market segments and the allocation of production (via prices)
across consumers in each firm’s market segment. As a result, regulation determines the
size of each firm’s market and the intensity with which each market is served. Note that the
allocation of production in a given market segment corresponds to a spatial extension of
the (Baron and Myerson 1982) framework for monopoly regulation.* With a spatial
dimension for consumers and more than one firm, the focus of regulatory policy shifts.
Now the regulator can provide an additional incentive by awarding part of a less efficient
firm’s market to a relatively more efficient rival, reducing the need to rely on price and
quantity distortions within each market segment. Consumers who are reassigned can then
benefit from being in the market of the more efficient firm while those who remain with
their current firm face a smaller incentive distortion in prices.

A brief summary of the optimal policy runs as follows. Because distribution is costly, it
is always optimal to award distinct market segments and, further, consumption varies with
consumer location. Optimal control methods then provide a price schedule that
implements the efficient distribution of output within each market segment. With regard
to incentives, market size and production are reduced as a firm becomes less efficient. The
other firm is awarded a larger market by reassigning consumers near the boundary between
market segments (the competitive fringe) and produces more in aggregate. The
reassignment of consumers also creates an externality for consumers who stay with
their current firm. These welfare effects are determined by scale economies; under
increasing returns, for instance, prior customers of an expanding firm will pay a lower
price and consume more.

The overall impact of the distortions created by asymmetric cost information on the
optimal policy for regulated market structure can be assessed via a comparison with the
full information (first best) case. For the benchmark case of constant returns in production,
we find that asymmetric information makes market size and production more sensitive to
efficiency differences between the firms. That is, the relatively less efficient firm receives a
smaller market share and produces less as compared to full information outcomes. The
situation is more subtle when scale economies are present, however, and we identify

3 By contrast, when individual consumers have inelastic demands (e.g., for a unit of the good), aggregate
demand over the spatial market is a constant. Variations in market assignment then shift these consumers
from one firm to the other, directly determining the required change in production levels. In this case,
market segments and production allocations cease to be distinct policy instruments.

4 Absent multiple firms and potential competition, the optimal incentive policy for a single firm serving a
fixed market results in a second best allocation in which price is distorted upwards and quantity
downwards for individual consumers, reflecting the cost of providing incentives under incomplete
information. For a recent survey and references to this literature, see Armstrong and Sappington (2002).
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several competing effects that can modify the impact of asymmetric information. Finally,
in practice, we can often identify ex ante asymmetries among competing firms (e.g.,
““wireless’’ in telecommunications). Therefore, we extend the model in several directions
to examine ex ante asymmetries in distribution costs, the degree of asymmetric cost
information, and the location of firms. An intriguing finding when firms have asymmetric
locations is that a ‘‘divided’” market structure emerges endogenously under the optimal
policy. When this occurs, the more efficient firm supplies not only nearby customers but
also very distant ones while the less efficient firm retains only those customers who are
close to its location.

Several papers in the literature on incentives and regulation address issues that arise in
imperfectly competitive and oligopolistic industries, including that of endogenous market
structure, our main concern in this paper.” In particular, McGuire and Riordan (1995) and
Wolinsky (1997) also utilize a spatial framework to examine regulation and market
structure. McGuire and Riordan (1995) employ the (Laffont and Tirole 1986) framework,
in which firms have private cost information and can devote effort to cost reduction, and
analyze the optimal regulatory choice of a sole source (monopoly) versus dual source
(duopoly, via equal division) market structure. Wolinsky (1997) examines a spatial model
with private cost information and also introduces a vertical dimension to quality; the
quality level, however, is chosen by the firms and can only be influenced indirectly by
regulation. Taking this influence into account, Wolinsky (1997) examines the efficacy of
different regulatory regimes, including the assignment of market shares. In both of these
papers, individual consumers have inelastic (unit) demands for the good. Thus, variations
in market shares reallocate buyers from one firm to another but there are no changes in
consumption levels at the individual or aggregate level. Our analysis is then
complementary as we focus on the independent trade-off between market assignment
and production allocation when individual consumer demand is elastic.®

We present the model in section 2. In section 3 we show how market segments arise and
derive a measure of regulatory benefits based on an optimal distribution of each firm’s
aggregate output to consumers over assigned markets. Existence and uniqueness of the
optimal policy is examined in section 4. We discuss the structure of the optimal policy and
comparative statics in section 5, which has a detailed example for the case of constant

5 Also related are the problems of regulated firms who face entry or competition from a (strategic)
unregulated firm, as in Biglaiser and Ma (1995), and regulated firms who participate in outside markets,
as in Anton and Gertler (1988). In some settings, regulatory constraints, such as price caps, are imposed
on an incumbent across markets, with the firm operating as a monopolist in some and facing competition
in others; see Armstrong and Vickers (1993), Anton et al. (2002), and Valletti et al. (2002). Finally,
endogenous market structure issues also arise with the provision of incentives to multiple potential
suppliers, as in Riordan (1996), or internal units, as in Kerschbamer and Tournas (2003).

6 As the discussion above indicates, the models also have other important differences with respect to the
assumed underlying economic structure. Several other studies examine market assignment or production
quantity dimensions under incomplete information. With respect to quantity, Anton and Yao (1992)
develop a model of split award auctions in procurement. Auriol and Laffont (1992) study optimal
auctions with variable quantity for several information settings. Dana and Spier (1994) examine
mechanism design and market structure with the discrete award choices of a monopoly, duopoly or
government producer. See also the analysis of price rationing in Gilbert and Klemperer (2000).
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returns in production costs and constant elasticity of demand. Readers with a stronger
interest in the policy side of the model may wish to skim sections 3 and 4 or proceed
directly to section 5 after section 2. The effect of asymmetric cost information on the
policy is analyzed in section 6. In section 7 we extend the analysis to examine how optimal
policy is adjusted in the presence of various ex ante asymmetries across firms. Section 8
concludes.

2. The Model

Consider regulating a market with two profit-maximizing firms and the familiar Hotelling
structure of horizontal differentiation. Let the set of consumers be distributed uniformly
over the unit interval, [0, 1], and suppose that firm 0 is located at t = 0 and firm 1 at r = 1;
consumers are identical up to their location, denoted by #€ [0, 1]. We begin with the basic
structure and objectives for the consumers, firms and regulator and then specify the
information structure and regulatory framework.

2.1. Demand and Cost Structure
The inverse demand function of an individual consumer, P(g), is smooth and strictly
decreasing. Individual consumers surplus is then given by

S(q) =V(q) — qP(q), (1)

where V(g) = [¢/ P(x) dx. Assume that P(0) = o0, P(c0) = 0, and lim,_, ,, V(g) < o0; the
purpose of these assumptions is to rule out corner solutions at the level of individual
demand. They also imply that consumers surplus aggregated over all consumers is well
defined.

Production and distribution are both costly activities for the firms. Suppose each
consumer ¢€ [0, 1] is to consume a quantity ¢;(¢) from firm i =0, 1. Then, aggregate
quantity is Q; = fol q,(t) dt and production costs are specified as

Ci= eic(Qi)» (2)

where 0; is a firm-specific cost parameter and C(Q;) is smooth and strictly increasing.
Distribution costs for firm i, D;, depend on how output varies across consumers. Suppose
dtq is the cost of distributing ¢ units of output to a consumer who is a distance ¢ from the
location of the firm; 6 is thus the (constant) marginal cost of distributing a unit of output. If
firm / distributes according to ¢;(¢), aggregate distribution costs are

D=5 / 6~ il g (r)dr, 3)

where |t — i| simply indexes the distance from each firm to a consumer at ¢.
As an example, suppose each consumer is served by only one firm and that all
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consumers receive an identical quantity of g. Let g,(¢) = g for 1€ [0, B] and ¢,(¢) = O for
te (B, 1] where Be (0, 1) denotes the ‘‘boundary’’ between the firms. Then, firm O has a
““market’’ of size B, with aggregate production of Q, = gB. From (2), production costs are
Co = 6,C(gB). From (3), Dy = & [Btgdt = (8/2)3B* and distribution costs are convex in
the size of the ‘‘market’” for firm O (for firm 1, we replace B with 1 — B).

