
Eur J Neurosci. 2020;52:2889–2904.	﻿	     |  2889wileyonlinelibrary.com/journal/ejn

Received: 28 May 2019  |  Revised: 18 January 2020  |  Accepted: 10 February 2020

DOI: 10.1111/ejn.14707  

R E S E A R C H  R E P O R T

Modulation change detection in human auditory cortex: Evidence 
for asymmetric, non-linear edge detection

Seung-Goo Kim1   |   David Poeppel2,3,4  |   Tobias Overath1,5,6

© 2020 Federation of European Neuroscience Societies and John Wiley & Sons Ltd

Edited by Dr. Sophie Molholm. 

The peer review history for this article is available at https://publons.com/publon/10.1111/ejn.14707 

Abbreviations: 2I2AFC, two-interval two-alternative forced-choice; ANOVA, analysis of variance; CTPC, cross-trial phase coherence; DSS, denoising 
source separation; ICA, independent component analysis; IIR, infinite impulse response; ISI, interstimulus interval; ITC, inter-trial correlation; M/EEG, 
magneto-/electro-encephalography; MEG, magnetoencephalography; MMN, mismatch negativity; SD, standard deviation; SNS, sensor noise suppression; 
TSPCA, time-shift principal component analysis algorithm.

1Department of Psychology and 
Neuroscience, Duke University, Durham, 
NC, USA
2Department of Psychology, New York 
University, New York, NY, USA
3Center for Neural Science, New York 
University, New York, NY, USA
4Max Planck Institute for Empirical 
Aesthetics, Frankfurt, Germany
5Duke Institute for Brain Sciences, Duke 
University, Durham, NC, USA
6Center for Cognitive Neuroscience, Duke 
University, Durham, NC, USA

Correspondence
Seung-Goo Kim and Tobias Overath, 308 
Research Drive, Duke University, Duke Box 
90999, Durham, NC 27708.
Emails: solleo@gmail.com; t.overath@
duke.edu

Funding information
National Institutes of Health, Grant/Award 
Number: R01DC05660

Abstract
Changes in modulation rate are important cues for parsing acoustic signals, such 
as speech. We parametrically controlled modulation rate via the correlation coeffi-
cient (r) of amplitude spectra across fixed frequency channels between adjacent time 
frames: broadband modulation spectra are biased toward slow modulate rates with 
increasing r, and vice versa. By concatenating segments with different r, acoustic 
changes of various directions (e.g., changes from low to high correlation coefficients, 
that is, random-to-correlated or vice versa) and sizes (e.g., changes from low to high 
or from medium to high correlation coefficients) can be obtained. Participants lis-
tened to sound blocks and detected changes in correlation while MEG was recorded. 
Evoked responses to changes in correlation demonstrated (a) an asymmetric repre-
sentation of change direction: random-to-correlated changes produced a prominent 
evoked field around 180 ms, while correlated-to-random changes evoked an earlier 
response with peaks at around 70 and 120 ms, whose topographies resemble those of 
the canonical P50m and N100m responses, respectively, and (b) a highly non-linear 
representation of correlation structure, whereby even small changes involving seg-
ments with a high correlation coefficient were much more salient than relatively large 
changes that did not involve segments with high correlation coefficients. Induced re-
sponses revealed phase tracking in the delta and theta frequency bands for the high 
correlation stimuli. The results confirm a high sensitivity for low modulation rates 
in human auditory cortex, both in terms of their representation and their segregation 
from other modulation rates.
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1  |   INTRODUCTION

The detection of changes in the acoustic environment is one 
of the most important tasks of the auditory system. Temporal 
modulations are one of the most prominent features of nat-
ural sounds; as such, different modulation rates can be 
powerful segmentation cues for acoustic signals, enabling 
listeners to extract relevant parts of the acoustic information. 
For example, different aspects of speech signals can be at-
tributed to specific modulation rates: the rate of syllables is 
about an order of magnitude slower (~4–7 Hz) than that of 
some phonemes (~30–50 Hz) (Pickett, 1999). However, lit-
tle is known about the distinct neural mechanisms that code 
transitions between modulation rates at the level of cortex 
(e.g., their temporal, topographic and anatomic character-
istics). Furthermore, the representation of distinct modula-
tion rates is likely sub-served by different mechanisms than 
those segregating between modulation rates. That is, while 
there is evidence for periodotopic organization in the mid-
brain (Baumann et al., 2011) and primary auditory cortex 
(Baumann et al., 2015), segregating different modulation 
rates seems to recruit comparative mechanisms beyond pri-
mary auditory cortex (Barascud, Pearce, Griffiths, Friston, 
& Chait, 2016; Chait, Poeppel, Cheveigné, & Simon, 2007; 
Chait, Poeppel, & Simon, 2008; Overath et al., 2010; Teng, 
Tian, Doelling, & Poeppel, 2018; Teng, Tian, Rowland, & 
Poeppel, 2017). Here, we investigate the temporal neural cor-
relates of changes between modulation rates in human audi-
tory cortex using magnetoencephalography (MEG).

Past studies investigating auditory change detection have 
drawn on the large body of work on the mismatch negativ-
ity (MMN), which is the M/EEG evoked response to rare 
sounds (deviants) that are acoustically different from other, 
frequently presented sounds (standards). The acoustic attri-
butes driving mismatch responses range from local stimulus 
features (e.g., the loudness of a deviant compared with a stan-
dard stimulus) to relatively abstract patterns (e.g., sequences 
of words or tones that can function as standards or deviants) 
(e.g., Näätänen, Paavilainen, Rinne, & Alho, 2007; Winkler, 
Zuijen, Sussman, Horvath, & Näätänen, 2006; van Zuijen, 
Sussman, Winkler, Näätänen, & Tervaniemi, 2004).

