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Statistical inference on graphs

® Detecting or estimating hidden structures in large network data

X - G = X
~— ~— —~~
Hidden structure Network estimate
® Key challenges: Understanding the fundamental limits:
& Characterize statistical (information-theoretic) limit: What is
possible/impossible?
& Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?
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Planted clique — graph view

@ A set C of k vertices is chosen to form a clique
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@ A set C of k vertices is chosen to form a clique
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Planted clique — graph view

@ A set C of k vertices is chosen to form a clique
® For every other pair of vertices, add an edge w.p. %
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@ A set C of k vertices is chosen to form a clique

® For every other pair of vertices, add an edge w.p. %
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Planted clique — adjacency matrix view




Planted clique — adjacency matrix view




Planted clique — adjacency matrix view




Community detection in networks

® Networks with community structures arise in many applications

Figure: Political blogosphere and the 2004 U.S. election [Adamic-Glance '05]



Community detection in networks

® Networks with community structures arise in many applications

® Task: Discover underlying communities based on the network topology

Figure: Political blogosphere and the 2004 U.S. election [Adamic-Glance '05]



Stochastic block model — graph view
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Stochastic block model — graph view

@ n nodes are assigned to 2 communities uniformly at random
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Stochastic block model — graph view
@ n nodes are assigned to 2 communities uniformly at random
® For every pair of nodes in same community, add an edge w.p. p
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Stochastic block model — graph view

@ n nodes are assigned to 2 communities uniformly at random
® For every pair of nodes in same community, add an edge w.p. p
© For every pair of nodes in diff. community, add an edge w.p. ¢
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Stochastic block model — graph view

@ n nodes are assigned to 2 communities uniformly at random
® For every pair of nodes in same community, add an edge w.p. p

© For every pair of nodes in diff. community, add an edge w.p. ¢




Stochastic block model — adjacency matrix view

nz = 7962



Stochastic block model — adjacency matrix view

0 50 100 150 200
nz = 7962



A flurry of network inference problems

® Planted subgraphs (matchings,
trees, cycles, ...)

Planted ® Graphon (random geometric
ante
-_> graph)

® Preferential attachment graphs

® Random network alignment

® And many more ...

1990s 2010s Now

Driven by both theoretical interests and practical applications



Significant methodological advances

Applied Probability Optimization
® Local weak ® Relaxations (LP,
convergence SDP)
® Random matrix & ® Dual certificates &
spectral methods polyhedral

combinatorics

Statistical Physics

® Belief propagation &
message passing

® |nterpolation
method
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Significant methodological advances

Applied Probability Optimization Statistical Physics
® |ocal weak ® Relaxations (LP, ® Belief propagation &
convergence SDP) message passing
® Random matrix & ® Dual certificates & ® Interpolation
spectral methods polyhedral method

combinatorics

® These methods have led to sharp characterizations of information-theoretic and
algorithmic phase transition thresholds.

® The proofs, however, often require substantial mathematical ingenuity.

® But what if | am not ingenious? Is there a simple, principled approach to try?

This tutorial: Low-degree polynomial method
Analog of drift method in stochastic networks



Outline of tutorial

® Introduction to low-degree polynomial method
® Three prototypical examples

» Planted clique
» Stochastic block model
» Random network alignment

® Concluding remarks
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Polynomials on graph

® Given a graph G represented by adjacency vector A =

® A multivariate polynomial f : {0, 1}(3) —R

Example
* Edge count: >, _;
® Triangle count: Zi<j<k AijAjkAik
Subgraph-H count: }_sop [1(; j)es Ais
# of closed walks: Tr(AP) ="

A A

21,22,...,4p ~ 122

A

(Aij)i<i<i<n

ipi1



Polynomials on graph

® Given a graph G represented by adjacency vector A = (A4;;)1<i<j<n

® A multivariate polynomial f : {0, 1}(3) —R

Example
* Edge count: >, _;
® Triangle count: Zi<j<k AijAjkAik
Subgraph-H count: }_sop [1(; j)es Ais
# of closed walks: Tr(AP) =" A A
® Message passing: m;_; = h({my—; : k ~ j, k #i})

