
Challenges and Recent Advances in Network Inference

Jiaming Xu

The Fuqua School of Business
Duke University

INFORMS, APS Tutorial

October 26, 2025

Statistical inference on graphs

• Detecting or estimating hidden structures in large network data

X︸︷︷︸
Hidden structure

7→ G︸︷︷︸
Network

7→ X̂︸︷︷︸
estimate

• Key challenges: Understanding the fundamental limits:

Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?

Q2 Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?

Statistical inference on graphs

• Detecting or estimating hidden structures in large network data

X︸︷︷︸
Hidden structure

7→ G︸︷︷︸
Network

7→ X̂︸︷︷︸
estimate

• Key challenges: Understanding the fundamental limits:

Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?

Q2 Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?

Statistical inference on graphs

• Detecting or estimating hidden structures in large network data

X︸︷︷︸
Hidden structure

7→ G︸︷︷︸
Network

7→ X̂︸︷︷︸
estimate

• Key challenges: Understanding the fundamental limits:

Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?

Q2 Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?

Statistical inference on graphs

• Detecting or estimating hidden structures in large network data

X︸︷︷︸
Hidden structure

7→ G︸︷︷︸
Network

7→ X̂︸︷︷︸
estimate

• Key challenges: Understanding the fundamental limits:

Q1 Characterize statistical (information-theoretic) limit: What is
possible/impossible?

Q2 Can statistical limits be attained computationally efficiently, e.g., in
polynomial time? If yes, how? If not, why?

Planted clique – graph view

1 A set C of k vertices is chosen to form a clique

2 For every other pair of vertices, add an edge w.p. 1
2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Planted clique – graph view

1 A set C of k vertices is chosen to form a clique

2 For every other pair of vertices, add an edge w.p. 1
2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

••

••

••••

••

••

••

••••

••

••

••
••

••
•• ••

••

••

••

••

••

••••

••

••

••

••

••

••

••
••

•• ••
••

••
••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••
••

••
••

••

••

••
••

••

••

••

••

••

••

••

••

••

••

••

•• ••

Planted clique – graph view

1 A set C of k vertices is chosen to form a clique

2 For every other pair of vertices, add an edge w.p. 1
2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

••

••

••••

••

••

••

••••

••

••

••
••

••
•• ••

••

••

••

••

••

••••

••

••

••

••

••

••

••
••

•• ••
••

••
••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••
••

••
••

••

••

••
••

••

••

••

••

••

••

••

••

••

••

••

•• ••

Planted clique – graph view

1 A set C of k vertices is chosen to form a clique

2 For every other pair of vertices, add an edge w.p. 1
2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

••

••

••••

••

••

••

••••

••

••

••
••

••
•• ••

••

••

••

••

••

••••

••

••

••

••

••

••

••
••

•• ••
••

••
••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••
••

••
••

••

••

••
••

••

••

••

••

••

••

••

••

••

••

••

•• ••

Planted clique – graph view

1 A set C of k vertices is chosen to form a clique

2 For every other pair of vertices, add an edge w.p. 1
2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Planted clique – adjacency matrix view

Planted clique – adjacency matrix view

Planted clique – adjacency matrix view

Community detection in networks

• Networks with community structures arise in many applications

• Task: Discover underlying communities based on the network topology

Figure 1: Community structure of political blogs (expanded set), shown using utilizing the GUESS visual-
ization and analysis tool[2]. The colors reflect political orientation, red for conservative, and blue for liberal.
Orange links go from liberal to conservative, and purple ones from conservative to liberal. The size of each
blog reflects the number of other blogs that link to it.

Because of bloggers’ ability to identify and frame break-
ing news, many mainstream media sources keep a close eye
on the best known political blogs. A number of mainstream
news sources have started to discuss and even to host blogs.
In an online survey asking editors, reporters, columnists and
publishers to each list the “top 3” blogs they read, Drezner
and Farrell [4] identified a short list of dominant “A-list”
blogs. Just 10 of the most popular blogs accounted for over
half the blogs on the journalists’ lists. They also found that,
besides capturing most of the attention of the mainstream
media, the most popular political blogs also get a dispro-
portionate number of links from other blogs. Shirky [12]
observed the same effect for blogs in general and Hindman
et al. [7] found it to hold for political websites focusing on
various issues.
While these previous studies focused on the inequality of

citation links for political blogs overall, there has been com-
paratively little study of subcommunities of political blogs.
In the context of political websites, Hindman et al. [7] noted
that, for example, those dealing with the issue of abortion,
gun control, and the death penalties, contain subcommuni-
ties of opposing views. In the case of the pro-choice and
pro-life web communities, an earlier study [1] found pro-life
websites to be more densely linked than pro-choice ones. In
a study of a sample of the blogosphere, Herring et al.[6] dis-
covered densely interlinked (non-political) blog communities
focusing on the topics of Catholicism and homeschooling, as
well as a core network of A-list blogs, some of them political.
Recently, Butts and Cross [3] studied the response in the

structure of networks of political blogs to polling data and
election campaign events. In another political blog study,
Welsch [15] gathered a single-day snapshot of the network

neighborhoods of Atrios, a popular liberal blog, and In-
stapundit, a popular conservative blog. He found the In-
stapundit neighborhood to include many more blogs than
the Atrios one, and observed no overlap in the URLs cited
between the two neighborhoods. The lack of overlap in lib-
eral and conservative interests has previously been observed
in purchases of political books on Amazon.com [8]. This
brings about the question of whether we are witnessing a
cyberbalkanization [11, 13] of the Internet, where the prolif-
eration of specialized online news sources allows people with
different political leanings to be exposed only to information
in agreement with their previously held views. Yale law pro-
fessor Jack Balkin provides a counter-argument7 by pointing
out that such segregation is unlikely in the blogosphere be-
cause bloggers systematically comment on each other, even
if only to voice disagreement.

In this paper we address both hypotheses by examining in
a systematic way the linking patterns and discussion topics
of political bloggers. In doing so, we not only measure the
degree of interaction between liberal and conservative blogs,
but also uncover differences in the structure of the two com-
munities. Our data set includes the posts of 40 A-list blogs
over the period of two months preceding the U.S. Presiden-
tial Election of 2004. We also study a large network of over
1,000 political blogs based on a single day snapshot that in-
cludes blogrolls (the list of links to other blogs frequently
found in sidebars), and so presents a more static picture of
a broader blogosphere.

From both samples we find that liberal and conservative
blogs did indeed have different lists of favorite news sources,

7http://balkin.blogspot.com/2004 01 18 balkin
archive.html#107480769112109137

Figure: Political blogosphere and the 2004 U.S. election [Adamic-Glance ’05]

Community detection in networks

• Networks with community structures arise in many applications

• Task: Discover underlying communities based on the network topology

Figure 1: Community structure of political blogs (expanded set), shown using utilizing the GUESS visual-
ization and analysis tool[2]. The colors reflect political orientation, red for conservative, and blue for liberal.
Orange links go from liberal to conservative, and purple ones from conservative to liberal. The size of each
blog reflects the number of other blogs that link to it.

Because of bloggers’ ability to identify and frame break-
ing news, many mainstream media sources keep a close eye
on the best known political blogs. A number of mainstream
news sources have started to discuss and even to host blogs.
In an online survey asking editors, reporters, columnists and
publishers to each list the “top 3” blogs they read, Drezner
and Farrell [4] identified a short list of dominant “A-list”
blogs. Just 10 of the most popular blogs accounted for over
half the blogs on the journalists’ lists. They also found that,
besides capturing most of the attention of the mainstream
media, the most popular political blogs also get a dispro-
portionate number of links from other blogs. Shirky [12]
observed the same effect for blogs in general and Hindman
et al. [7] found it to hold for political websites focusing on
various issues.
While these previous studies focused on the inequality of

citation links for political blogs overall, there has been com-
paratively little study of subcommunities of political blogs.
In the context of political websites, Hindman et al. [7] noted
that, for example, those dealing with the issue of abortion,
gun control, and the death penalties, contain subcommuni-
ties of opposing views. In the case of the pro-choice and
pro-life web communities, an earlier study [1] found pro-life
websites to be more densely linked than pro-choice ones. In
a study of a sample of the blogosphere, Herring et al.[6] dis-
covered densely interlinked (non-political) blog communities
focusing on the topics of Catholicism and homeschooling, as
well as a core network of A-list blogs, some of them political.
Recently, Butts and Cross [3] studied the response in the

structure of networks of political blogs to polling data and
election campaign events. In another political blog study,
Welsch [15] gathered a single-day snapshot of the network

neighborhoods of Atrios, a popular liberal blog, and In-
stapundit, a popular conservative blog. He found the In-
stapundit neighborhood to include many more blogs than
the Atrios one, and observed no overlap in the URLs cited
between the two neighborhoods. The lack of overlap in lib-
eral and conservative interests has previously been observed
in purchases of political books on Amazon.com [8]. This
brings about the question of whether we are witnessing a
cyberbalkanization [11, 13] of the Internet, where the prolif-
eration of specialized online news sources allows people with
different political leanings to be exposed only to information
in agreement with their previously held views. Yale law pro-
fessor Jack Balkin provides a counter-argument7 by pointing
out that such segregation is unlikely in the blogosphere be-
cause bloggers systematically comment on each other, even
if only to voice disagreement.