A slightly different approach builds on the assumption 
that the auditory system represents local stimulus statistics 
and distinguishes between the emergence or disappearance of 
“objects” in an auditory stream. Previous studies have demon-
strated distinct psychoacoustic processing asymmetries, both 
in terms of discrimination between acoustic tokens (Cusack, 
Deeks, Aikman, & Carlyon, 2004) and in terms of the neural 
correlates of acoustic changes (Chait et al., 2007, 2008). For 
example, previous studies (Barascud et al., 2016; Chait et al., 
2007, 2008; Southwell et al., 2017) showed that order-to-dis-
order (i.e., disappearing pattern) and disorder-to-order 
(emerging pattern) transitions within rapid streams of brief 

tone pips have distinct temporal and topographic characteris-
tics. More recently, it was found that repeated patterns of tone 
pips induce tonic (sustained) neural activity explaining asym-
metrical transitional effects (Barascud et al., 2016; Southwell 
et al., 2017). Similarly, transitions in the coherence of acous-
tic textures, another form of a transient or acoustic edge, are 
more salient when the transition reflects a change to more 
coherence than vice versa (Overath et al., 2010).

In addition to the above studies, several studies have 
demonstrated a compelling sensitivity to different modula-
tion rates at the level of human auditory cortex across differ-
ent techniques (Boemio, Fromm, Braun, & Poeppel, 2005; 
Giraud et al., 2000; Harms, Guinan, Sigalovsky, & Melcher, 
2005; Harms & Melcher, 2003; Overath, Kumar, Kriegstein, 
& Griffiths, 2008; Overath, Zhang, Sanes, & Poeppel, 2012; 
Teng et al., 2017; Wang et al., 2012). This is similar in non-hu-
man species, where the preferred rate for which phase-lock-
ing or synchronized firing occurs decreases as one ascends 
the neuraxis (Bartlett & Wang, 2007; Bendor & Wang, 2007; 
Lu, Liang, & Wang, 2001).

The analysis of induced neural responses, such as phase 
coherence (Howard & Poeppel, 2010; Luo & Poeppel, 2007), 
has proven a promising tool within the M/EEG literature to 
disambiguate the representation of individual acoustic sig-
nals at the neural level; this is beyond the scope of more clas-
sical evoked response analyses, which rely on the averaging 
of multiple presentations of a given stimulus or stimulus class 
(thereby neglecting phase information). By virtue of its na-
ture, amplitude modulations are ideally suited for investigat-
ing neural phase tracking or neural entrainment (Galambos, 
Makeig, & Talmachoff, 1981; Ross, Herdman, & Pantev, 
2005; Wang et al., 2012). Thus, phase coherence, or phase 
tracking, can be used as a stimulus-specific neural marker 
that distinguishes between signals of different modulation 
rates (Gross, 2014).

Experimental designs that allow both analysis techniques 
(evoked and induced response analyses) enable the inves-
tigation of both the neural representation and segregation 
of specific aspects of acoustic signals, such as modulation 
rate. To this end, the current MEG study employed a design 
similar to that of Overath et al. (2010), whereby changes in 
modulation rate (assessed via complex correlation structure, 
as in Overath et al., 2008) can be investigated via evoked re-
sponses, while the representation of individual modulation 
rates can be elucidated via response analyses such as phase 
coherence.

We hypothesized—based on the assumption that auditory 
cortex is sensitive to ongoing stimulus statistics—that we 
would observe similar processing asymmetries as described 
previously (Barascud et al., 2016; Chait et al., 2007, 2008; 
Overath et al., 2010), such that transitions to lower correlation 
coefficients (correlated-to-random) would reveal different re-
sponse characteristics from transitions to higher correlation 
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coefficients (random-to-correlated). Furthermore, we ex-
pected to observe a dissociation with respect to phase coher-
ence, such that sounds with high correlation coefficients, that 
is, slow temporal modulations, would reveal strong phase co-
herence in low-frequency bands (e.g., delta and theta bands), 
while the processing of sounds with low correlation coeffi-
cients, that is, fast temporal modulations, would be character-
ized by phase coherence in higher frequency bands (e.g., the 
low gamma band).

2  |   MATERIALS AND METHODS

2.1  |  Participants

Sixteen participants (two left-handed, mean age: 23, range: 
18–33, eight females) took part in the study. Data from three 
participants had to be excluded because of excessive data ar-
tifacts or chance task performance during the MEG record-
ing, leaving a total of 13 participants (two left-handed, mean 
age: 24, range: 18–33, five females) for the main analysis. 
Participants provided written informed consent in accord-
ance with the New York University Committee on Activities 
involving Human Subjects.

2.2  |  Stimuli

The stimuli were based on Overath et al. (Overath et al., 
2008), and a visual example is depicted in Figure  1. All 
stimuli were created digitally using MATLAB (RRID: 
RRID:SCR_001622; http://www.mathw​orks.com) software 
at a sampling rate of 44.1 kHz and 16-bit resolution. Each 
sound consisted of 20 sinusoids pseudorandomly chosen 
from a pool of 101 logarithmically spaced frequencies be-
tween 246 and 4,435  Hz. The particular parameters were 
chosen so as to approximate respective features in naturally 
occurring sounds, which typically have complex spectra with 
multiple frequencies present. The passband (246–4,435 Hz) 
covers the acoustic range of maximal acoustic sensitivity in 
the human auditory system, and the number and spacing of 
frequencies within this pool are a result of this range.

