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Abstract

We noticed several derivation errors in the article “Resource Flexibility with Responsive Pric-
ing” by Chod and Rudi (2005) (Operations Research 53, 532-548). The errors occurred when
the authors use the bivariate normal (BVN) demand-intercept distribution to establish some
comparative statics while assuming the effect of the negative values of BVN is negligible. We
point out these errors and provide corrections. Unfortunately, with the correct expressions,
the proofs cannot go through. Some of the qualitative properties still hold under different as-
sumptions on the demand-intercept distribution, as shown by Bish, Liu and Bish (2009) using
a stochastic comparison approach, but not all. Our analysis shows the limitation of truncated
BVN distribution in this context.

1 Introduction

Chod and Rudi (2005) (C&R) investigate the value of two types of flexibility a firm can employ
to better match demand and supply: resource flexibility and responsive pricing. Assuming
bivariate normal (BVN) demand intercepts in a linear demand model, they develop several
comparative statics. We read this article with great interest. However, we noticed derivation
errors in the proofs of the comparative statistics. The problems occurred when the authors
assume the effect of the negative values of BVN is negligible. In this note, we point out
these errors and provide corrections. Unfortunately, with these corrections, we can no longer

prove these qualitative properties. On the other hand, for tractability, some of C&R’s proofs



are based on certain approximation of the original problem, i.e., relaxing the nonnegative
product quantity constraint. Failing to show these results using the approximate model does
not necessarily mean the properties do not hold in the original problem. In fact, working on
the original problem setting (with nonnegative product quantities and demand intercepts),
Bish, Liu and Bish (2009) (BLB) are able to prove some related properties using the notion
of convex order, although these results are restrictive in some other way as explained later.
Also, BLB’s approach can recover some (but not all) of C&R’s results under BVN demand
intercepts. However, different from C&R, BLB allow these intercepts to take negative values.

Our analysis here shows that the truncated BVN distributions does not work in this context.

In order to clearly state C&R’s propositions and point out the errors, in Section 2 we briefly
review their model and introduce notation and some preliminaries. Then, in Section 3, we

state the propositions in error and provide corrections and counterexamples.

2 Model and Preliminaries

C&R consider a firm selling two distinct products, indexed by ¢ = 1, 2. The demand curves are
linear with the intercepts & = (£1,&)7, identical slopes —b, and a linearly additive cross-price
)T

effect d. To sell the outputs Q = (Q1, @2)7, the firm charges the prices p = (p1,p2)? according

to the following relationship

p1(Q1|p2) = &1 — bQ1 + dp2,
p2(Q2|p1) = & — bQ2 + dp;.

A positive d indicates that the products are substitutes, while a negative d indicates that
they are complements. Because a product’s own price effect on its demand should be more

significant than the cross-price effect, |d| < 1.

Assume & = (&1,&2) has a continuous probability distribution with joint density function
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f(&, &) on R2 | mean vector (1, p2), variance-covariance matrix , and correla-

tion coefficient p = 012/(0102). To study comparative statics, assume further that & = (£1,&2)
follows a BVN distribution, but the coefficients of variation are not large, so that the effect of

the negative values of £ is negligible.

The firm faces a two-stage decision problem: in the first stage, based on the distribution of
&, it decides the resource capacity ¢ which is acquired at a unit cost w; in the second stage,
based on the realization of &, it decides how to allocate ¢ between the two products. This
results in the stochastic program

Itlllza(})( 7(q,S) = rtlllzaéi[—qw + (g, 5]



and
Il(q, S) = Er(gggQTp(Q, £),

where E denotes expectation and S is the set of feasible output vectors Q that depends on
the firm’s decision rule for the output quantities. If the firm employs the holdback rule,
the feasibility set is S* = {Q : Q > 0,17Q < ¢}. If the firm employs the clearance rule,
the feasibility set is S¢ = {Q : Q > 0,17Q = ¢}. To derive analytical results related to
demand variability and correlation, the authors relax the nonnegativity constraints imposed
on the output vector Q. This means ro replace S* and S¢ by Sh = {Q:17Q < ¢} and

Se = {Q:17Q = ¢}, respectively.

In Section 6 of C&R, the authors consider a decentralized model, in which the firm purchase
the flexible resource from a supplier. The supplier is the first mover in a Stackelberg game and

sets w to maximize its profit. Propositions 9 and 10 concern this model.

In the next section, we point out errors in the proofs of Proposition 2 and the second part
of Proposition 9 and provide corrections. We also show that Propositions 3-5, as stated in
C&R, which is based on the approximate feasible region §h, do not hold. Finally, we show
that the general case of Proposition 10, as stated in C&R, does not hold. For each of these
propositions, we provide the correct analytical expressions of interest (also based on S ") and

give counterexamples.