In this paper we address both hypotheses by examining in
a systematic way the linking patterns and discussion topics
of political bloggers. In doing so, we not only measure the
degree of interaction between liberal and conservative blogs,
but also uncover differences in the structure of the two com-
munities. Our data set includes the posts of 40 A-list blogs
over the period of two months preceding the U.S. Presiden-
tial Election of 2004. We also study a large network of over
1,000 political blogs based on a single day snapshot that in-
cludes blogrolls (the list of links to other blogs frequently
found in sidebars), and so presents a more static picture of
a broader blogosphere.

From both samples we find that liberal and conservative
blogs did indeed have different lists of favorite news sources,

7http://balkin.blogspot.com/2004 01 18 balkin
archive.html#107480769112109137

Figure: Political blogosphere and the 2004 U.S. election [Adamic-Glance ’05]

Stochastic block model – graph view

1 n nodes are assigned to 2 communities uniformly at random

2 For every pair of nodes in same community, add an edge w.p. p

3 For every pair of nodes in diff. community, add an edge w.p. q

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Stochastic block model – graph view

1 n nodes are assigned to 2 communities uniformly at random

2 For every pair of nodes in same community, add an edge w.p. p

3 For every pair of nodes in diff. community, add an edge w.p. q

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••
••

•• ••
••

••
••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••
••

••
••

••

••

••
••

••

••

••

••

••

••

••

••

••

••

••

•• ••

Stochastic block model – graph view

1 n nodes are assigned to 2 communities uniformly at random

2 For every pair of nodes in same community, add an edge w.p. p

3 For every pair of nodes in diff. community, add an edge w.p. q

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••
••

•• ••
••

••
••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••
••

••
••

••

••

••
••

••

••

••

••

••

••

••

••

••

••

••

•• ••

Stochastic block model – graph view

1 n nodes are assigned to 2 communities uniformly at random

2 For every pair of nodes in same community, add an edge w.p. p

3 For every pair of nodes in diff. community, add an edge w.p. q

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••
••

•• ••
••

••
••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••
••

••
••

••

••

••
••

••

••

••

••

••

••

••

••

••

••

••

•• ••

Stochastic block model – graph view

1 n nodes are assigned to 2 communities uniformly at random

2 For every pair of nodes in same community, add an edge w.p. p

3 For every pair of nodes in diff. community, add an edge w.p. q

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Stochastic block model – adjacency matrix view

0 50 100 150 200

nz = 7962

0

20

40

60

80

100

120

140

160

180

200

Stochastic block model – adjacency matrix view

0 50 100 150 200

nz = 7962

0

20

40

60

80

100

120

140

160

180

200

A flurry of network inference problems

1990s 2010s Now

Planted
Clique SBMs

• Planted subgraphs (matchings,
trees, cycles, ...)

• Graphon (random geometric
graph)

• Preferential attachment graphs

• Random network alignment

• And many more ...

Driven by both theoretical interests and practical applications

Significant methodological advances

Applied Probability Optimization Statistical Physics

• Local weak
convergence

• Random matrix &
spectral methods

• Relaxations (LP,
SDP)

• Dual certificates &
polyhedral
combinatorics

• Belief propagation &
message passing

• Interpolation
method

• These methods have led to sharp characterizations of information-theoretic and
algorithmic phase transition thresholds.

• The proofs, however, often require substantial mathematical ingenuity.

• But what if I am not ingenious? Is there a simple, principled approach to try?

This tutorial: Low-degree polynomial method
Analog of drift method in stochastic networks

Significant methodological advances

Applied Probability Optimization Statistical Physics

• Local weak
convergence

• Random matrix &
spectral methods

• Relaxations (LP,
SDP)

• Dual certificates &
polyhedral
combinatorics

• Belief propagation &
message passing

• Interpolation
method

• These methods have led to sharp characterizations of information-theoretic and
algorithmic phase transition thresholds.

• The proofs, however, often require substantial mathematical ingenuity.

• But what if I am not ingenious? Is there a simple, principled approach to try?

This tutorial: Low-degree polynomial method
Analog of drift method in stochastic networks

Significant methodological advances

Applied Probability Optimization Statistical Physics

• Local weak
convergence

• Random matrix &
spectral methods

• Relaxations (LP,
SDP)

• Dual certificates &
polyhedral
combinatorics

• Belief propagation &
message passing

• Interpolation
method

• These methods have led to sharp characterizations of information-theoretic and
algorithmic phase transition thresholds.

• The proofs, however, often require substantial mathematical ingenuity.

• But what if I am not ingenious? Is there a simple, principled approach to try?

This tutorial: Low-degree polynomial method
Analog of drift method in stochastic networks

Significant methodological advances

Applied Probability Optimization Statistical Physics

• Local weak
convergence

• Random matrix &
spectral methods

• Relaxations (LP,
SDP)

• Dual certificates &
polyhedral
combinatorics

• Belief propagation &
message passing

• Interpolation
method

• These methods have led to sharp characterizations of information-theoretic and
algorithmic phase transition thresholds.

• The proofs, however, often require substantial mathematical ingenuity.

• But what if I am not ingenious? Is there a simple, principled approach to try?

This tutorial: Low-degree polynomial method
Analog of drift method in stochastic networks

Significant methodological advances

Applied Probability Optimization Statistical Physics

• Local weak
convergence

• Random matrix &
spectral methods

• Relaxations (LP,
SDP)

• Dual certificates &
polyhedral
combinatorics

• Belief propagation &
message passing

• Interpolation
method

• These methods have led to sharp characterizations of information-theoretic and
algorithmic phase transition thresholds.

• The proofs, however, often require substantial mathematical ingenuity.

• But what if I am not ingenious? Is there a simple, principled approach to try?

This tutorial: Low-degree polynomial method
Analog of drift method in stochastic networks

Outline of tutorial

• Introduction to low-degree polynomial method

• Three prototypical examples
▶ Planted clique
▶ Stochastic block model
▶ Random network alignment

• Concluding remarks

Polynomials on graph

• Given a graph G represented by adjacency vector A = (Aij)1≤i<j≤n

• A multivariate polynomial f : {0, 1}(
n
2) → R

Example

• Edge count:
∑

i<j Aij

• Triangle count:
∑

i<j<k AijAjkAik

• Subgraph-H count:
∑

S∼=H

∏
(i,j)∈S Aij

• # of closed walks: Tr(AD) =
∑

i1,i2,...,iD
Ai1i2Ai2i3 · · ·AiDi1

• Message passing: mj→i = h({mk→j : k ∼ j, k ̸= i})
• Local algorithms: f depends on local neighborhood

Polynomials on graph

• Given a graph G represented by adjacency vector A = (Aij)1≤i<j≤n

• A multivariate polynomial f : {0, 1}(
n
2) → R

Example

• Edge count:
∑

i<j Aij

• Triangle count:
∑

i<j<k AijAjkAik

• Subgraph-H count:
∑

S∼=H

∏
(i,j)∈S Aij

• # of closed walks: Tr(AD) =
∑

i1,i2,...,iD
Ai1i2Ai2i3 · · ·AiDi1

• Message passing: mj→i = h({mk→j : k ∼ j, k ̸= i})
• Local algorithms: f depends on local neighborhood

Polynomials on graph

• Given a graph G represented by adjacency vector A = (Aij)1≤i<j≤n

• A multivariate polynomial f : {0, 1}(
n
2) → R

Example

• Edge count:
∑

i<j Aij

• Triangle count:
∑

i<j<k AijAjkAik

• Subgraph-H count:
∑

S∼=H

∏
(i,j)∈S Aij

• # of closed walks: Tr(AD) =
∑

i1,i2,...,iD
Ai1i2Ai2i3 · · ·AiDi1

• Message passing: mj→i = h({mk→j : k ∼ j, k ̸= i})
• Local algorithms: f depends on local neighborhood

Polynomials on graph

• Given a graph G represented by adjacency vector A = (Aij)1≤i<j≤n

• A multivariate polynomial f : {0, 1}(
n
2) → R

Example

• Edge count:
∑

i<j Aij

• Triangle count:
∑

i<j<k AijAjkAik

• Subgraph-H count:
∑

S∼=H

∏
(i,j)∈S Aij

• # of closed walks: Tr(AD) =
∑

i1,i2,...,iD
Ai1i2Ai2i3 · · ·AiDi1

• Message passing: mj→i = h({mk→j : k ∼ j, k ̸= i})
• Local algorithms: f depends on local neighborhood

Polynomials on graph

• Given a graph G represented by adjacency vector A = (Aij)1≤i<j≤n

• A multivariate polynomial f : {0, 1}(
n
2) → R

Example

• Edge count:
∑

i<j Aij

• Triangle count:
∑

i<j<k AijAjkAik

• Subgraph-H count:
∑

S∼=H

∏
(i,j)∈S Aij

• # of closed walks: Tr(AD) =
∑

i1,i2,...,iD
Ai1i2Ai2i3 · · ·AiDi1

• Message passing: mj→i = h({mk→j : k ∼ j, k ̸= i})
• Local algorithms: f depends on local neighborhood