The amplitude spectrum was defined for each 20 ms frame 
such that the correlation from one frame to the next was oper-
ationalized as the Pearson correlation r:

where x is a vector with the amplitude values (in dB) of the 20 
frequency components in a frame, y is a vector with amplitude 
values (in dB) of the 20 frequency components in the consec-
utive frame, n is the number of frequencies, sx and sy represent 

the standard deviations of x and y, and x and y are the arithmetic 
means of x and y, respectively. Thus, the amplitude spectrum of 
a given sound varied with a specified correlation coefficient r 
between the 20 ms segments. Importantly, the mean amplitude 
(65 dB) and standard deviation (SD = 15) were identical for 
each frequency component in a given sound and across cor-
relation levels. Linear spline interpolation amplitude transitions 
were applied between frames in the time domain so that sounds 
were continuous and did not have any sudden amplitude tran-
sients. This was applied in order to render the sounds more sim-
ilar to most ethological sounds; however, some speech sounds 
like plosives or consonant–vowel transitions do display ampli-
tude discontinuities (Rogers, 2000).

Note that modulation rate here is not defined in its more 
common form (i.e., in terms of the rate of sinusoidal am-
plitude modulation of a single carrier), but with respect to 
the overall amplitude modulation across multiple carriers, 
as specified by the Pearson correlation of amplitude spectra 
between successive 20 ms frames. Therefore, the correlation 
coefficient is related to the spectra of the modulation rates 
(Figure 1d): the higher the correlation coefficient, the more 
the spectrum of the envelope is biased toward to the slower 
modulation rates and vice versa.

We used four different values for r  =  0, .5, .8 and .95. 
These are based on their roughly linear relationship with re-
spect to (a) Fisher's z-transform (Fisher, 1915) of the parame-
ter values (Z(r) = 0, 0.55, 1.1, 1.83) and (b) log–log slopes of 
their corresponding envelope modulation spectra (1–20 Hz; 
−0.07, 0.34, −0.60, −0.84). We predicted that this linear re-
lationship (roughly equal step size between r-values) would 
result in roughly linearly spaced behavioral and neural re-
sponse characteristics.

For a sound with a set correlation between adjacent time 
frames (e.g., r = .95), the correlation between a given frame 
and subsequent frames decays exponentially with the number 
of time frames (or lag). The window length of this decay pro-
cess is defined as the duration (in ms) at which the correlation 
between any two time frames reaches a minimum reference 
value (r  =  .2), which was determined for its indistinguish-
ability from r = 0 as found in our previous study (Overath 
et al., 2008), from its initial value r between adjacent time 
frames. The window length is relevant to a “temporal inte-
gration window” of non-primary auditory neurons proposed 
in Poeppel (2003): a neuron should only respond to sounds 
whose duration of correlation matches or surpasses its tem-
poral integration window. The window length is calculated 
by the following equation:

where w is window length for a reference value of r = .2, d is 
frame duration, and ln is the natural logarithm to the base e. For 
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the parameters used in the MEG study (r = 0, .5, .8, .95), the 
corresponding w(0.2) is 0, 46, 144 and 628 ms.

Audio files of exemplar stimuli are available at https://osf.
io/frdqb​/.

2.3  |  Experimental design

Prior to the MEG recordings, participants were familiarized 
with the stimuli and then performed two-interval two-alter-
native forced-choice (2I2AFC) psychophysics with r = 0 as 
the reference sound and one of six target sounds (r = 0, .2, 
.4, .6, .8 and .95). The target and reference sounds were se-
quentially presented in a random order. Participants were to 
indicate which of the two sounds was more correlated or had 
slower amplitude changes. Stimuli were 2 s long and were 
different exemplars from the ones subsequently used in the 

MEG experiment. Psychophysics ensured that participants 
were able to distinguish a highly correlated sound from the 
reference sound; participants needed to reach at least 90% 
correct performance for the strongest correlation (r = .95) to 
be included in the MEG study.

The MEG study used four levels of correlation: r  =  0, 
.5, .8 and .95. The four levels yielded four possible absolute 
change sizes between adjacent sound segments:

Change0: 0 ↔ 0, 0.5 ↔ 0.5, 0.8 ↔ 0.8, 0.95 ↔ 0.95
Change1: 0 ↔ 0.5, 0.5 ↔ 0.8, 0.8 ↔ 0.95
Change2: 0 ↔ 0.8, 0.5 ↔ 0.95
Change3: 0 ↔ 0.95
The bidirectional arrows indicate that, for example, a 

change from r = 0 to r = .95 has the same absolute change 
size as a change from r = .95 to r = 0.

So as to enable an investigation of the representation of 
correlation structure via phase coherence (Luo & Poeppel, 

F I G U R E  1   Schematic of the stimulus. (a) The modulation magnitude values of the 20-ms frames are depicted. Note that these are only relative 
magnitudes, as the actual loudness of the sounds in the MEG scanner was scaled to approximately 75 dB. The 20 rows indicate frequency channels 
(whose actual values in Hz varied between sound blocks, see Materials and Methods). (b) Cochleogram of a stimulus generated from the modulation 
magnitude shown in a (64 gammatone filters over 20–8000 Hz; low-frequency range (<125 Hz) is truncated for visualization). (c) Power spectrum of 
the sound with the frequencies shown in b, calculated separately for the four levels of correlation. (d) Modulation spectra averaged across gammatone 
filters for four levels of correlations. Modulation spectra were computed for each segment and averaged across exemplars. Note that the decay of the 
modulation power over frequency accelerates as r increases. Also, note that the peaks at 50 Hz were originated from the length of 20-ms frames but 
they were not reflected in the MEG data after preprocessing (see Figure S1) [Colour figure can be viewed at wileyonlinelibrary.com]

https://osf.io/frdqb/
https://osf.io/frdqb/
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2007), each level of correlation was represented by three 
unique correlation structures (i.e., three unique exemplars 
for each of the four levels). This resulted in 12 (three ex-
emplars  ×  4 levels) unique correlation structures with 150 
frames, where each corresponding sound segment was 3  s 
long (150 frames with 20 ms frame lengths). The 12 unique 
correlation structures were concatenated in a pseudo-ran-
domized order to yield a 36 s long sound block (see Figure 1).