An individual consumer who buys ¢; generates a revenue of ¢;P(q, + ¢;) for firm i.
Aggregating over distribution schedules of ¢;(¢) for i = 0, 1, profits for firm i are defined as

m, = / a(OP(ao(t) + (1)) di — D, — C; — T, (4)
0

The first term is aggregate revenue for i from all potential consumers, while C; and D; are
from (2) and (3). T; allows for a lump-sum tax imposed by the government (transfer, if
T; < 0). We assume that the regulatory objective is the sum of aggregate consumers
surplus and tax revenue:

W:/IS(q(t))dt—l—To+T1, (5)
0

where ¢ = gy + q;.

2.2. Information Structure and Regulatory Framework

The regulatory instruments are the quantity schedules for each firm, ¢,(7), and lump-sum
taxes, T. Prices for each consumer ¢ are set via demand at P(g,(¢) + ¢,(¢)), and may vary
with consumer locations. We focus on the adverse selection problem that arises when each
firm has private cost information and assume that the value of 0;, the firm-specific
parameter in production costs, is private information of firm i. The value of 0; is drawn
from a distribution F, independent across i, with a positive and differentiable density f and
a support of [0, 0].% We make the standard assumption that the inverse hazard, F(0) /f(6), is
increasing in 0. In the model, the only elements of private information are the values of ;.

As is standard (the Revelation Principle applies to this problem), we study optimal
policy via a direct mechanism in which the government solicits a cost report from each
firm. A policy, Q, is defined as a mapping from cost reports, (r, 1), to policy instruments:
Q = {q,(t,r;,1;),T;(r;,1;)}, for i=0,1 and j# i, where t€[0,1],(r;,1;) €6, 0]> and

2R

7 For simplicity, we specify the objective with implicit weights of zero on firm surplus (profits) and one on
lump sum transfers. Thus, relative to a weighted average of consumer and firm surplus, the regulator only
values rent extraction from the firms, and tax distortions are absent with regard to lump sum payments.
As discussed in Laffont and Tirole (1993, 156), one can incorporate these extensions in (5) above and
proceed with the same techniques employed in section 3 below. Finally, since consumer surplus is linear
in expenditure (quasi-linear preferences), the lump sum terms may also be used to achieve redistribution
across consumers.

8 The independence assumption is important with respect to the ability of the regulator to extract all
surplus (Cremer and McLean 1988).
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quantities are non-negative. To preserve symmetry, it is convenient to adopt the
convention that the first cost-report argument in ¢; and 7; is the report from firm / while the
second is that from j. Regulation unfolds in the standard order: first, the government
specifies a policy, Q; next, the firms simultaneously submit cost reports, (r;, j) finally,
quantity schedules, lump-sum taxes and prices (via demand) are determined by evaluating
the policy at the submitted cost reports.

We examine Bayesian implementation. By definition, then, a policy is incentive
compatible if it is a Bayesian equilibrium for each firm to report the privately observed
value of the cost parameter. Thus, a strategy of reporting r; = 6, is optimal for i when j is
expected to report 7; = 6. If firm i observes 0, but reports 7; while firm j observes 6, but
reports r;, then the mechamsm selects quantity schedules and taxes for each firm based on
r; and rj. Deﬁne revenues (net of taxes), production costs and distribution costs under Q at
these reports, respectively, by

Ri(ri’rj) :/O %(a Tis /)P(qz(t’rnr;)+q/(tvr17rz))dt_Ti(riarj)v (6)
1
C(0, 7)) = 0,C(Qu(ror,)),  where Q,(ri.7;) = / gi(t,r ) di, )

iy j _8/ ‘t_l|% t7rl7rj) (8)

If j follows the strategy of reporting r; = 0;, the expected profit to i from reporting r; when
0, is observed is

0
(10, = /9 {R(r,,0)) — D(11,0,) — C,(6,,7,,6,)} dF(6)). (9)

For Q to be incentive compatible, reporting r; = 6, must be optimal for i. With
I1,(0)=m;(0]0), the condition for incentive compatibility (IC) is then (suppressing
subscripts on r; and 0,)

I1,(0) > m;(r|0) V(r,0) and fori=0,]1. (10)

Each firm is willing to participate in the regulated market if it earns a non-negative
expected profit when the observed 0 value is reported. Thus, individual rationality (IR)
requires

I1,(8) >0VO andfori=0,1. (11)

The regulatory objective in (5) is now given by [substituting with R; from (6)]



122 JAMES J. ANTON AND PAUL J. GERTLER
1
wi(@) = £{ [ Via(t.00,00) - Ro00.00) = Ri01.00) ). (12)

where E denotes the expectation with respect to F over 0 and 0, and ¢ = ¢, + ¢,. In (12),
aggregate consumers surplus now accounts for policy choice under asymmetric
information by incorporating the cost-report arguments and taking expectations over
cost uncertainty. The problem of the regulator, (RP), is then given by maxg W(Q) subject
to (10) and (11), the incentive compatibility and individual rationality conditions,
respectively.

By a standard argument, (10) and (11) imply that the regulatory objective can be
expressed as

W(Q) = E{ [ W0+ an0) — sau(t) -1 - e, 0] dr}
— E{p(8)C(Qy) + p(6,)C(0;)} — T1y(6) — I1,(0), (13)

where p(0)=0+F(0)/f(0) and the dependence of ¢; and Q; on 0, and 0, has been
suppressed. Defining ¢;(0) = fg C(0:(0,0;)) dF(0;), the problem of the regulator (RP) can
then be reduced to -

{mflic}W(Q) subject to ¢;(0) non-increasing and TT;(0) > 0, for i =0, 1.° (14)
qilt

The expression for W(Q) has three components. The first term is the valuation of quantity
net of distribution costs at the level of an individual consumer, aggregated over all
consumers. The second term involves production costs for each firm and these depend on
cost types and aggregate production levels. Notice that the weight on the cost function is
now p(0;), which exceeds 0; by the inverse hazard rate, reflecting the cost of providing

each firm with an incentive to reveal private cost information. Finally, I1,;(0) reflects the
individual rationality constraint; clearly, any solution to (14) has Hi(é) =0 and these
terms will vanish in (13).

The structure of the two remaining components in (13) suggests a sequential approach
for solving (RP). Focusing on the first terms in W(Q), we see that the cost parameters,
(69, 0;), and the aggregate production levels, (Q, Q;), do not directly impact consumer
valuations net of distribution costs. Initially, we can take them as given and solve for
quantity schedules, ¢;(¢), that maximize this component, incorporating the constraint of
0, = fol q;(t) dt. Thus, the first step is to solve the problem of ‘‘distributing’’ given
aggregate quantities optimally across consumers. This is analyzed below in section 3.

The second step, analyzed in section 4, incorporates the valuation of the aggregate
quantities from the distribution problem and solves for the optimal values of the

9 The derivation involves standard arguments for multi-agent adverse-selection mechanisms; see Maskin
and Riley (1989) and Mookherjee and Reichelstein (1992). At any solution to (14), (10) and (11) will be
satisfied; please see the working paper version of the paper for further discussion.



