

Challenges and Recent Advances in Network Inference

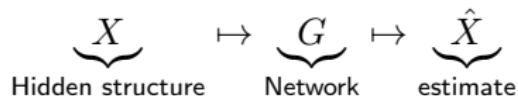
Jiaming Xu

The Fuqua School of Business
Duke University

INFORMS, APS Tutorial
October 26, 2025

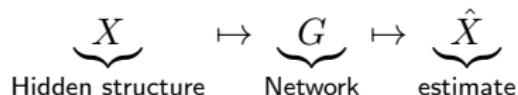
Statistical inference on graphs

- Detecting or estimating hidden structures in large network data



Statistical inference on graphs

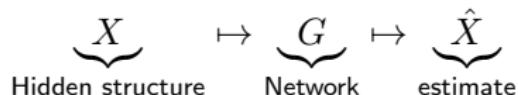
- Detecting or estimating hidden structures in large network data



- Key challenges: Understanding the **fundamental limits**:

Statistical inference on graphs

- Detecting or estimating hidden structures in large network data

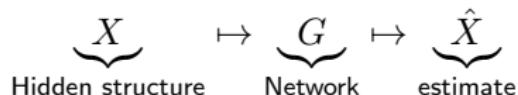


- Key challenges: Understanding the **fundamental limits**:

- ➊ Characterize statistical (information-theoretic) limit: What is possible/impossible?

Statistical inference on graphs

- Detecting or estimating hidden structures in large network data

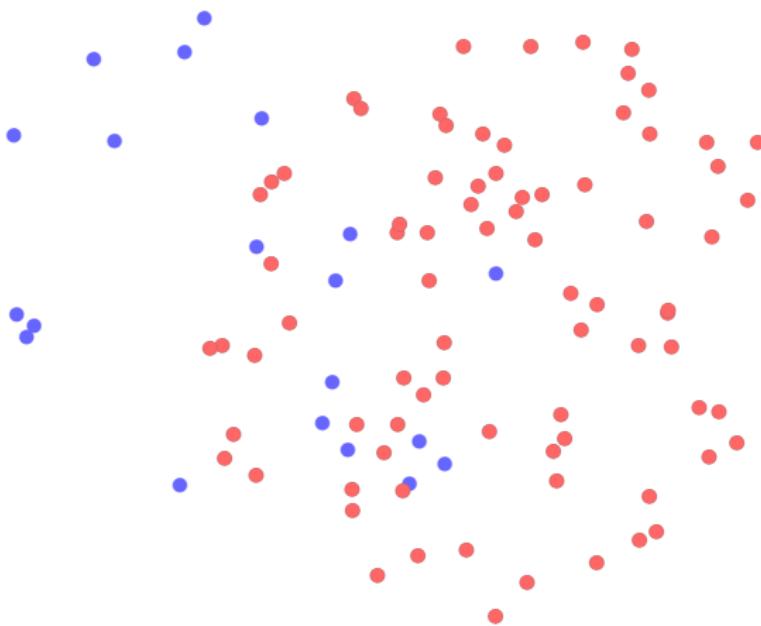


- Key challenges: Understanding the **fundamental limits**:
 - ➊ Characterize statistical (information-theoretic) limit: What is possible/impossible?
 - ➋ Can statistical limits be attained computationally efficiently, e.g., in polynomial time? If yes, how? If not, why?

Planted clique – graph view

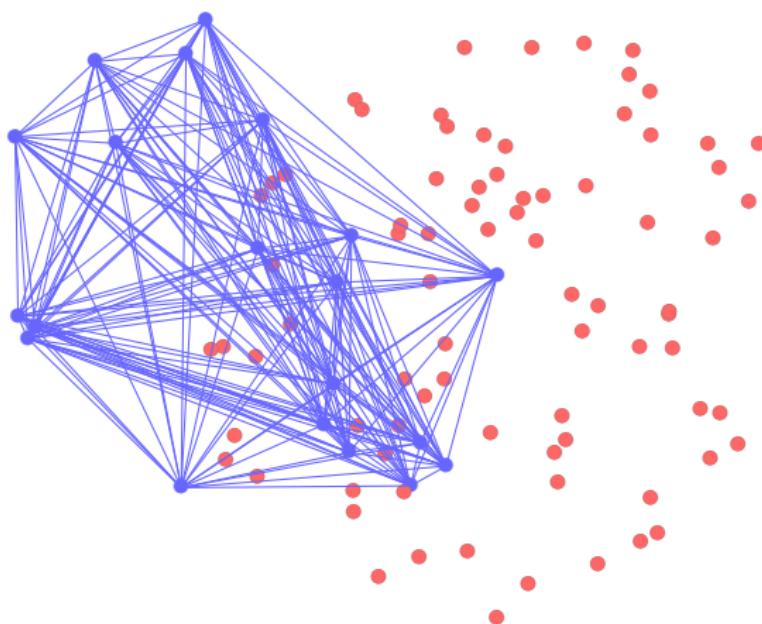
Planted clique – graph view

- ① A set C of k vertices is chosen to form a clique



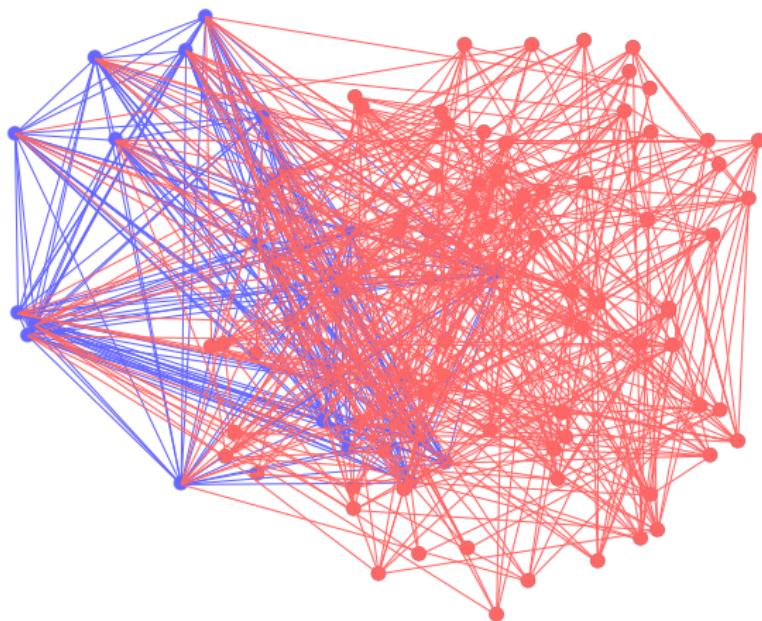
Planted clique – graph view

- ① A set C of k vertices is chosen to form a clique



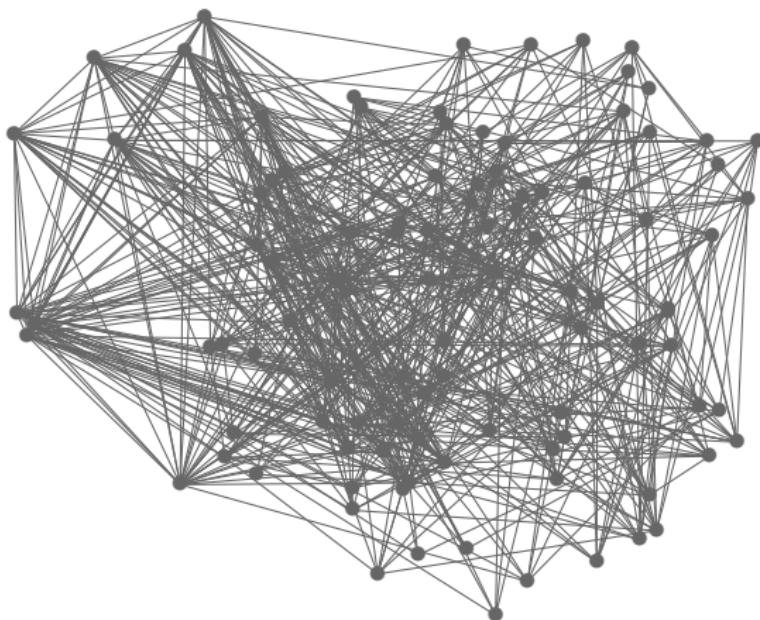
Planted clique – graph view

- ① A set C of k vertices is chosen to form a clique
- ② For every other pair of vertices, add an edge w.p. $\frac{1}{2}$

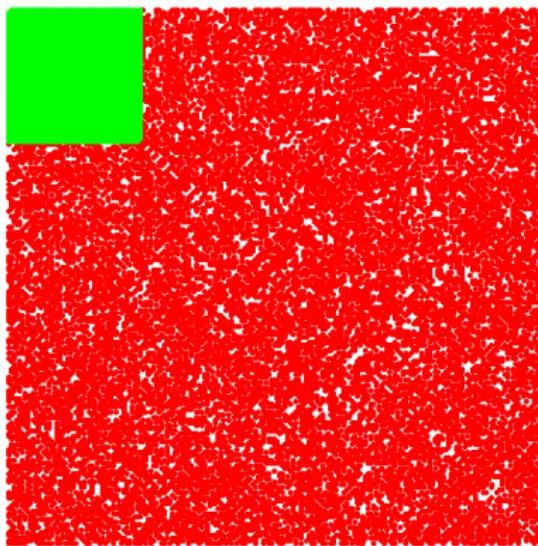


Planted clique – graph view

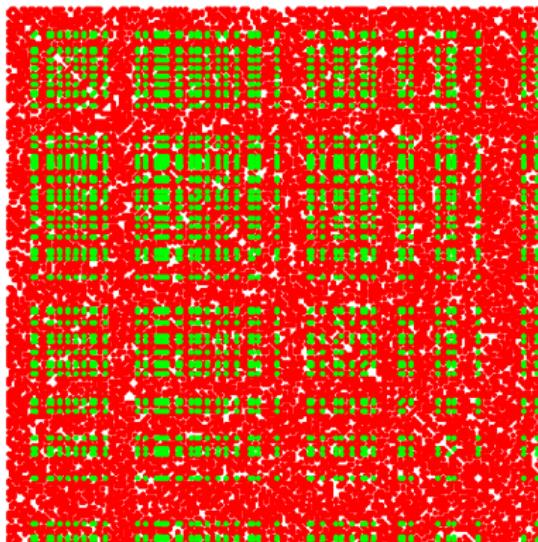
- ① A set C of k vertices is chosen to form a clique
- ② For every other pair of vertices, add an edge w.p. $\frac{1}{2}$