There were 40 sound blocks in total. In each of four ses-
sions, 10 sound blocks were presented in a pseudo-random-
ized order. The frequency composition of each sound block 
was selected randomly but was unique and stayed fixed within 
a sound block. Thus, each correlation structure was presented 
40 times overall (once in each sound block), but each time 
within the context of a different frequency composition.

The task of participants was to press a response button 
whenever they perceived a change in correlation, irrespective 
of the direction of that change (i.e., whether it was from less 
correlated to more correlated or vice versa). A time window 
for a valid response was defined as 100–1,500 ms after tran-
sition. Furthermore, to minimize eye-related artifacts during 
trials, participants were asked to close their eyes during the 
sound blocks, open them during the 10-s gaps between sound 
blocks and close them in time for the beginning of the next 
sound block.

2.4  |  Data acquisition and analysis

During the MEG recording, the stimuli were delivered using 
Etymotic ER3A insert earphones calibrated to have a flat fre-
quency response in the MEG setup. The signals were pre-
sented at a loudness level of approximately 75 dB. Data were 
acquired with a 160-channel whole-head MEG system (KIT). 
Three reference channels recorded environmental noise, 
while the remaining 157 channels recorded neuromagnetic 
activity. The data were sampled at 1,000 Hz and filtered on-
line using a 1–200 Hz passband filter with a notch at 60 Hz.

2.5  |  Preprocessing

The external noise in the data was suppressed by remov-
ing principle components that are correlated with reference 
channels using the time-shift principal component analy-
sis algorithm (TSPCA) (de Cheveigné & Simon, 2007). 
Subsequently, sensor-specific noise (i.e., uncorrelated with 
neighboring sensors) was suppressed using sensor noise sup-
pression (SNS) with 10 neighbors defined (de Cheveigné & 
Simon, 2008).

To suppress physiological artifacts, independent com-
ponent analysis (ICA) was applied to the whole data after 
an offline bandpass filtering of 1–60  Hz using a two-pass 

4th-order Butterworth infinite impulse response (IIR) fil-
ter and down-sampling at 200  Hz using FieldTrip (RRID: 
SCR_004849; http://www.field​tript​oolbox.org/) (Oostenveld, 
Fries, Maris, & Schoffelen, 2011). ICs with stereotypical to-
pology, spectrum and peak-aligned responses that are asso-
ciated to cardiac artifacts (mostly two) and eye movement 
artifacts (mostly two to three) were manually labeled and the 
whole data was reconstructed without those ICs.

2.6  |  Evoked response analysis

To extract a multivariate component that is most reliably 
evoked by the stimuli, we used denoising source separation 
(DSS) (de Cheveigne & Simon, 2008). For each epoch, we 
first subtracted the mean of the baseline period [−0.2 0] sec. 
Then, only the post-stimulus epoch [0, 0.5] sec was fed into 
the DSS algorithm for each condition (e.g., 0 → 0, 0 → 0.5, 
0 → 0.8, and 0 → 0.95). Only the first DSS component (the 
most prominently evoked, “DSS1”) was used in the further 
analysis. As the sign (or polarity) of DSS components is de-
termined arbitrarily in conjunction with their spatial weights, 
the sign of a given DSS component needs to be adjusted for 
meaningful comparisons across conditions and participants. 
This is typically achieved by taking an averaged time-locked 
MEG response as a reference and flipping signs of DSS com-
ponents to maximize correlation coefficients with the refer-
ence. However, certain transitions (e.g., 0 → 0.5) evoked no 
discernible peaks in some subjects, preventing the meaning-
ful choice of a fixed sign. Thus, we instead took the absolute 
value of the DSS time course, which allows a comparison 
across conditions and participants. This is similar to root-
mean-square (RMS) approaches for MEG time-series data 
(Ding, Melloni, Zhang, Tian, & Poeppel, 2015).

2.7  |  Induced response analysis

We used two related but complementary measures of phase 
coherence across trials: cross-trial phase coherence (CTPC) 
and inter-trial correlation (ITC).

CTPC at time t and frequency f is given by:

where θ (n,t,f ) is a phase angle at time t, frequency f, trial n and 
N is the total number of trials (Luo & Poeppel, 2007). When all 
phases are consistent across trials, the CTPC is one. When all 
phases are completely random, the CTPC is zero. To estimate 
phases, a Morlet wavelet transform was applied to epochs be-
tween [−1, 4] sec with a 50-ms step over 24 log-linear frequency 

CTPC (t,f )=

(
1

N

N∑

n=1

cos θ (n,t,f )

)2

+

(
1

N

N∑

n=1

sin θ (n,t,f )

)2

,

info:x-wiley/rrid/RRID:%20SCR_004849
info:x-wiley/rrid/RRID:%20SCR_004849
http://www.fieldtriptoolbox.org/
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bins from 1 to 60 Hz. The number of cycles (which controls 
Gaussian taper width) linearly increased from 3 to 11 to con-
trol temporal smoothness across frequency bins. We computed 
CTPC within each exemplar and averaged for each correlation 
level (i.e., within-CTPC). We also computed CTPC across dif-
ferent exemplars of a given correlation level (i.e., across-CTPC) 
to estimate chance level CTPC. To match the number of trials, 
an equal number of trials were drawn from each exemplar for 
100 times then averaged.

Inter-trial correlation is given by the average Pearson cor-
relation of filtered signals (Ding & Simon, 2013) as:

where f is a frequency bin, N is the total number of trials, corr is 
the Pearson product, and yi,f is the i-th trial MEG signal filtered 
at the frequency bin f. For five frequency bands (δ, 1–3 Hz; θ, 
4–7 Hz; α, 8–12 Hz; β, 13–29 Hz; γ, 30–60 Hz), a sinc-win-
dowed finite impulse response filter was applied to the whole 
data to avoid edge artifacts. Similar to CTPC, within-ITC was 
computed from trials of the same exemplar and across-ITC 
was computed from trials with different exemplars (but same 
correlation level). ITC measures phase coherence across trials 
similarly to CTPC, but as it does not use Fourier transform, it is 
computationally more efficient.

