ENGAGING WITH THE RESEARCH COMMUNITY

Al and Data Transformation

John Little •

Duke University Libraries

Center for Data & Visualization Sciences

2024-10-27

PATRON-DRIVEN INTERACTIONS

Computational workflows, data transformations, and Analysis

AI AND NEW CHALLENGES

- Introduction of Generative LLMs (e.g., ChatGPT)
- New challenges for patrons:
 - 1. How to ask questions of a generative Al
 - 2. How to frame questions to reflect data goals
- Translation
- Synethesis

THE CONFIDENCE V COMPETENCE PARADOX

- LLMs give confident responses
- Responses are predictions, not necessarily correct answers
- Incorrect predictions = "hallucinations"
- Verification is crucial
- Paradox: More knowledge leads to better evaluation of Al responses

USE CASE - CODE GENERATION

- Data transformation
- Data analysis
- Iteration
- Big Data
- Al assistance / Al-paired coding

GOAL

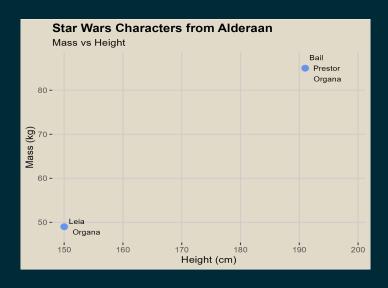
Create scatter plots, one for each home world

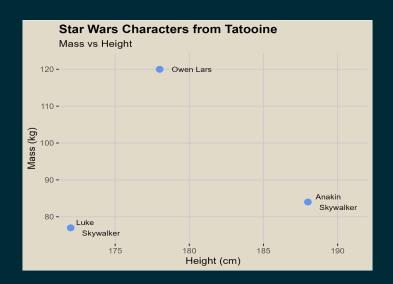
CASE STUDY - STAR WARS DATASET

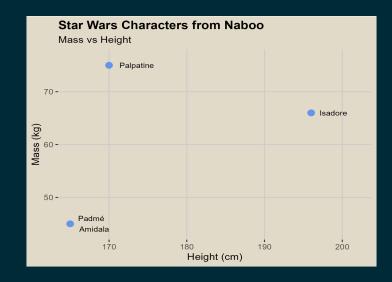
Homeworld	Heights	Masses	Characters
Tatooine	172, 188, 178	77, 84, 120	Luke Skywalker, Anakin Skywalker, Owen Lars
Alderaan	150, 191	49,85	Leia Organa, Bail Prestor Organa
Naboo	165, 196, John Riche • Center for Data &	45, 66, 75 Visualization Sciences • CC BY 4.0	Padmé Amidala,

Homeworld	Heights	Masses	Characters
			Isadore, Palpatine
Coruscant	66, 188	17,84	Yoda, Mace Windu

EXAMPLE







CHALLENGES IN AI ASSISTANCE

- Al can handle well some basic visualization and coding
- Struggles with complex data shaping and iteration
- This problem is easier when the user has knowledge in:
 - Coding concepts
 - Data shaping
 - Visualization
 - Iteration for large datasets