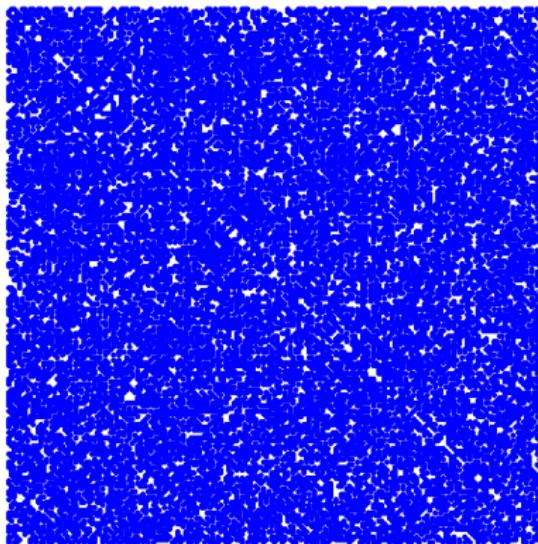
Planted clique – adjacency matrix view



Planted clique – adjacency matrix view



Planted clique – adjacency matrix view



Community detection in networks

- Networks with community structures arise in many applications

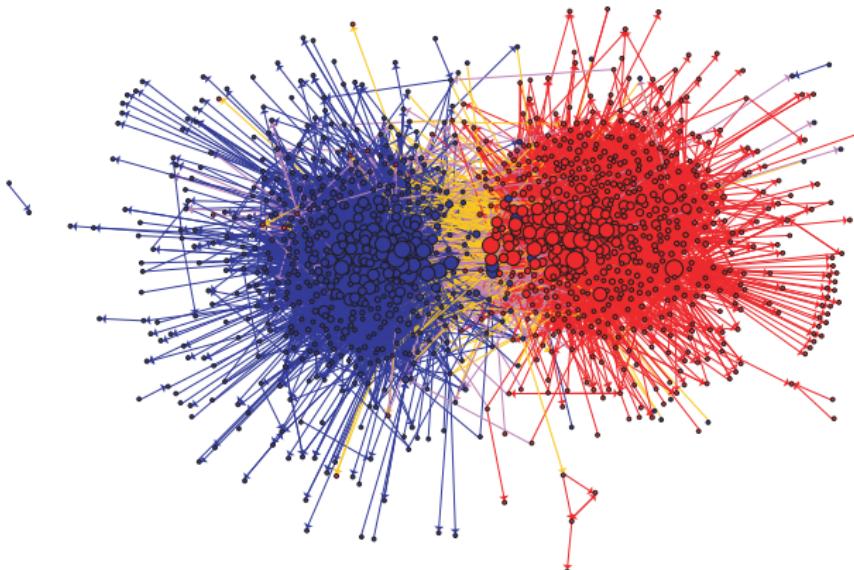


Figure: Political blogosphere and the 2004 U.S. election [\[Adamic-Glance '05\]](#)

Community detection in networks

- Networks with community structures arise in many applications
- Task: Discover underlying communities based on the network topology

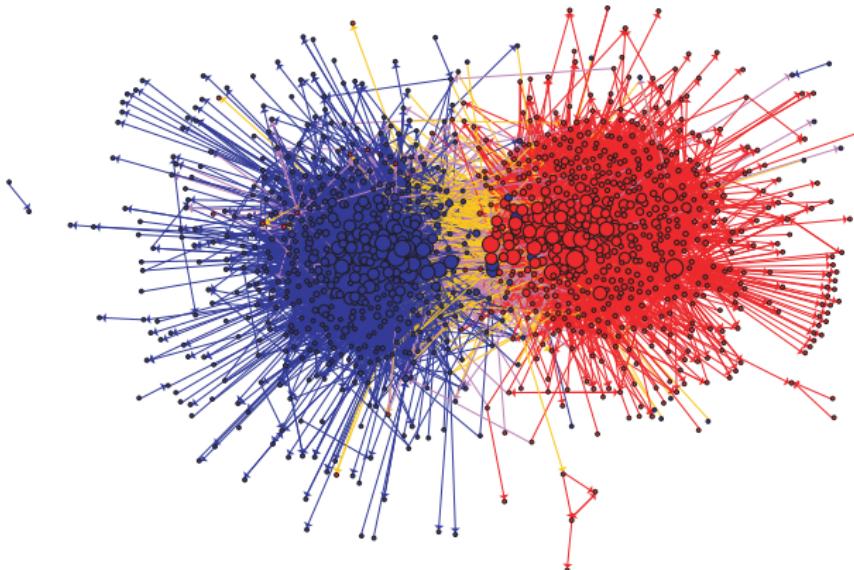
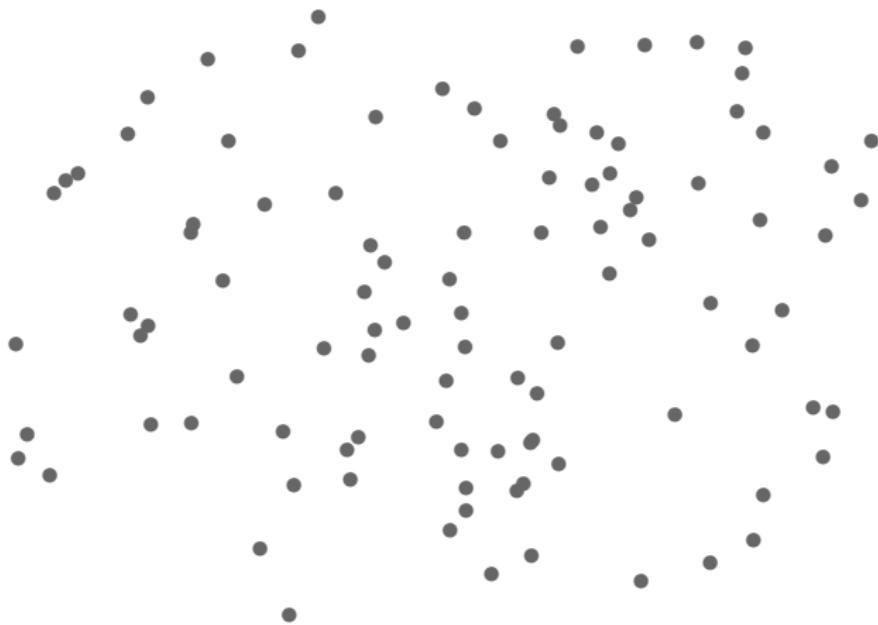


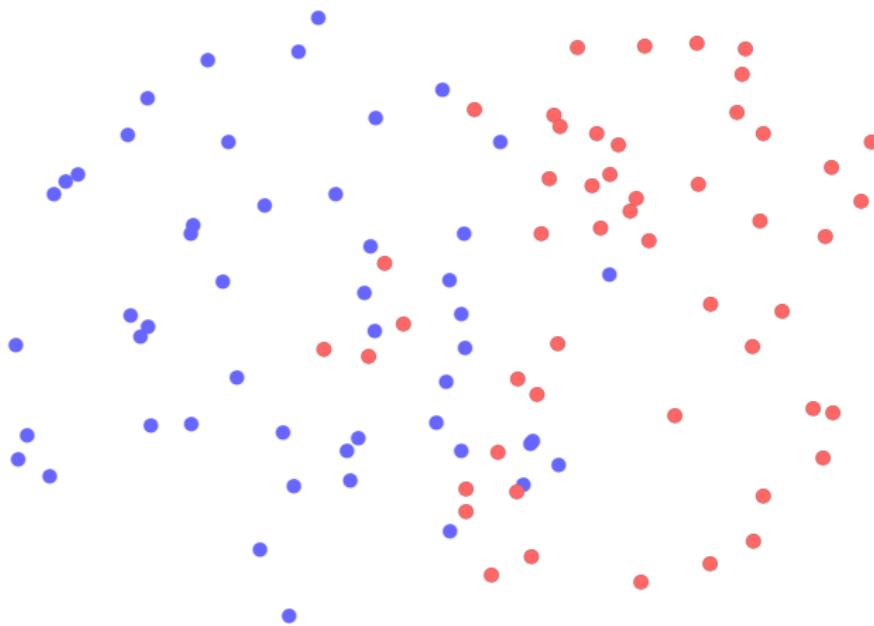
Figure: Political blogosphere and the 2004 U.S. election [\[Adamic-Glance '05\]](#)

Stochastic block model – graph view



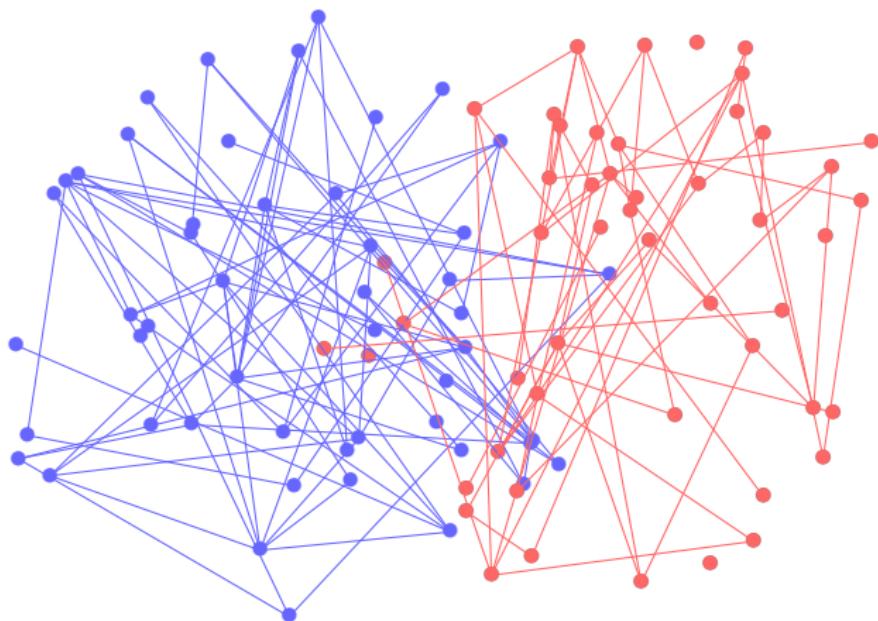
Stochastic block model – graph view

- ① n nodes are assigned to 2 communities uniformly at random



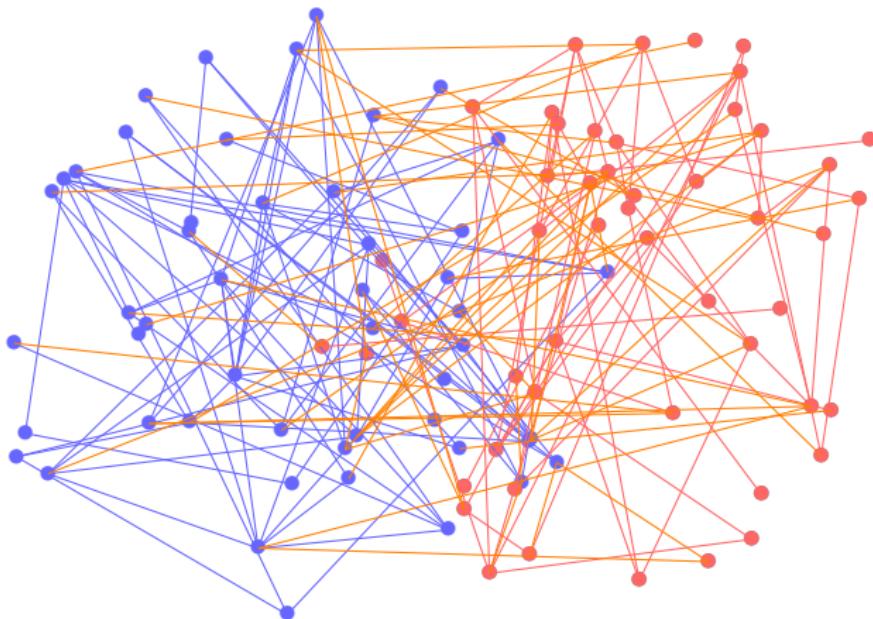
Stochastic block model – graph view

- ① n nodes are assigned to 2 communities uniformly at random
- ② For every pair of nodes in same community, add an edge w.p. p