A common error made in C&R can be summarized as follows. When establishing the com-
parative statics, these authors took the following steps: 1) Assume that the demand intercepts
¢ follow a BVN distribution. 2) Express € in terms of two independent standard normal
random variables. 3) Reexpress the expected profit function 7 according to the variable trans-
formation in the previous step. 4) Take the derivative of 7 with respect to the parameter of
interest, observe the sign of the derivative, and obtain comparative statics. Because the BVN
random variables can take negative values, the authors make a further assumption that the
region corresponding to the negative values of these variables can be ignored. Unfortunately,
some calculation errors occurred in step 3 by allowing some (but not all) negative values of &,
a violation of the authors’ assumption. This miscalculation, in effect, yields an approximation
of 7, denoted by 7. Consequently, in step 4, the conclusion on the comparative statics is based
on the derivatives of 7. But, the derivatives of T can be very different from those of w. This

can be seen from the following example.

Example 1. For any ¢ > 0, let ¢, = %5, n =0,1,---. Define Hi(z) =z, z € [0, c0),
2(x — €
Ho () _{ T+ 2(x — €2n), T € [e2n, Eant1l,
T+ 2(e2nt2 — ), € [E2n41, E2n42], N =0,1,--

Then, ’Hl(x) — HQ(x)‘ < g, but |de;x(x) _ dh:jzx(ar)| > 9.



It is worth mentioning that, using the notion of convex order, BLB are able ro establish
properties related C&R’s Propositions 2-4 and Proposition 10 (ii) on the original feasible region
S" | assuming € has positive support. Here, by “related” we mean that the results are not direct
generalizations of those in C&R. For example, Proposition 2 states that ¢" is increasing in o,
where 0 = 01 = 09. For BLB’s result to recover this property, we need an additional condition
that @y = po, i.e., the demand intercepts have the same mean, which is rather restrictive.
On the other hand, when £ is BVN, as assumed in C&R, the equal mean assumption can be
relaxed. BLB can indeed show Propositions 2, 3, 5, and a special case of Proposition 10(i)
under BVN on S”*. However, different from C&R, BLB allow £ to take negative values. When
£ is restricted to nonnegative values, we obtain a truncated BVN distribution. Our analysis

below shows, unfortunately, that Propositions 3-5 and 10 do not hold for this distribution.

In the remainder of this note, we assume £ follows a BVN distribution. We inherit all
the notations from C&R, and we refer the reader to C&R for their definitions. To simplify

exposition, we introduce the following additional notation:
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hi(z) = " yi=, b= —, i=1,2
(2 Z) 9(1 _p)27 ’YZ 0'7;7 7 O'i’ 1 <
52 —m—72 5 2qbi—m+7
61 - Ta 61 — T 4~
p 2p
5 2qba—m—72 5 —2¢by — 71+ 72
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3 Corrections and Counterexamples

Proposition 2 (Chod and Rudi) If £ has a bivariate normal distribution with o1 = 09 = o,
then dg"/do > 0.

Claim 1 The proof of the above Proposition 2 in CER is incorrect.

(Note that BLB are able to show this result when £ is allowed to take negative values.)

Proof. We first derive the expression for dg” /do under the truncated BVN distribution and

then point out errors. By implicit differentiation, we have

dg" 0?1 /0q0o

do ~ 9%1/0%

a=q"
Because 0%7(q, S™)/0%q < 0, it suffices to prove 9w (q, S")/0qdo > 0.

Note that Chod and Rudi explicitly assume that the regions of the parameter space yielding

negative demand curve intercepts can be ignored. This is to assume that

1= //01234f(§17§2)d€1d§27 (1)

where Q1934 = U?Zlfli (see C&R for the definitions of the areas €;, and see Figure 1 for an
illustration). A precise account for this assumption is to assume & follows a truncated BVN
distribution. That is,

1 1
f(&1,&) = A(o1,02,p) 2101024/1 — p?