REGULATION, LOCAL MONOPOLIES AND SPATIAL COMPETITION 123

aggregates. Private cost information enters directly into the second component of W (Q) in
(13) via the terms p(0;)C(Q;). Solving (RP) via two steps helps to identify the economic
structure of the problem. The distribution problem leads to a price schedule over
consumers, showing how given aggregates are optimally distributed and also how a
market for each firm is established; this provides a measure of marginal benefit. The
second step incorporates this measure and shows how marginal benefits and costs
determine aggregate quantity and market size for each firm.

3. The Distribution Problem

Consider the optimal distribution of given aggregates, O, and Q;. This is given by

{f?fg(}/o V{qo(2) + 4i(1)) — Stqo(r) — 8(1 — 1)q, (1)) dt, (15)

subject to Q; = fol q;(t) dr, for i = 0, 1. Recalling that the cost of distribution rises with the
distance from the production location, we expect that any overlap in the quantity schedules
will be inefficient: the added distribution cost generated by an overlap can be avoided by
“‘reassigning’’ consumers so that only one firm supplies any individual consumer. Further,
such a reassignment can be done without altering the aggregates, Q, and Q,, or individual
consumption levels, ¢y (¢) + ¢, (¢), from their original values. Formally, we have

Lemma 1: In any solution to (15), there is a boundary B € [0, 1] dividing the firms, such
that qo(t) > 0 only if t < B and q,(t) > 0 only if t > B.

An optimal distribution thus establishes two ‘‘markets’’. Firm O serves consumers in
[0, B] while firm 1 serves those in (B, 1]. Now, fix a boundary and consider the distribution
problem for each market. For a market of size b > 0 and aggregate output of Q > 0, this
problem is given by

max /0 "V (g() — Stg(8)] i subject to © = /0 "t (16)

For firm 0, this corresponds to b = B and Q = Q. For fiim 1,setb=1—B and O = 0,
and relabel consumers in the market of firm 1, 7€ (B, 1], with # € [0, 1 — B). This problem
is most usefully solved via optimal control, as the resulting multipliers identify the
structure of prices for the optimal quantity schedule.

For a quantity schedule ¢(z), let p(¢) denote the price to a consumer at location #.
Recalling that P(g) is the inverse demand of an individual consumer, the corresponding
demand function is v(p) = P~ ![p] and, therefore, v(p(f)) = q(t) relates the price and
quantity schedules. Rewriting the aggregate quantity constraint in the form
0 = [Jv(p(1)) dt, we have
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Lemma 2: Suppose that Q < fo v(0r) dt. 0 There exists a unique price p = w(Q,b) such
that Q = fo (w+ 8r)dt. Let the price schedule be p(t) = p+ 6t, for t€[0,b]. Then
q(t) =v(p(z)) for t€[0,B] solves the distribution problem (16).

The price schedule, p(¢), implements the distribution of Q over 7€ [0, b] in an intuitive
fashion. The demand from each consumer ¢ at the price p(¢) is then the optimal quantity of
q(t) = v(p(r)). The price schedule is linear and, as we move away from the production
location, prices rise at the rate of 9, reflecting that o is the (constant) marginal cost of
distribution.

The intercept, 1(Q, b), positions the price schedule so that aggregate demand over the
market of size [0, b] is equal to aggregate production. The properties of p(Q, b) are easily
computed (subscripts denote partial derivatives). As (Q increases, we have
Ho = 8[v(n+ 8b) — v(w)] ~1 <0 so that the price schedule shifts down in order to
stimulate demand for the larger production level. As b increases, we have
W, = —v(p+ Sb)uQ > 0. The price schedule shifts up as market size increases since Q
must be spread over a larger market and, consequently, higher prices are needed to induce
each individual to buy less.

In this pricing scheme, consumers at different locations are charged different prices.
The efficiency rationale, of course, is that it is more costly to serve consumers as distance
from the firm increases. Thus, price must rise in order to reduce quantity for these higher
marginal cost consumers. If regulatory policy is so oriented, nondistorting lump-sum
transfers can then be employed to smooth consumer surplus across individuals. Finally,
note that the above pricing scheme does not constitute price discrimination in the
traditional sense since the variation of price with location coincides with the marginal cost
of distribution (Tirole 1988).

The pricing scheme in Lemma 2 may not be feasible in some settings. Markets for Cable
TV services provide an example as franchise agreements may limit or prohibit differential
pricing (Hazlett and Spitzer 1997). The analysis can be modified to address the case of a
uniform (common) price. Each consumer purchases ¢ = Q/b at p = P(q) and, clearly, we
have u(Q,b) < p < u(Q,b) + 6b. Thus, distant consumers are undercharged and nearby
consumers are overcharged relative to the efficient distribution. In this case, the optimal
policy necessarily has a second-best dimension. This full information distortion associated
with a uniform price is eliminated with the optimal price schedule for the distribution
problem.

The value function for (16), the distribution problem, effectively summarizes the above
results for later use. Formally, the value of distributing Q optimally over a market of size b is

b
U0, b)= /O V(o (1(Q, b) + 86)) — Siv(n(Q, b) + 31)] . (17)

10 IfQ > fo v(8¢) dt, then ¢(t) = v(d7) solves (16). In this case, a fraction of Q is left undistributed because
the value of additional output to any consumer falls below the additional distribution cost. Since output
is always costly to produce, values of Q in this range are never optimal.
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We have U, = |, revealing that the value of an extra unit of aggregate production is equal
to the price at the production location. Further, U, = V(q(b)) — q(b)P(¢(b)), so that the
value of an increase in market size is given by consumers surplus at the location b, the
market boundary. It is routine to verify that U(Q, b) is strictly concave in (Q, b).

Finally, let us organize these results for the next step in solving (RP). For given
aggregate production levels (Qy,Q;), an optimal distribution to consumers in [0, 1]
necessarily involves a boundary, B, with firm 0 serving the market [0, B] and firm 1 serving
(B, 1). Taking B as given, we have U(Q,, B) as the value of the optimal distribution of Q,
over [0,B] and U(Q,, 1 — B) as the value for Q, over (B, 1]. Thus, the value of the optimal
distribution over all consumers in [0, 1] depends on Q, and Q,, the aggregate production
levels, and on B, the boundary dividing the two markets.

4. Production Aggregates and Market Size

We now solve for the production aggregates and market size under an optimal policy. First,
we incorporate the distribution results into (13) and (14). Given a boundary B and
production levels of Q, and Q, the value of the optimal distribution over [0, 1] is
U(Qy,B) + U(Q,,1 — B). The objective in (13) is then

W(Q) = E{U(Qy,B) + U(Qy,1 = B) — p(6y)C(Qy) — p(8,)C(Q1)}; (18)

the problem of (RP) from (14) now reduces to solving for Q,, Q; and B as functions of 6,
and 0, so as to maximize (18), subject to ¢;(0) non-increasing in 6 for i =0,1. We
establish existence and uniqueness of an optimal policy first and then proceed with the
main issue of analyzing the economic structure and properties of the solution.

To analyze existence, consider pointwise maximization of the objective. Thus, let
w(Qy, 01, B; 0y, 0,) denote the integrand in (18) under the E expectation. Maximizing w at
each (0, 0,) yields production aggregates that satisfy the incentive constraint. Thus, we
have

Proposition 1: For each pair of cost parameters (0,,0,), there exist production
aggregates and a boundary, (Qy,0Q,,B), that maximize w(Q,,Q;,B;0,,0,). The
maximizing choices for production satisfy Q,(0;,0;) > 0;(6,,0;) for 0; <9, and,
consequently, ¢;(0;) is non-increasing in 0;. Thus, (RP) has a solution and an optimal
policy exists.