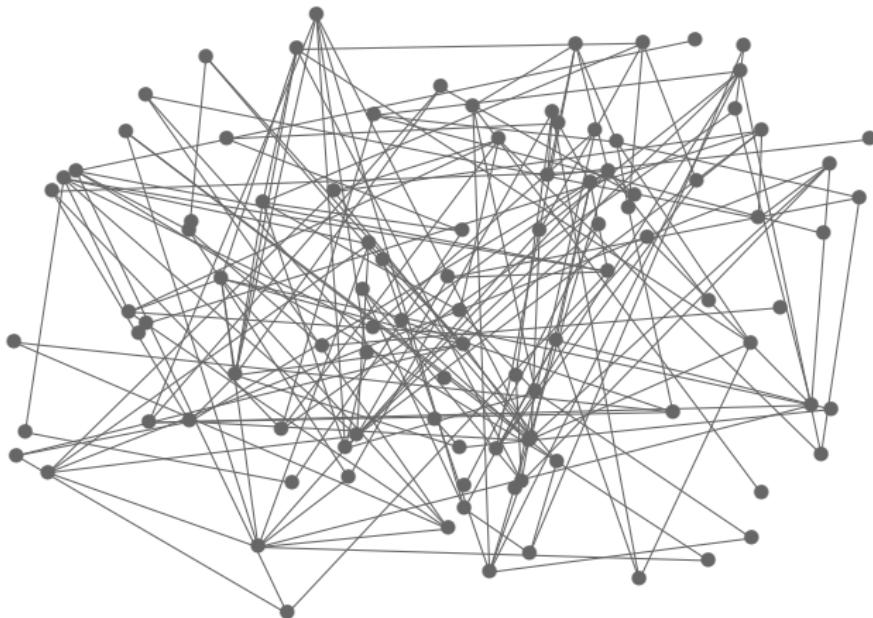
Stochastic block model – graph view

- ① n nodes are assigned to 2 communities uniformly at random
- ② For every pair of nodes in same community, add an edge w.p. p
- ③ For every pair of nodes in diff. community, add an edge w.p. q

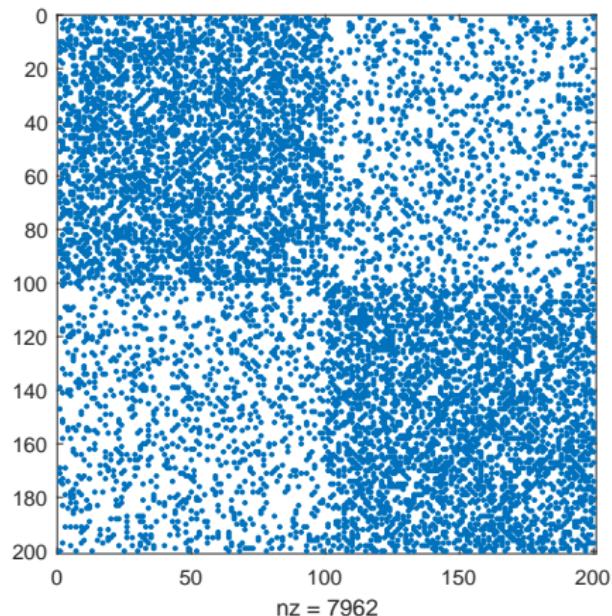


Stochastic block model – graph view

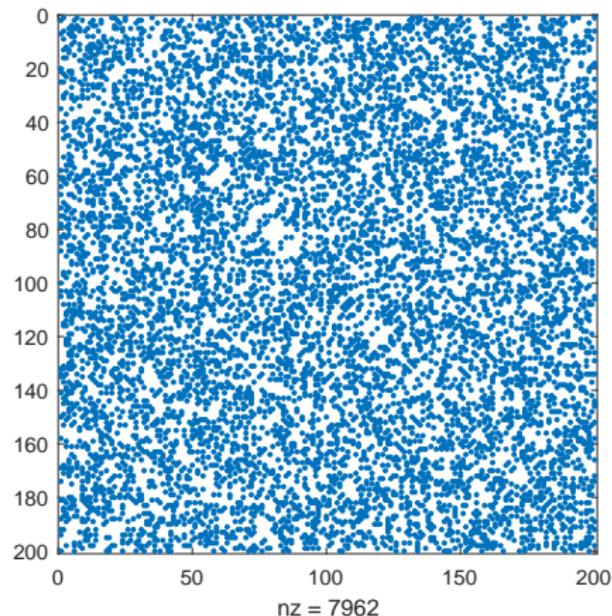
- ① n nodes are assigned to 2 communities uniformly at random
- ② For every pair of nodes in same community, add an edge w.p. p
- ③ For every pair of nodes in diff. community, add an edge w.p. q



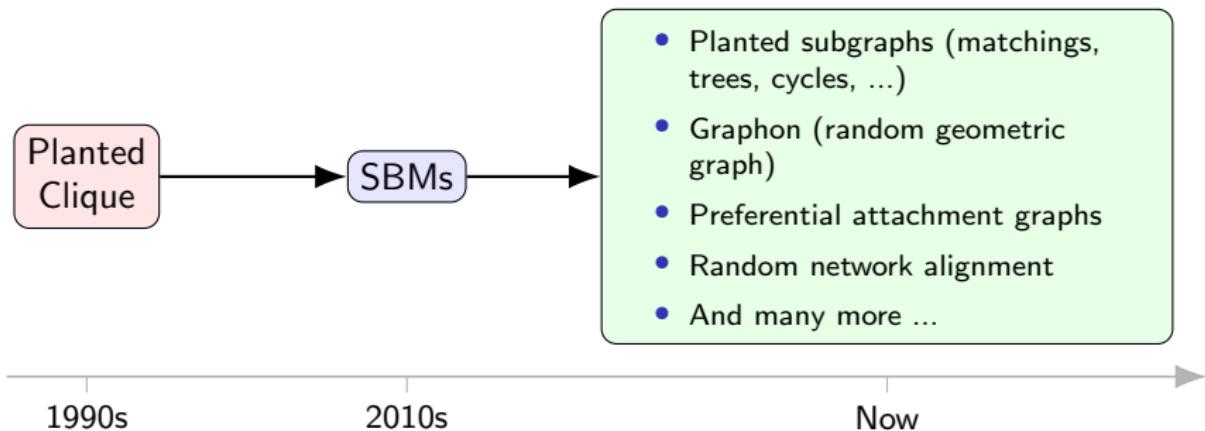
Stochastic block model – adjacency matrix view



Stochastic block model – adjacency matrix view



A flurry of network inference problems



Driven by both theoretical interests and practical applications

Significant methodological advances

Applied Probability

- Local weak convergence
- Random matrix & spectral methods

Optimization

- Relaxations (LP, SDP)
- Dual certificates & polyhedral combinatorics

Statistical Physics

- Belief propagation & message passing
- Interpolation method

Significant methodological advances

Applied Probability

- Local weak convergence
- Random matrix & spectral methods

Optimization

- Relaxations (LP, SDP)
- Dual certificates & polyhedral combinatorics

Statistical Physics

- Belief propagation & message passing
- Interpolation method

- These methods have led to sharp characterizations of information-theoretic and algorithmic phase transition thresholds.

Significant methodological advances

Applied Probability

- Local weak convergence
- Random matrix & spectral methods

Optimization

- Relaxations (LP, SDP)
- Dual certificates & polyhedral combinatorics

Statistical Physics

- Belief propagation & message passing
- Interpolation method

- These methods have led to sharp characterizations of information-theoretic and algorithmic phase transition thresholds.
- The proofs, however, often require substantial mathematical ingenuity.

Significant methodological advances

Applied Probability

- Local weak convergence
- Random matrix & spectral methods

Optimization

- Relaxations (LP, SDP)
- Dual certificates & polyhedral combinatorics

Statistical Physics

- Belief propagation & message passing
- Interpolation method

- These methods have led to sharp characterizations of information-theoretic and algorithmic phase transition thresholds.
- The proofs, however, often require substantial mathematical ingenuity.
- But what if I am not ingenious? Is there a simple, principled approach to try?

Significant methodological advances

Applied Probability

- Local weak convergence
- Random matrix & spectral methods

Optimization

- Relaxations (LP, SDP)
- Dual certificates & polyhedral combinatorics

Statistical Physics

- Belief propagation & message passing
- Interpolation method

- These methods have led to sharp characterizations of information-theoretic and algorithmic phase transition thresholds.
- The proofs, however, often require substantial mathematical ingenuity.
- But what if I am not ingenious? Is there a simple, principled approach to try?

This tutorial: Low-degree polynomial method
Analog of drift method in stochastic networks

Outline of tutorial

- Introduction to low-degree polynomial method
- Three prototypical examples
 - ▶ Planted clique
 - ▶ Stochastic block model
 - ▶ Random network alignment
- Concluding remarks

Polynomials on graph

- Given a graph G represented by adjacency vector $A = (A_{ij})_{1 \leq i < j \leq n}$
- A multivariate polynomial $f : \{0, 1\}^{\binom{n}{2}} \rightarrow \mathbb{R}$

Polynomials on graph

- Given a graph G represented by adjacency vector $A = (A_{ij})_{1 \leq i < j \leq n}$
- A multivariate polynomial $f : \{0, 1\}^{\binom{n}{2}} \rightarrow \mathbb{R}$

Example

- Edge count: $\sum_{i < j} A_{ij}$

Polynomials on graph

- Given a graph G represented by adjacency vector $A = (A_{ij})_{1 \leq i < j \leq n}$
- A multivariate polynomial $f : \{0, 1\}^{\binom{n}{2}} \rightarrow \mathbb{R}$

Example

- Edge count: $\sum_{i < j} A_{ij}$
- Triangle count: $\sum_{i < j < k} A_{ij} A_{jk} A_{ik}$

Polynomials on graph

- Given a graph G represented by adjacency vector $A = (A_{ij})_{1 \leq i < j \leq n}$
- A multivariate polynomial $f : \{0, 1\}^{\binom{n}{2}} \rightarrow \mathbb{R}$

Example

- Edge count: $\sum_{i < j} A_{ij}$
- Triangle count: $\sum_{i < j < k} A_{ij} A_{jk} A_{ik}$
- Subgraph- H count: $\sum_{S \cong H} \prod_{(i,j) \in S} A_{ij}$

Polynomials on graph

- Given a graph G represented by adjacency vector $A = (A_{ij})_{1 \leq i < j \leq n}$
- A multivariate polynomial $f : \{0, 1\}^{\binom{n}{2}} \rightarrow \mathbb{R}$

Example

- Edge count: $\sum_{i < j} A_{ij}$
- Triangle count: $\sum_{i < j < k} A_{ij} A_{jk} A_{ik}$
- Subgraph- H count: $\sum_{S \cong H} \prod_{(i,j) \in S} A_{ij}$
- # of closed walks: $\text{Tr}(A^D) = \sum_{i_1, i_2, \dots, i_D} A_{i_1 i_2} A_{i_2 i_3} \cdots A_{i_D i_1}$

