owards an Intellectual Atlas of Scholars@Duke
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Interactive version provides detail on authors & publications: http://www.soc.duke.edu/~jmoody77/S@D/starfield_ia.html

e ol o6der]
care % c

healt
esearc

(

Goal

Our goal is to map scholarly production at Duke and use the distribution of scholar-
ship as a frame for displaying relations amongst scholars.

Approach

Defining a landscape. Publications are the fundamental unit of scholarly produc-
tion, so we start by building a publication network. We limit our sample to all
unigque papers with an abstract and con- @, 10 ctemaic ciferences i sk behaviors and yphiis

struct links between papers based on

how similar their abstracts are to each
other. After some adjustments for den-
sity, we project the network in two di-
mensions using a layout algorithm that
minimizes distance between connected
nodes. This has the effect of placing pa-
pers with high similarity values close to
each other in the display space, effective-
ly grouping topically similar papers to-
gether.

10477.exploring sexual identity development among african american

23591.sex drugs and race how behaviors differentially

4292.brief report respondentdriven sampling a

4908:changes in hiv risk\behavior and'seroincidence among
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Since the network is too large to display in tradi-
tional point and line format, we estimate a 2-di-
mensional kernel density function and use that
as a smooth representation of the underlying
distribution of papers in the network, which we
represent with contours.

The distribution of papers across this space rep-
resents a landscape with varied topography—
hills represent clusters of papers on similar
topics, ridges link topics to each other, valleys
represent gaps in the knhowledge space and
widely differing topics are islands disconnected from the mainland. We identify top-
ic content by clustering the network, and label the largest clusters with the terms
found most frequently in each cluster’s titles (label size proportional to number of

papers).
Populating the Atlas

Like a geographic atlas, once we know the topography we can layer other informa-
tion over this space. Here, we provide layers on high-volume producers, depart-
ments/units, gender, and collaboration.

Foxes and Hedgehogs. In the main figure, we have selected authors who are ranked
in the top 15% by publication volume in their primary affiliation unit and place
them at the centroid of their publications. Berlin (1953) famously contrasted think-
ers working on a single area (hedgehogs) to those who draw widely from multiple
intellectual sources (foxes). To capture this variability in topical range, we extend

lines from each author to capture the inner-quartile range of their publication dis-
tribution across the space. Those who publish on a wide range of topics will have a
longer reach across the space than those that focus narrowly in on a particular top-
ic.

Departmental Production. Academic departments control hiring, tenure and pro-
motion and thus generally shape the broad contours of scholarly production at the
university. Layering departmental coverage over the intellectual landscape lets us
see how similar departments are to each other, highlighting opportunities for col-
laboration. The dominant role of the Medical school is clear here as well (though
some of this is due to coverage bias in the corpus, see limitations).

Gender Distribution. Concern over the involvement and retention of women in
STEM fields is a top priority for the NSF (Cordova, 2016). By looking at the gender
distribution of authors on each pub-
lication, we can estimate the gender
representation across the intellectu-
al landscape. Scholarly production

at Duke is disproportionately male.
While women are active in most areas
of the space, they are somewhat more
common in the community health

and population research clusters (low-
er-right) and more rare in the compu-
tational areas (center-left).

Gender Distribution of Authorship
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Who Collaborates? Modern scholarly production is team based, particularly in
health and natural sciences (Wuchty et al 2007). We constructed a collaboration
network from the publications
=k . Degree Distribytion file then clustered that using a
- . modularity maximization rou-
tine (Mucha, ongoing) and lay-
er the clusters over the space.
Forty percent of papers in the
corpus have multiple Duke au-
thors an the median author has
8 Duke collaborators. By defi-
nition, most collaboration falls
within these clusters, but there
is significant cross-cluster inter-
action. Here we highlight the
most common collaborations
across clusters.
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Limitations. There are at least three limita- Scholars @ Duke Coverage
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