1 & -\’ &1 —p1 e — p2 €2 — p2\’
Xexp{_2(1—ﬂz) [( o1 >—2p o1 o2 +< o2 )]}

Let Q934 be the union of Qy, Q3 and Q4. From C&R equation (16), we have

onle, 5" G+& -2 €1+ Eod — 2b
ﬂ-(gq) = —w+/ QQ12(12_d)q‘f(§1’§2)d§1d§2+//g31]_2_(12qf(€17§2)d€1d§2
d —2b
+/ Q4Wf(§17§2)d§1d€2
- —w+//Q Wf(§1,§2)d51d§2+/ . Wf(&,ﬁg)dgldgz
& — &1 — 2bq
+/ Q4Wf(§17§2)d51d52. 2)

Now, make the following variable change so to transform the integration from the &-space

to the Z-space, where Z = (Z1, Z2) are two independent standard normal random variables:

{ 216 + 206 = —2u1 + 261, )

210 — 290 = —2ug + 2&9.



Figure 2 illustrates this space transformation, indicating the changing positions of the five
division lines of the €-space in the Z-space. Note that Q; in the Z-space, corresponds €2; in the
&-space (i = 1,2,3,4), while Q (i =5,6,7,8,9) in the Z-space correspond to the parameter
regions in the &-space that lead to negative demand curve intercepts.

We next reexpress (g, S*)/0q by the integrals on the Z-space. It is in this step that C&R
made errors (see P545, left column, lines 9-12). Let ¢ and ® denote the standard normal p.d.f

and c.d.f., respectively. The correct expression is:

h 2104+2[12
&T(g:JS) - 070,0){/ / i 1(21, 9)9(21)9(22)d22d 2

210— 2;11

«

_/_ /OO 93(227Q)¢(zl)¢(22)dzldz2} —w

o —22971—2[141

/ 0222, @)b(21)$(z2)dz1d 2
220~1—2/i

- A(alam { /;o 91(21,0)[@(210 + 2fiz) — ®(=210 — 2/i1)]$(=1)d 1

-/ " a2 @) (z2) [ — D228 — 2ir)]dlzs (4)

&

[ e otz — a0 - 2ﬂ1)]d22} -

— 00

From (4), we have

52 7Sh . ” N |
7(;;%0) ) Alo,0,0) [m /a 91(21,9)9(21)P(210 + 2fiz)dz
+% . 91(217 Q)¢(z1)¢(_219 _ 2[11)le
Jripd /a 219(21)[@(210 + 2f12) — D(—216 — 2fi1)]d2
+?pd 296(22)[1 — (22071 — 2710)]d2n
% a2, @) b(22)$(220" — 2fin)d
1f_d —o; 20(22)[1 = B(—2207" — 2ju1)]dz
% 1 93(22, Q) p(22)p(— 20" — 2ﬂ1)d22}

+i§2’2’§§ [/m 91(21,0)[@ (210 + 2fiz) — B(—2160 — 2fin)]é(21)d =1

+ / " g2 )d(2)[1 — B(228" — 2fin)]dzy

+ /al 93(22,@)P(22)[1 — D(—220"" — Qﬂl)]d@],

—00
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where
dA(o, 0, p)
~da
- e ¢(21)P(210 + 2ji2)dz1 — / ¢(21)P(—210 — 2i1)dz1.

0 J-pi—pa f1— iz

AO’(O-’ g, p) =

This expression contains several more terms than the one obtained by C&R. From this, we

cannot show 02w (q, S")/0qdc is positive.

We now provide an explanation of the errors in C&R. Note that in the derivation of (4),
we excluded the regions in which &; are negative, i.e., Q (i =5,---,9). In contrast, C&R’s
expression included these regions, a contradiction to their nonnegative demand assumption. To
see this, observe that if the coefficients of variation are not extremely large so that A(o, o, p) =
1, then

// _ 9(21)9(22)dz1dze = 0, (5)

QeUNgUSg

// _ ¢(21)9(22)dz1dzy = 0, (6)
Q7UQS

// _ #(21)¢(22)dz1d2z2 = 0. (7)
Qs5UQg

This leads to the following approximation of (2

h J—
aﬂ-(gzzs) N o LT H2T 2N M1 + NZ qu //ngl 21,q)P(21)¢(22)dz1d 22
dz1d

+/V/Q6USA28UQ<391(Zl Q)¢( )¢(22) 21422

+//Q g2(22,q)9(21)P(22)dz1d22 + //Q . 92(22, ) B(21)b(22)dz1d 2
3 e

+//Q 93(22, ¢)P(21)P(22)dz1d22 + //Q o 93(22,q)P(21)P(22)dz1d2o
4 7U X

w1+ o — 2bg
TG )
+ [ oo+ [ paoe:
+/% 93(2, ¢)$(2)dz = Ha. ®)

(See C&R, pH45, left column, lines 14-16). Taking derivative on both side of (8), C&R state
that

OH. d + g —2b o
OH, [— L Hatu =2 / 01( q)b(2)dz

g0  do 2(1—d)

—00

+/(;ngz(z,q)fb(z)dz+/a1 g3(z,q)¢(z)dz]

—00
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/ J(lT +/ V=2,

~d T 14d
(1—p
/ 24204z > 0. )

(see C&R, p545, left column). However, as argued in Example 1 in Section 2, Hy ~ d7(q, S")/0q
does not imply 0Ha /00 = 0*7(q, S*)/0q00.