Polynomials on graph

- Given a graph G represented by adjacency vector $A = (A_{ij})_{1 \leq i < j \leq n}$
- A multivariate polynomial $f : \{0, 1\}^{\binom{n}{2}} \rightarrow \mathbb{R}$

Example

- Edge count: $\sum_{i < j} A_{ij}$
- Triangle count: $\sum_{i < j < k} A_{ij} A_{jk} A_{ik}$
- Subgraph- H count: $\sum_{S \cong H} \prod_{(i,j) \in S} A_{ij}$
- # of closed walks: $\text{Tr}(A^D) = \sum_{i_1, i_2, \dots, i_D} A_{i_1 i_2} A_{i_2 i_3} \cdots A_{i_D i_1}$
- Message passing: $m_{j \rightarrow i} = h(\{m_{k \rightarrow j} : k \sim j, k \neq i\})$

Polynomials on graph

- Given a graph G represented by adjacency vector $A = (A_{ij})_{1 \leq i < j \leq n}$
- A multivariate polynomial $f : \{0, 1\}^{\binom{n}{2}} \rightarrow \mathbb{R}$

Example

- Edge count: $\sum_{i < j} A_{ij}$
- Triangle count: $\sum_{i < j < k} A_{ij} A_{jk} A_{ik}$
- Subgraph- H count: $\sum_{S \cong H} \prod_{(i,j) \in S} A_{ij}$
- # of closed walks: $\text{Tr}(A^D) = \sum_{i_1, i_2, \dots, i_D} A_{i_1 i_2} A_{i_2 i_3} \cdots A_{i_D i_1}$
- Message passing: $m_{j \rightarrow i} = h(\{m_{k \rightarrow j} : k \sim j, k \neq i\})$
- Local algorithms: f depends on local neighborhood

Polynomial basis [Janson '90, '94]

- Consider the space \mathcal{F} of real-valued functions on $\{0, 1\}^{\binom{n}{2}}$ endowed with inner-product

$$\langle f, g \rangle \triangleq \mathbb{E}_{A_{ij} \stackrel{\text{iid}}{\sim} \text{Bern}(q)} [f(A)g(A)]$$

Polynomial basis [Janson '90, '94]

- Consider the space \mathcal{F} of real-valued functions on $\{0, 1\}^{\binom{n}{2}}$ endowed with inner-product

$$\langle f, g \rangle \triangleq \mathbb{E}_{A_{ij} \stackrel{\text{iid}}{\sim} \text{Bern}(q)} [f(A)g(A)]$$

- Fact:** The orthogonal polynomial basis $\{\Phi_S : S \subset \binom{[n]}{2}\}$ spans entire \mathcal{F}

$$\Phi_S = \prod_{(i,j) \in S} \bar{A}_{ij}, \quad \bar{A}_{ij} = \frac{A_{ij} - q}{\sqrt{q(1-q)}}$$

Polynomial basis [Janson '90, '94]

- Consider the space \mathcal{F} of real-valued functions on $\{0, 1\}^{\binom{n}{2}}$ endowed with inner-product

$$\langle f, g \rangle \triangleq \mathbb{E}_{A_{ij} \stackrel{\text{iid}}{\sim} \text{Bern}(q)} [f(A)g(A)]$$

- Fact:** The orthogonal polynomial basis $\{\Phi_S : S \subset \binom{[n]}{2}\}$ spans entire \mathcal{F}

$$\Phi_S = \prod_{(i,j) \in S} \bar{A}_{ij}, \quad \bar{A}_{ij} = \frac{A_{ij} - q}{\sqrt{q(1-q)}}$$

- Quick check

- Orthonormality: $\langle \Phi_S, \Phi_T \rangle = \mathbf{1}\{S = T\}$
- Completeness: $\dim(\{\Phi_S : S \subset \binom{[n]}{2}\}) = \dim(\mathcal{F}) = 2^n$

Polynomial basis [Janson '90, '94]

- Consider the space \mathcal{F} of real-valued functions on $\{0, 1\}^{\binom{n}{2}}$ endowed with inner-product

$$\langle f, g \rangle \triangleq \mathbb{E}_{A_{ij} \stackrel{\text{iid}}{\sim} \text{Bern}(q)} [f(A)g(A)]$$

- Fact:** The orthogonal polynomial basis $\{\Phi_S : S \subset \binom{[n]}{2}\}$ spans entire \mathcal{F}

$$\Phi_S = \prod_{(i,j) \in S} \bar{A}_{ij}, \quad \bar{A}_{ij} = \frac{A_{ij} - q}{\sqrt{q(1-q)}}$$

- Quick check
 - Orthonormality: $\langle \Phi_S, \Phi_T \rangle = \mathbf{1}\{S = T\}$
 - Completeness: $\dim(\{\Phi_S : S \subset \binom{[n]}{2}\}) = \dim(\mathcal{F}) = 2^n$

Question

How to design polynomial-based estimator?

Polynomial approximation of likelihood ratio

$$\mathbb{H}_0 : A \sim \text{Bern}(q)^{\otimes \binom{n}{2}} \triangleq Q \quad (\text{Null model})$$
$$\mathbb{H}_1 : A \sim P \quad (\text{Planted model})$$

Polynomial approximation of likelihood ratio

$$\begin{aligned}\mathbb{H}_0 : A &\sim \text{Bern}(q)^{\otimes \binom{n}{2}} \triangleq Q && \text{(Null model)} \\ \mathbb{H}_1 : A &\sim P && \text{(Planted model)}\end{aligned}$$

- By Neyman-Pearson Lemma, likelihood ratio test is optimal:

$$L(A) \triangleq \frac{P(A)}{Q(A)}$$

Polynomial approximation of likelihood ratio

$$\begin{aligned}\mathbb{H}_0 : A &\sim \text{Bern}(q)^{\otimes \binom{n}{2}} \triangleq Q && \text{(Null model)} \\ \mathbb{H}_1 : A &\sim P && \text{(Planted model)}\end{aligned}$$

- By Neyman-Pearson Lemma, likelihood ratio test is optimal:

$$L(A) \triangleq \frac{P(A)}{Q(A)}$$

- However, for many planted problems, P is a mixture over exponentially many components $\Rightarrow L$ is computationally hard to evaluate

Polynomial approximation of likelihood ratio

$$\begin{aligned}\mathbb{H}_0 : A &\sim \text{Bern}(q)^{\otimes \binom{n}{2}} \triangleq Q && \text{(Null model)} \\ \mathbb{H}_1 : A &\sim P && \text{(Planted model)}\end{aligned}$$

- By Neyman-Pearson Lemma, likelihood ratio test is optimal:

$$L(A) \triangleq \frac{P(A)}{Q(A)}$$

- However, for many planted problems, P is a mixture over exponentially many components $\Rightarrow L$ is computationally hard to evaluate
- Instead, look for low-degree polynomial maximizing **signal-to-noise ratio**:

$$\max_{f: \deg(f) \leq D} \left(\frac{\mathbb{E}_P[f]}{\sqrt{\mathbb{E}_Q[f^2]}} = \frac{\langle L, f \rangle}{\sqrt{\langle f, f \rangle}} \right)$$

Polynomial approximation of likelihood ratio

$$\begin{aligned}\mathbb{H}_0 : A &\sim \text{Bern}(q)^{\otimes \binom{n}{2}} \triangleq Q && \text{(Null model)} \\ \mathbb{H}_1 : A &\sim P && \text{(Planted model)}\end{aligned}$$

- By Neyman-Pearson Lemma, likelihood ratio test is optimal:

$$L(A) \triangleq \frac{P(A)}{Q(A)}$$

- However, for many planted problems, P is a mixture over exponentially many components $\Rightarrow L$ is computationally hard to evaluate
- Instead, look for low-degree polynomial maximizing **signal-to-noise ratio**:

$$\max_{f: \deg(f) \leq D} \left(\frac{\mathbb{E}_P[f]}{\sqrt{\mathbb{E}_Q[f^2]}} = \frac{\langle L, f \rangle}{\sqrt{\langle f, f \rangle}} \right)$$

- By Cauchy-Schwartz, optimum is $\|L_{\leq D}\|$ and achieved by projection of L :

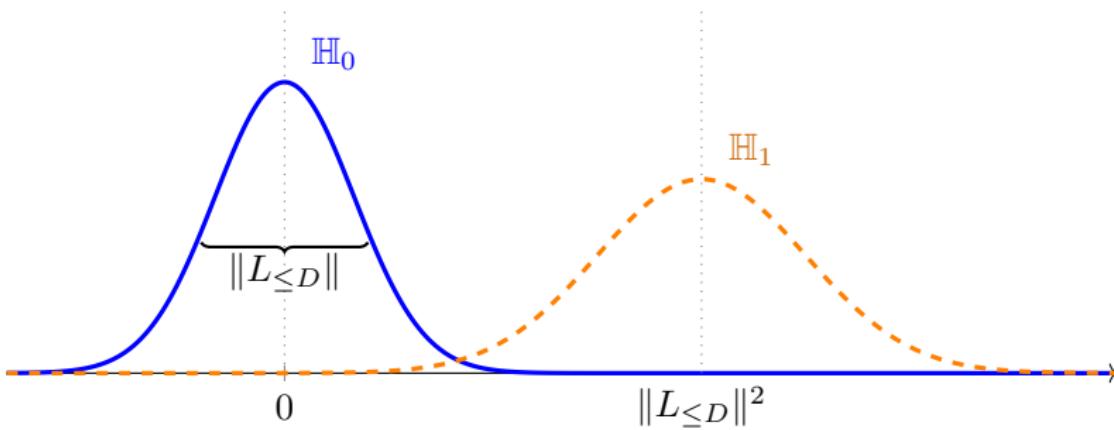
$$L_{\leq D} = \underbrace{\sum_{S: |S| \leq D} \langle L, \Phi_S \rangle \Phi_S}_{\text{weighted signed subgraph count}} \quad , \text{ where } \Phi_S = \prod_{(i,j) \in S} \frac{A_{ij} - q}{\sqrt{q(1-q)}}$$

Low-degree polynomial prediction

Conjecture (Hopkins '18, informal)

For “sufficiently nice” planted problems,

- If $\|L_{\leq D}\| \rightarrow \infty$ for $D = O(\log n)$, there exists *degree- D polynomial* succeeds in detecting or estimating the hidden structure
- If $\|L_{\leq D}\| = O(1)$ for $D = O(\log n)$, *all polynomial-time* algorithms fail in detection and estimation



Low-degree polynomial prediction

Conjecture (Hopkins '18, informal)

For “sufficiently nice” planted problems,

- If $\|L_{\leq D}\| \rightarrow \infty$ for $D = O(\log n)$, there exists *degree- D polynomial succeeds in detecting or estimating the hidden structure*
- If $\|L_{\leq D}\| = O(1)$ for $D = O(\log n)$, *all polynomial-time algorithms fail in detection and estimation*