WHEN IT GOES WRONG

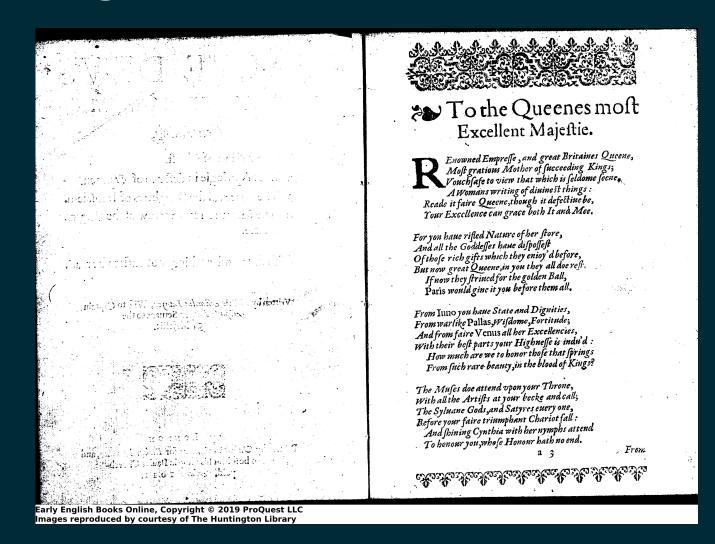
WORD PROBLEMS

Prompt: Inconsistent AI responses for "How long does it take to walk 10,000 steps on a treadmill at 1.2 MPH?"

- Lesson 1: Importance of cross-verification
- Lesson 2: Prediction is not the same as mathmatical truth

EEBO

No ground truth



CODE

TRANSLATION DONE POORLY

Due to insufficient background and/or prompting

AI-PAIRED CODE GENERATION

 Some clear winners and losers in the big names. aka each LLM has it's own evolving strengths, weaknesses, and tendencies.

These problem highlights the Competence v Confidence Paradox but are easily **verifiable**

WHEN IT GOES RIGHT

and how right does it go?

SYNETHTIC QUESTIONS

Prompt: Compare student body and faculty diversity at Duke University with UNCG. Compare today with 1985.

- Lesson 1: Different LLMs give different amounts of evidence for verification
- Lesson 2: Differing amounts of ground truth will affect the prediction

CODE TRANSLATION

I have Python code, give it to me in R

VARIATIONS IN CODE TRANSLATIONS

- R to Python
- Python to R
- SQL from natural language
- javascript
- HTML

NATURAL LANGUAGE

How can I use the phrase "Sticky Wicket" in German?

- Translate Sticky Wicket to German
- But how to verify (same as code problem)

VALUE IN REPRODUCIBILITY

- Coding
 - Do everything with code
 - Including report generation
- No Code
 - Getting better all the time

Increasingly we are seeing computation environments with build-in AI-pairing

Figure 9. "In which of the following ways have you used generative Al in your biomedical research?"

31% Reviewing/editing grammar 25% Extracting knowledge from scientific literature Assisting in administrative tasks such as writing 22% emails or letters, etc. 22% Writing code Discovering relevant research 16% Creating images or visualizations 13% Analyzing large datasets 12% 10% Drafting grant proposals Hypothesis generation 7% 7% Data cleaning 6% Designing experiments Creating simulated or synthetic datasets 5% Automated manuscript writing 5% Assisting in clinical documentation or note taking 4% 4% Testing hypotheses 4% Other Don't know/not sure 1% I have never used generative AI in biomedical 37% research 0% 10% 20% 30% 40% 50%

SOLUTIONS

and best practices

PROBLEMS AND SOLUTIONS

- GIGO (Garbage In, Garbage Out) still applies
- Prompt engineering is a crucial skill
- Al excels in translation tasks
- Good for synthetic questions with possible validation
- Less reliable for tasks without established ground truth

BEST PRACTICES

Using Broad-base LLMs:

- ChatGPT
- Microsoft Copilot
- Claude.ai
- Gemini.google.com
- GitHub Copilot (for AI-paired coding)

PROMPT ENGINEERING

- Identify role
- Identify audience
- Identify voice
- Identify goals and problem
- Use multiple steps
- Verify

CONCLUSION

Embracing AI in data analysis

- Al is a powerful tool, but requires careful use
- The library offers crucial guidance
- Continuous learning and adaptation are essential

QUESTIONS

- 1. How do you see these tools or techniques impacting research and research investment?
- 2. Do you have data transrormation, reshaping, or analysis tasks that could benefit from AI assistance?
- 3. In what ways do you think we can improve training and assistance for next generation LLMs?
- 4. What are some of the biggest challenges you see in the future of Al-paired coding?