Polynomials on graph

• Given a graph G represented by adjacency vector A = (Aij)1≤i<j≤n

• A multivariate polynomial f : {0, 1}(
n
2) → R

Example

• Edge count:
∑

i<j Aij

• Triangle count:
∑

i<j<k AijAjkAik

• Subgraph-H count:
∑

S∼=H

∏
(i,j)∈S Aij

• # of closed walks: Tr(AD) =
∑

i1,i2,...,iD
Ai1i2Ai2i3 · · ·AiDi1

• Message passing: mj→i = h({mk→j : k ∼ j, k ̸= i})

• Local algorithms: f depends on local neighborhood

Polynomials on graph

• Given a graph G represented by adjacency vector A = (Aij)1≤i<j≤n

• A multivariate polynomial f : {0, 1}(
n
2) → R

Example

• Edge count:
∑

i<j Aij

• Triangle count:
∑

i<j<k AijAjkAik

• Subgraph-H count:
∑

S∼=H

∏
(i,j)∈S Aij

• # of closed walks: Tr(AD) =
∑

i1,i2,...,iD
Ai1i2Ai2i3 · · ·AiDi1

• Message passing: mj→i = h({mk→j : k ∼ j, k ̸= i})
• Local algorithms: f depends on local neighborhood

Polynomial basis [Janson ’90, ’94]

• Consider the space F of real-valued functions on {0, 1}(
n
2) endowed with

inner-product
⟨f, g⟩ ≜ E

Aij
iid∼Bern(q)

[f(A)g(A)]

• Fact: The orthogonal polynomial basis {ΦS : S ⊂
(
[n]
2

)
} spans entire F

ΦS =
∏

(i,j)∈S

Āij , Āij =
Aij − q√
q(1− q)

• Quick check
▶ Orthonormality: ⟨ΦS ,ΦT ⟩ = 1{S = T}
▶ Completeness: dim({ΦS : S ⊂

(
[n]
2

)
}) = dim(F) = 2n

Question
How to design polynomial-based estimator?

Polynomial basis [Janson ’90, ’94]

• Consider the space F of real-valued functions on {0, 1}(
n
2) endowed with

inner-product
⟨f, g⟩ ≜ E

Aij
iid∼Bern(q)

[f(A)g(A)]

• Fact: The orthogonal polynomial basis {ΦS : S ⊂
(
[n]
2

)
} spans entire F

ΦS =
∏

(i,j)∈S

Āij , Āij =
Aij − q√
q(1− q)

• Quick check
▶ Orthonormality: ⟨ΦS ,ΦT ⟩ = 1{S = T}
▶ Completeness: dim({ΦS : S ⊂

(
[n]
2

)
}) = dim(F) = 2n

Question
How to design polynomial-based estimator?

Polynomial basis [Janson ’90, ’94]

• Consider the space F of real-valued functions on {0, 1}(
n
2) endowed with

inner-product
⟨f, g⟩ ≜ E

Aij
iid∼Bern(q)

[f(A)g(A)]

• Fact: The orthogonal polynomial basis {ΦS : S ⊂
(
[n]
2

)
} spans entire F

ΦS =
∏

(i,j)∈S

Āij , Āij =
Aij − q√
q(1− q)

• Quick check
▶ Orthonormality: ⟨ΦS ,ΦT ⟩ = 1{S = T}
▶ Completeness: dim({ΦS : S ⊂

(
[n]
2

)
}) = dim(F) = 2n

Question
How to design polynomial-based estimator?

Polynomial basis [Janson ’90, ’94]

• Consider the space F of real-valued functions on {0, 1}(
n
2) endowed with

inner-product
⟨f, g⟩ ≜ E

Aij
iid∼Bern(q)

[f(A)g(A)]

• Fact: The orthogonal polynomial basis {ΦS : S ⊂
(
[n]
2

)
} spans entire F

ΦS =
∏

(i,j)∈S

Āij , Āij =
Aij − q√
q(1− q)

• Quick check
▶ Orthonormality: ⟨ΦS ,ΦT ⟩ = 1{S = T}
▶ Completeness: dim({ΦS : S ⊂

(
[n]
2

)
}) = dim(F) = 2n

Question
How to design polynomial-based estimator?

Polynomial approximation of likelihood ratio

H0 : A ∼ Bern(q)⊗(
n
2) ≜ Q (Null model)

H1 : A ∼ P (Planted model)

• By Neyman-Pearson Lemma, likelihood ratio test is optimal:

L(A) ≜
P (A)

Q(A)

• However, for many planted problems, P is a mixture over exponentially
many components ⇒ L is computationally hard to evaluate

• Instead, look for low-degree polynomial maximizing signal-to-noise ratio:

max
f :deg(f)≤D

(
EP [f]√
EQ[f2]

=
⟨L, f⟩√
⟨f, f⟩

)
• By Cauchy-Schwartz, optimum is ∥L≤D∥ and achieved by projection of L:

L≤D =
∑

S:|S|≤D

⟨L,ΦS⟩ΦS︸ ︷︷ ︸
weighted signed subgraph count

, where ΦS =
∏

(i,j)∈S

Aij − q√
q(1− q)

Polynomial approximation of likelihood ratio

H0 : A ∼ Bern(q)⊗(
n
2) ≜ Q (Null model)

H1 : A ∼ P (Planted model)

• By Neyman-Pearson Lemma, likelihood ratio test is optimal:

L(A) ≜
P (A)

Q(A)

• However, for many planted problems, P is a mixture over exponentially
many components ⇒ L is computationally hard to evaluate

• Instead, look for low-degree polynomial maximizing signal-to-noise ratio:

max
f :deg(f)≤D

(
EP [f]√
EQ[f2]

=
⟨L, f⟩√
⟨f, f⟩

)
• By Cauchy-Schwartz, optimum is ∥L≤D∥ and achieved by projection of L:

L≤D =
∑

S:|S|≤D

⟨L,ΦS⟩ΦS︸ ︷︷ ︸
weighted signed subgraph count

, where ΦS =
∏

(i,j)∈S

Aij − q√
q(1− q)

Polynomial approximation of likelihood ratio

H0 : A ∼ Bern(q)⊗(
n
2) ≜ Q (Null model)

H1 : A ∼ P (Planted model)

• By Neyman-Pearson Lemma, likelihood ratio test is optimal:

L(A) ≜
P (A)

Q(A)

• However, for many planted problems, P is a mixture over exponentially
many components ⇒ L is computationally hard to evaluate

• Instead, look for low-degree polynomial maximizing signal-to-noise ratio:

max
f :deg(f)≤D

(
EP [f]√
EQ[f2]

=
⟨L, f⟩√
⟨f, f⟩

)
• By Cauchy-Schwartz, optimum is ∥L≤D∥ and achieved by projection of L:

L≤D =
∑

S:|S|≤D

⟨L,ΦS⟩ΦS︸ ︷︷ ︸
weighted signed subgraph count

, where ΦS =
∏

(i,j)∈S

Aij − q√
q(1− q)

Polynomial approximation of likelihood ratio

H0 : A ∼ Bern(q)⊗(
n
2) ≜ Q (Null model)

H1 : A ∼ P (Planted model)

• By Neyman-Pearson Lemma, likelihood ratio test is optimal:

L(A) ≜
P (A)

Q(A)

• However, for many planted problems, P is a mixture over exponentially
many components ⇒ L is computationally hard to evaluate

• Instead, look for low-degree polynomial maximizing signal-to-noise ratio:

max
f :deg(f)≤D

(
EP [f]√
EQ[f2]

=
⟨L, f⟩√
⟨f, f⟩

)

• By Cauchy-Schwartz, optimum is ∥L≤D∥ and achieved by projection of L:

L≤D =
∑

S:|S|≤D

⟨L,ΦS⟩ΦS︸ ︷︷ ︸
weighted signed subgraph count

, where ΦS =
∏

(i,j)∈S

Aij − q√
q(1− q)

Polynomial approximation of likelihood ratio

H0 : A ∼ Bern(q)⊗(
n
2) ≜ Q (Null model)

H1 : A ∼ P (Planted model)

• By Neyman-Pearson Lemma, likelihood ratio test is optimal:

L(A) ≜
P (A)

Q(A)

• However, for many planted problems, P is a mixture over exponentially
many components ⇒ L is computationally hard to evaluate

• Instead, look for low-degree polynomial maximizing signal-to-noise ratio:

max
f :deg(f)≤D

(
EP [f]√
EQ[f2]

=
⟨L, f⟩√
⟨f, f⟩

)
• By Cauchy-Schwartz, optimum is ∥L≤D∥ and achieved by projection of L:

L≤D =
∑

S:|S|≤D

⟨L,ΦS⟩ΦS︸ ︷︷ ︸
weighted signed subgraph count

, where ΦS =
∏

(i,j)∈S

Aij − q√
q(1− q)

Low-degree polynomial prediction

Conjecture (Hopkins ’18, informal)

For “sufficiently nice” planted problems,

• If ∥L≤D∥ → ∞ for D = O(log n), there exists degree-D polynomial
succeeds in detecting or estimating the hidden structure

• If ∥L≤D∥ = O(1) for D = O(log n), all polynomial-time algorithms fail in
detection and estimation