Remark

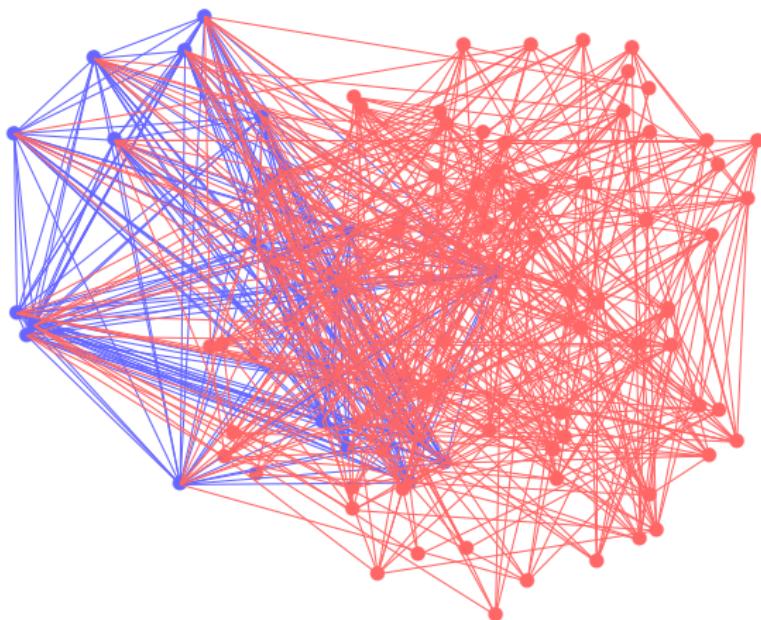
- Remarkably, this prediction aligns with many proven algorithmic upper and lower bounds for a wide class of planted problems
- Need $O(\log n)$ degree to cover spectral method, and many $O(\log n)$ -polynomials can be computed in poly-time
- Significant progress on proving low-degree polynomial lower bounds [Wein '25]
- Focus of this tutorial: low-degree polynomial as an *algorithmic tool*

Outline of tutorial

- Introduction to low-degree polynomial method
- Three prototypical examples
 - ▶ Planted clique
 - ▶ Stochastic block model
 - ▶ Random network alignment
- Concluding remarks

Planted clique problem

- ① A set C of k vertices is chosen to form a **clique**
- ② For every other pair of vertices, add an edge w.p. $\frac{1}{2}$



Planted clique problem: testing

$$\mathbb{H}_0 : A \sim \mathcal{G}(n, 1/2) \quad (\text{Null model})$$

$$\mathbb{H}_1 : A \sim \mathcal{G}(n, 1/2, k) \quad (\text{Planted model})$$

Planted clique problem: testing

$$\mathbb{H}_0 : A \sim \mathcal{G}(n, 1/2) \quad (\text{Null model})$$

$$\mathbb{H}_1 : A \sim \mathcal{G}(n, 1/2, k) \quad (\text{Planted model})$$

- Orthogonal polynomial basis: $\Phi_S = \prod_{(i,j) \in S} (2A_{ij} - 1)$

Planted clique problem: testing

$$\begin{aligned}\mathbb{H}_0 : A &\sim \mathcal{G}(n, 1/2) && \text{(Null model)} \\ \mathbb{H}_1 : A &\sim \mathcal{G}(n, 1/2, k) && \text{(Planted model)}\end{aligned}$$

- Orthogonal polynomial basis: $\Phi_S = \prod_{(i,j) \in S} (2A_{ij} - 1)$
- Likelihood-ratio projection:

$$\langle L, \Phi_S \rangle = \mathbb{E}_P[\Phi_S] = \mathbb{E}_C \mathbb{E}_{A|C}[\Phi_S] = \mathbb{E}_C[\mathbf{1}\{V(S) \subset C\}] \approx \left(\frac{k}{n}\right)^{|V(S)|}$$

where C is the vertex set of hidden clique and $V(S)$ is the vertex set of S

Planted clique problem: testing

$$\begin{aligned}\mathbb{H}_0 : A &\sim \mathcal{G}(n, 1/2) && \text{(Null model)} \\ \mathbb{H}_1 : A &\sim \mathcal{G}(n, 1/2, k) && \text{(Planted model)}\end{aligned}$$

- Orthogonal polynomial basis: $\Phi_S = \prod_{(i,j) \in S} (2A_{ij} - 1)$
- Likelihood-ratio projection:

$$\langle L, \Phi_S \rangle = \mathbb{E}_P[\Phi_S] = \mathbb{E}_C \mathbb{E}_{A|C}[\Phi_S] = \mathbb{E}_C[\mathbf{1}\{V(S) \subset C\}] \approx \left(\frac{k}{n}\right)^{|V(S)|}$$

where C is the vertex set of hidden clique and $V(S)$ is the vertex set of S

- So, we get

$$\|L_{\leq D}\|^2 = \sum_{S: |S| \leq D} \langle L, \Phi_S \rangle^2 \approx \sum_{S: |S| \leq D} \left(\frac{k}{n}\right)^{2|V(S)|}$$

Planted clique problem: testing

$$\|L_{\leq D}\|^2 = \sum_{S:|S|\leq D} \langle L, \Phi_S \rangle^2 \approx \sum_{S:|S|\leq D} \left(\frac{k}{n}\right)^{2|V(S)|}$$

Planted clique problem: testing

$$\|L_{\leq D}\|^2 = \sum_{S:|S| \leq D} \langle L, \Phi_S \rangle^2 \approx \sum_{S:|S| \leq D} \left(\frac{k}{n}\right)^{2|V(S)|}$$

- If $D = 1$, $\|L_{\leq D}\|^2 \approx n^2 \left(\frac{k}{n}\right)^4 \gg 1$, if $k^2 \gg n \Rightarrow$ counting edges succeeds

Planted clique problem: testing

$$\|L_{\leq D}\|^2 = \sum_{S:|S|\leq D} \langle L, \Phi_S \rangle^2 \approx \sum_{S:|S|\leq D} \left(\frac{k}{n}\right)^{2|V(S)|}$$

- If $D = 1$, $\|L_{\leq D}\|^2 \approx n^2 \left(\frac{k}{n}\right)^4 \gg 1$, if $k^2 \gg n \Rightarrow$ counting edges succeeds
- If restricting S to be D -cycles with $D \rightarrow \infty$,

$$\|L_{D\text{-cycle}}\| \approx n^D \left(\frac{k}{n}\right)^{2D} \gg 1,$$

if $k^2 > n$ (limit of spectral method [Alon-Krivelevich-Sudakov '98])

Planted clique problem: testing

$$\|L_{\leq D}\|^2 = \sum_{S:|S|\leq D} \langle L, \Phi_S \rangle^2 \approx \sum_{S:|S|\leq D} \left(\frac{k}{n}\right)^{2|V(S)|}$$

- If $D = 1$, $\|L_{\leq D}\|^2 \approx n^2 \left(\frac{k}{n}\right)^4 \gg 1$, if $k^2 \gg n \Rightarrow$ counting edges succeeds
- If restricting S to be D -cycles with $D \rightarrow \infty$,

$$\|L_{D\text{-cycle}}\| \approx n^D \left(\frac{k}{n}\right)^{2D} \gg 1,$$

if $k^2 > n$ (limit of spectral method [Alon-Krivelevich-Sudakov '98])

- If restricting S to be D -trees with $D \rightarrow \infty$,

$$\|L_{D\text{-tree}}\| \approx \binom{n}{D+1} (D+1)^{D-1} \left(\frac{k}{n}\right)^{2(D+1)},$$

if $k^2 > n/e$ (limit of message passing [Deshpande-Montanari '15])

Planted clique problem: testing

$$\|L_{\leq D}\|^2 = \sum_{S:|S|\leq D} \langle L, \Phi_S \rangle^2 \approx \sum_{S:|S|\leq D} \left(\frac{k}{n}\right)^{2|V(S)|}$$

- If $D = 1$, $\|L_{\leq D}\|^2 \approx n^2 \left(\frac{k}{n}\right)^4 \gg 1$, if $k^2 \gg n$ \Rightarrow counting edges succeeds
- If restricting S to be D -cycles with $D \rightarrow \infty$,

$$\|L_{D\text{-cycle}}\| \approx n^D \left(\frac{k}{n}\right)^{2D} \gg 1,$$

if $k^2 > n$ (limit of spectral method [Alon-Krivelevich-Sudakov '98])

- If restricting S to be D -trees with $D \rightarrow \infty$,

$$\|L_{D\text{-tree}}\| \approx (ne)^{D+1} \left(\frac{k}{n}\right)^{2(D+1)} \gg 1,$$

if $k^2 > n/e$ (limit of message passing [Deshpande-Montanari '15])

Planted clique problem: testing

$$\|L_{\leq D}\|^2 = \sum_{S:|S|\leq D} \langle L, \Phi_S \rangle^2 \approx \sum_{S:|S|\leq D} \left(\frac{k}{n}\right)^{2|V(S)|}$$

- If $D = 1$, $\|L_{\leq D}\|^2 \approx n^2 \left(\frac{k}{n}\right)^4 \gg 1$, if $k^2 \gg n$ \Rightarrow counting edges succeeds
- If restricting S to be D -cycles with $D \rightarrow \infty$,

$$\|L_{D\text{-cycle}}\| \approx n^D \left(\frac{k}{n}\right)^{2D} \gg 1,$$

if $k^2 > n$ (limit of spectral method [Alon-Krivelevich-Sudakov '98])

- If restricting S to be D -trees with $D \rightarrow \infty$,

$$\|L_{D\text{-tree}}\| \approx (ne)^{D+1} \left(\frac{k}{n}\right)^{2(D+1)} \gg 1,$$

if $k^2 > n/e$ (limit of message passing [Deshpande-Montanari '15])

- A complete proof of success also needs to bound the variance under \mathbb{H}_1

Planted clique problem: from testing to estimation

- Goal: estimate node i is in the planted clique or not

Planted clique problem: from testing to estimation

- Goal: estimate node i is in the planted clique or not
- Idea: count a family \mathcal{H} of graphs **rooted** at i with D edges:

$$f_i = \sum_{S \in \mathcal{H}} \langle L, \Phi_S \rangle \Phi_S, \text{ where } \Phi_S = \prod_{(i,j) \in S} (2A_{ij} - 1)$$

Planted clique problem: from testing to estimation

- Goal: estimate node i is in the planted clique or not
- Idea: count a family \mathcal{H} of graphs **rooted** at i with D edges:

$$f_i = \sum_{S \in \mathcal{H}} \langle L, \Phi_S \rangle \Phi_S, \text{ where } \Phi_S = \prod_{(i,j) \in S} (2A_{ij} - 1)$$

- E.g., choose \mathcal{H} to be rooted D -trees. Conditional on planted clique C

Planted clique problem: from testing to estimation

- Goal: estimate node i is in the planted clique or not
- Idea: count a family \mathcal{H} of graphs **rooted** at i with D edges:

$$f_i = \sum_{S \in \mathcal{H}} \langle L, \Phi_S \rangle \Phi_S, \text{ where } \Phi_S = \prod_{(i,j) \in S} (2A_{ij} - 1)$$

- E.g., choose \mathcal{H} to be rooted D -trees. Conditional on planted clique C
 - ▶ Mean separation:

$$\mathbb{E}_P[f_i] \approx \sum_{S \in \mathcal{H}} \left(\frac{k}{n}\right)^{D+1} \mathbf{1}\{V(S) \subset C\} \approx \left(\frac{k^2 e}{n}\right)^D \mathbf{1}\{i \in C\}$$

Planted clique problem: from testing to estimation

- Goal: estimate node i is in the planted clique or not
- Idea: count a family \mathcal{H} of graphs **rooted** at i with D edges:

$$f_i = \sum_{S \in \mathcal{H}} \langle L, \Phi_S \rangle \Phi_S, \text{ where } \Phi_S = \prod_{(i,j) \in S} (2A_{ij} - 1)$$