2.8  |  Statistical inference

For behavioral measures and evoked responses, we tested the 
effect of conditions and transitions using different two-way 
repeated-measures analysis of variance (ANOVA) models. 
Specifically, in the first model, which is faithful to the 4-by-4 
design, we modeled the Previous Level and the Current Level 
as two within factors. The main effect of the Previous Level 
is an averaged difference in evoked responses across con-
ditions with different previous correlation levels (i.e., dif-
ferences between 0 → 0.95 vs. 0.5 → 0.95, vs. 0.8 → 0.95) 
whereas the main effect of the Current Level is an averaged 
difference across conditions with different current correla-
tion levels (i.e., differences between 0 → 0 vs. 0 → 0.5, vs. 
0 → 0.8).

In the second model, which is based on our assumption 
that the detection mechanism is sensitive to amount of change 
in r, we modeled the Direction (positive or negative) and 
Absolute Step Size (1, 2, or 3) of changes as two within fac-
tors. For this, behavioral and neuronal measures in the 4-by-4 
cells were averaged according to the change direction and step 
size to fit into a 2-by-3 matrix. For example, a measure for 
the first cell (“Positive” x “1”) is an average of three change 
conditions (0 → 0.5, 0.5 → 0.8, and 0.8 → 0.95). Measures 
from Change0 conditions without changes (e.g., 0 → 0 and 

0.5  →  0.5) were not included in this model. It should be 
noted that averaging across conditions here is only intended 
to compare conditions diagonally (in the 4-by-4 design ma-
trix), which is not possible in the first model. We will discuss 
differences between conditions with the same Direction and 
Absolute Step Size later.

For induced responses, we used one-sample t tests to test 
whether phase tracking (CTPC) is significant in the respec-
tive conditions and a one-way repeated-measures ANOVA 
with the Current Level as a within-subjects factor to test 
whether phase tracking is different across correlation levels.

To perform statistical inference with multiple compar-
ison correction based on cluster-based permutation (Maris 
& Oostenveld, 2007), we used Minimum Norm Estimation 
(MNE)-Python (RRID:SCR_005972; https://marti​nos.org/mne/) 
(Gramfort et al., 2013). 100,000 randomizations (or full permu-
tations, whichever was smaller) were performed to compute 
p-values. A cluster-forming threshold was determined based on 
a parametric, uncorrected p-value of .001 and extent threshold of 
10 ms. Family-wise significance level was set at p < .05, and the 
Bonferroni correction was further applied where necessary.

3  |   RESULTS

3.1  |  Behavioral results

The behavioral data in the MEG study were analyzed in 
terms of d’ performance (Macmillan & Kaplan, 1985), 
where responses to Change0 transitions served as the 
false alarm rate. The data revealed that changes in-
volving the highest correlation coefficient (r  =  .95) 
were most salient (Figure  2). This was confirmed by 

ITC (f )=
1

N (N−1)

∑

i≠j

corr
(
yi,f ,yj,f

)
,

F I G U R E  2   Behavioral performance. Mean d-prime scores for 
all types of transitions are shown in 4-by-4 matrix [Colour figure can 
be viewed at wileyonlinelibrary.com]

info:x-wiley/rrid/RRID:SCR_005972
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a repeated-measures ANOVA model on 12 measures 
(off-diagonal elements only) with factors of Previous 
Level and Current Level. Main effects of Previous Level 
(F1.06, 12.70 =67.82, 𝜂2

p
=0.849, p<10−14) and Current 

Levels (F1.06, 12.70 =117.54, 𝜂2
p
=0.907, p<10−17) were 

highly significant after Greenhouse–Geisser correc-
tion, and they were driven by r  =  .95 (Bonferroni-
corrected p  <  10–5 for all cases of post hoc pairwise 
comparison for the main effects). The interaction between 
Previous Level and Current Level was also significant 
(F3.17, 38.12 =283.76, 𝜂2

p
=0.959, p<10−70), which was due 

to differences between conditions with the same Current 
Level but different Previous Levels or vice versa.

Furthermore, the average d’ in the 4-by-4 matrix was 
symmetric to the diagonal, suggesting little effect of the 
direction of changes. This was tested by a repeated-mea-
sures ANOVA model with factors Direction (positive, neg-
ative) and Absolute Step Size (1, 2, 3). There was no main 
effect of Direction (F0.42, 5.05 =2.93, 𝜂2

p
=0.196, p<0.113),  

but a significant main effect of Absolute Step Size 
(F0.84, 10.09 =586.60, 𝜂2

p
=0.979, p<10−12) and interaction 

(F0.84, 10.09 =8.96, �2
p
=0.427, p=0.002). Post hoc compar-

isons revealed that this was driven by step sizes involving 
r  =  .95. Thus, contrary to our prediction, transitions with 
the same nominal step size (e.g., 0 → 0.5 vs. 0.8 → 0.95) 
did not have the same behavioral salience. One-way repeat-
ed-measures ANOVA models that were tested on each step 
size revealed that there were significant differences within 
each set of conditions with the same nominal step size 
(F1.40, 21.10 =96.99, 𝜂2

p
=0.866, p<10−13 for Step size = −1;  

F1.54, 23.23 =60.48, 𝜂2
p
=0.930, p<10−13 for Step size = +1;  

F1, 15 =30.33, 𝜂2
p
=0.803, p<10−5 for Step size = −2; 

F1, 15 =61.36, 𝜂2
p
=0.804, p<10−5 for Step size = +2; all 

Bonferroni corrected).

3.2  |  Evoked MEG responses

Figure 3 shows the absolute time course of the DSS1 compo-
nent for conditions with positive and negative changes in cor-
relation, respectively. Similar to the behavioral results, only 
those positive changes involving r = .95 showed distinctive 
effects. However, in contrast to the behavioral results, nega-
tive changes involving r  =  .95 evoked less prominent and 
qualitatively different responses.