Uniqueness of the optimal policy depends on the relative strength of three forces: the
slope of demand, the cost diseconomies in market size due to distribution, and the potential
extent of increasing returns in production. Recalling the distribution problem, the first two
forces are summarized by how the price schedule in each market shifts in response to a
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change in aggregate production. The third, of course, depends on concavity or convexity in
production costs. As a sufficient condition for uniqueness, suppose that

/!

) < Plc@) (19)
where i1 = p(Q, b). In this condition, the right-hand side is the slope of the marginal cost of
production, scaled by p(0) to account for the incentive cost of private information. The left-
hand side is related to the effect of O changes on the demand schedule for a market size of b.
As Q varies, the price schedule across consumers in the market shifts downward, with Ko
measuring the size of the shift. Since we know p, < —8/v(p), condition (19) implies that
market demand crosses the marginal cost curve one time from above. We then have

Proposition 2: Suppose (19) holds for all Q, b and 0. Then the optimal policy is unique.

Although the analysis of (19) is involved, the economic intuition is relatively simple.
For any given market size, there is only one value for aggregate production where demand
and marginal cost cross each other. Incorporating this, there is then only one value for the
market boundary that balances costs and benefits across the two markets.'! Uniqueness is
guaranteed if there are no increasing returns in production (C” > 0) as (19) necessarily
holds in this case. Condition (19) allows for increasing returns (C” < 0) as long as they are
not too large relative to demand. As aggregate demand becomes steeper, (19) is more
likely to hold (e.g., greater diseconomies in distribution, as with a rise in 93).

5. The Structure of the Optimal Policy

We now examine the economic structure of production levels and market size in the optimal
policy. To simplify the exposition, suppose that (19) holds and the solution is unique. The
optimal policy is then fully characterized by the Kuhn—Tucker conditions for pointwise
maximization of W(Q). We focus on the case of interior solutions for (Q,, Q;, B)."* Taking
the relevant partials of w, the integrand in (18), and simplifying, we find

Qo : 1(Qo, B) = p(0,)C'(Qy), (20)
0, : 1(Qy,1—B)=p(0,)C(Qy), (21)
B : 1(Qp,B) + 6B = n(Q,, 1 — B) + 8(1 — B). (22)

11 The analysis of uniqueness is complicated by the fact that w need not be concave in (Q,, Q;,B) since w
is the sum over two markets of the net value of distribution over production cost in each market.

12 It is straightforward to apply the Kuhn—Tucker conditions and analyze corner solutions (this is examined
when we consider ex-ante asymmetries). If the range of variation in the firm-specific cost parameter is

sufficiently large, then the difference between p(8) and p(0) can justify a ‘‘monopoly’” market of [0, 1]
for the lower cost firm while the higher cost firm is shut down.
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The first-order conditions for quantities follow directly from U, = . For the boundary,
recall from section 4 that U}, is consumers surplus at the boundary of the market. Then (22)
follows by expressing U,, for each market in terms of prices. In general, the system must be
solved simultaneously for the optimal (Q,, O, B) policy.

Two economic forces operate in the determination of optimal production levels and
market size. First, for quantities, we have marginal cost pricing adjusted for the incentive
cost of private information. For a consumer at the production location of the firm (r = 0 or
t = 1), distribution costs are zero and the price for this consumer then equals the
underlying marginal cost of production plus the incentive cost generated by private
information. Second, for market size, we have the equalization of individual consumers
surplus at the boundary. Because consumers surplus is a function of price, this condition
reduces to equal prices at the boundary. For firm 0, the price schedule rises linearly at the
rate & from the intercept of u(Qy,B), and at the optimal boundary it intersects the
corresponding price schedule of firm 1.

The following example illustrates the economic intuition for how cost structure and
demand elasticity interact to determine the optimal policy.

Example: Constant Returns and Demand Elasticity

Assuming constant returns, C(Q) = Q, the first-order conditions simplify as follows.
Letting p; = p(6;), we see from (20) and (21) that p(Qy, B) = p,y and pu(Q,,1 — B) = p;.
Thus, price at each firm’s location is determined by the marginal cost (incentive adjusted)
of serving an adjacent customer and does not depend on aggregate quantity or the
boundary. With prices determined, we can solve the boundary condition (22) directly for

Recall that B is set to equalize prices for the consumer at B. Intuitively, since we know
price at each location from costs and we know that the price schedule rises at rate 9, the
boundary is determined explicitly in terms of marginal cost. Finally, we can determine
aggregate quantities for each market from B and p; via the p function, which does depend
on consumer demand.

To examine the role of demand elasticity, suppose that P(g) = ¢~ ® where B > 0. Thus,
demand elasticity is constant at 1/f; demand is elastic when B < 1 and inelastic when
B > 1."? Since prices and the boundary are determined directly by costs under constant
returns, we readily solve (20) and (21) to find optimal quantities for i = 0, 1 of

/8 +p - L
o [(Beymm) )

13 Consumer surplus is well defined (finite) with elastic demand but it diverges (to infinity) when demand is
inelastic. Thus, suppose that demand is zero above some reservation price; then consumer surplus is
finite and the optimal choices are always interior for a sufficiently high reservation price.
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Figure 1. Price schedules and market segments.

where y=(1 — B)/B. Demand is elastic when y > 0 and as y rises we find that Q,
increases. Thus, more elastic demand implies a larger aggregate quantity for each firm.
Since B does not vary with v, quantity increases for all consumers. When y < 0 and
demand is inelastic, we find that Q; declines as v falls and demand becomes more inelastic.
Asy— —1 (i.e., p — o) and demand becomes completely inelastic (vertical at ¢ = 1),
we see that each aggregate quantity converges to the firm’s market size (B and 1 — B), with
each consumer receiving a quantity of 1 unit.

The incentive structure of the optimal policy can be understood by considering the
effect of variations in the relative production efficiency of the firms (via 0). Figure 1
illustrates how the optimal market structure responds to these variations for several cases.
As a benchmark, in the simple case of equal cost draws, p(6,) = p(6,), the optimal policy
has equal market sizes (B = 1/2) and symmetric price schedules for the two markets.

Now suppose that firm 0 has a higher cost draw, so that p(6,) > p(6,). If market size
were to remain fixed at B = 1/2, then we see from (20) that price falls below marginal cost
in market O and, therefore, a reduction in Q, would be warranted. In turn, this would imply
an upward shift in the price schedule for market O and, from (22), we see that firm 1 could
more efficiently supply consumers at the boundary between the firms.

The optimal adjustment of market size to the increase in p(6,) thus entails B < 1/2 and
the relatively more efficient firm 1 is awarded part of the firm O market. Further, Q) is
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reduced while Q, is increased. As regards prices, the price schedule for market O shifts up.
As illustrated in figure 1, however, the shift in market 1 depends on the extent of scale
economies in production. These comparative statics are summarized in

Proposition 3: In the optimal policy, (i) the boundary B(8,,90,) is decreasing in 0, and
increasing in 9,; (ii) each production aggregate Q;(0;,0;) is decreasing in 0; and
increasing in 9;; (iii) the price schedule for firm i shifts up as 0, increases, and it shifts up
as 0; increases if C" > 0 (down if C" < 0).