0 ∥L≤D∥2

∥L≤D∥

H0

H1

Low-degree polynomial prediction

Conjecture (Hopkins ’18, informal)

For “sufficiently nice” planted problems,

• If ∥L≤D∥ → ∞ for D = O(log n), there exists degree-D polynomial
succeeds in detecting or estimating the hidden structure

• If ∥L≤D∥ = O(1) for D = O(log n), all polynomial-time algorithms fail in
detection and estimation

Remark

• Remarkably, this prediction aligns with many proven algorithmic upper and
lower bounds for a wide class of planted problems

• Need O(log n) degree to cover spectral method, and many
O(log n)-polynomials can be computed in poly-time

• Significant progress on proving low-degree polynomial lower bounds [Wein ’25]

• Focus of this tutorial: low-degree polynomial as an algorithmic tool

Outline of tutorial

• Introduction to low-degree polynomial method

• Three prototypical examples
▶ Planted clique
▶ Stochastic block model
▶ Random network alignment

• Concluding remarks

Planted clique problem

1 A set C of k vertices is chosen to form a clique

2 For every other pair of vertices, add an edge w.p. 1
2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

••

•

•

•
•

•
• •

•

•

•

•

•

••

•

•

•

•

•

•

•
•

• •
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

• •

Planted clique problem: testing

H0 : A ∼ G(n, 1/2) (Null model)

H1 : A ∼ G(n, 1/2, k) (Planted model)

• Orthogonal polynomial basis: ΦS =
∏

(i,j)∈S(2Aij − 1)

• Likelihood-ratio projection:

⟨L,ΦS⟩ = EP [ΦS] = ECEA|C [ΦS] = EC [1{V (S) ⊂ C}] ≈
(
k

n

)|V (S)|

where C is the vertex set of hidden clique and V (S) is the vertex set of S

• So, we get

∥L≤D∥2 =
∑

S:|S|≤D

⟨L,ΦS⟩2 ≈
∑

S:|S|≤D

(
k

n

)2|V (S)|

Planted clique problem: testing

H0 : A ∼ G(n, 1/2) (Null model)

H1 : A ∼ G(n, 1/2, k) (Planted model)

• Orthogonal polynomial basis: ΦS =
∏

(i,j)∈S(2Aij − 1)

• Likelihood-ratio projection:

⟨L,ΦS⟩ = EP [ΦS] = ECEA|C [ΦS] = EC [1{V (S) ⊂ C}] ≈
(
k

n

)|V (S)|

where C is the vertex set of hidden clique and V (S) is the vertex set of S

• So, we get

∥L≤D∥2 =
∑

S:|S|≤D

⟨L,ΦS⟩2 ≈
∑

S:|S|≤D

(
k

n

)2|V (S)|

Planted clique problem: testing

H0 : A ∼ G(n, 1/2) (Null model)

H1 : A ∼ G(n, 1/2, k) (Planted model)

• Orthogonal polynomial basis: ΦS =
∏

(i,j)∈S(2Aij − 1)

• Likelihood-ratio projection:

⟨L,ΦS⟩ = EP [ΦS] = ECEA|C [ΦS] = EC [1{V (S) ⊂ C}] ≈
(
k

n

)|V (S)|

where C is the vertex set of hidden clique and V (S) is the vertex set of S

• So, we get

∥L≤D∥2 =
∑

S:|S|≤D

⟨L,ΦS⟩2 ≈
∑

S:|S|≤D

(
k

n

)2|V (S)|

Planted clique problem: testing

H0 : A ∼ G(n, 1/2) (Null model)

H1 : A ∼ G(n, 1/2, k) (Planted model)

• Orthogonal polynomial basis: ΦS =
∏

(i,j)∈S(2Aij − 1)

• Likelihood-ratio projection:

⟨L,ΦS⟩ = EP [ΦS] = ECEA|C [ΦS] = EC [1{V (S) ⊂ C}] ≈
(
k

n

)|V (S)|

where C is the vertex set of hidden clique and V (S) is the vertex set of S

• So, we get

∥L≤D∥2 =
∑

S:|S|≤D

⟨L,ΦS⟩2 ≈
∑

S:|S|≤D

(
k

n

)2|V (S)|

Planted clique problem: testing

∥L≤D∥2 =
∑

S:|S|≤D

⟨L,ΦS⟩2 ≈
∑

S:|S|≤D

(
k

n

)2|V (S)|

• If D = 1, ∥L≤D∥2 ≈ n2
(
k
n

)4 ≫ 1, if k2 ≫ n ⇒ counting edges succeeds

• If restricting S to be D-cycles with D → ∞,

∥LD−cycle∥ ≈ nD

(
k

n

)2D

≫ 1,

if k2 > n (limit of spectral method [Alon-Krivelevich-Sudakov ’98])

• If restricting S to be D-trees with D → ∞,

∥LD−tree∥ ≈,

if k2 > n/e (limit of message passing [Deshpande-Montanari ’15])

• A complete proof of success also needs to bound the variance under H1

Planted clique problem: testing

∥L≤D∥2 =
∑

S:|S|≤D

⟨L,ΦS⟩2 ≈
∑

S:|S|≤D

(
k

n

)2|V (S)|

• If D = 1, ∥L≤D∥2 ≈ n2
(
k
n

)4 ≫ 1, if k2 ≫ n ⇒ counting edges succeeds

• If restricting S to be D-cycles with D → ∞,

∥LD−cycle∥ ≈ nD

(
k

n

)2D

≫ 1,

if k2 > n (limit of spectral method [Alon-Krivelevich-Sudakov ’98])

• If restricting S to be D-trees with D → ∞,

∥LD−tree∥ ≈,

if k2 > n/e (limit of message passing [Deshpande-Montanari ’15])

• A complete proof of success also needs to bound the variance under H1

Planted clique problem: testing

∥L≤D∥2 =
∑

S:|S|≤D

⟨L,ΦS⟩2 ≈
∑

S:|S|≤D

(
k

n

)2|V (S)|

• If D = 1, ∥L≤D∥2 ≈ n2
(
k
n

)4 ≫ 1, if k2 ≫ n ⇒ counting edges succeeds

• If restricting S to be D-cycles with D → ∞,

∥LD−cycle∥ ≈ nD

(
k

n

)2D

≫ 1,

if k2 > n (limit of spectral method [Alon-Krivelevich-Sudakov ’98])

• If restricting S to be D-trees with D → ∞,

∥LD−tree∥ ≈,

if k2 > n/e (limit of message passing [Deshpande-Montanari ’15])

• A complete proof of success also needs to bound the variance under H1

Planted clique problem: testing

∥L≤D∥2 =
∑

S:|S|≤D

⟨L,ΦS⟩2 ≈
∑

S:|S|≤D

(
k

n

)2|V (S)|

• If D = 1, ∥L≤D∥2 ≈ n2
(
k
n

)4 ≫ 1, if k2 ≫ n ⇒ counting edges succeeds

• If restricting S to be D-cycles with D → ∞,

∥LD−cycle∥ ≈ nD

(
k

n

)2D

≫ 1,

if k2 > n (limit of spectral method [Alon-Krivelevich-Sudakov ’98])

• If restricting S to be D-trees with D → ∞,

∥LD−tree∥ ≈
(

n

D + 1

)
(D + 1)D−1

(
k

n

)2(D+1)

,

if k2 > n/e (limit of message passing [Deshpande-Montanari ’15])

• A complete proof of success also needs to bound the variance under H1

Planted clique problem: testing

∥L≤D∥2 =
∑

S:|S|≤D

⟨L,ΦS⟩2 ≈
∑

S:|S|≤D

(
k

n

)2|V (S)|

• If D = 1, ∥L≤D∥2 ≈ n2
(
k
n

)4 ≫ 1, if k2 ≫ n ⇒ counting edges succeeds

• If restricting S to be D-cycles with D → ∞,

∥LD−cycle∥ ≈ nD

(
k

n

)2D

≫ 1,

if k2 > n (limit of spectral method [Alon-Krivelevich-Sudakov ’98])

• If restricting S to be D-trees with D → ∞,

∥LD−tree∥ ≈ (ne)
D+1

(
k

n

)2(D+1)

≫ 1,

if k2 > n/e (limit of message passing [Deshpande-Montanari ’15])

• A complete proof of success also needs to bound the variance under H1

Planted clique problem: testing

∥L≤D∥2 =
∑

S:|S|≤D

⟨L,ΦS⟩2 ≈
∑

S:|S|≤D

(
k

n

)2|V (S)|

• If D = 1, ∥L≤D∥2 ≈ n2
(
k
n

)4 ≫ 1, if k2 ≫ n ⇒ counting edges succeeds

• If restricting S to be D-cycles with D → ∞,

∥LD−cycle∥ ≈ nD

(
k

n

)2D

≫ 1,

if k2 > n (limit of spectral method [Alon-Krivelevich-Sudakov ’98])

• If restricting S to be D-trees with D → ∞,

∥LD−tree∥ ≈ (ne)
D+1

(
k

n

)2(D+1)

≫ 1,

if k2 > n/e (limit of message passing [Deshpande-Montanari ’15])