Proposition 3 (Chod and Rudi) If & has a bivariate normal distribution with o1 = 09 = 0,
then dr(G", S™)/do > 0.

Claim 2 The above Proposition 3 is false; there exists a counterexample. The expression of
dr(¢", S™)/do given by CER is erroneous.

(Note that BLB are able to show dm(¢", S")/do > 0 when £ is BVN which is allowed to take

negative values.)

Proof. We first drive the expression for dn(¢", S*)/do. Note that

dr(q", S")  on(q,S")
do a Oo

an(q, ")
dq

oq
o do

_h
Because 07 (g, gh)/3q|q:qh =0, so

dr(g",S")  on(q,S")

do - oo (10)

q=q"

We notice (g, S") given by C&R has typos (see P545, right column, lines 16-18); the correct

expression can be written as

_ 2, 2 _£)2 _
m(q,S") = —wq+E {51 Zb%ltfg?& IQl} +E { [(53%(1 _EQC;) + Q(&zzgj ) bq)} I9234}
2 2 d
- ee{ddee, |
\E { {(51 —&)? n & +&—bg) G+E+ 2d51§2] | }
8b(1 + d) 2(1 — d) ap(1—daz) |

4b(1 — d?) 8b(1 — d) '9234] '
(11)

— _wg+E { L (e + )2+ 524 (g - &)? |£21234} E [(51 + & — 2bg)?



By the integral transform given by (3), we have

210+2fi2

~n (216 + pu1 + p2)?

m(q, S = wq+ {/ / d(21)0(22)dzodz
( ) O’Up fi1—fi2 210211 8b1_d) (1) (2) S

20202 (206 + iy — pio)?
gf)(Zl)gﬁ(ZQ)dZQle
/Ml ,u2 /219 2[ 8b(1 + d)

_/ % 91(217Q)¢( D)[P(210 + 2fi2) — O(—210 — 2[61)]d21} :

00 A

$91(1,0)210(2) [ (210 + 2fiz) — B(—210 — 24in)ldz

1 —di N
——Jﬁﬁ@h@Mawww+ammm

+

_|_

(12)
This leads to
87r(§’USh) = A(J,IU,,O {/_C::l_ﬂ2 2()(1_—/122)0(”216 b+ 12)20(21) (210 + 2fin)d 21

+ /0:1 i gb(l__ﬁ:p)a(zﬁ + p1 + M2)2¢(21)¢(—219 — 2fiy)dz
L Ly L e it
L [ it et

J

J

+/OO :d&g% (21, 0)9(21)P(—210 — Qﬂl)dzl}

(0,0 AR (16 + 1y + po)?
2 P ¢(Zl)¢(Z2)dZQd21
Ua a, p {/ f1—fi2 /z10 211 8b(1 - d)

AOF22 (206 + iy — pi)?
¢(Zl)¢(22)d22d21
/Ml ;42/2’19 211 8b 1+d)

/oo 12_1) 91(21, q)p(21) [P (210 + 2fi2) — (_219_2/11)](121}'

Counterexample: Letting u; = 230,42 = 20,d = 0.5,b = 0.5,p = 0.8,01 = 02 = 0 =
4 and w = 213.333, we have ¢ = 80 and aw(q,§h)/aa|q:qh:80 = —7.19496 < 0. Also,
dr(g", ") /do|gn_go = —7.19496 < 0. Here

// F(1, z0)dardes = 1, 7L = 0.0173913, 22 = 0.2.
Q1234 H1 12
Od

Proposition 4 (Chod and Rudi). If£ has a bivariate normal distribution, then dg"/dp > 0.

Claim 3 The above Proposition 4 is false; there exists a counterexample. The expression of

dg"/dp given by CER is erroneous.



(Note that BLB do not discuss this result under BVN.)