Separate two-way repeated-measures ANOVAs model-
ing either the correlation levels (Previous Level x Current 
Level) or the transitions (Direction x Absolute Step) found 
significant main effects and interactions (Figures 4 and 5). 
The significant effect at around 150–200 ms was attributed 
to the prominent response to positive changes to r =  .95, 
as revealed by post hoc pairwise comparisons. This effect 
drove multiple significant effects including the main effect 

of Current Level, its interaction with the Previous Level, 
the positive main effect of Direction (the only possible 
change direction to r = .95 is positive) and the main effect 
of Absolute Step, and their interaction. The averaged pro-
jection of DSS1 components showed a topography that is 
similar to an M100 (Figures 4b and 5b). Also, a later effect 
at around 260  ms (Figure  4c), which was also driven by 
positive changes to r  =  .95 (especially by 0  →  0.95 and 
0.5  →  0.95), showed a topography that is similar to an 
M200 (reversed polarity of an M100, suggesting opposite 
source orientations).

The other significant effects at around 70 ms and 125 ms 
were related to a negative change from r = .95 (main effect 
of Previous Level, negative main effect of Direction). The 
averaged projection of DSS1 components at respective time 
points showed a topography that is similar to an M50-M100 
complex (Figures 4a and 5a).

Figure 3 also shows that, among the positive changes to 
r = .95 (i.e., 0 → 0.95, 0.5 → 0.9, 0.8 → 0.95), the response peak 
latencies decreased and the peak magnitudes increased with 
increasing step size; repeated-measures linear models (mod-
eling step size as a linear within-factor) confirmed that the de-
creasing latency and increasing peak magnitude relationships 
are significant (F0.83, 9.97 =1823.70, 𝜂2

p
=0.993, p<10−13 for 

latencies; F0.83, 9.97 =125.04, 𝜂2
p
=0.912, p<10−6 for magni-

tudes; Figure 6).

F I G U R E  3   Average absolute DSS1. Conditions with positive 
changes (upper) and negative changes (lower) are plotted separately. 
For the “no change” condition, DSS1s were extracted from conditions 
without changes (e.g., 0 → 0 and 0.5 → 0.5) separately, then averaged 
[Colour figure can be viewed at wileyonlinelibrary.com]
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3.3  |  Induced MEG responses

The CTPC differences (across-CTPC subtracted from within-
CTPC; phase dissimilarity plots) averaged across subjects 

are shown in Figure  7. Increased CTPC was found mostly 
in delta and theta bands around the auditory cortices at vari-
ous time points. Averaged into the five frequency bands 
over the whole trial (i.e., [0, 3] sec), the CTPC differences 

F I G U R E  4   Repeated-measures ANOVA for Previous and Current Levels. (a) F-statistics for main effects and their interaction, (b–d) averaged 
DSS1 time course to demonstrate each effect are plotted with significant clusters marked in gray shades. Topography of the projected DSS1 
components for the time points (i, ii, iii, iv) with significant effects is shown on the right [Colour figure can be viewed at wileyonlinelibrary.com]
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were tested against zero using a one-sample t test. For the 
number of subjects (n  =  13), full permutations of flipping 
signs (213  =  8,192) were used to compute p-values. After 
Bonferroni correction for the number of conditions, signifi-
cant clusters were found for r =  .8 (θ-band, right auditory 

channels, T12 = 5.98, corrected p = .004) and r = .95 (θ-band, 
left auditory cortex, T12 = 6.38, corrected p = .011; δ-band, 
left auditory cortex, T12 = 5.94, corrected p = .049; Figure 8). 
However, no significant difference across correlation levels 
was found when tested using a one-way repeated-measures 

F I G U R E  5   Repeated-measures ANOVA for Direction and Absolute Step. (a) F-statistics for main effects and their interaction, (b–d) 
averaged DSS1 time course to demonstrate each effect are plotted with significant clusters marked in gray shades. Topography of the projected 
DSS1 components for the timepoints (i, ii) with significant effects is shown on the right [Colour figure can be viewed at wileyonlinelibrary.com]
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ANOVA (uncorrected p > .01). As a follow-up analysis on 
the significant CTPC in the theta band, we tested a linear 
dependency of the CTPC difference on correlation levels av-
eraged across all channels using a repeated-measures regres-
sion model; this revealed a significant increase of the CTPC 
difference over the correlation coefficients (F1,12 = 39.35, 
p < 10–4; Figure 9).

The ITC differences (across-ITC subtracted from with-
in-ITC) averaged across subjects are shown in Figure  10. 
Similar to CTPC, positive ITC differences were found in 
channels around the auditory cortices in the delta and theta 
bands. But when tested with a one-sample t test, no significant 
cluster was found for any time intervals (corrected p > .05). A 
one-way repeated-measure ANOVA did not reveal any effect 
of correlation level either (uncorrected p > .01).

4  |   DISCUSSION

The present study investigated neural signatures for the 
segregation and representation of amplitude correlation 
structure, or complex temporal modulation rate, in acous-
tic signals. With respect to segregation, the results revealed 
asymmetric and non-linear responses to changes in the am-
plitude correlation structure of acoustic signals. Specifically, 
random-to-correlated and correlated-to-random transitions 
displayed distinct neural signatures: random-to-correlated 
transitions produced a prominent evoked response at around 
180  ms, while correlated-to-random transitions evoked an 
earlier response at around 70 ms, which resemble a canonical 
P50m-N100m complex. Further, the random-to-correlated 
transitions demonstrated a highly non-linear neural response, 
whereby even relatively small correlation transitions to the 
largest correlation coefficient used (r  =  .95) were much 
more salient than relatively large correlation transitions that 
did not involve a segment with r = .95. The analysis of in-
duced responses, reflecting the representation of correlation 
structure, revealed phase tracking in the theta and delta fre-
quency bands for the high correlations (r = .8 and .95), but no 

significant phase tracking in the gamma band for stimuli with 
no correlation (r = 0).