Figure 1 illustrates these effects for the cost shift from 6, = 6, to 6, > 6,. When
C” > 0, the market 1 price schedule shifts up. Intuitively, since Q, is larger we must have
higher prices in market 1 as marginal cost rises with output under decreasing returns. Thus,
the expansion in market 1 entails higher prices and lower quantities for consumers in the
original market served by firm 1. The shifted consumers are served more efficiently by
firm 1 than by firm O, but the expansion does have a negative impact on the original
consumers of firm 1. In contrast, with C” < 0 the market 1 price schedule shifts down. The
intuition is similar as, with Q, up, increasing returns means lower marginal cost and prices
can fall. Thus, as the firm 1 market expands, the original consumers benefit from lower
prices and higher quantities.'*

To summarize the incentive structure of the optimal policy, we see that as a firm has
higher costs it is assigned a smaller market and produces less. The other firm gains in
market size, produces more output, and the welfare effects for consumers in the original
market depend directly on the nature of scale economies in production.

6. The Effect of Asymmetric Information

We now consider how asymmetric information influences the optimal policy relative to the
case of full information (the first best allocation). Thus, we consider how (Q,, Q;, B) are
set when the cost parameters are (6, 0,;) and compare this to the policy at (p(8,), p(6,)).
This isolates the incentive distortions that arise as a consequence of the adverse selection
problem associated with asymmetric cost information.

To build intuition, start with the simple benchmark case of a common cost draw,
0, =0,. As we know, B =1/2 and this is the same under full information (FI) and
asymmetric information (Al). In this case, the effect of Al is concentrated on a downward
distortion of quantities. Since p(0;) > 6, for each firm, (20) and (21) imply that, with B
unchanged, Q; must fall for each firm relative to the FI case. This brings demand into
balance with marginal cost, which includes the added incentive cost under Al. Thus, the

14 When the market size for a firm expands, prices always cover the added distribution costs and it is the
presence of increasing or decreasing returns in production that generates the implicit subsidy across
consumers. See the discussion of endogenous market structure in Chapter 6 of Laffont and Tirole (2000)
where changes in markets served by a regulated firm lead to subsidies across segments (e.g., universal
service obligations in telecommunications and postal markets).
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Figure 2. Effect of asymmetric information (Al) under constant returns.

incentive distortions due to Al for this case take the form of quantity reductions while the
boundary is unchanged.

Now consider different cost draws and take 6, > 0, so that firm O is relatively less
efficient. From Proposition 3, both information cases have the optimal boundary below 1/2
and Q, exceeding Q,. We can identify three different effects of Al on policy choices; we
start with the setting of constant returns in production (C” = 0) as these effects are easiest
to distinguish in this case. Let B4 and B/ denote the optimal boundary, respectively,
under AI and FI and, for convenience, adopt the normalization of C’' = 1.1

Consider whether Bff <BA/. We know that price in each market is balanced with
marginal cost. Under constant returns, however, marginal cost does not vary with quantity.
As a result, price in each market equals the relevant cost parameter and, from (24), we see
that the optimal boundary is fully determined by the relative cost efficiency of the two
firms:

1

B =_-—_—(0,-90,), BY= E—Z%[p(eo) I CE

Under the hazard condition, Al increases the cost differential to p(8,) — p(6,) from
0, — 0,. Thus, B < B! and Al distorts the boundary towards 0, expanding market 1 and
reducing market 0.

Figure 2 graphs the situation for market 0. First, marginal cost shifts from 6 up to p,.
Next, when the boundary is reduced from B! to B4, there is an inward shift of market 0
demand to p(Qy, BY), as a smaller market has lower demand. We then see from figure 2
that Q is distorted downwards as a result of Al. In market 1, we have a similar cost shift
from 0, to p,; the demand shift, however, is outward since BAT < B means that market 1

15 Thatis, BA = B(0,,0,) and BF' = B(p~'(0y), p~'(0,)). Also, 04’ and Qf' and defined in a similar
way.
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Figure 3. Effects of asymmetric information (Al) on markets 0 and 1 under increasing returns.

is larger than under FI. The net effect on O, is ambiguous since the cost shift pushes O,
down while the demand shift pushes O, up.

Relative to full information, asymmetric information thus has three effects on the
optimal policy choices. As illustrated with the constant returns setting, these are (i) an
upward shift in marginal cost curves in each market, (ii) demand shifts in each market, in
opposite directions, due to boundary adjustment, and (iii) price adjustments in each market
as determined by scale economies in production. Constant returns provides a simple
illustration of these effects because the cost shifts (i) directly determine the demand shifts
(i) and no price adjustment due to scale economies (iii) is necessary. In general, however,
(ii) and (iii) are interdependent.

We illustrate the three effects in figure 3 for both markets when 6, > 0, and, for the
purposes of the graph, we suppose that BA’ < Bf! and that C" < 0 (increasing returns).
With 6, > 6, the boundary is below 1/2 and market 1 has the larger production aggregate.
Hence, market O is graphed on the left on market 1 on the right. Effect (i), the marginal cost
shifts reflecting the increase from 0; to p(;), is depicted by the upward shift in each
market. Holding the boundary fixed at B/, quantity would fall in each market as we move
up the respective market demand curves (A to B and D to E in figure 3).

When the boundary is adjusted to B4/, demand shifts in for market 0 and out for market
1. Effects (ii) and (iii) are depicted by the movement along the Al marginal cost curve for
each market (B to C and E to F). The size of the demand shift, (ii), and the extent of returns
to scale, (iii), determine the magnitude of quantity and price adjustment. While Q, must
fall, O, may rise or fall due to offsetting effects from (ii) and (iii); the graph depicts the
case of arise in Q.

The response of the optimal boundary B to Al is pivotal. Analytically, the comparison of
FI to Al (6; to p(0;)) has a discrete nature. To isolate the economic forces that drive the
three effects created by Al, we can examine how the optimal boundary changes for cost-
type parameters along a linear interpolation between the Al and FI type pairs.'® This leads

16 One could also interpret the interpolation as in Chen and Rosenthal (1996) where there is an ex-ante
likelihood that the principal observes the agent’s private information prior to designing the mechanism.
See also the proof technique (homotopic transformation) in Severinov (2003).
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directly to a sufficient condition for when AI and incentive distortions lead to larger
market size adjustments relative to FI. We have

Proposition 4: Suppose (w.lo.g.) that 0, > 0, and, hence, that B and B are both
below 1/2. Then BA < B holds at (6,,0,) if

FO) ] b F(0y) o | Mo -
f(eocl{ug—hlca/}%(eo) CO{ug—hocz; | =

for all  (hg,hy) such that 0, <h; <p(0,), i=0,1, and (hy—0y)(F(0y)/
F(0)) " = (hy —0,)(F(0,)/£(0,))"'; in (23) variables are indexed by i =0,1 and
(implicitly) evaluated at the optimal policy for (hy,h,). When the inequality in (23) is
reversed, we have BA' > BF. Also, if BA < B! then Q) < OF, and if BA > BF! then
in‘xl < QI;]

Note that aggregate production must fall whenever a firm’s market size is reduced.
Thus, under Al at least one of the firms must produce less. Essentially, Proposition 4
formalizes the intuition behind figures 2 and 3. Under constant returns, (23) always holds
as it collapses to the hazard property.

Consider how the optimal boundary change under Al is determined. First, fix 6, > 0,
for the discussion. The first two terms in (23) reflect effect (i). The hazard rate term, which
increases with 0, favors a decreasing boundary because there is a relatively larger cost shift
in market 0. Scale economies determine the influence of the C’ term. Under increasing
returns, C” < 0, we see that C} < Cj since 0, > 0, implies Q; > Q,. Increasing returns
thus favors a decreasing boundary as the larger production level in market 1 reinforces the
hazard rate term in the cost shift. Decreasing returns, however, will offset the hazard rate
term as Q; > O, now implies a higher marginal cost for firm 1.