A

21,82,...,4p ~ 0122471213 1D



Polynomials on graph

® Given a graph G represented by adjacency vector A = (A4;;)1<i<j<n

® A multivariate polynomial f : {0, 1}(3) —R

Example
* Edge count: >, _;
® Triangle count: Zi<j<k AijAjkAik
Subgraph-H count: }_sop [1(; j)es Ais
# of closed walks: Tr(AP) =" A A
® Message passing: m;_; = h({my—; : k ~ j, k #i})

i1,09,...,0p “1i1124 213 AzDzl

Local algorithms: f depends on local neighborhood



Polynomial basis [Janson '90, '94]

® Consider the space F of real-valued functions on {0, 1}(3) endowed with
inner-product

(£,9) 2B g/ (A)9(A)]
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Polynomial basis [Janson '90, '94]

® Consider the space F of real-valued functions on {0, 1}(;) endowed with
inner-product

(£,9) 2B g/ (A)9(A)]

q)
® Fact: The orthogonal polynomial basis {®5 : S C ([Z])} spans entire F

- _ Aii —
Qg = H Aij, Aij = ”17q
(i,5)€S q( _Q)

® Quick check
» Orthonormality: (®s, ®r) =1{S =T}
> Completeness: dim({®s: S C (I2))}) = dim(F) =2



Polynomial basis [Janson '90, '94]

® Consider the space F of real-valued functions on {0, 1}(;) endowed with
inner-product

(£,9) 2B g/ (A)9(A)]

q)
® Fact: The orthogonal polynomial basis {®5 : S C ([Z])} spans entire F

- _ Aii —
Qg = H Aij, Aij = ”17q

® Quick check
» Orthonormality: (®s, ®r) =1{S =T}
> Completeness: dim({®s: S C (I2))}) = dim(F) =2

Question
How to design polynomial-based estimator?
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Polynomial approximation of likelihood ratio
Ho : A ~ Bern(q)®(2) 2 @ (Null model)
Hy:A~P (Planted model)

® By Neyman-Pearson Lemma, likelihood ratio test is optimal:

L(A) 2 ggj;



Polynomial approximation of likelihood ratio
(Null model)

Hp: A~ Bern(q)®(g) 20
(Planted model)

Hl cA~P
® By Neyman-Pearson Lemma, likelihood ratio test is optimal:
s P(A)

Q(A)
® However, for many planted problems, P is a mixture over exponentially
many components =- L is computationally hard to evaluate



Polynomial approximation of likelihood ratio
(Null model)

A Bern(q)®<g) 20
Hy:A~P (Planted model)

® By Neyman-Pearson Lemma, likelihood ratio test is optimal
» P(A)

(4) = =
Q(A)
® However, for many planted problems, P is a mixture over exponentially

many components =- L is computationally hard to evaluate
® |nstead, look for low-degree polynomial maximizing signal-to-noise ratio

Ep(f] _ <L,f>>
VEIP VT

ma
frdeg( f)<D <



Polynomial approximation of likelihood ratio

Ho : A ~ Bern(q)®(2) 2 @ (Null model)
Hy:A~P (Planted model)

By Neyman-Pearson Lemma, likelihood ratio test is optimal:

P(A
L4y & 2&)
Q(A)
® However, for many planted problems, P is a mixture over exponentially
many components =- L is computationally hard to evaluate

Instead, look for low-degree polynomial maximizing signal-to-noise ratio:

max =
faeg(N<D \ /EQ[f?] V([ 1)
By Cauchy-Schwartz, optimum is ||L<p|| and achieved by projection of L:

Al —
Lep= > (Ldg)®s , where g = [] J q

S:|S|<D (i,5)€S V

weighted signed subgraph count




Low-degree polynomial prediction

Conjecture (Hopkins '18, informal)

For “sufficiently nice” planted problems,
e [f||L<p|| = oo for D = O(logn), there exists degree-D polynomial
succeeds in detecting or estimating the hidden structure
e [f||L<p|| = O(1) for D = O(logn), all polynomial-time algorithms fail in
detection and estimation

Ho

L
I L<pll

0 IL<p|?



Low-degree polynomial prediction

Conjecture (Hopkins '18, informal)