- E.g., choose \mathcal{H} to be rooted D -trees. Conditional on planted clique C
 - ▶ Mean separation:

$$\mathbb{E}_P[f_i] \approx \sum_{S \in \mathcal{H}} \left(\frac{k}{n}\right)^{D+1} \mathbf{1}\{V(S) \subset C\} \approx \left(\frac{k^2 e}{n}\right)^D \mathbf{1}\{i \in C\}$$

- ▶ Variance: need to show $\text{Var}_P[f_i] \ll (k^2 e/n)^{2D}$

Planted clique problem: from testing to estimation

- Goal: estimate node i is in the planted clique or not
- Idea: count a family \mathcal{H} of graphs **rooted** at i with D edges:

$$f_i = \sum_{S \in \mathcal{H}} \langle L, \Phi_S \rangle \Phi_S, \text{ where } \Phi_S = \prod_{(i,j) \in S} (2A_{ij} - 1)$$

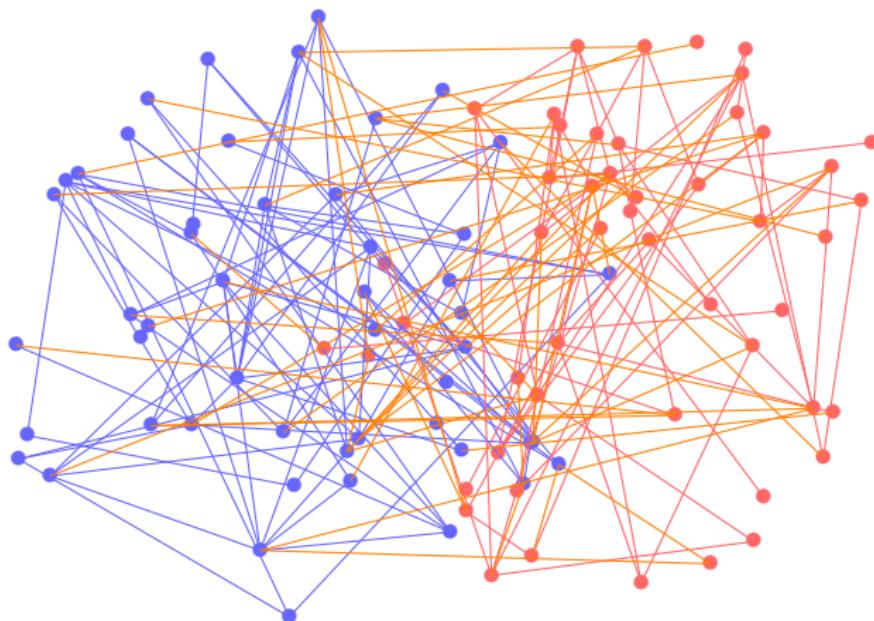
- E.g., choose \mathcal{H} to be rooted D -trees. Conditional on planted clique C
 - ▶ Mean separation:

$$\mathbb{E}_P[f_i] \approx \sum_{S \in \mathcal{H}} \left(\frac{k}{n}\right)^{D+1} \mathbf{1}\{V(S) \subset C\} \approx \left(\frac{k^2 e}{n}\right)^D \mathbf{1}\{i \in C\}$$

- ▶ Variance: need to show $\text{Var}_P[f_i] \ll (k^2 e/n)^{2D}$
- ▶ By Chebyshev's inequality, succeeds whp when $k^2 > n/e$ by choosing $D = \Theta(\log n)$

Community detection: Stochastic block model

- ① n nodes are assigned to 2 communities uniformly at random
- ② For every pair of nodes in same community, add an edge w.p. $\frac{a}{n}$
- ③ For every pair of nodes in diff. community, add an edge w.p. $\frac{b}{n}$



Stochastic block model: testing

$$\mathbb{H}_0 : A \sim \mathcal{G}(n, (a+b)/(2n)) \quad (\text{Null model})$$

$$\mathbb{H}_1 : A \sim \mathcal{G}(n, a/n, b/n) \quad (\text{Planted model})$$

Stochastic block model: testing

$$\mathbb{H}_0 : A \sim \mathcal{G}(n, (a+b)/(2n)) \quad (\text{Null model})$$

$$\mathbb{H}_1 : A \sim \mathcal{G}(n, a/n, b/n) \quad (\text{Planted model})$$

- Polynomial basis: $\Phi_S = \prod_{(i,j) \in S} \frac{A_{ij} - q}{\sigma}$ for $q = \frac{a+b}{2n}$ and $\sigma = \sqrt{q(1-q)}$

Stochastic block model: testing

$$\mathbb{H}_0 : A \sim \mathcal{G}(n, (a+b)/(2n)) \quad (\text{Null model})$$

$$\mathbb{H}_1 : A \sim \mathcal{G}(n, a/n, b/n) \quad (\text{Planted model})$$

- Polynomial basis: $\Phi_S = \prod_{(i,j) \in S} \frac{A_{ij} - q}{\sigma}$ for $q = \frac{a+b}{2n}$ and $\sigma = \sqrt{q(1-q)}$
- Likelihood-ratio projection:

$$\langle L, \Phi_S \rangle = \mathbb{E}_x \mathbb{E}_{A|x} [\Phi_S] = \mathbb{E}_x \left[\prod_{(i,j) \in S} \frac{r x_i x_j}{\sigma} \right] = \left(\frac{r}{\sigma} \right)^{|S|} \mathbf{1}\{\textcolor{red}{S \text{ is even}}\}$$

where $x \in \{\pm 1\}^n$ denotes the hidden community label and $r = \frac{a-b}{2n}$

Stochastic block model: testing

$$\mathbb{H}_0 : A \sim \mathcal{G}(n, (a+b)/(2n)) \quad (\text{Null model})$$

$$\mathbb{H}_1 : A \sim \mathcal{G}(n, a/n, b/n) \quad (\text{Planted model})$$

- Polynomial basis: $\Phi_S = \prod_{(i,j) \in S} \frac{A_{ij} - q}{\sigma}$ for $q = \frac{a+b}{2n}$ and $\sigma = \sqrt{q(1-q)}$
- Likelihood-ratio projection:

$$\langle L, \Phi_S \rangle = \mathbb{E}_x \mathbb{E}_{A|x} [\Phi_S] = \mathbb{E}_x \left[\prod_{(i,j) \in S} \frac{rx_i x_j}{\sigma} \right] = \left(\frac{r}{\sigma} \right)^{|S|} \mathbf{1}\{\textcolor{red}{S \text{ is even}}\}$$

where $x \in \{\pm 1\}^n$ denotes the hidden community label and $r = \frac{a-b}{2n}$

- So, we get

$$\|L_{\leq D}\|^2 = \sum_{S:|S| \leq D} \langle L, \Phi_S \rangle^2 = \sum_{\text{even } S:|S| \leq D} \left(\frac{r}{\sigma} \right)^{2|S|}$$

Stochastic block model: testing

$$\|L_{\leq D}\|^2 = \sum_{S:|S| \leq D} \langle L, \Phi_S \rangle^2 = \sum_{\text{even } S:|S| \leq D} \left(\frac{r}{\sigma}\right)^{2|S|}$$

Stochastic block model: testing

$$\|L_{\leq D}\|^2 = \sum_{S:|S| \leq D} \langle L, \Phi_S \rangle^2 = \sum_{\text{even } S:|S| \leq D} \left(\frac{r}{\sigma}\right)^{2|S|}$$

- Since S must be an even graph, it cannot be a tree.

Stochastic block model: testing

$$\|L_{\leq D}\|^2 = \sum_{S:|S| \leq D} \langle L, \Phi_S \rangle^2 = \sum_{\text{even } S:|S| \leq D} \left(\frac{r}{\sigma}\right)^{2|S|}$$

- Since S must be an even graph, it cannot be a tree.
- The number of vertices is at most D , achieved when S is a cycle

Stochastic block model: testing

$$\|L_{\leq D}\|^2 = \sum_{S:|S| \leq D} \langle L, \Phi_S \rangle^2 = \sum_{\text{even } S:|S| \leq D} \left(\frac{r}{\sigma}\right)^{2|S|}$$

- Since S must be an even graph, it cannot be a tree.
- The number of vertices is at most D , achieved when S is a cycle
- If restricting S to be D -cycles with $D \rightarrow \infty$,

$$\|L_{D\text{-cycle}}\|^2 \approx n^D \left(\frac{r}{\sigma}\right)^{2D} \approx \left(\frac{(a-b)^2}{2(a+b)}\right)^D \gg 1,$$

when $(a-b)^2 > 2(a+b)$ (detection threshold [Mossel-Neeman-Sly '15])

Stochastic block model: testing

$$\|L_{\leq D}\|^2 = \sum_{S:|S| \leq D} \langle L, \Phi_S \rangle^2 = \sum_{\text{even } S:|S| \leq D} \left(\frac{r}{\sigma}\right)^{2|S|}$$

- Since S must be an even graph, it cannot be a tree.
- The number of vertices is at most D , achieved when S is a cycle
- If restricting S to be D -cycles with $D \rightarrow \infty$,

$$\|L_{D\text{-cycle}}\|^2 \approx n^D \left(\frac{r}{\sigma}\right)^{2D} \approx \left(\frac{(a-b)^2}{2(a+b)}\right)^D \gg 1,$$

when $(a-b)^2 > 2(a+b)$ (detection threshold [Mossel-Neeman-Sly '15])

- To show $L_{D\text{-cycle}}$ succeeds, also need $\text{Var}_P[L_{D\text{-cycle}}] \ll (\mathbb{E}_P[L_{D\text{-cycle}}])^2$

Stochastic block model: from testing to estimation

- Goal: determine whether vertices u, v are in the same community or not

Stochastic block model: from testing to estimation

- Goal: determine whether vertices u, v are in the same community or not
- Idea: count set \mathcal{H} of **D -paths** between u and v [Massoulié 13, Hopkins-Steurer '17, Mossel-Neeman-Sly '18, Abbe-Sandon '18]

$$f_{uv} = \frac{1}{n^{D/2-1}} \sum_{S \in \mathcal{H}} \Phi_S, \text{ where } \Phi_S = \prod_{(i,j) \in S} \frac{A_{ij} - q}{\sigma}$$

Stochastic block model: from testing to estimation

- Goal: determine whether vertices u, v are in the same community or not
- Idea: count set \mathcal{H} of **D -paths** between u and v [Massoulié 13, Hopkins-Steurer '17, Mossel-Neeman-Sly '18, Abbe-Sandon '18]

$$f_{uv} = \frac{1}{n^{D/2-1}} \sum_{S \in \mathcal{H}} \Phi_S, \text{ where } \Phi_S = \prod_{(i,j) \in S} \frac{A_{ij} - q}{\sigma}$$

- Conditional on community label $x \in \{\pm 1\}$:
 - ▶ Mean separation:

$$\mathbb{E}_P[f_{uv}] = \frac{1}{n^{D/2-1}} \sum_{S \in \mathcal{H}} \left(\frac{r}{\sigma}\right)^D \prod_{(i,j) \in S} x_i x_j \approx \left(\frac{(a-b)^2}{2(a+b)}\right)^{D/2} \textcolor{red}{x_u x_v}$$