Proof. By implicit differentiation, we have

dgh 0?m/dq0p

dp  r/%q |p

Because 827(q, S7)/0%q < 0, it remains to consider 82m(q, S")/0qdp. Using the following
integral transform (see P544, right column, lines 13-14)

&1 = po1z1 + porze + i, (13)
§o = —poaz1 + poazo + a2,

Figure 4 illustrates this space transformation, we can rewrite (¢, ") in (11) as

g 1
s ,Sh = —wg+-—" X
(q ) q A(O’l’ 0‘27 p)
00 220+72/p ( (0'1 - 0'2)21 + p(01 + 0'2)22 + p1 + MQ)

) (21)p(22)dz1d2o
{/(7172)/% /Z29’71/P 8b(1 — d)

. 0 /229+'Y2/ﬁ (Plor +02)21 + plo1 — 02)z2 + 11 — M2)2¢(21)¢(Z2)d21d22
(=m— “/2)/2ﬁ —200—v1/p 8b(1 + d)

> g4 21, 22, Q)
o 0(21)P(22)dz1d 2

/2 /229 'Yl/p 8b ]. — d) ( ) ( )

1 )

93 (21, 22, q)

— ¢(21)¢(Z2)dZ2d21
/52 Lry/@-i—@ )/p 8b 1- d)

> 226172/7 2 Zl,ZQ,Q)
_/61 /1 Sb ) Pee)dndz (14)
We have
o (q,S") / / 94 (21, 29,q)
Toq YT Aononp) dzd
dq v A(o1,09,p By 21/ 2(1 —d) = #(21)P(22)dz1d2
B
ga(21, 22, q)
o ?(21)p(22)d22dzy
/62 /zw/0+é vy 2(1—d)
#2042/
/ / 94 2 Zz)q)wzl)éf)(zz)dzld@}- (15)
1
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Taking the derivative with respect to p yields

*m(q, 5") 95 2’1,2’2)
Tap N 0'1,0'2, /2 /ZQG 'YI/P d) ¢(2'1)¢<22)d21d22

: M
+/~2 /21’7/9+E (@)/p ( _d) ¢(21)¢(22)d22d21

z20+72/p
/ / g5 L 22)) ¢(zl)¢(z2)d21dz2

017027

+/Bl g?( ;h’?( 2)(22) (220 + 72/p)d 22
+/BQ gz;zi’d;h1(zz)</>(zz)¢(—220—yl/ﬁ)d@}

AT U
Bo 220—v1/p 2(1 - )

0-1)0-2)

g4 21,227(]) ¢( )¢(22)d22d21

/51
B2 Jz1v/0+L(q)/p 21_d)

/ZQHW/P 94(z1, 2262)9)¢(21)¢(z2)dz1d22} )
(16)
where da
Ay(o1,09,p) = W,

By the integral transform given by (13), A(o1, 09, p) can be equally written as

/ $(22)[® (220 + 72/5) — B(— 220 — 71 /5)]d .
(—v1—72)/2p
Then this gives
N / s (22)6(22) (220 + 2/ )z
(=v1—72)/2p
+ / B (22)(22) (220 — 71 /5)]d 2.
(—v1—72)/2p

Counterexample: When p; = 100, uo = 1000,d = 0.992,b = 0.2,p = 0.9999,01 = 15,09 =
100 and w = 7242.96, we have the optimal §* = 830, 827 (q, S") /0q0p|,—gn—g30 = —0.00648758 <
0 and 07 (q, S")/0q|y—gr—ss0 = —47.4021. Then dg" /dp|n_ggp = —0.000136863 < 0. Here

// F(&1,&)derdes = 0.99999, T2 = 0.15, 22 = 0.1.
Q1234 M1 U2

a

Proposition 5 (Chod and Rudi). If € has a bivariate normal distribution and d =0, then
dr(q", S")/dp < 0.

11



Claim 4 The above Proposition 5 is false; there exists a counterexample. The expression of
dr(¢", S™)/dp given by CER is erroneous.

(Note that BLB are able to show dr (¢, S?)/dp < 0 when £ is allowed to take negative values.)

Proof. Notice (18) in C&R has typos, we give the right expression of (g, gh) under d = 0 as

following:
3 & +& €1+ & — 2bg)”
(g, 8" = —wq+E{ S E & 3 Slo]
Note that B B B
dr(@,5")  onl(q, S om(q. M| 9
dp p it dq g op

Because 07 (g, §h)/8q\q:qh = 0, we have

dr(q", ") _ om(q,5")

= . 17
” e I (1)
Substitute d = 0 into (14), and take the derivative with respect to p, we obtain
om(g,5")
dp
_ —A,(01,02,p) %
A2(01, 09, p)
0 20+72/b (5(5, — 5 2
[ [ e mmn t A o ) g o)
(=11—72)/2p J/ —2z20—71/p

) 220+y2/p (p(o1 + 02)z1 + p(o1 — 02) 29 + 11 — M2)2
+/ / P(21)P(22)dz1d 22
Y1=72)/2p /20— /P 8b