For “sufficiently nice” planted problems,
® [f|[L<p|| — oo for D = O(logn), there exists degree-D polynomial
succeeds in detecting or estimating the hidden structure
e [f|[L<p|| = O(1) for D = O(logn), all polynomial-time algorithms fail in
detection and estimation

Remark

® Remarkably, this prediction aligns with many proven algorithmic upper and
lower bounds for a wide class of planted problems

® Need O(logn) degree to cover spectral method, and many
O(logn)-polynomials can be computed in poly-time
® Significant progress on proving low-degree polynomial lower bounds [Wein '25]

® Focus of this tutorial: low-degree polynomial as an algorithmic tool



Outline of tutorial

® Introduction to low-degree polynomial method
® Three prototypical examples

» Planted clique
» Stochastic block model
» Random network alignment

® Concluding remarks



Planted clique problem

@ A set C of k vertices is chosen to form a clique
® For every other pair of vertices, add an edge w.p. %




Planted clique problem: testing

Hy: A~ G(n,1/2) (Null model)
Hy: A~G(n,1/2k) (Planted model)
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where C'is the vertex set of hidden clique and V(.S) is the vertex set of S



Planted clique problem: testing

Hy: A~ G(n,1/2) (Null model)
Hy: A~G(n,1/2k) (Planted model)

® Orthogonal polynomial basis: ®s = []; ;)c5(24i; — 1)
® |ikelihood-ratio projection:

NIZE!
<L, @S> = ]Ep[(I)S} = EC]EA|C’[(I’S] = ]Ec[]_{V(S) C C}] ~ (n)

where C'is the vertex set of hidden clique and V(.S) is the vertex set of S

® So, we get

, , 1A 2V(S)
L = L,® R —
Lol = Y et~ ¥ (1)

S:|S|I<D S:|S|<D



Planted clique problem: testing
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Planted clique problem: testing

. . 1\ 2V
L = L,® = —
Lol = Y et~ Y (%)

S:|S|<D S:|S|<D

4 . .
Lepl? =n? (£)" > 1, if k* > n = counting edges succeeds

n

e IfD=1,
® |f restricting S to be D-cycles with D — oo,

k 2D
||LD—cyc|e|| ~ nD (n> > 1,

if k2 >n (I|m|t of spectral method [Alon-Krivelevich-Sudakov ’98])



Planted clique problem: testing

, , 1\ 21V
ool = ¥ et~ 3 (%)

$:|8|<D s:s|<D

LSDHQ ~ n? (k)4 > 1, if k2 > n = counting edges succeeds

n

e If D=1,
® |If restricting S to be D-cycles with D — oo,

k 2D
Lol =n” (£) 1

if k2 > n (limit of spectral method [Alon-Krivelevich-Sudakov '98])
® |f restricting S to be D-trees with D — oo,

. 1 2(D+1)
L tree| & D+ 1P~ (=
Lol = (" )@ 402 (2)

if k2 > n/e (limit of message passing [Deshpande-Montanari '15])
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Planted clique problem: testing

, , 1\ 21V
ool = ¥ et~ 3 (%)

$:|8|<D s:s|<D

LSDHQ ~ n? (k)4 > 1, if k2 > n = counting edges succeeds

n

If D=1,
® |If restricting S to be D-cycles with D — oo,

k 2D
Lol =n” (£) 1

if k2 > n (limit of spectral method [Alon-Krivelevich-Sudakov '98])
® |f restricting S to be D-trees with D — oo,

1\ 20+
ol = 0™ (1) 21

if k2 > n/e (limit of message passing [Deshpande-Montanari '15])

A complete proof of success also needs to bound the variance under Hj
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Planted clique problem: from testing to estimation

® Goal: estimate node i is in the planted clique or not
® |dea: count a family H of graphs rooted at 7 with D edges:

fi= Y (L,®5) @5, where 25 = [] (24— 1)

SeH (i,5)€S

® E.g., choose H to be rooted D-trees. Conditional on planted clique C'

» Mean separation:

2
(&

Erlf]~ Y <§) ) oy~ (’2)'3 1ieC)
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Planted clique problem: from testing to estimation