• A complete proof of success also needs to bound the variance under H1

Planted clique problem: from testing to estimation

• Goal: estimate node i is in the planted clique or not

• Idea: count a family H of graphs rooted at i with D edges:

fi =
∑
S∈H

⟨L,ΦS⟩ΦS , where ΦS =
∏

(i,j)∈S

(2Aij − 1)

• E.g., choose H to be rooted D-trees. Conditional on planted clique C

▶ Mean separation:

EP [fi] ≈
∑
S∈H

(
k

n

)D+1

1{V (S) ⊂ C} ≈
(
k2e

n

)D

1{i ∈ C}

▶ Variance: need to show VarP [fi] ≪
(
k2e/n

)2D
▶ By Chebyshev’s inequality, succeeds whp when k2 > n/e by choosing

D = Θ(logn)

Planted clique problem: from testing to estimation

• Goal: estimate node i is in the planted clique or not

• Idea: count a family H of graphs rooted at i with D edges:

fi =
∑
S∈H

⟨L,ΦS⟩ΦS , where ΦS =
∏

(i,j)∈S

(2Aij − 1)

• E.g., choose H to be rooted D-trees. Conditional on planted clique C

▶ Mean separation:

EP [fi] ≈
∑
S∈H

(
k

n

)D+1

1{V (S) ⊂ C} ≈
(
k2e

n

)D

1{i ∈ C}

▶ Variance: need to show VarP [fi] ≪
(
k2e/n

)2D
▶ By Chebyshev’s inequality, succeeds whp when k2 > n/e by choosing

D = Θ(logn)

Planted clique problem: from testing to estimation

• Goal: estimate node i is in the planted clique or not

• Idea: count a family H of graphs rooted at i with D edges:

fi =
∑
S∈H

⟨L,ΦS⟩ΦS , where ΦS =
∏

(i,j)∈S

(2Aij − 1)

• E.g., choose H to be rooted D-trees. Conditional on planted clique C

▶ Mean separation:

EP [fi] ≈
∑
S∈H

(
k

n

)D+1

1{V (S) ⊂ C} ≈
(
k2e

n

)D

1{i ∈ C}

▶ Variance: need to show VarP [fi] ≪
(
k2e/n

)2D
▶ By Chebyshev’s inequality, succeeds whp when k2 > n/e by choosing

D = Θ(logn)

Planted clique problem: from testing to estimation

• Goal: estimate node i is in the planted clique or not

• Idea: count a family H of graphs rooted at i with D edges:

fi =
∑
S∈H

⟨L,ΦS⟩ΦS , where ΦS =
∏

(i,j)∈S

(2Aij − 1)

• E.g., choose H to be rooted D-trees. Conditional on planted clique C
▶ Mean separation:

EP [fi] ≈
∑
S∈H

(
k

n

)D+1

1{V (S) ⊂ C} ≈
(
k2e

n

)D

1{i ∈ C}

▶ Variance: need to show VarP [fi] ≪
(
k2e/n

)2D
▶ By Chebyshev’s inequality, succeeds whp when k2 > n/e by choosing

D = Θ(logn)

Planted clique problem: from testing to estimation

• Goal: estimate node i is in the planted clique or not

• Idea: count a family H of graphs rooted at i with D edges:

fi =
∑
S∈H

⟨L,ΦS⟩ΦS , where ΦS =
∏

(i,j)∈S

(2Aij − 1)

• E.g., choose H to be rooted D-trees. Conditional on planted clique C
▶ Mean separation:

EP [fi] ≈
∑
S∈H

(
k

n

)D+1

1{V (S) ⊂ C} ≈
(
k2e

n

)D

1{i ∈ C}

▶ Variance: need to show VarP [fi] ≪
(
k2e/n

)2D

▶ By Chebyshev’s inequality, succeeds whp when k2 > n/e by choosing
D = Θ(logn)

Planted clique problem: from testing to estimation

• Goal: estimate node i is in the planted clique or not

• Idea: count a family H of graphs rooted at i with D edges:

fi =
∑
S∈H

⟨L,ΦS⟩ΦS , where ΦS =
∏

(i,j)∈S

(2Aij − 1)

• E.g., choose H to be rooted D-trees. Conditional on planted clique C
▶ Mean separation:

EP [fi] ≈
∑
S∈H

(
k

n

)D+1

1{V (S) ⊂ C} ≈
(
k2e

n

)D

1{i ∈ C}

▶ Variance: need to show VarP [fi] ≪
(
k2e/n

)2D
▶ By Chebyshev’s inequality, succeeds whp when k2 > n/e by choosing

D = Θ(logn)

Community detection: Stochastic block model

1 n nodes are assigned to 2 communities uniformly at random

2 For every pair of nodes in same community, add an edge w.p. a
n

3 For every pair of nodes in diff. community, add an edge w.p. b
n

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

••

•

•

•
•

•
• •

•

•

•

•

•

••

•

•

•

•

•

•

•
•

• •
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

• •

Stochastic block model: testing

H0 : A ∼ G (n, (a+ b)/(2n)) (Null model)

H1 : A ∼ G (n, a/n, b/n) (Planted model)

• Polynomial basis: ΦS =
∏

(i,j)∈S
Aij−q

σ for q = a+b
2n and σ =

√
q(1− q)

• Likelihood-ratio projection:

⟨L,ΦS⟩ = ExEA|x[ΦS] = Ex

 ∏
(i,j)∈S

rxixj

σ

 =
(r
σ

)|S|
1{S is even}

where x ∈ {±1}n denotes the hidden community label and r = a−b
2n

• So, we get

∥L≤D∥2 =
∑

S:|S|≤D

⟨L,ΦS⟩2 =
∑

even S:|S|≤D

(r
σ

)2|S|

Stochastic block model: testing

H0 : A ∼ G (n, (a+ b)/(2n)) (Null model)

H1 : A ∼ G (n, a/n, b/n) (Planted model)

• Polynomial basis: ΦS =
∏

(i,j)∈S
Aij−q

σ for q = a+b
2n and σ =

√
q(1− q)

• Likelihood-ratio projection:

⟨L,ΦS⟩ = ExEA|x[ΦS] = Ex

 ∏
(i,j)∈S

rxixj

σ

 =
(r
σ

)|S|
1{S is even}

where x ∈ {±1}n denotes the hidden community label and r = a−b
2n

• So, we get

∥L≤D∥2 =
∑

S:|S|≤D

⟨L,ΦS⟩2 =
∑

even S:|S|≤D

(r
σ

)2|S|

Stochastic block model: testing

H0 : A ∼ G (n, (a+ b)/(2n)) (Null model)

H1 : A ∼ G (n, a/n, b/n) (Planted model)

• Polynomial basis: ΦS =
∏

(i,j)∈S
Aij−q

σ for q = a+b
2n and σ =

√
q(1− q)

• Likelihood-ratio projection:

⟨L,ΦS⟩ = ExEA|x[ΦS] = Ex

 ∏
(i,j)∈S

rxixj

σ

 =
(r
σ

)|S|
1{S is even}

where x ∈ {±1}n denotes the hidden community label and r = a−b
2n

• So, we get

∥L≤D∥2 =
∑

S:|S|≤D

⟨L,ΦS⟩2 =
∑

even S:|S|≤D

(r
σ

)2|S|

Stochastic block model: testing

H0 : A ∼ G (n, (a+ b)/(2n)) (Null model)

H1 : A ∼ G (n, a/n, b/n) (Planted model)

• Polynomial basis: ΦS =
∏

(i,j)∈S
Aij−q

σ for q = a+b
2n and σ =

√
q(1− q)

• Likelihood-ratio projection:

⟨L,ΦS⟩ = ExEA|x[ΦS] = Ex

 ∏
(i,j)∈S

rxixj

σ

 =
(r
σ

)|S|
1{S is even}

where x ∈ {±1}n denotes the hidden community label and r = a−b
2n

• So, we get

∥L≤D∥2 =
∑

S:|S|≤D

⟨L,ΦS⟩2 =
∑

even S:|S|≤D

(r
σ

)2|S|

Stochastic block model: testing

∥L≤D∥2 =
∑

S:|S|≤D

⟨L,ΦS⟩2 =
∑

even S:|S|≤D

(r
σ

)2|S|

• Since S must be an even graph, it cannot be a tree.

• The number of vertices is at most D, achieved when S is a cycle

• If restricting S to be D-cycles with D → ∞,

∥LD−cycle∥2 ≈ nD
(r
σ

)2D
≈
(
(a− b)2

2(a+ b)

)D

≫ 1,

when (a− b)2 > 2(a+ b) (detection threshold [Mossel-Neeman-Sly ’15])

• To show LD−cycle succeeds, also need VarP [LD−cycle] ≪ (EP [LD−cycle])
2

Stochastic block model: testing

∥L≤D∥2 =
∑

S:|S|≤D

⟨L,ΦS⟩2 =
∑

even S:|S|≤D

(r
σ

)2|S|

• Since S must be an even graph, it cannot be a tree.