The bracketed term in (23) reflects effects (ii) and (iii). Under (19), this term is positive
and it is above or below 1 as C” is negative or positive. Consider the demand component.
Because B < 1/2, we know from (22) that there is a positive price differential between
markets, p” — p' > 0. As is easily verified, this implies pg, < p, so that market 0, the
smaller market, has a steeper demand curve. When C” < 0, the bracketed term increases
with p, so that the demand component favors increasing the boundary. Intuitively, the
bracketed term measures the price response in each market due to the cost shift,
accounting for an optimal response in quantity to the cost shift. When market 1 has a larger
response, as occurs under increasing returns, the price differential (p, — p,) narrows and
an increase in B is needed to bring consumers surplus into balance for a consumer at the
boundary of the markets. Under decreasing returns, the differential widens and a decrease
in B is favored. A similar intuition applies to the cost parameter term in the denominator of
the bracketed term. With &, > h,, the price differential widens (narrows) under increasing
(decreasing) returns and B is pushed down (up).

The optimal boundary response to Al thus involves the interaction of several economic
factors. While each factor has a systematic influence on B that derives from the structure of
the larger versus the smaller market, it is the net influence of these factors that determines
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whether market size rises or falls as an incentive distortion associated with AIL'” The case
of constant returns provides a useful benchmark where, because the interaction of effects
(i—iii) is simplified and the shift in the hazard term directly implies a widening of the price
differential, we can conclude that both the market of the higher cost firm and aggregate
quantity must be reduced. In general, condition (23) provides the guidelines for assessing
the impact of the Al cost and demand effects on the boundary and, consequently, for
setting optimal policy.

7. Ex-ante Asymmetric Firms

In a number of settings, there are known ex-ante differences between firms. For example,
the firms may employ different production technologies, as with traditional Cable TV and
newer direct broadcast satellite (DBS) based suppliers. In this section, we relax the
assumption of ex-ante symmetry in three directions and explore briefly how policy is
impacted by asymmetries in distribution costs (8), the degree of asymmetric information
(F), and the location of firms in the unit-interval (/). To keep the focus on these
asymmetries, we work with the simple case of constant marginal costs and set C' = 1.

First, consider distribution costs and suppose 0, is firm specific. Under the literal
interpretation as a transportation cost, this allows one firm to have an efficiency advantage
at distribution. Alternatively, viewed as horizontal differentiation, this allows for greater
heterogeneity in consumer valuations across the two firms. For the analysis, note that 9,
impacts the value function for the distribution problem, and we now have
U(Qy,B,8y) +U(Q,,1 —B,§,) as the value across all consumers. From the first-order
conditions, the optimal boundary is now

3, n p(9;) — p(0y) _

B(9,0,) T 50+ 0, 8o + 8,

Optimal quantities are set to balance demand over each market, with u(Q,, B, 8y) = p(6,)
and u(Q,,1 — B, d,;) = p(0,). To sort out the effects, suppose 5, > &, so that firm 0 is less
efficient at distribution. Then, B falls and the market shifts in favor of firm 1. With equal
cost draws, the market boundary is below 1/2 when &, > §;; also, a relative distribution
advantage for firm 1 (small J,) amplifies the boundary reduction when firm 1 also has a
production cost advantage (p(6,) < p(6,)). Further, Q, falls while Q, rises, reflecting the
shift in market sizes. The price implementation involves extending the firm 1 price
schedule towards the lower boundary (no shift); the price intercept for firm O rises and the
schedule becomes steeper, as prices must rise to reduce demand for the smaller output and
market size. The limiting case of this asymmetry, where the transportation cost for one of
the firms vanishes, is explored further below in conjunction with asymmetric firm
locations.

17 It is straightforward to construct numerical examples, using (23) as a guide for setting parameter values,
that demonstrate this point.
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Next, consider the degree of information asymmetry across firms. The familiar notion of
hazard-rate dominance, f,(0) /F,(0) < f,(0)/F,(0),¥0 € [0, 0], provides a useful compar-
ison framework (Laffont and Tirole 1993, 77). In our analysis, the net change is that we
must employ p,;(0) = 0 + F;(0)/f;(0) for the incentive cost of each firm. The effects on the
boundary and quantities then follow directly from our previous analysis of Al versus FI
effects: py(0) > p,(0) is analogous to p(6,) > p(0,) in the first-order conditions. Thus,
the increased incentive cost with firm O pushes towards a smaller market with lower
quantity for firm 0 and an expansion for firm 1 (at any pair of cost draws).

As an example, suppose firm 1 employs an older generation technology that has a
known cost of © while firm 0 employs a newer technology with F,, on [0, é}. For instance, in
health care markets, firm 1 might be a hospital that employs an existing treatment or
diagnosis technology while firm 0 employs a new technique with uncertain costs. Then, as
the incentive cost with firm 1 is nil, this favors a shift in market allocation to the less
efficient firm 1. Even though it is common knowledge that the new technology is more
efficient, incentive costs make it optimal to maintain a market for firm 1. In fact, the
information asymmetry can even lead to the *‘shelving’’ of the superior new technology.'®
In determining the boundary, the older firm’s market is somewhat ‘‘protected’’ by the
asymmetry in incentive costs.

Finally, let us consider the location of the firms. Suppose that firm O has an interior
location at an [, € (0, 1); for simplicity, maintain firm 1 at the right endpoint. We expect
that firm O will typically serve nearby consumers on the left and to the right of /;. Now,
however, there is also the more subtle possibility that a ‘‘divided’” market structure will
emerge, with firm 1 serving customers who are sufficiently far from firm 0 on both sides.
Extending the analysis, we find an analog to Lemma 1 in which there may now be a lower
boundary BEe|0,/)] as well as the previously developed upper boundary, denoted by
BY e[ly,1]. Firm 0 serves consumers in [BX, BV] while firm 1 serves those in [0, BY] and
[BY,1].

The distribution results in Lemma 2 apply directly to each potential market segment.
The analog to the objective in (18) then works out to be

U(QG, 1y — B",8y) + U(Qg,BY — 1y, 80) — p(69)1Q5 + Q5]
+U(QF,B,8;) — 8,(1 —B")QF + U(QY, 1 —BY,8,) — p(6,)[0F + Of].  (24)

The various terms reflect the value of distributing output across the four potential segments
as well as the associated costs. The new term of 8, (1 — BL) Q% associated with firm 1 is due
to the divided market structure and reflects the cost of serving the distant segment of [0, B|
from a distance of 1 — B, After accounting for this cost, firm 1 is effectively serving that
segment from an origin of B-. We are also allowing for 8, # 8,. The analysis of the upper

18 Let F, be the uniform distribution. The condition for B reduces to B = 1/2 + [0 + 8 — 20,]/(25). Then
firm 0 is active only when 8, < [8 + 6 + 0]/2; for higher 6, we have B = 0 and all of the market goes
to the less efficient firm. In a different context, (Wang 2000) considers oligopoly incentive regulation in a
two-type model when firms have different ex ante probabilities of cost draws and finds that ex ante
inefficient firms will sometimes be awarded all production.
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boundary and the associated quantities follows previous lines, so we focus here on the
lower segments. For the lower boundary, firm O produces output such that p& = p(6,),
where p§ = p(0k, Iy — B, 3,) is the required price from firm 0 to a consumer at the
location /;. For firm 1, we must have pf = p(0,) + &,(1 — BE), where pf = p(Q%, B, ;)
is the required price from firm 1 to a consumer at location B. In addition to the incentive-
cost adjustment, there is also an added price premium to reflect the cost of serving a
divided market. Recalling that S(v(p)) is individual consumers surplus at price p, the
optimal choice for the B boundary satisfies

