(ENVIRON 876A)

Description: Content will vary depending on student interests but will include topics such as: discrete sampling issues, data rejection and interpolation, coordinate rotations and principal axes, curve fits, regression, error and propagation of uncertainty, bootstrapping, filtering, spectral analysis, harmonic analysis, EOFs, wavelets. Course structured as mix of lectures and workshops applying methods to environmental data sets. Homework will use data provided by instructor. Each student will complete a final project, applying methods covered in class to datasets chosen by them, hopefully as part of (or at least related to) their research.

Instructor:	Jim Hench
	Office: Room 309, Bookhout Research Lab
	jim.hench@duke.edu

Meets: Lecture: T 9:30-11:00 (Lab 1 west) Data workshop: H 9:30-11:00 (computer lab) Office hrs: TH 11:00-12:00, or by appointment

Texts:

Emery, W. J., and R. E. Thomson. <u>Data Analysis Methods in Physical Oceanography</u>, 2nd <u>Edition</u>, Elsevier, 2001. (~\$110)

Trauth, M. H., MATLAB Recipes for Earth Sciences, Springer, 2006. (~\$60, or free online)

Software: Course will use MATLAB extensively

Grading: 50% Homework (roughly tri-weekly) 50% Final project

Honor code: See http://www.nicholas.duke.edu/people/students/advising/honorcode.html

Supplemental references for this class:

Kattan, P. I. <u>MATLAB for Beginners: A Gentle Approach</u>. CreateSpace, 2008. (~\$30) Pratap, R. <u>Getting Started with MATLAB: A Quick Introduction for Scientists and</u> <u>Engineers</u>. Oxford University Press, 2009. (~\$30)

Some other useful resources:

- Efron, B., and R. J. Tibshirani. <u>An Introduction to the Bootstrap</u>. Chapman and Hall, 1994. (~\$95)
- Percival, D. B., and A. T. Walden. <u>Spectral Analysis for Physical Applications</u>. Cambridge Press, 1993. (~\$75)
- Preisendorfer, R. W. <u>Principal Component Analysis in Meteorology and Oceanography</u>. Elsevier, 1988. (out of print)
- Press, W. H., S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. <u>Numerical Recipies 3rd Edition:</u> <u>The Art of Scientific Computing</u>. Cambridge Press, 2007. (~\$55)
- Taylor, J. R. Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (2nd ed.), University Sciences Books, 1996. (~\$35)

(ENVIRON 876A)

Syllabus (updated 18-Sep-2012)

	Date	Торіс	Assignments
tue	28-Aug	Course introduction and organization	
thu	30-Aug	Matlab intro	
tue	4-Sep	Sampling issues (Nyquist freq., Rayleigh criterion, aliasing)	
thu	6-Sep	Data workshop	Project idea due
tue	11-Sep	Data quality (outliers, despiking, replacement)	
thu	13-Sep	Data workshop	
tue	18-Sep	Error and propagation of uncertainties	
thu	20-Sep	data workshop	HW 1 due
tue	25-Sep	Bootstrap / Monte Carlo methods	
thu	27-Sep	data workshop	
tue	2-Oct	Covariance and correlation	
thu	4-Oct	data workshop	HW2 due
tue	9-Oct	Spectral analysis (windowing, WOSA)	
thu	11-Oct	Data workshop	
tue	16-Oct	Fall break, no class	
thu	18-Oct	Fall break, no class	
tue	23-Oct	Spectral analysis (multi-taper)	HW3 due
thu	25-Oct	Data workshop	Project progress report due
tue	30-Oct	Filtering	
thu	1-Nov	Data workshop	HW4 due
tue	6-Nov	Harmonic analysis	
thu	8-Nov	Data workshop	
tue	13-Nov	Wavelets	
thu	15-Nov	No class (LTER meeting at UCSB)	
tue	20-Nov	Numerical integration/differentiation	HW5 due
thu	22-Nov	Thanksgiving break, no class	
tue	27-Nov	Final project presentations	
thu	29-Nov	Final project presentations	Projects due