8b

_/ / il q)¢(21)¢(22)d22d21
2 217/094-@ 8b

0 Z29+72/p 2
- / / S T 9(21)$(22)d21dzo
B JB 8b

(
> z 72 ?
/ / 94 L =2 q>¢(21)¢(22)d21d22
,32 220—v1/p
B
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X
A(017027p)
© Z20+72/ﬁ A P + ~ + + +
X {/ / (plor — 02)z1 ,0(21[) 09)z2 + 1 M2)g5(21722)¢(Z1)¢(22)d21d22
(=71—72)/2p J —z20—71/p
oo 29,4 + 2b 2 .
+ [ Lk S)b D hy(29)0(22) (220 + 12/ )
(=71—2 /2p
= ,q) + 2bq)* )
(=v1—2)/2p 8
N oo /229+’Y2/P ( (0’1 + 0'2)21 + ,0(01 — 0'2)z2 + 1 — M?) y
(=v1=72)/2p J —220—71/p 4b
- 029 — + Dz
X(Jl = 24”((71 72)b Lo(21)p(z2)dz1d 2o
PP
= 2po122 + (01 + + i — pi2)? i
n (2p0122 + (01 gbz)w f1 — p2) ha(22)B(22) (220 + 72/ p)d 22
(=v1—2)/2p
o —2p0929 — 4 + oy — 1o)2 ]
+/ (—2po2z9 — (01 8;)72)71 g1 — ph2) hi(z2)¢(22)p(—220 — v1/p)dz2
(=m1— 72)/2;2
> (21, 22,
/ 14b2 q)gs(zh22)¢(Z1)¢(22)dZ1d22
52 —2z20—y1/p
1 > z 7z )
/~ / 1452 q)%(zb22)¢(Z1)¢(22)d22d21
B2 Jz1v/0+€(q)/p

20+72/P (2. 2
W% (21, 22)¢(21)(22)dz1dzo

|
m\g
§mm\

- [T D otea)oteat + /)
B1

oo 2 2
_/B g7(827 Q)h1(22)¢(2’2)¢(—229 - 71//3)dzg}.

Counterexample: When p; = 1,u0 = 0.05,6 = 0.01,p = 0.5,01 = 0.3,02 = 0.023 and
w = 0.498461, we have the optimal ¢ = 3 and 97 (q, S") /Oply—gn—z = 0.029046 > 0. Then
dr(g", S")/dp|n_s = 0.029046 > 0. Here

// F(&1, &)derdes = 0.984858, 72 = 0.3, 72 = 0.46.
Q1234 H1

M2
O

Proposition 9 (Chod and Rudi). There exists a Stackelberg equilibrium capacity ¢* maxi-

mizing the supplier’s profit ws(q), characterized by the following necessary conditions:

1+ x2 — 4bg
—f(xl, ZEQ)d."L‘QdZL‘l =c.
//9234(‘1) 2(1 - d)

If, furthermore, the random variable 1T€ has an increasing generalized failure rate , the nec-

essary condition is sufficient and q* is unique. The corresponding equilibrium resource price
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w* inducing the firm to order q* is obtained from w = fo234(q) %Zgbqf(azl,xg)dwgdwl.

The proof of second part (the sufficient condition) of the above Proposition 9 given by C&R

is incorrect. The following gives the explanation why their proof is not correct.

We make the following integral transform

1+ 22 =1,
T — T2 =1,
and let g(+) be the density function of ¢ = & + &. Then, from (19) in C&R,

s —4
dms(q) _ // wf(%xz)d@dxl _
Q234(q)

dg 2(1—ad)
CTr—4bqg (T . TH+n T—1
= — , dndr — ¢
/2bq4(1—d) S )

7 —4bg )
# ———¢g(7)dT — ¢ (see P547, left column, line -12.)
2bq 2<1 - d)

This implies that

d’ms(q)  bq /qu f(2bq+n 2bq — 1
dq2 1 — d 72bq ’ 2

2
b /T T+ T—N
- ] I : )dndT
/%ql—d N2 2

b
#* T4 [qu - g(2bq) — 2Pr(¢ > 2bq) | (see P547, left column, line -11.)

Thus, the proof of C&R breaks down.

)dn

Proposition 10 (Chod and Rudi). If £ has a bivariate normal distribution, the equilibrium

resource capacity and the supplier’s profit satisfy the following relationships:
(i) dg¢*/do; > 0 if and only if o; > —po,
(ii) dms(g*,w*)/do; > 0 if and only if o; > —po;,
(iii) d¢*/dp > 0, and

(iv) dms(g*, w*)/dp > 0.
Claim 5 The general conclusions of Proposition 10 are false; there exist counterexamples.