S(v(ug + 8o (ly — B"))) = S(v(uy +8,8")) + 8,01 <
S(p(0y) + 8o(lo — B")) = S(p(6,) +8,) + 8,01,

upon substituting the output conditions. To interpret this condition, note that if
p(6,) + 0, < p(By) + 8yly, then it makes efficiency sense for firm 1 to be the supplier
for the consumer at location ¢ = 0. However, the boundary B" is not set to equalize
consumer surplus at location BL. That would be incorrect for two reasons. First, it would
ignore the added cost margin of §;Q% associated with firm 1 serving a distant market.
Intuitively, when supplying the distant segment of consumers in [0, B%], we can view firm 1
as establishing a distribution center at location B- from which the segment is served. This
involves a cost of 8, (1 — BL)Q} to move the aggregate output from the firm’s location at 1
to BE. Thus, the benefit margin associated with reducing the distance to the distribution
center is given by 8, 0. Second, the marginal benefit from shifting the boundary hinges on
consumer surplus for a consumer at the opposite end of the market segment relative to the
origin; this is location ¢ = B for firm 0 while it is ¢t = O for firm 1. Again, it is helpful to
think of firm 1 as having a distribution center at location B. Thus, the change in value for
the [0, BL] market as B’ rises is the consumers surplus of the distant consumer (¢ = 0) plus
the benefit associated with reducing the distance from firm 1’s location to the segment
origin of B" and this is equated with the corresponding consumers surplus for the distant
consumer (¢ = B) in the [BL, )] segment of firm 0.

As an application of the analysis of a divided market structure, consider the Multi-
Channel Video Programming Distributor Market, defined as the video services market
supplied by Cable-TV and DBS providers.'? The nature of the horizontal differentiation
involves several components. Cable TV typically has superior options for local channel
viewing; DBS often has superior picture quality and offers more options in specific areas
such as sports, movies and music. In each case, heterogeneity across consumers for the
valuation of these differences is significant. On the technology side, DBS has a clear
““wireless’” component in that costs of delivery do not depend directly on the consumer’s
geographical proximity to a cable network. To explore the intuition from the model,
imagine firm 0 as cable provider with §, > 0 while firm 1 is a DBS provider with 8, = 0,

19 According to FCC documents, in the year 2000 about 80% of MVPD subscribers, or 84.4 million
households, receive cable services. DBS is now 15.4% of the MVPD market, growing at the rate of 18%
from 10.1 to nearly 13 million households from June 1999 to June 2000.
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reflecting a ‘‘wireless’” technology for distribution. The condition for the lower
boundary now reduces to BL =1I,— [p(0,) — p(0y)]/8,. The wireless dimension
creates a natural advantage for firm 1 in supplying a consumer who has a poor horizontal
match with firm 0. As a result, this force pushes to a divided market as an optimal
structure.”’

8. Conclusion

This paper examines optimal regulation in a duopoly model of spatial competition when
firms have private cost information. The key feature here is that the regulator can
provide incentives by utilizing the spatial dimension, increasing or decreasing each
firm’s market through the assignment of consumers at the competitive fringe between
the firms. Thus, the analysis focuses on the trade-off between assignment of market
segments and the allocation of production across consumers in each firm’s market
segment. Providing incentives through market assignment reduces the need to rely on
quantity distortions.

The properties of optimal regulatory policy can be summarized as follows. Because
distribution is costly, it is optimal to award distinct market segments and allow
consumption to vary with consumer location. To implement an efficient distribution of
output in each market segment, each firm employs a price schedule that involves a fixed
fee plus a variable charge based on location. Market segments and production aggregates
are jointly determined by equating demand in each segment with marginal production
cost, scaled upwards to account for incentive costs, and equalizing consumers surplus at
the boundary between the market segments.

Market size and production both decline as a firm becomes less efficient. The other firm
is awarded a larger market by reassigning customers and also produces more in aggregate.
Welfare effects for prior customers of this firm vary with scale economies in production as
these consumers benefit under increasing returns but consume less and pay more under
decreasing returns. Compared to the full information setting, we identify three effects on
regulated market structure that arise under asymmetric information. A cost effect, which
depends on the inverse hazard rate, dominates and optimal policy makes market segments
and production more responsive to efficiency differences between the firms in the
benchmark case of constant returns in production.

The problem of market design and endogenous market structure provides a broader
context for our results. We have made the relatively strong assumption that horizontal
differentiation is effectively observable to the regulator. In the case of health care markets
and selective contracting, the insurer (regulator) does make use of information about
member patients (consumers) to design a network of providers by taking into account

20 The BE choice is interior to [0, 1] when 8oly + p(8y) > p(8;) > p(0y), respectively for the left and right
endpoints. Note that a pure wireless technology is a convenient simplification. What matters for a
divided market is that §, is sufficiently small relative to &.
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capacity needs in geographic regions and price considerations.”’ Of course, these health
care markets also involve a complex set of factors (e.g., quality, access, patient choice of
insurance plans) that are not captured fully in our present analysis. Spectrum auctions
provide another example of market design in which horizontal differentiation involving
regions plays an important role. Governments often design an auction for licenses to
operate in explicit regional markets. Bidders then compete to acquire a strategic collection
of regional licenses and the auction (mechanism) can be viewed as allocating market
regions in response to bids (reports) that are based on private information of the bidders;
see Cramton and Schwartz (2000) for a recent discussion. In other contexts, however,
significant elements of horizontal (and vertical) differentiation arise because of buyer
preferences. This information is less likely to be readily available to regulators and is an
interesting direction for future work.

Appendix
Proof of Lemma 1: Let g, and g; be any given pair of quantity schedules. We will

construct ¢ and ¢ that involve a boundary and increase the value of the objective in (15).
First, define cumulative quantities on subintervals of [0, 1] by

t 1 t
Xo(r) = / qo(v)dt, X, (1) = / a(t)dt, and X(r) = / g(v)dr,

where ¢(7) = qy(t) + ¢, (¢). Then Qy =X,(1) and Q; =X,(0) hold in relation to
aggregate production. Now, define quantity schedules by

ao=13" 125 @0={g ik

where X(B) = Q,. Such a B exists since X(0) =0, X(1) =Qy+ Q,, and X(¢) is
continuous on [0, 1]. Let X§, X}, and X* be the corresponding cumulatives.
Under g, and g, the objective in (15) can be expressed as

/0 V(q(t)) — Staq(t) — 8(1 — )y (1) di = / V(q(e)) + 26Xo(r) — X (1)) di + 8X, (0).
(A1)

A similar expression holds for ¢ and ¢j. Since X*(r) = X(r), X,(0) =X;(0), and
q*(t) = ¢q(t) by construction, the difference between the value in (15) at (gg, ¢}) and at

21 Bamezai et al. (2003, 69) discuss how the Medi-Cal provider network involves contracting with hospitals
based on market structure criteria and that this often involves crossing boundaries of official state-
designated Health Facilty Planning Areas.
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(40,q1) 1is, using (Al), given by 2§ fol [X5(r) — Xo(r)]dr. For t<B, we have
q5(t) = q(r) > qo(t) and, hence, X;(r) > X,(t). For t > B, we have X;(t) = Qy > X, (7).
Thus, X§(¢) > X,(¢) for all ¢ and we are done. [ ]

Proof of Lemma 2: We apply optimal control to the problem in (16) First, we find an
equlvalent expresswn for the objective functlon Let X f q(t) dt. Integrating by
parts on fo tq(t) dt, the objective in (16) equals fo ) dbq(t) —|— 3X(t)] dt. Now, let

q(t) be the control variable; let —X(¢) be the state variable, which must satisfy the
differential equation X(f) = ¢(¢); the control must satisfy ¢(¢) > 0 and the state must
satisfy X(0) = 0 and X(b) < Q, the constraint from (16).