Stochastic block model: from testing to estimation

- Goal: determine whether vertices u, v are in the same community or not
- Idea: count set \mathcal{H} of **D -paths** between u and v [Massoulié 13, Hopkins-Steurer '17, Mossel-Neeman-Sly '18, Abbe-Sandon '18]

$$f_{uv} = \frac{1}{n^{D/2-1}} \sum_{S \in \mathcal{H}} \Phi_S, \text{ where } \Phi_S = \prod_{(i,j) \in S} \frac{A_{ij} - q}{\sigma}$$

- Conditional on community label $x \in \{\pm 1\}$:
 - ▶ Mean separation:

$$\mathbb{E}_P[f_{uv}] = \frac{1}{n^{D/2-1}} \sum_{S \in \mathcal{H}} \left(\frac{r}{\sigma}\right)^D \prod_{(i,j) \in S} x_i x_j \approx \left(\frac{(a-b)^2}{2(a+b)}\right)^{D/2} \textcolor{red}{x_u x_v}$$

- ▶ Variance: show $\mathbb{E}_P[f_{u,v}^2] = O(1) \times \left(\frac{(a-b)^2}{2(a+b)}\right)^D$

Stochastic block model: from testing to estimation

- Goal: determine whether vertices u, v are in the same community or not
- Idea: count set \mathcal{H} of **D -paths** between u and v [Massoulié 13, Hopkins-Steurer '17, Mossel-Neeman-Sly '18, Abbe-Sandon '18]

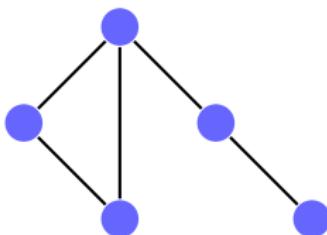
$$f_{uv} = \frac{1}{n^{D/2-1}} \sum_{S \in \mathcal{H}} \Phi_S, \text{ where } \Phi_S = \prod_{(i,j) \in S} \frac{A_{ij} - q}{\sigma}$$

- Conditional on community label $x \in \{\pm 1\}$:
 - ▶ Mean separation:

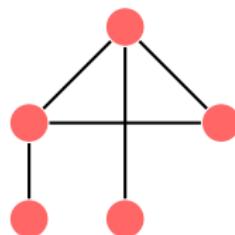
$$\mathbb{E}_P[f_{uv}] = \frac{1}{n^{D/2-1}} \sum_{S \in \mathcal{H}} \left(\frac{r}{\sigma}\right)^D \prod_{(i,j) \in S} x_i x_j \approx \left(\frac{(a-b)^2}{2(a+b)}\right)^{D/2} \textcolor{red}{x_u x_v}$$

- ▶ Variance: show $\mathbb{E}_P[f_{u,v}^2] = O(1) \times \left(\frac{(a-b)^2}{2(a+b)}\right)^D$
- ▶ Attain the sharp estimation threshold $(a-b)^2 > 2(a+b)$, by choosing $D = \Theta(\log n)$ [Hopkins-Steurer '17]

Network alignment: Correlated Erdős-Rényi graphs

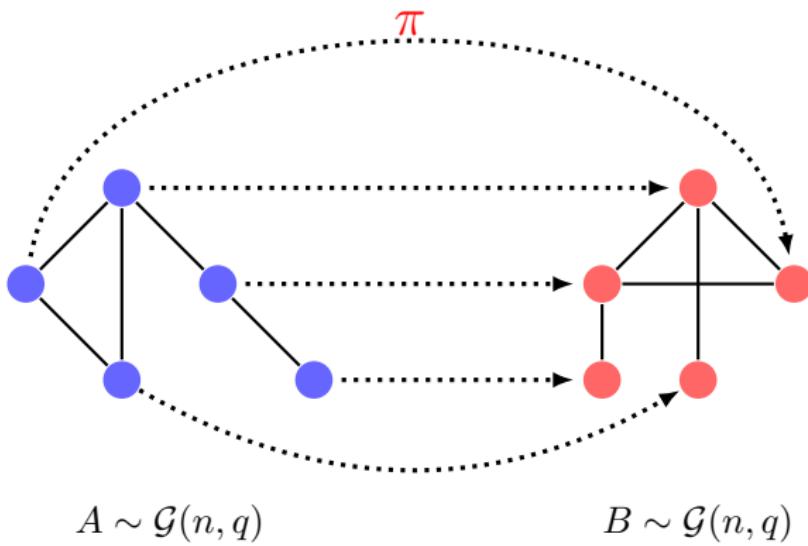


$$A \sim \mathcal{G}(n, q)$$



$$B \sim \mathcal{G}(n, q)$$

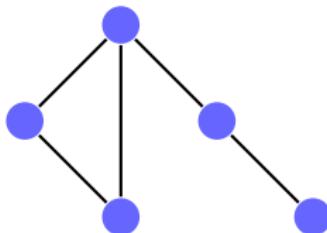
Network alignment: Correlated Erdős-Rényi graphs



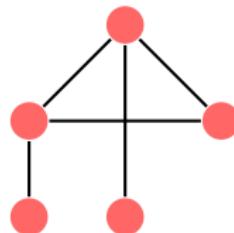
A and B are edge-wise correlated (ρ) under the hidden node correspondence π :

$\{A_{ij}, B_{\pi(i)\pi(j)}\}$ are i.i.d. pairs of $\text{Bern}(q)$ with correlation ρ

Network alignment: Correlated Erdős-Rényi graphs



$$A \sim \mathcal{G}(n, q)$$



$$B \sim \mathcal{G}(n, q)$$

A and B are edge-wise correlated (ρ) under the hidden node correspondence π :

$\{A_{ij}, B_{\pi(i)\pi(j)}\}$ are i.i.d. pairs of $\text{Bern}(q)$ with correlation ρ

Goal: observe A and B , recover the hidden node correspondence π

Random network alignment: testing

\mathbb{H}_0 : A and B are two independent Erdős-Rényi graphs $\mathcal{G}(n, q)$

\mathbb{H}_1 : A and B are two ρ -correlated Erdős-Rényi graphs $\mathcal{G}(n, q, \rho)$

Random network alignment: testing

\mathbb{H}_0 : A and B are two independent Erdős-Rényi graphs $\mathcal{G}(n, q)$

\mathbb{H}_1 : A and B are two **ρ -correlated** Erdős-Rényi graphs $\mathcal{G}(n, q, \rho)$

- Orthogonal polynomial basis: for $S = (S_1, S_2)$,

$$\Phi_S(A, B) = \prod_{(i,j) \in S_1} \frac{A_{ij} - q}{\sqrt{q(1-q)}} \cdot \prod_{(i,j) \in S_2} \frac{B_{ij} - q}{\sqrt{q(1-q)}}$$

Random network alignment: testing

\mathbb{H}_0 : A and B are two independent Erdős-Rényi graphs $\mathcal{G}(n, q)$

\mathbb{H}_1 : A and B are two ρ -correlated Erdős-Rényi graphs $\mathcal{G}(n, q, \rho)$

- Orthogonal polynomial basis: for $S = (S_1, S_2)$,

$$\Phi_S(A, B) = \prod_{(i,j) \in S_1} \frac{A_{ij} - q}{\sqrt{q(1-q)}} \cdot \prod_{(i,j) \in S_2} \frac{B_{ij} - q}{\sqrt{q(1-q)}}$$

- Likelihood-ratio projection:

$$\begin{aligned} \langle L, \Phi_S \rangle &= \mathbb{E}_\pi \mathbb{E}_{A,B|\pi} [\Phi_S] = \mathbb{E}_\pi [\rho^{|S_1|} \mathbf{1}\{\pi(S_1) = S_2\}] \\ &= \rho^{|H|} \frac{1}{\text{sub}(H)} \mathbf{1}\{S_1 \cong S_2 \cong H\} \end{aligned}$$

where \cong means isomorphism and $\text{sub}(H) = \#$ of copies of unlabeled H

Random network alignment: testing

\mathbb{H}_0 : A and B are two independent Erdős-Rényi graphs $\mathcal{G}(n, q)$

\mathbb{H}_1 : A and B are two ρ -correlated Erdős-Rényi graphs $\mathcal{G}(n, q, \rho)$

- Orthogonal polynomial basis: for $S = (S_1, S_2)$,

$$\Phi_S(A, B) = \prod_{(i,j) \in S_1} \frac{A_{ij} - q}{\sqrt{q(1-q)}} \cdot \prod_{(i,j) \in S_2} \frac{B_{ij} - q}{\sqrt{q(1-q)}}$$

- Likelihood-ratio projection:

$$\begin{aligned} \langle L, \Phi_S \rangle &= \mathbb{E}_\pi \mathbb{E}_{A,B|\pi} [\Phi_S] = \mathbb{E}_\pi [\rho^{|S_1|} \mathbf{1}\{\pi(S_1) = S_2\}] \\ &= \rho^{|H|} \frac{1}{\text{sub}(H)} \mathbf{1}\{S_1 \cong S_2 \cong H\} \end{aligned}$$

where \cong means isomorphism and $\text{sub}(H) = \#$ of copies of unlabeled H

- So, we get

$$\|L_{\leq 2D}\|^2 = \sum_{S: |S| \leq 2D} \langle L, \Phi_S \rangle^2 = \sum_{H: |H| \leq D} \sum_{S_1, S_2 \cong H} \frac{\rho^{2|H|}}{\text{sub}^2(H)} = \sum_{H: |H| \leq D} \rho^{2|H|}$$

Random network alignment: testing

$$\|L_{\leq 2D}\|^2 = \sum_{S:|S| \leq 2D} \langle L, \Phi_S \rangle^2 = \sum_{H:|H| \leq D} \rho^{2|H|}$$

Random network alignment: testing

$$\|L_{\leq 2D}\|^2 = \sum_{S:|S| \leq 2D} \langle L, \Phi_S \rangle^2 = \sum_{H:|H| \leq D} \rho^{2|H|}$$

- If restricting H to be set \mathcal{T} of **unlabeled D -trees** with $D \rightarrow \infty$,

$$\|L_{D-\text{tree}}\|^2 = \rho^{2D} |\mathcal{T}| = \left(\frac{\rho^2}{\alpha} \right)^D \gg 1,$$

when $\rho^2 > \alpha$, where $\alpha \approx 0.33833$ is Otter's constant [Otter '48]

Random network alignment: testing

$$\|L_{\leq 2D}\|^2 = \sum_{S:|S| \leq 2D} \langle L, \Phi_S \rangle^2 = \sum_{H:|H| \leq D} \rho^{2|H|}$$

- If restricting H to be set \mathcal{T} of unlabeled D -trees with $D \rightarrow \infty$,

$$\|L_{D-\text{tree}}\|^2 = \rho^{2D} |\mathcal{T}| = \left(\frac{\rho^2}{\alpha} \right)^D \gg 1,$$

when $\rho^2 > \alpha$, where $\alpha \approx 0.33833$ is Otter's constant [Otter '48]

- To show $L_{D-\text{tree}}$ succeeds, also need
 $\text{Var}_P[L_{D-\text{tree}}] \ll (\mathbb{E}_P[L_{D-\text{tree}}])^2$ [Mao-Wu-Yu-X.'24]