• The number of vertices is at most D, achieved when S is a cycle

• If restricting S to be D-cycles with D → ∞,

∥LD−cycle∥2 ≈ nD
(r
σ

)2D
≈
(
(a− b)2

2(a+ b)

)D

≫ 1,

when (a− b)2 > 2(a+ b) (detection threshold [Mossel-Neeman-Sly ’15])

• To show LD−cycle succeeds, also need VarP [LD−cycle] ≪ (EP [LD−cycle])
2

Stochastic block model: testing

∥L≤D∥2 =
∑

S:|S|≤D

⟨L,ΦS⟩2 =
∑

even S:|S|≤D

(r
σ

)2|S|

• Since S must be an even graph, it cannot be a tree.

• The number of vertices is at most D, achieved when S is a cycle

• If restricting S to be D-cycles with D → ∞,

∥LD−cycle∥2 ≈ nD
(r
σ

)2D
≈
(
(a− b)2

2(a+ b)

)D

≫ 1,

when (a− b)2 > 2(a+ b) (detection threshold [Mossel-Neeman-Sly ’15])

• To show LD−cycle succeeds, also need VarP [LD−cycle] ≪ (EP [LD−cycle])
2

Stochastic block model: testing

∥L≤D∥2 =
∑

S:|S|≤D

⟨L,ΦS⟩2 =
∑

even S:|S|≤D

(r
σ

)2|S|

• Since S must be an even graph, it cannot be a tree.

• The number of vertices is at most D, achieved when S is a cycle

• If restricting S to be D-cycles with D → ∞,

∥LD−cycle∥2 ≈ nD
(r
σ

)2D
≈
(
(a− b)2

2(a+ b)

)D

≫ 1,

when (a− b)2 > 2(a+ b) (detection threshold [Mossel-Neeman-Sly ’15])

• To show LD−cycle succeeds, also need VarP [LD−cycle] ≪ (EP [LD−cycle])
2

Stochastic block model: testing

∥L≤D∥2 =
∑

S:|S|≤D

⟨L,ΦS⟩2 =
∑

even S:|S|≤D

(r
σ

)2|S|

• Since S must be an even graph, it cannot be a tree.

• The number of vertices is at most D, achieved when S is a cycle

• If restricting S to be D-cycles with D → ∞,

∥LD−cycle∥2 ≈ nD
(r
σ

)2D
≈
(
(a− b)2

2(a+ b)

)D

≫ 1,

when (a− b)2 > 2(a+ b) (detection threshold [Mossel-Neeman-Sly ’15])

• To show LD−cycle succeeds, also need VarP [LD−cycle] ≪ (EP [LD−cycle])
2

Stochastic block model: from testing to estimation

• Goal: determine whether vertices u, v are in the same community or not

• Idea: count set H of D-paths between u and v [Massoulié 13, Hopkins-Steurer ’17,

Mossel-Neeman-Sly ’18, Abbe-Sandon ’18]

fuv =
1

nD/2−1

∑
S∈H

ΦS , where ΦS =
∏

(i,j)∈S

Aij − q

σ

• Conditional on community label x ∈ {±1}:

▶ Mean separation:

EP [fuv] =
1

nD/2−1

∑
S∈H

(r

σ

)D ∏
(i,j)∈S

xixj ≈
(
(a− b)2

2(a+ b)

)D/2

xuxv

▶ Variance: show EP [f
2
u,v] = O(1)×

(
(a−b)2

2(a+b)

)D

▶ Attain the sharp estimation threshold (a− b)2 > 2(a+ b), by choosing
D = Θ(logn) [Hopkins-Steurer ’17]

Stochastic block model: from testing to estimation

• Goal: determine whether vertices u, v are in the same community or not

• Idea: count set H of D-paths between u and v [Massoulié 13, Hopkins-Steurer ’17,

Mossel-Neeman-Sly ’18, Abbe-Sandon ’18]

fuv =
1

nD/2−1

∑
S∈H

ΦS , where ΦS =
∏

(i,j)∈S

Aij − q

σ

• Conditional on community label x ∈ {±1}:

▶ Mean separation:

EP [fuv] =
1

nD/2−1

∑
S∈H

(r

σ

)D ∏
(i,j)∈S

xixj ≈
(
(a− b)2

2(a+ b)

)D/2

xuxv

▶ Variance: show EP [f
2
u,v] = O(1)×

(
(a−b)2

2(a+b)

)D

▶ Attain the sharp estimation threshold (a− b)2 > 2(a+ b), by choosing
D = Θ(logn) [Hopkins-Steurer ’17]

Stochastic block model: from testing to estimation

• Goal: determine whether vertices u, v are in the same community or not

• Idea: count set H of D-paths between u and v [Massoulié 13, Hopkins-Steurer ’17,

Mossel-Neeman-Sly ’18, Abbe-Sandon ’18]

fuv =
1

nD/2−1

∑
S∈H

ΦS , where ΦS =
∏

(i,j)∈S

Aij − q

σ

• Conditional on community label x ∈ {±1}:
▶ Mean separation:

EP [fuv] =
1

nD/2−1

∑
S∈H

(r

σ

)D ∏
(i,j)∈S

xixj ≈
(
(a− b)2

2(a+ b)

)D/2

xuxv

▶ Variance: show EP [f
2
u,v] = O(1)×

(
(a−b)2

2(a+b)

)D

▶ Attain the sharp estimation threshold (a− b)2 > 2(a+ b), by choosing
D = Θ(logn) [Hopkins-Steurer ’17]

Stochastic block model: from testing to estimation

• Goal: determine whether vertices u, v are in the same community or not

• Idea: count set H of D-paths between u and v [Massoulié 13, Hopkins-Steurer ’17,

Mossel-Neeman-Sly ’18, Abbe-Sandon ’18]

fuv =
1

nD/2−1

∑
S∈H

ΦS , where ΦS =
∏

(i,j)∈S

Aij − q

σ

• Conditional on community label x ∈ {±1}:
▶ Mean separation:

EP [fuv] =
1

nD/2−1

∑
S∈H

(r

σ

)D ∏
(i,j)∈S

xixj ≈
(
(a− b)2

2(a+ b)

)D/2

xuxv

▶ Variance: show EP [f
2
u,v] = O(1)×

(
(a−b)2

2(a+b)

)D

▶ Attain the sharp estimation threshold (a− b)2 > 2(a+ b), by choosing
D = Θ(logn) [Hopkins-Steurer ’17]

Stochastic block model: from testing to estimation

• Goal: determine whether vertices u, v are in the same community or not

• Idea: count set H of D-paths between u and v [Massoulié 13, Hopkins-Steurer ’17,

Mossel-Neeman-Sly ’18, Abbe-Sandon ’18]

fuv =
1

nD/2−1

∑
S∈H

ΦS , where ΦS =
∏

(i,j)∈S

Aij − q

σ

• Conditional on community label x ∈ {±1}:
▶ Mean separation:

EP [fuv] =
1

nD/2−1

∑
S∈H

(r

σ

)D ∏
(i,j)∈S

xixj ≈
(
(a− b)2

2(a+ b)

)D/2

xuxv

▶ Variance: show EP [f
2
u,v] = O(1)×

(
(a−b)2

2(a+b)

)D

▶ Attain the sharp estimation threshold (a− b)2 > 2(a+ b), by choosing
D = Θ(logn) [Hopkins-Steurer ’17]

Network alignment: Correlated Erdős-Rényi graphs

•

•

•

••

•

•

•

••

π

A ∼ G(n, q) B ∼ G(n, q)

A and B are edge-wise correlated (ρ) under the hidden node correspondence π:

{Aij , Bπ(i)π(j)} are i.i.d. pairs of Bern(q) with correlation ρ

Goal: observe A and B, recover the hidden node correspondence π

Network alignment: Correlated Erdős-Rényi graphs

•

•

•

••

•

•

•

••

π

A ∼ G(n, q) B ∼ G(n, q)

A and B are edge-wise correlated (ρ) under the hidden node correspondence π:

{Aij , Bπ(i)π(j)} are i.i.d. pairs of Bern(q) with correlation ρ

Goal: observe A and B, recover the hidden node correspondence π

Network alignment: Correlated Erdős-Rényi graphs

•

•

•

••

•

•

•

••

π

A ∼ G(n, q) B ∼ G(n, q)

A and B are edge-wise correlated (ρ) under the hidden node correspondence π:

{Aij , Bπ(i)π(j)} are i.i.d. pairs of Bern(q) with correlation ρ

Goal: observe A and B, recover the hidden node correspondence π

Random network alignment: testing

H0 : A and B are two independent Erdős-Rényi graphs G(n, q)
H1 : A and B are two ρ-correlated Erdős-Rényi graphs G(n, q, ρ)

• Orthogonal polynomial basis: for S = (S1, S2),

ΦS(A,B) =
∏

(i,j)∈S1

Aij − q√
q(1− q)

·
∏

(i,j)∈S2

Bij − q√
q(1− q)

• Likelihood-ratio projection:

⟨L,ΦS⟩ = EπEA,B|π[ΦS] = Eπ[ρ
|S1|1{π(S1) = S2}]