® Goal: estimate node i is in the planted clique or not
® |dea: count a family H of graphs rooted at 7 with D edges:

fi=) (L, ®s)®s, where &g = [ (245 1)
SeH (¢,7)€S8
® E.g., choose H to be rooted D-trees. Conditional on planted clique C'
» Mean separation:
k)Pt k2e\"”
Ep[fi]~ <E) 1{V(S)c C}~ (7) 1{i € C}

SeH

> Variance: need to show Varp[f;] < (kge/n)ZD



Planted clique problem: from testing to estimation

® Goal: estimate node i is in the planted clique or not
® |dea: count a family H of graphs rooted at 7 with D edges:

fi=) (L, ®s)®s, where &g = [ (245 1)
SeH (¢,7)€S8

® E.g., choose H to be rooted D-trees. Conditional on planted clique C'

» Mean separation:

Eplfi] ~ S;{ <§) ) c oy~ (%)D i€ C}

> Variance: need to show Varp[f;] < (kge/n)ZD

» By Chebyshev’s inequality, succeeds whp when k* > n/e by choosing
D = ©(logn)



Community detection: Stochastic block model

@ n nodes are assigned to 2 communities uniformly at random
@® For every pair of nodes in same community, add an edge w.p. -~

® For every pair of nodes in diff. community, add an edge w.p. %
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Stochastic block model: testing

Hy: A~ G(n,(a+b)/(2n)) (Null model)
Hy: A~ G(n,a/n,b/n) (Planted model)



Stochastic block model: testing

Hy: A~ G(n,(a+b)/(2n)) (Null model)
Hy: A~ G(n,a/n,b/n) (Planted model)

® Polynomial basis: &g = H(”)es ’J for ¢ = “—er and 0 = +/q(1 —q)

2n



Stochastic block model: testing

Hy: A~ G(n,(a+b)/(2n)) (Null model)
Hy: A~ G(n,a/n,b/n) (Planted model)
® Polynomial basis: &g = H(i,j)eS @ for ¢ = “2—*: and 0 = +/q(1 —q)

® Likelihood-ratio projection:

- 15|
(L, @s) = E;E41.[Ps] = E, H B8 = (1) 1{S is even}
(i.5)es 7
a—b

where 2 € {1}" denotes the hidden community label and 7 = 4-2



Stochastic block model: testing

Hy: A~ G(n,(a+b)/(2n)) (Null model)
Hy: A~ G(n,a/n,b/n) (Planted model)
® Polynomial basis: &g = H(i,j)eS @ for ¢ = “2—*: and 0 = +/q(1 —q)

® Likelihood-ratio projection:

o S|
(L, @s) = E;E41.[Ps] = E, H B8 = (1) 1{S is even}
g
(i,5)€S
where x € {£:1}" denotes the hidden community label and r = %2

® So, we get

||LSD||2: Z <L,<I>5>2: Z (g)Q\SI

S:|S|I<D even S:|S|<D
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® Since S must be an even graph, it cannot be a tree.
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Stochastic block model: testing

r 28]

IL<nllP = > (Los) = Y

S:|S|<D even S:|S|<D

® Since S must be an even graph, it cannot be a tree.
® The number of vertices is at most D, achieved when S is a cycle
® |f restricting S to be D-cycles with D — oo,

<éO(La_+bz)2) ) ’ >1

when (a —b)? > 2(a + b) (detection threshold [Mossel-Neeman-Sly '15])

2 p (T\?"
ILo-cyeel® = n” () =
a



Stochastic block model: testing

r 28]

IL<nllP = > (Los) = Y

S:|S|<D even S:|S|<D

® Since S must be an even graph, it cannot be a tree.

The number of vertices is at most D, achieved when S is a cycle
® |f restricting S to be D-cycles with D — oo,

(f5) =

when (a —b)? > 2(a + b) (detection threshold [Mossel-Neeman-Sly '15])

2 p (T\?"
ILo-cyeel® = n” () =
a

To show Lp_cycle succeeds, also need Varp[Lp_cycie] < (Ep [LD_cyde])2
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Mossel-Neeman-Sly '18, Abbe-Sandon '18]

1
fuo = BT Z dg, where &g = H
SeH (i,j)€s

Aij —q

® Conditional on community label z € {£1}:
» Mean separation:
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Eotil = oo 2 (5)° T e () v