Random network alignment: from testing to estimation

- Goal: determine whether vertices u in A and v in B are true pair or not

Random network alignment: from testing to estimation

- Goal: determine whether vertices u in A and v in B are true pair or not
- Idea: count family \mathcal{T} of **rooted** D -trees:

$$f_{uv} = \sum_{H \in \mathcal{T}} \frac{\rho^{|H|}}{\text{sub}(H)} \sum_{S_1(u), S_2(v) \cong H} \prod_{(i,j) \in S_1} \frac{A_{ij} - q}{\sqrt{q(1-q)}} \cdot \prod_{(i,j) \in S_2} \frac{B_{ij} - q}{\sqrt{q(1-q)}}$$

Random network alignment: from testing to estimation

- Goal: determine whether vertices u in A and v in B are true pair or not
- Idea: count family \mathcal{T} of **rooted** D -trees:

$$f_{uv} = \sum_{H \in \mathcal{T}} \frac{\rho^{|H|}}{\text{sub}(H)} \sum_{S_1(u), S_2(v) \cong H} \prod_{(i,j) \in S_1} \frac{A_{ij} - q}{\sqrt{q(1-q)}} \cdot \prod_{(i,j) \in S_2} \frac{B_{ij} - q}{\sqrt{q(1-q)}}$$

- Conditional on latent node mapping π :
 - ▶ Mean separation (assuming H is uniquely rooted):

$$\mathbb{E}_P [f_{uv}] = \sum_{H \in \mathcal{T}} \rho^{2|H|} \mathbf{1}\{\pi(u) = v\} \sim \left(\frac{\rho^2}{\alpha}\right)^D \mathbf{1}\{\pi(u) = v\}$$

Random network alignment: from testing to estimation

- Goal: determine whether vertices u in A and v in B are true pair or not
- Idea: count family \mathcal{T} of **rooted** D -trees:

$$f_{uv} = \sum_{H \in \mathcal{T}} \frac{\rho^{|H|}}{\text{sub}(H)} \sum_{S_1(u), S_2(v) \cong H} \prod_{(i,j) \in S_1} \frac{A_{ij} - q}{\sqrt{q(1-q)}} \cdot \prod_{(i,j) \in S_2} \frac{B_{ij} - q}{\sqrt{q(1-q)}}$$

- Conditional on latent node mapping π :
 - ▶ Mean separation (assuming H is uniquely rooted):

$$\mathbb{E}_P [f_{uv}] = \sum_{H \in \mathcal{T}} \rho^{2|H|} \mathbf{1}\{\pi(u) = v\} \sim \left(\frac{\rho^2}{\alpha}\right)^D \mathbf{1}\{\pi(u) = v\}$$

- ▶ To control the variance, we restrict to a special family \mathcal{T}^* of unlabeled rooted trees—**chandeliers**, where $|\mathcal{T}^*| = (1/\alpha - o(1))^D$ [Mao-Wu-X.-Yu '23]

Outline of tutorial

- Introduction to low-degree polynomial method
- Three prototypical examples
 - ▶ Planted clique
 - ▶ Stochastic block model
 - ▶ Random network alignment
- Concluding remarks

A few remarks

- Tree- or cycle-based polynomials of degree D can be approximated in time $n^2 e^{O(D)}$ via **color-coding** [Alon-Yuster-Zwick '94]

A few remarks

- Tree- or cycle-based polynomials of degree D can be approximated in time $n^2 e^{O(D)}$ via **color-coding** [Alon-Yuster-Zwick '94]
- The polynomials often come from the **low-degree projection** of the likelihood ratio, though some extra “twists” may be needed for estimation

A few remarks

- Tree- or cycle-based polynomials of degree D can be approximated in time $n^2 e^{O(D)}$ via **color-coding** [Alon-Yuster-Zwick '94]
- The polynomials often come from the **low-degree projection** of the likelihood ratio, though some extra “twists” may be needed for estimation
- A major simplification comes from i.i.d. observations under \mathbb{H}_0 , which allow us to explicitly construct an **orthogonal polynomial basis**

A few remarks

- Tree- or cycle-based polynomials of degree D can be approximated in time $n^2 e^{O(D)}$ via **color-coding** [Alon-Yuster-Zwick '94]
- The polynomials often come from the **low-degree projection** of the likelihood ratio, though some extra “twists” may be needed for estimation
- A major simplification comes from i.i.d. observations under \mathbb{H}_0 , which allow us to explicitly construct an **orthogonal polynomial basis**
- A key step is to evaluate the projection coefficient $\langle L, \Phi_S \rangle$, which equals the mean of Φ_S under the planted model

A few remarks

- Tree- or cycle-based polynomials of degree D can be approximated in time $n^2 e^{O(D)}$ via **color-coding** [Alon-Yuster-Zwick '94]
- The polynomials often come from the **low-degree projection** of the likelihood ratio, though some extra “twists” may be needed for estimation
- A major simplification comes from i.i.d. observations under \mathbb{H}_0 , which allow us to explicitly construct an **orthogonal polynomial basis**
- A key step is to evaluate the projection coefficient $\langle L, \Phi_S \rangle$, which equals the mean of Φ_S under the planted model
- To complete the analysis, we also need to bound the variance of the polynomial under \mathbb{H}_1 . This can be quite challenging-sometimes **special designs** (e.g., counting chandeliers) help.

A few remarks

- Tree- or cycle-based polynomials of degree D can be approximated in time $n^2 e^{O(D)}$ via **color-coding** [Alon-Yuster-Zwick '94]
- The polynomials often come from the **low-degree projection** of the likelihood ratio, though some extra “twists” may be needed for estimation
- A major simplification comes from i.i.d. observations under \mathbb{H}_0 , which allow us to explicitly construct an **orthogonal polynomial basis**
- A key step is to evaluate the projection coefficient $\langle L, \Phi_S \rangle$, which equals the mean of Φ_S under the planted model
- To complete the analysis, we also need to bound the variance of the polynomial under \mathbb{H}_1 . This can be quite challenging-sometimes **special designs** (e.g., counting chandeliers) help.
- The low-degree polynomial method extends to many other high-dimensional inference settings. For example, with i.i.d. Gaussian null model, the orthogonal basis is given by **Hermite polynomials**.

A partial and ever-growing list of successes

- Planted dense subgraph [Sohn-Wein '25]
- Planted dense cycles [Mao-Wein-Zhang '23]
- Dense stochastic block models [Banerjee-Ma '17, Banerjee '18]
- Degree-corrected stochastic block models [Gao-Lafferty '17, Jin-Ke-Luo '19]
- Mixed-membership stochastic block models [Hopkins-Steurer '17]
- Random network alignment: correlated stochastic block models [Chen-Ding-Gong-Li '24,25, Chai-Rácz 24]
- Attributed network alignment [Wang-Wang-Wang'24]
- Testing random geometric graph vs. Erdős-Rényi [Bubeck-Ding-Eldan-Rácz '16]
- Planted submatrix [Sohn-Wein '25]
- Spiked Wigner model [Hopkins-Steurer '17, Sohn-Wein '25]
- Tensor PCA [Hopkins '18, Li '25]
- Shuffled linear regression [Li '25, Gong-Wu-X. '25]
- Procrustes-Wasserstein matching [Niu-Schramm-X. '25]
- And many more...

Challenges and open problems

- The likelihood ratio projection can be hard to compute
 - ▶ Example: random geometric graph. Suppose x_i 's are i.i.d. on the unit sphere in \mathbb{R}^d , and conditional on x_i 's, $A_{ij} \stackrel{\text{iid}}{\sim} \text{Bern}(\kappa(x_i, x_j))$.
 - ▶ In this case, $\langle L, \Phi_S \rangle = \mathbb{E}_P[\Phi_S]$ is hard to compute except for simple subgraphs such as cycles. See recent progress [Bangachev-Bresler '25]
 - ▶ A key obstacle in resolving the long-standing conjecture on detection threshold for RGG vs Erdős-Rényi graph [Liu-Mohanty-Schramm-Yang '21]

Challenges and open problems

- The likelihood ratio projection can be hard to compute
 - ▶ Example: random geometric graph. Suppose x_i 's are i.i.d. on the unit sphere in \mathbb{R}^d , and conditional on x_i 's, $A_{ij} \stackrel{\text{iid}}{\sim} \text{Bern}(\kappa(x_i, x_j))$.
 - ▶ In this case, $\langle L, \Phi_S \rangle = \mathbb{E}_P[\Phi_S]$ is hard to compute except for simple subgraphs such as cycles. See recent progress [Bangachev-Bresler '25]
 - ▶ A key obstacle in resolving the long-standing conjecture on detection threshold for RGG vs Erdős-Rényi graph [Liu-Mohanty-Schramm-Yang '21]
- The null model may not have IID observations, so the nice orthogonality property is missing
 - ▶ Example: aligning random geometric graphs. Suppose y_i is correlated with $x_{\pi(i)}$, and conditional on y_i 's, $B_{ij} \stackrel{\text{iid}}{\sim} \text{Bern}(\kappa(y_i, y_j))$.
 - ▶ Under the null model, A and B are two independent random geometric graphs, but the orthogonal polynomial basis is unknown

Challenges and open problems

- The likelihood ratio projection can be hard to compute
 - ▶ Example: random geometric graph. Suppose x_i 's are i.i.d. on the unit sphere in \mathbb{R}^d , and conditional on x_i 's, $A_{ij} \stackrel{\text{iid}}{\sim} \text{Bern}(\kappa(x_i, x_j))$.
 - ▶ In this case, $\langle L, \Phi_S \rangle = \mathbb{E}_P[\Phi_S]$ is hard to compute except for simple subgraphs such as cycles. See recent progress [Bangachev-Bresler '25]
 - ▶ A key obstacle in resolving the long-standing conjecture on detection threshold for RGG vs Erdős-Rényi graph [Liu-Mohanty-Schramm-Yang '21]
- The null model may not have IID observations, so the nice orthogonality property is missing
 - ▶ Example: aligning random geometric graphs. Suppose y_i is correlated with $x_{\pi(i)}$, and conditional on y_i 's, $B_{ij} \stackrel{\text{iid}}{\sim} \text{Bern}(\kappa(y_i, y_j))$.
 - ▶ Under the null model, A and B are two independent random geometric graphs, but the orthogonal polynomial basis is unknown
- Dynamic networks
 - ▶ Example: preferential attachment (PA) models. How can we design low-degree polynomial estimators for inference problems in PA graphs—such as community detection or network alignment?

Conclusions

- Network inference provides a rich family of problems that intertwine *applied probability, statistics, optimization, combinatorics, information theory, and more*.
- The low-degree polynomial method offers a simple yet principled framework for understanding the fundamental limits of high-dimensional inference.
- This tutorial has focused on **low-degree “upper bounds”**— showing how to design effective low-degree, polynomial-based estimators.
- A complementary perspective comes from **low-degree “lower bounds”**, which characterize thresholds below which all low-degree polynomials fail. Under the **low-degree conjecture**, this further implies all polynomial-time algorithms fail

Further Reading

- A. Wein, “*Computational Complexity of Statistics: New Insights from Low-Degree Polynomials*,” June 2025.
- Y. Wu and J. Xu, “*Statistical Inference on Graphs: Selected Topics*,” <https://people.duke.edu/~jx77/stats-graphs.pdf>. Lecture notes