= ρ|H| 1

sub(H)
1{S1

∼= S2
∼= H}

where ∼= means isomorphism and sub(H) = # of copies of unlabeled H
• So, we get

∥L≤2D∥2 =
∑

S:|S|≤2D

⟨L,ΦS⟩2 =
∑

H:|H|≤D

∑
S1,S2

∼=H

ρ2|H|

sub2(H)
=

∑
H:|H|≤D

ρ2|H|

Random network alignment: testing

H0 : A and B are two independent Erdős-Rényi graphs G(n, q)
H1 : A and B are two ρ-correlated Erdős-Rényi graphs G(n, q, ρ)

• Orthogonal polynomial basis: for S = (S1, S2),

ΦS(A,B) =
∏

(i,j)∈S1

Aij − q√
q(1− q)

·
∏

(i,j)∈S2

Bij − q√
q(1− q)

• Likelihood-ratio projection:

⟨L,ΦS⟩ = EπEA,B|π[ΦS] = Eπ[ρ
|S1|1{π(S1) = S2}]

= ρ|H| 1

sub(H)
1{S1

∼= S2
∼= H}

where ∼= means isomorphism and sub(H) = # of copies of unlabeled H
• So, we get

∥L≤2D∥2 =
∑

S:|S|≤2D

⟨L,ΦS⟩2 =
∑

H:|H|≤D

∑
S1,S2

∼=H

ρ2|H|

sub2(H)
=

∑
H:|H|≤D

ρ2|H|

Random network alignment: testing

H0 : A and B are two independent Erdős-Rényi graphs G(n, q)
H1 : A and B are two ρ-correlated Erdős-Rényi graphs G(n, q, ρ)

• Orthogonal polynomial basis: for S = (S1, S2),

ΦS(A,B) =
∏

(i,j)∈S1

Aij − q√
q(1− q)

·
∏

(i,j)∈S2

Bij − q√
q(1− q)

• Likelihood-ratio projection:

⟨L,ΦS⟩ = EπEA,B|π[ΦS] = Eπ[ρ
|S1|1{π(S1) = S2}]

= ρ|H| 1

sub(H)
1{S1

∼= S2
∼= H}

where ∼= means isomorphism and sub(H) = # of copies of unlabeled H

• So, we get

∥L≤2D∥2 =
∑

S:|S|≤2D

⟨L,ΦS⟩2 =
∑

H:|H|≤D

∑
S1,S2

∼=H

ρ2|H|

sub2(H)
=

∑
H:|H|≤D

ρ2|H|

Random network alignment: testing

H0 : A and B are two independent Erdős-Rényi graphs G(n, q)
H1 : A and B are two ρ-correlated Erdős-Rényi graphs G(n, q, ρ)

• Orthogonal polynomial basis: for S = (S1, S2),

ΦS(A,B) =
∏

(i,j)∈S1

Aij − q√
q(1− q)

·
∏

(i,j)∈S2

Bij − q√
q(1− q)

• Likelihood-ratio projection:

⟨L,ΦS⟩ = EπEA,B|π[ΦS] = Eπ[ρ
|S1|1{π(S1) = S2}]

= ρ|H| 1

sub(H)
1{S1

∼= S2
∼= H}

where ∼= means isomorphism and sub(H) = # of copies of unlabeled H
• So, we get

∥L≤2D∥2 =
∑

S:|S|≤2D

⟨L,ΦS⟩2 =
∑

H:|H|≤D

∑
S1,S2

∼=H

ρ2|H|

sub2(H)
=

∑
H:|H|≤D

ρ2|H|

Random network alignment: testing

∥L≤2D∥2 =
∑

S:|S|≤2D

⟨L,ΦS⟩2 =
∑

H:|H|≤D

ρ2|H|

• If restricting H to be set T of unlabeled D-trees with D → ∞,

∥LD−tree∥2 = ρ2D|T | =
(
ρ2

α

)D

≫ 1,

when ρ2 > α, where α ≈ 0.33833 is Otter’s constant [Otter ’48]

• To show LD−tree succeeds, also need
VarP [LD−tree] ≪ (EP [LD−tree])

2
[Mao-Wu-Yu-X.’24]

Random network alignment: testing

∥L≤2D∥2 =
∑

S:|S|≤2D

⟨L,ΦS⟩2 =
∑

H:|H|≤D

ρ2|H|

• If restricting H to be set T of unlabeled D-trees with D → ∞,

∥LD−tree∥2 = ρ2D|T | =
(
ρ2

α

)D

≫ 1,

when ρ2 > α, where α ≈ 0.33833 is Otter’s constant [Otter ’48]

• To show LD−tree succeeds, also need
VarP [LD−tree] ≪ (EP [LD−tree])

2
[Mao-Wu-Yu-X.’24]

Random network alignment: testing

∥L≤2D∥2 =
∑

S:|S|≤2D

⟨L,ΦS⟩2 =
∑

H:|H|≤D

ρ2|H|

• If restricting H to be set T of unlabeled D-trees with D → ∞,

∥LD−tree∥2 = ρ2D|T | =
(
ρ2

α

)D

≫ 1,

when ρ2 > α, where α ≈ 0.33833 is Otter’s constant [Otter ’48]

• To show LD−tree succeeds, also need
VarP [LD−tree] ≪ (EP [LD−tree])

2
[Mao-Wu-Yu-X.’24]

Random network alignment: from testing to estimation

• Goal: determine whether vertices u in A and v in B are true pair or not

• Idea: count family T of rooted D-trees:

fuv =
∑
H∈T

ρ|H|

sub(H)

∑
S1(u),S2(v)∼=H

∏
(i,j)∈S1

Aij − q√
q(1− q)

·
∏

(i,j)∈S2

Bij − q√
q(1− q)

• Conditional on latent node mapping π:

▶ Mean separation (assuming H is uniquely rooted):

EP [fuv] =
∑
H∈T

ρ2|H|1{π(u) = v} ∼
(
ρ2

α

)D

1{π(u) = v}

▶ To control the variance, we restrict to a special family T ∗ of unlabeled
rooted trees–chandeliers, where |T ∗| = (1/α− o(1))D [Mao-Wu-X.-Yu ’23]

Random network alignment: from testing to estimation

• Goal: determine whether vertices u in A and v in B are true pair or not

• Idea: count family T of rooted D-trees:

fuv =
∑
H∈T

ρ|H|

sub(H)

∑
S1(u),S2(v)∼=H

∏
(i,j)∈S1

Aij − q√
q(1− q)

·
∏

(i,j)∈S2

Bij − q√
q(1− q)

• Conditional on latent node mapping π:

▶ Mean separation (assuming H is uniquely rooted):

EP [fuv] =
∑
H∈T

ρ2|H|1{π(u) = v} ∼
(
ρ2

α

)D

1{π(u) = v}

▶ To control the variance, we restrict to a special family T ∗ of unlabeled
rooted trees–chandeliers, where |T ∗| = (1/α− o(1))D [Mao-Wu-X.-Yu ’23]

Random network alignment: from testing to estimation

• Goal: determine whether vertices u in A and v in B are true pair or not

• Idea: count family T of rooted D-trees:

fuv =
∑
H∈T

ρ|H|

sub(H)

∑
S1(u),S2(v)∼=H

∏
(i,j)∈S1

Aij − q√
q(1− q)

·
∏

(i,j)∈S2

Bij − q√
q(1− q)

• Conditional on latent node mapping π:
▶ Mean separation (assuming H is uniquely rooted):

EP [fuv] =
∑
H∈T

ρ2|H|1{π(u) = v} ∼
(
ρ2

α

)D

1{π(u) = v}

▶ To control the variance, we restrict to a special family T ∗ of unlabeled
rooted trees–chandeliers, where |T ∗| = (1/α− o(1))D [Mao-Wu-X.-Yu ’23]

Random network alignment: from testing to estimation

• Goal: determine whether vertices u in A and v in B are true pair or not

• Idea: count family T of rooted D-trees:

fuv =
∑
H∈T

ρ|H|

sub(H)

∑
S1(u),S2(v)∼=H

∏
(i,j)∈S1

Aij − q√
q(1− q)

·
∏

(i,j)∈S2

Bij − q√
q(1− q)

• Conditional on latent node mapping π:
▶ Mean separation (assuming H is uniquely rooted):

EP [fuv] =
∑
H∈T

ρ2|H|1{π(u) = v} ∼
(
ρ2

α

)D

1{π(u) = v}

▶ To control the variance, we restrict to a special family T ∗ of unlabeled
rooted trees–chandeliers, where |T ∗| = (1/α− o(1))D [Mao-Wu-X.-Yu ’23]

Outline of tutorial

• Introduction to low-degree polynomial method

• Three prototypical examples
▶ Planted clique
▶ Stochastic block model
▶ Random network alignment

• Concluding remarks

A few remarks

• Tree- or cycle-based polynomials of degree D can be approximated in time
n2eO(D) via color-coding [Alon-Yuster-Zwick ’94]

• The polynomials often come from the low-degree projection of the
likelihood ratio, though some extra “twists” may be needed for estimation

• A major simplification comes from i.i.d. observations under H0, which
allow us to explicitly construct an orthogonal polynomial basis

• A key step is to evaluate the projection coefficient ⟨L,ΦS⟩, which equals
the mean of ΦS under the planted model

• To complete the analysis, we also need to bound the variance of the
polynomial under H1. This can be quite challenging-sometimes special
designs (e.g., counting chandeliers) help.