Stochastic block model: from testing to estimation

® Goal: determine whether vertices u, v are in the same community or not

® |dea: count set H of D-paths between u and v [Massouli¢ 13, Hopkins-Steurer '17,
Mossel-Neeman-Sly '18, Abbe-Sandon '18]

1 Aii —q
fuv = W Z (bS) Where (bs = H A
SeH (i,5)€S
® Conditional on community label z € {£1}:
» Mean separation:
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Stochastic block model: from testing to estimation

® Goal: determine whether vertices u, v are in the same community or not

® |dea: count set H of D-paths between u and v [Massouli¢ 13, Hopkins-Steurer '17,
Mossel-Neeman-Sly '18, Abbe-Sandon '18]

1 Aii —q
fuv = W Z (bS) Where (bs = H A
SeH (i,5)€S
® Conditional on community label z € {£1}:
» Mean separation:
1 r\ D (a—b)? bz
EP[fuv] = W Z (;) H Tilj = (m Luy
SeEH (4,4)€S

T 2 7 _ (a—p2\P
» Variance: show Ep[f7 ] = O(1) x 5(atb)

> Attain the sharp estimation threshold (a — b)? > 2(a + b), by choosing
D = ©(logn) [Hopkins-Steurer '17]
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A~ G(n,q) B~ G(n,q)

A and B are edge-wise correlated (p) under the hidden node correspondence :
{Aij, Br(iyr(j)} are i.i.d. pairs of Bern(g) with correlation p

Goal: observe A and B, recover the hidden node correspondence m
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Hp : A and B are two independent Erd8s-Rényi graphs G(n, q)
H; : A and B are two p-correlated Erdds-Rényi graphs G(n, g, p)

® Orthogonal polynomial basis: for S = (51,52),
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Random network alignment: testing

Hp : A and B are two independent Erd8s-Rényi graphs G(n, q)
H; : A and B are two p-correlated Erdds-Rényi graphs G(n, g, p)

® Orthogonal polynomial basis: for S = (51,52),

— H Bw —q
(4,4)€S1 vql—q (i.)es, V4 1—q)
® |ikelihood-ratio projection:
(L, ®s) = ExE4 B2 [Ps] = Ex [Plsl‘l{ﬂ(sl) = 51}

1
_ ]
P Sub(H)

where 2 means isomorphism and sub(H) = # of copies of unlabeled H
® So, we get

1{S, ~ 5, =~ H}

p2lHI

ILeopllP= Y (Las)= > > subQ(H S

S:S|<2D H:|H|<D 51,522H H:|H|<D
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Random network alignment: testing

IL<apl®= Y (L®s)*= > pM

5:18|<2D H:|H|<D
® |f restricting H to be set T of unlabeled D-trees with D — o0,
P\
Lol =PI71= (2] 1.
when p? > a, where o = 0.33833 is Otter's constant [Otter '45]

® To show L p_iree Succeeds, also need
2
Val’p[LD_tree] < (EP [LD—tree]) [Mao-Wu-Yu-X.'24]
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® Goal: determine whether vertices u in A and v in B are true pair or not

® |dea: count family T of rooted D-trees:

|H]|
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® Goal: determine whether vertices v in A and v in B are true pair or not

® |dea: count family T of rooted D-trees:
sz —q
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Random network alignment: from testing to estimation

® Goal: determine whether vertices v in A and v in B are true pair or not

® |dea: count family T of rooted D-trees:
sz —q

o p|H| Z]_q
fuv—z ) Z H \/7_(1 ”1152\/7

HeT SUb(H Si(u),S2(v)=H (i,j)€S1

® Conditional on latent node mapping
» Mean separation (assuming H is uniquely rooted):
2

B lful = 0 p"1n(0) =0} ~ (4 ) a0 =)

HeT

» To control the variance, we restrict to a special family 7 of unlabeled
rooted trees—chandeliers, where |7*| = (1/a — 0(1))” [Mao-Wu-X-Yu '23]



Outline of tutorial

® Introduction to low-degree polynomial method
® Three prototypical examples

» Planted clique
» Stochastic block model
» Random network alignment

® Concluding remarks
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A few remarks

® Tree- or cycle-based polynomials of degree D can be approximated in time
n2e(P) via color-coding [Alon-Yuster-Zwick '94]

® The polynomials often come from the low-degree projection of the
likelihood ratio, though some extra “twists” may be needed for estimation

® A major simplification comes from i.i.d. observations under Hy, which
allow us to explicitly construct an orthogonal polynomial basis

® A key step is to evaluate the projection coefficient (L, ®g), which equals
the mean of ®g under the planted model

® To complete the analysis, we also need to bound the variance of the
polynomial under H;. This can be quite challenging-sometimes special
designs (e.g., counting chandeliers) help.