To establish existence of a solution, we can apply the existence theorem developed
by Seierstad and Sydsaeter (1987, 137). It is routine to verify that all of the conditions
of the theorem are satisfied with ¢(r) and the ‘‘multiplier’” p(f) as reported in
Lemma 2.

There are two cases for the values of Q and 5. When Q < fo v(dt) dt, the multiplier is
strictly positive for all 7 and X(b) = Q holds at the solutlon The condition in Lemma 2
determines p(0) = p(Q, b) in this case. When Q > f() v(dt) dt, we have p(0) = 0 and the
solution is described in the footnote to Lemma 2. [ ]

Proof of Proposition 1: Consider the existence of (Qy,Q;,B) that maximize
w(Qp, Q1,B;00,0)). ClearlP/ w is continuous in (Qy, Q,B). The value function satisfies
U(Q,b) <U(Q,1) < U(J, v(dt)dt, 1), and p(0)C(Q) is strictly i 1ncreasmg in Q Hence,

any maximizing choice must be an element of the compact set [0, fo (61) dt] [0,1].

Thus, there exists a maximizing choice.

Now let (Qy,Q;,B) be an optimal choice at (6, 0;) and let (QO, Ql, ) be an optimal
choice at (6079 ) where 6y > 0y. Then w(Qy,Q,,B;0,0,) > w(0y,0,,B;0,,0,)
and W(QO,Ql,B 90,9 ) > w(Qy, 04, B; 60,9) by definition of optimal choices. By
definition of w, adding the two preceding inequalities and simplifying yield
p(0,)[C(O0) — C(y)] = p(0,)[C(Oy) — C(Qp)]- As p(0y) < p(B) when O < Oy, we
must have O, < Q, in order to satisfy the above inequality. The argument for Q, is
analogous. By definition, it is clear that ¢;(0;) is non-increasing in 6; if Q;(0;,6,) is non-
increasing in 0;. Finally, since the Q,(9;, ,) in the pointwise maximization of w satisfy the
incentive constraint for ¢;(0;), we have a solution to (RP). |

Proof of Proposition 2: The complicating factor for uniqueness is that
w(Qp, 01,B;0y,0;) is not necessarily concave in (Q,,Q;,B), even with the added
assumption of (19). To proceed, then, consider the value of an optimal quantity choice for
a given market of size b: g(b, p) = maxy-o{U(Q,b) — pC(Q)}. Proposition 1 directly
implies that a maximizing Q exists and, hence, that g(b, p) is well defined. The choice of O
is unique if U(Q, b) — pC(Q) is strictly concave in Q. We have

0* -5

6—Q2{U(Q’b) —pC(Q)} =np — pC"(Q) = V) = (L 0b) pC"(Q) <0, (A2)

when evaluated at p(Q, b) where b > 0; the last step follows from (19) since v is strictly
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decreasing. If b = 0, then Q = 0 is the unique optimal choice as U(Q,0) = 0 and C(Q) is
strictly increasing. Thus, for each b > 0 there is a unique maximizing choice of Q.

Now we show g(b,p) is strictly concave in b. Let H(p) = S(v(p)) denote
individual consumers surplus. We have g, = H'(1+0b)[1y * &, + 1, + 0] where
p=p(Q,b) and ¢, is the comparative static of Q = ¢(b, p), the optimal Q choice for
g(b,p). As H' <0, we have g, <0 provided that the term in brackets is strictly
positive. With the shorthand of v = v(u(Q,b)) and v = v(u(Q,b) + 0b) where Q =
b(b, p), we have

5 C//
vp + 5

)
. S=py| —2- d=——0
Mo = by + 1y +8 =Ko <uQ—pC”> + hg—pC7 T

where we have calculated ¢, substituted with p, = dp,y, and simplified. Then,
substituting for {1, and simplifying further yield

S+ vpC”
Ho ¢h+Hb+6—5<m) 0;

the numerator is positive by (19) and the denominator is positive by (A2). Hence,
8w < 0.

Finally, the value of B in any optimal choice of (Q,, O, B) for w(Q,, 0, B; 0, 6,) must
satisfy B € arg max,{g(b, p(6y)) + g(1 — b, p(8,))}. Proposition 1 implies such a B exists.
The choice is unique as g,;, < 0 implies g,,(b, p(0y)) + gx,(1 — b, p(0,)) < 0. Thus, we
have shown that (19) implies a unique maximizing choice of (Q,,Q;,B) and, from
Proposition 1, this maximizing choice at each (0, 0,) is the optimal policy. [ |

Proof of Proposition 3: This is a relatively straightforward comparative statics exercise
and we limit the proof to a sketch. First, calculate the comparative statics for B by
employing the value function g(b, p) from the Proof of Proposition 2. The claim then
follows from g, < 0 and g,, = — [ny — pC"] "~ Y+ 0b)upC' < 0. Let Q = d(b, p) be
the unique optimal Q choice for the g(b, p) value function. The claims for Q;(0;,6;) then
follow from Q,(0;,0,) = ¢(B(6,,6;), p(0;)).

For the price effects, the price at the boundary can be written as
pu(od(l —B,p(8;)),1 —B) + 6(1 —B), where B = B(0,,0,). This is increasing in 0,
since g(b, p) is concave in b and B is decreasing in 0. The intercept for market O is the
boundary price less 6B, and this is increasing in 6. We find that the intercept in market 1 is

increasing or decreasing in 0y as {py[py — pC"] "' — 1150, where arguments are
evaluated at Q,(0,,0,) and B(0,,0,); this inequality reduces to C"”<0. Effects of 0,
changes are symmetric. [ |

Proof of Proposition 4: Fix any pair of cost types with 6, >0, and define
hi(o) = 0; + a(F(0;)/f(6,)) for a€[0,1] and i = 0, 1. Let B(py, p;) denote the unique
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optimal boundary choice (from Proposition 2) for max,[g(b, py) + g(1 — b, p;)] and then
define y(ot) = B(hy(a), hy(er)). By construction, we have B4 = B(0,,0,) = y(1) and
B = B(p~1(0y),p~'(0,)) = (0). Calculating, we have

v/(2) = 55 Blhg(2), 2y () - By (o) + @%1 (ho(00), By (or)) * ) (o0)

ho
= [ghy + 2] { ggpi(((gs)) N g’l’pi((gll))}'

Here, g}, and g}, must be evaluated at b = B(ho(at), b (o)) and p = hg(at) fori = 0, and at
=1 —B(ho(a), hy () and p = hy () for i = 1. Since g,,;, < 0, we can substitute for g,
with the expression from the Proof of Proposition 3 to see that y'(a) < 0 &

st —an @D oy ho
0 5oy FO) o[ WO
< V(}/l + SB)f(e()) C (Q ) “OQ — /’L(,CN(QO) ’

where 0° = &(B(ho(at), (), o(er)) and n° = n(Q°, B(hg(x), 1y () and similarly for
Q! and p'. Then (23) follows upon noting that prices are equalized for each firm at the

optimal boundary. For the second claim, note that O = $(B(6,,6,), p(6;)). We know that

¢, > 0> ¢,. Then p(6,) > 6, and BA < B/ directly imply the claim. [ ]
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