(Note that BLB are able to show part (ii) of the proposition under o1 = o2, when £ is allowed

to take negative values, but not the general case of o1 # o9 nor the other results.)

Proof Let G(q) = dms(q)/dg, the necessary condition for ¢* is

_ §1+ & —4bg _
G(q) = //9234((1) ﬂf@h&)d@d& —c=0.

14



Using the integral transform given by (13) we can rewrite G(q) as

9a(21, 22, q) — 2bg
Glo) = | / 6(1)(z2)d21d2
( ) 0'170'27 { o 220—1/p (].—d)
B z1,22,q) — 2b
+/ / 94 12 12 q)d ng(zl)gb(zQ)szdzl
Bo Jary/0+e(a)/p (1—d)
0o rzab+y2/p — 9
+[ / 94(21, 22, 9) © () bz)dz1dzs b — . (19)
. Ja 2(1—-4d)
The above equation is different from the counterpart in C&R:
& o —4
G(q) = /2b - 2ot e bqgf)(z)dz —c¢, (see P547, right column, line 10).
q—p1 =g 2(1—-4d)

where ¢ = \/ 0% + 05 + 20102p (see P544, right column, line 9). By using this incorrect
expression of G(q), C&R can obtain the results in Proposition 10 (see P547, right column and

P548, left column). In the remaining proof, we use (19) to arrive at different results.

For part (i), using implicit differentiation, we obtain d¢*/do; = —(0G/00;)/(0G/0q)|q=¢* -
Because 75(g) has an interior maximum at ¢*, we have 9*75(q)/0¢°| =+ = 0G(q)/9q|q=q= < 0.
Thus, to give a counterexample to show (i) does not hold with o1 > —poe, it suffices to give a
numerical example such that 0G(q)/001]q=¢~ < 0. To this end, we first derive 0G(q)/001. We

have
oG +
5 (Q) _ {/ / le 22p¢(21)¢(22)d21d22
01 017027 2 290— ’yl/p d)

e 2P+ 2P
+/ / o (21)(22)d21dze
By J21v/0+0(q)/p 2(1—ad)

oo r220+v2/p , 5 5
+ / / ApT 2P 22p¢(21)¢(22)d21d22
1 1

21— d)
00 22909p + 102 + 2 — 4bgq "
_ g T
i /32 o 2(1 —d)o1p P(22)p(—22 F )dzo

A bg 22109 {(q) v, Uq)
_ - d
+/”2 1—d<9(0’1 + 09)? * plo +02))¢(21)¢(219 - p ) b
_Ag (01,02,p / / ga(21, 22,q) — 2bq
z 29)dz1dz
AQ 0'1,0-27 { B2 220—v1/p (1 _d) QS( 1)¢( 2) e

B 21, 22,q) — 2b
+/ / g4 12 12 q)d q¢(21)¢(22)d22d21
B2 Jz1v/0+L(q)/p ( - )

o0 2204%2/0 g (21, 20,q) — 2bq
+/1 /1 2(1—d) ¢(Z1)¢)(2:2)d2:1d2’2 5

where

~p(22)P(—220 — 71/p)dza.
—y1—72)/2p 1P

dA(o1, 09, &
A01(01702ap) = (01 & p) = _[ n

dO’l
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Counterexample Let pu; = 20, pug = 15, 01 =5, 02 = 3, p = 0.1, d = 0.5, b = 0.2,
and ¢ = 19.0007. We have ¢* = 20, 0G(q)/001|q=q==20 = —0.121233 and 0G(q)/0q|q=q+=20 =
= —0.204913 < 0. Here

// f(&1,&2)dE1dEs = 0.999968, — = 0.25, =0.2.
Q1234 NQ

For part (ii), it follows from m4(q) = (w(q) — ¢)q and

= // Mﬂ&,&)d&d&
Q234(q)

2(1—-4d)
that
+ 2b
// S+& - qf(€1a§2)d§2dfl —cq. (20)
Q234(q) 2 1-— d)
On the other hand,
drs(q*, w*)  Oms(q,w(q)) oms(q,w(q)) oq*
dUi 802' =q* 8(] =q* aai

Because 07,(q,w(q))/0q|q = 0, we have

dﬂ's(q*, UJ*) _ 8775((]7 w(Q))
do; Jo;

(21)