® The low-degree polynomial method extends to many other
high-dimensional inference settings. For example, with i.i.d. Gaussian null
model, the orthogonal basis is given by Hermite polynomials.



A partial and ever-growing list of successes

® Planted dense subgraph [Sohn-Wein '25]

® Planted dense cycles [Mao-Wein-Zhang 23]

® Dense stochastic block models [Banerjee-Ma '17, Banerjee '18]

® Degree-corrected stochastic block models [Gao-Lafferty '17, Jin-Ke-Luo '19]
® Mixed-membership stochastic block models [Hopkins-Steurer '17]

® Random network alignment: correlated stochastic block
models [Chen-Ding-Gong-Li '24,25, Chai-Racz 24]

® Attributed network alignment [Wang-Wang-Wang'24]

® Testing random geometric graph vs. Erd6s-Rényi [Bubeck-Ding-Eldan-Racz '16]
® Planted submatrix [Sohn-Wein '25]

® Spiked Wigner model [Hopkins-Steurer '17, Sohn-Wein '25]

® Tensor PCA [Hopkins '18, Li '25]

® Shuffled linear regression [Li '25, Gong-Wu-X. '25]

® Procrustes-Wasserstein matching [Niu-Schramm-X. '25]

® And many more...



Challenges and open problems

® The likelihood ratio projection can be hard to compute
» Example: random geometric graph. Suppose x;'s are i.i.d. on the unit
sphere in R?, and conditional on z;'s, A;; - s Bern(x(zi, x;)).
> In this case, (L, ®s) = Ep[Ps] is hard to compute except for simple
subgraphs such as cycles. See recent progress [Bangachev-Bresler '25]
» A key obstacle in resolving the long-standing conjecture on detection
threshold for RGG vs Erdds-Rényi graph [Liu-Mohanty-Schramm-Yang '21]
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Challenges and open problems

® The likelihood ratio projection can be hard to compute
» Example: random geometric graph. Suppose x;'s are i.i.d. on the unit
sphere in R?, and conditional on z;'s, A;; - s Bern(x(zi, x;)).
> In this case, (L, ®s) = Ep[Ps] is hard to compute except for simple
subgraphs such as cycles. See recent progress [Bangachev-Bresler '25]
» A key obstacle in resolving the long-standing conjecture on detection
threshold for RGG vs Erdds-Rényi graph [Liu-Mohanty-Schramm-Yang '21]

® The null model may not have |ID observations, so the nice orthogonality
property is missing
» Example: aligning random geometric graphs. Suppose y; is correlated with
Zr(;), and conditional on y;'s, Bi; B Bern(x(yi, y;))-
» Under the null model, A and B are two independent random geometric
graphs, but the orthogonal polynomial basis is unknown

® Dynamic networks
> Example: preferential attachment (PA) models. How can we design
low-degree polynomial estimators for inference problems in PA graphs—such
as community detection or network alignment?



Conclusions

® Network inference provides a rich family of problems that intertwine applied
probability, statistics, optimization, combinatorics, information theory, and more.

® The low-degree polynomial method offers a simple yet principled framework for
understanding the fundamental limits of high-dimensional inference.

® This tutorial has focused on low-degree “upper bounds”— showing how to design
effective low-degree, polynomial-based estimators.

® A complementary perspective comes from low-degree “lower bounds”, which
characterize thresholds below which all low-degree polynomials fail. Under the
low-degree conjecture, this further implies all polynomial-time algorithms fail

Further Reading

® A. Wein, “Computational Complexity of Statistics: New Insights from
Low-Degree Polynomials,” June 2025.

® Y. Wu and J. Xu, “Statistical Inference on Graphs: Selected Topics,”
https://people.duke.edu/~jx77/stats-graphs.pdf. Lecture notes
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