4.1  |  Evoked responses

The results are in broad agreement with a number of studies 
showing high sensitivity to slow modulation rates in human 
auditory cortex (Boemio et al., 2005; Giraud et al., 2000; 
Harms et al., 2005; Harms & Melcher, 2003; Overath et al., 
2008, 2012; Teng et al., 2018; Wang et al., 2012). In the pre-
sent study, modulation rate within a channel or frequency 
was controlled via amplitude correlations between adjacent 
time frames within long sounds; large correlation coefficients 
produced slow temporal variations, while temporal modula-
tion rate increased as the correlation coefficient decreased. 
Here, the sounds with the largest correlation coefficient (or 
slowest temporal modulations) were those that participants 
were most sensitive to.

In the present data, dissociable responses were observed 
for random-to-correlated and correlated-to-random transi-
tions with respect to latency (70 vs. 180  ms) and topogra-
phy (P50m-like vs. N100m-like). The topography of evoked 
responses suggests that the dominant neural sources are 
located near the superior temporal cortices. Based on the 
fact that response latency is indicative of processing stage 
along the auditory neuraxis (Chait et al., 2008; Krumbholz, 
Hewson-Stoate, & Schönwiesner, 2007), the major source 
of the earlier response at 70  ms is likely in primary audi-
tory cortex (e.g., medial Heschl's gyrus), whereas the later 
response at 180 ms is most likely generated in non-primary 
auditory cortices such as lateral Heschl's gyrus and planum 
temporale (Godey, Schwartz, Graaf, Chauvel, & Liegeois-
Chauvel, 2001; Lütkenhöner & Steinsträter, 1998; Yvert, 
Fischer, Bertrand, & Pernier, 2005). Critically, the differen-
tial latencies of the evoked responses suggest that distinctive 
underlying mechanisms are involved in the detection of the 
appearance and disappearance of highly correlated modula-
tion structure, which can be regarded as a form of auditory 
object or auditory stream.

The N1m-like response to random-to-correlated transi-
tions in the current study has previously been found in tran-
sitions from randomly varying to constant tones (Chait et al., 
2007), regularly alternating or repeating tone pips (Barascud 
et al., 2016; Chait et al., 2008), or the appearance of fre-
quency components in a complex auditory scene (Sohoglu & 
Chait 2016a, 2016b; Teki et al., 2016). It has been suggested 
that the N1m-like response occurs for disorder-to-order type 
“temporal edges” (Chait et al., 2008). In the current study, 
the bias of modulation spectra was perceived non-linearly: 
transitions to r = .95 evoked a strong N100m-like response, 
whereas transitions to r = .8 evoked no significant response 
(see Figure 4c). This suggests a distinctive sensitivity to slow 

F I G U R E  6   Dependency of peak magnitudes and latencies of 
evoked responses to previous levels of transitions to r = .95. Maximal 
peaks were identified from |DSS1| components for a time window of 
[130, 250] ms [Colour figure can be viewed at wileyonlinelibrary.com]
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modulations in the non-primary auditory cortex that segre-
gates r = .95 from other conditions. Moreover, it also suggests 
that there may exist a threshold for determining “temporal 
regularity” within spectrotemporal modulation structure and 
that this threshold lies between r =  .8 and r =  .95. Future 
studies will need to determine the precise location of such a 
threshold for detecting temporal regularity.

The latency of the N1m-like change response was pre-
viously found to be a function of the time required to infer 
regularity within the acoustic stimulus features (Chait et al., 

2007). In our data, the peak latency for a transition to r = .95 
increased with an increasing correlation level of the preced-
ing segment (i.e., decreasing contrast). This effect seems to 
be related to the window length of exponential decay within 
the stimuli (see Materials and Methods): the longer the win-
dow length in the previous segment, the more time is needed 
to determine a change in modulation structure.

The P50m-like response to correlated-to-random transi-
tions showed similar latency and topography to the reported 
response at around 50  ms after the regular-to-random or 

F I G U R E  7   Average cross-trial phase 
coherence (CTPC) difference (across-CTPC 
subtracted from within-CTPC). CTPC 
differences averaged across all channels are 
shown on time–frequency planes. Averaged 
in 1-s time window (for each column) 
and frequency band (for each row), the 
topography of CTPC differences is also 
displayed below each time–frequency plot 
for each correlation level [Colour figure can 
be viewed at wileyonlinelibrary.com]
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constant-to-random transitions (i.e., disappearance of regu-
larity) in previous studies (Barascud et al., 2016; Chait et al., 
2007, 2008; Sohoglu & Chait 2016a, 2016b). It is possible 
that the P50m-like component is due to the sharp, sudden 
change in energy within a channel at the onset of an r = 0 
stimulus segment (Hari et al., 1987; Pantev, Eulitz, Hampson, 
Ross, & Roberts, 1996; Pratt, Starr, Michalewski, Bleich, & 
Mittelman, 2008). However, a P50m-like response to cor-
related-to-uncorrelated transitions was also observed in the 

absence of sudden increases in energy of specific channels 
where the interaural correlation of wideband noise was ma-
nipulated (Chait, Poeppel, Cheveigné, & Simon, 2005). Thus, 
the P50m-like response to the correlated-to-random transition 
in the current data seems more attributable to the disappear-
ance of regularity of correlated acoustic structure (Winkler, 
Denham, & Nelken, 2009).

4.2  |  Behavioral vs. neural measures

The behavioral data show that performance for random-to-
correlated transitions was better than for correlated-to-ran-
dom transitions, and the evoked responses showed an even 
more pronounced asymmetry (stronger response to the ran-
dom-to-correlated transitions). This asymmetry in neural re-
sponses suggests the involvement of distinctive mechanisms 
for detecting the appearance or disappearance of correlated 
modulation structure.