9=q*
To give a counterexample to show part (ii) fails hold with o1 > —pos, we first derive 0ms(q, w(q))/do1.
By the integral transform given by (13), we have

_ 94 (21, 22,q)
ms(q,w(q) = Alor, 0.7 {/52 /229 71/{) 20— d) o (21)0(22)dz1d 2o

p1
g4 21,%2,4 )
G ¢(21)d(22)dz1dz
/2 /zw/e-;-e V/p 2(1—4d) (21)¢(22)dz1d22

229 2/
/ / ele PEL 211’ZQé)Q)¢(z1)¢(22)dzld22}—Cq’ (22)

SO
Oms(q, w(q)) / / 21,0 + 220
= z 29)dz1dz
doy 0'1,0'27 ) N 20— ’\/1/p 1 —d) ¢( 1)¢( 2) 1022
1 oo +
+/ / lel Z;p¢(21)¢(22)d21d2’2
B2 Jz1v/0+L(q) - )
o Z29+72/p 2P+ 2
+/ /~ 1P1 5p¢(21)¢(2’2)d21d22
B Jp - )
* 2220’2/) + y109 4 p2 — 2bg " }
+ = z —290 — —=)dz
\/ﬁz 2(1 — d)01p (b( 1)¢( 2 F; ) 2
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Aal 01,02,p g4 217227Q)
A2(01.09.0) {/2 /Z29 M/p 20— d) o 0(21)9(22)d21d2g

B
94 21722,61)
T —————"=p(z1)p(22)dzadz;
/52 /zn/w e 2(1=d)

z20+72/P
/1 / g4 2117—2265)(]) ¢(21)¢(Z2)d2’1d22} .

Counterexample Letting 1 =20, puo =15, 01 =5, 00 =3, p=0.1,d=0.5, b =0.2, and
¢ =19.0007, we obtain ¢* = 20 and dmy(¢*,w*)/do1|g=20 = —2.40872 < 0. Here

// (€1, €)dErdE, = 0.999968, L = 0.25, 22 = 0.2.
Q1234 H1 o

For part (iii), similar to part (i), we have that d¢*/dp = —0G/0p/(0G/Dq)|q=q+. Because
75(g) has an interior maximum at ¢*, then 8°m;(q)/0¢?|4=q» = 0G/8q|q=¢» < 0. Thus to give
a counterexample to show that (iii) does not hold, it suffices to give a numerical example such
that 0G(q)/(0p)|q=¢+ < 0. We have 0G/0p as follows:

0G(q) 95 21722)
op  A(o1,09,p {/2 /Z29 s 20— d) S 0(21)9(22)d21d 22

o g5(21, 22)
91— d) dzod
+/ﬂ~2 /217/04_[ (q)/p ( — d) ¢(21)¢(Z2) 22027

220 2/
A A O

[ Wm( 2)6(22)6(220 + 72/ )2

I o)olea)o 220 — 1/

B _

Ap(0'1,0'2a / / 21722’ )_qu
dzd
Aonon { oy 2y PEoRIAnd

B poo
ga(21, 22,q) — 2bq
+/ / P(21)P(22)dzodzy
5, Janjoreqyp  2(1—d)

220+72/p B
/51 /6 - Zl’(zf’—)d) 2bq¢(zl)¢(z2)d21d22}.

Counterexample Let pu; =25, pug =15, 01 =5, g9 =3, p=0.9992, d = 0.5, b = 0.0001,
and ¢ = 39.9952. We have ¢* = 12, 0G(q)/0p|q=¢g==12 = —0.000583854 and 0G(q)/0q|g=q+=12 =
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—0.0004. Then dg*/dp|g==12 = —1.45963 < 0. Here

// F(&1,&)derdes = 0.999999, 72 = 0.2, 72 = 0.2.
Q1234 M1 H2
Finally, we consider part (iv) . Note that
drs(q” w') _ Oms(g,w(a))| | Om(gw())| ¢
dp op . dq =g 0P

Because 075(q, w(q))/0q|q=q+ = 0, it suffices to consider Oms(q, w(q))/0p|q=¢+. From (15) and
(22), we have

oms(q,w(a) _ 9*m(q, ")
op q 0qdp

Counterexample Letting puy = 100, us = 1000,6 = 0.2, p = 0.9999,d = 0.992, 01 = 15,09 =
100 and w = 7242.96, we obtain ¢" = 830 and 92w (", S")/8qdp = —0.519006 < 0. Then
dms(q*, w*)/dplg==g30 = —430.775 < 0. Here

// F(&1,&)dErdes = 0.99999, T2 = 0.15, 22 = 0.1.
Q1234 Ml u2
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