Previously, using a similar paradigm, Overath et al. (2010) 
found that acoustic changes across which spectrotemporal co-
herence increased were behaviorally more salient than those 
changes across which coherence decreased and that this per-
ceptual asymmetry was reflected in stronger responses in 
posterior temporal regions bilaterally. Similarly, a study that 
manipulated interaural correlation of noise (Chait et al., 2005) 
also showed asymmetrical behavioral performance (diffi-
culty in detecting decorrelation). More recent studies reveal 
both behavioral and neural asymmetries in the detection of 
appearing or disappearing regularity of tone pips in statisti-
cally regular or irregular contexts (Cervantes Constantino, 
Pinggera, Paranamana, Kashino, & Chait, 2012; Sohoglu & 
Chait 2016a, 2016b). In particular, Cervantes Constantino 
et al. (2012) demonstrated through various manipulations 
that the detection of an appearance of certain frequency com-
ponents in a complex auditory scene is seemingly automatic 
(near-perfect performance level that was barely affected by 
the number of objects in the auditory scene), while this was 
not the case for detecting the disappearance of certain fre-
quency components. The authors noted that detecting a dis-
appearance of regularity is more computationally demanding 
because it requires the constant matching of expected inputs 
and responding to unexpected inputs (Cervantes Constantino 
et al., 2012). Indeed, the maintenance of sound statistics is 
associated with increased phasic activity in the superior tem-
poral gyrus (Barascud et al., 2016; Southwell et al., 2017), 
which might reflect enhanced inhibition, or an increased gain 
for specific target features, or other cognitive processes related 
to learning and working memory (Southwell et al., 2017).

We should note that our initial prediction regarding the 
perceptual equidistance between “steps” (e.g., 0  →  0.5, 
0.5 → 0.95, 0.8 → 0.95, belonging to the same step size and 
direction) was not supported by the behavioral and neural 

F I G U R E  8   One-sample t test for the significance of CTPC 
difference. T-statistic maps on sensor space are shown for each 
correlation level (for each column) and frequency band (for each 
column) for a time window of [0, 3] s. Channels belonging to a 
significant cluster are marked by white dots (corrected p < .05) 
[Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  9   Linear dependency of theta band CTPC difference 
on correlation levels. Averaged across all channels over time window 
of [0, 3] s after transition showed a significant increase as revealed by 
a repeated-measures regression model (p < 10–4) [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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data, instead suggesting that perceptual distances were not 
equal. However, particularly for the evoked neural responses, 
the effect of absolute step size was not completely explained 
by the involvement of the highest correlation in transitions as 
there was a significant linear effect of absolute step size within 
transitions to the highest correlation level (i.e., 0 → 0.95 vs. 
0.5 → 0.95 vs. 0.8 → 0.95; Figure 6). Future studies will need 
to determine r-values that are perceptually equidistant.

4.3  |  Phase coherence

We found significant theta and delta phase coherence for slow 
modulations, but no significant difference between modula-
tion rates. One potential reason for this finding is the nature 
of the stimulus. As shown by Howard and Poeppel (2010), 
one major determinant of phase tracking is sharp envelope 
transitions across frequency bands, as they occur in speech. 

Such strong transients are largely absent in the present stimu-
lus, for which the amplitude envelopes between frequency 
bands often run counter-correlated, thus rendering the aver-
age between-channel correlation close to zero. Relatedly, 
in the spectral domain, the stimuli in the current study have 
envelope modulation spectra without prominent peaks. This 
would have blurred prominent entrainment in specific fre-
quency bands. Nonetheless, there was a linear dependency in 
theta phase coherence over the correlation levels, presumably 
reflecting heightened sensitivity to slow modulations at the 
level of auditory cortex (Boemio et al., 2005; Giraud et al., 
2000; Harms et al., 2005; Harms & Melcher, 2003; Overath 
et al., 2008, 2012; Teng et al., 2018; Wang et al., 2012).

Contrary to our hypothesis, we did not find significant 
phase coherence in the gamma band for sounds with fast tem-
poral modulations. This is in line with Overath et al. (2008), 
who, using a similar stimulus, found increased blood-oxygen-
ation-level-dependent (BOLD) signal in the superior temporal 

F I G U R E  1 0   Average inter-trial 
correlation (ITC) difference (across-
ITC subtracted from within-ITC). ITC 
differences computed for 1-s time window 
(for each column) and frequency band (for 
each row) are shown for each correlation 
level [Colour figure can be viewed at 
wileyonlinelibrary.com]
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sulcus for slow temporal modulations, but no BOLD signal 
increase for fast modulations anywhere in auditory cortex. 
In non-human primate brains, it has been shown that “syn-
chronized” neural populations explicitly encode slow mod-
ulations via temporal coding, whereas “non-synchronized” 
populations of primary auditory neurons implicitly repre-
sented fast modulations via average discharge rates (Lu et al., 
2001; Wang, Lu, & Liang, 2003). In human auditory cortex, 
concurrent M/EEG data revealed a non-phase-locked mode 
for rapid temporal modulation (Tang, Crain, & Johnson, 
2016). It is conceivable that the current results reflect these 
different neural coding algorithms.

In conclusion, the current study provides new evidence for 
the asymmetric and non-linear detection of temporal “edges” 
based on spectrotemporal modulation structure in the human 
auditory cortex, with a preferential sensitivity for the emer-
gence of slow modulations. The data demonstrate that the 
regularity of a complex auditory scene can be constructed 
based on temporal modulation rates, extending the notion of 
regularity that defines temporal acoustic edges. The results 
suggest that distinct neural populations in the primary and 
non-primary auditory cortices are involved in the detection 
of an emergence or disappearance of slow spectrotemporal 
modulations, reflecting a general principle of pattern ex-
traction and pattern matching in the auditory cortex.
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