• The low-degree polynomial method extends to many other
high-dimensional inference settings. For example, with i.i.d. Gaussian null
model, the orthogonal basis is given by Hermite polynomials.

A few remarks

• Tree- or cycle-based polynomials of degree D can be approximated in time
n2eO(D) via color-coding [Alon-Yuster-Zwick ’94]

• The polynomials often come from the low-degree projection of the
likelihood ratio, though some extra “twists” may be needed for estimation

• A major simplification comes from i.i.d. observations under H0, which
allow us to explicitly construct an orthogonal polynomial basis

• A key step is to evaluate the projection coefficient ⟨L,ΦS⟩, which equals
the mean of ΦS under the planted model

• To complete the analysis, we also need to bound the variance of the
polynomial under H1. This can be quite challenging-sometimes special
designs (e.g., counting chandeliers) help.

• The low-degree polynomial method extends to many other
high-dimensional inference settings. For example, with i.i.d. Gaussian null
model, the orthogonal basis is given by Hermite polynomials.

A few remarks

• Tree- or cycle-based polynomials of degree D can be approximated in time
n2eO(D) via color-coding [Alon-Yuster-Zwick ’94]

• The polynomials often come from the low-degree projection of the
likelihood ratio, though some extra “twists” may be needed for estimation

• A major simplification comes from i.i.d. observations under H0, which
allow us to explicitly construct an orthogonal polynomial basis

• A key step is to evaluate the projection coefficient ⟨L,ΦS⟩, which equals
the mean of ΦS under the planted model

• To complete the analysis, we also need to bound the variance of the
polynomial under H1. This can be quite challenging-sometimes special
designs (e.g., counting chandeliers) help.

• The low-degree polynomial method extends to many other
high-dimensional inference settings. For example, with i.i.d. Gaussian null
model, the orthogonal basis is given by Hermite polynomials.

A few remarks

• Tree- or cycle-based polynomials of degree D can be approximated in time
n2eO(D) via color-coding [Alon-Yuster-Zwick ’94]

• The polynomials often come from the low-degree projection of the
likelihood ratio, though some extra “twists” may be needed for estimation

• A major simplification comes from i.i.d. observations under H0, which
allow us to explicitly construct an orthogonal polynomial basis

• A key step is to evaluate the projection coefficient ⟨L,ΦS⟩, which equals
the mean of ΦS under the planted model

• To complete the analysis, we also need to bound the variance of the
polynomial under H1. This can be quite challenging-sometimes special
designs (e.g., counting chandeliers) help.

• The low-degree polynomial method extends to many other
high-dimensional inference settings. For example, with i.i.d. Gaussian null
model, the orthogonal basis is given by Hermite polynomials.

A few remarks

• Tree- or cycle-based polynomials of degree D can be approximated in time
n2eO(D) via color-coding [Alon-Yuster-Zwick ’94]

• The polynomials often come from the low-degree projection of the
likelihood ratio, though some extra “twists” may be needed for estimation

• A major simplification comes from i.i.d. observations under H0, which
allow us to explicitly construct an orthogonal polynomial basis

• A key step is to evaluate the projection coefficient ⟨L,ΦS⟩, which equals
the mean of ΦS under the planted model

• To complete the analysis, we also need to bound the variance of the
polynomial under H1. This can be quite challenging-sometimes special
designs (e.g., counting chandeliers) help.

• The low-degree polynomial method extends to many other
high-dimensional inference settings. For example, with i.i.d. Gaussian null
model, the orthogonal basis is given by Hermite polynomials.

A few remarks

• Tree- or cycle-based polynomials of degree D can be approximated in time
n2eO(D) via color-coding [Alon-Yuster-Zwick ’94]

• The polynomials often come from the low-degree projection of the
likelihood ratio, though some extra “twists” may be needed for estimation

• A major simplification comes from i.i.d. observations under H0, which
allow us to explicitly construct an orthogonal polynomial basis

• A key step is to evaluate the projection coefficient ⟨L,ΦS⟩, which equals
the mean of ΦS under the planted model

• To complete the analysis, we also need to bound the variance of the
polynomial under H1. This can be quite challenging-sometimes special
designs (e.g., counting chandeliers) help.

• The low-degree polynomial method extends to many other
high-dimensional inference settings. For example, with i.i.d. Gaussian null
model, the orthogonal basis is given by Hermite polynomials.

A partial and ever-growing list of successes

• Planted dense subgraph [Sohn-Wein ’25]

• Planted dense cycles [Mao-Wein-Zhang ’23]

• Dense stochastic block models [Banerjee-Ma ’17, Banerjee ’18]

• Degree-corrected stochastic block models [Gao-Lafferty ’17, Jin-Ke-Luo ’19]

• Mixed-membership stochastic block models [Hopkins-Steurer ’17]

• Random network alignment: correlated stochastic block
models [Chen-Ding-Gong-Li ’24,25, Chai-Rácz 24]

• Attributed network alignment [Wang-Wang-Wang’24]

• Testing random geometric graph vs. Erdős-Rényi [Bubeck-Ding-Eldan-Rácz ’16]

• Planted submatrix [Sohn-Wein ’25]

• Spiked Wigner model [Hopkins-Steurer ’17, Sohn-Wein ’25]

• Tensor PCA [Hopkins ’18, Li ’25]

• Shuffled linear regression [Li ’25, Gong-Wu-X. ’25]

• Procrustes-Wasserstein matching [Niu-Schramm-X. ’25]

• And many more...

Challenges and open problems

• The likelihood ratio projection can be hard to compute
▶ Example: random geometric graph. Suppose xi’s are i.i.d. on the unit

sphere in Rd, and conditional on xi’s, Aij
iid∼ Bern(κ(xi, xj)).

▶ In this case, ⟨L,ΦS⟩ = EP [ΦS] is hard to compute except for simple
subgraphs such as cycles. See recent progress [Bangachev-Bresler ’25]

▶ A key obstacle in resolving the long-standing conjecture on detection
threshold for RGG vs Erdős-Rényi graph [Liu-Mohanty-Schramm-Yang ’21]

• The null model may not have IID observations, so the nice orthogonality
property is missing
▶ Example: aligning random geometric graphs. Suppose yi is correlated with

xπ(i), and conditional on yi’s, Bij
iid∼ Bern(κ(yi, yj)).

▶ Under the null model, A and B are two independent random geometric
graphs, but the orthogonal polynomial basis is unknown

• Dynamic networks
▶ Example: preferential attachment (PA) models. How can we design

low-degree polynomial estimators for inference problems in PA graphs—such
as community detection or network alignment?

Challenges and open problems

• The likelihood ratio projection can be hard to compute
▶ Example: random geometric graph. Suppose xi’s are i.i.d. on the unit

sphere in Rd, and conditional on xi’s, Aij
iid∼ Bern(κ(xi, xj)).

▶ In this case, ⟨L,ΦS⟩ = EP [ΦS] is hard to compute except for simple
subgraphs such as cycles. See recent progress [Bangachev-Bresler ’25]

▶ A key obstacle in resolving the long-standing conjecture on detection
threshold for RGG vs Erdős-Rényi graph [Liu-Mohanty-Schramm-Yang ’21]

• The null model may not have IID observations, so the nice orthogonality
property is missing
▶ Example: aligning random geometric graphs. Suppose yi is correlated with

xπ(i), and conditional on yi’s, Bij
iid∼ Bern(κ(yi, yj)).

▶ Under the null model, A and B are two independent random geometric
graphs, but the orthogonal polynomial basis is unknown

• Dynamic networks
▶ Example: preferential attachment (PA) models. How can we design

low-degree polynomial estimators for inference problems in PA graphs—such
as community detection or network alignment?

Challenges and open problems

• The likelihood ratio projection can be hard to compute
▶ Example: random geometric graph. Suppose xi’s are i.i.d. on the unit

sphere in Rd, and conditional on xi’s, Aij
iid∼ Bern(κ(xi, xj)).

▶ In this case, ⟨L,ΦS⟩ = EP [ΦS] is hard to compute except for simple
subgraphs such as cycles. See recent progress [Bangachev-Bresler ’25]

▶ A key obstacle in resolving the long-standing conjecture on detection
threshold for RGG vs Erdős-Rényi graph [Liu-Mohanty-Schramm-Yang ’21]

• The null model may not have IID observations, so the nice orthogonality
property is missing
▶ Example: aligning random geometric graphs. Suppose yi is correlated with

xπ(i), and conditional on yi’s, Bij
iid∼ Bern(κ(yi, yj)).

▶ Under the null model, A and B are two independent random geometric
graphs, but the orthogonal polynomial basis is unknown

• Dynamic networks
▶ Example: preferential attachment (PA) models. How can we design

low-degree polynomial estimators for inference problems in PA graphs—such
as community detection or network alignment?

Conclusions

• Network inference provides a rich family of problems that intertwine applied
probability, statistics, optimization, combinatorics, information theory, and more.

• The low-degree polynomial method offers a simple yet principled framework for
understanding the fundamental limits of high-dimensional inference.

• This tutorial has focused on low-degree “upper bounds”— showing how to design
effective low-degree, polynomial-based estimators.

• A complementary perspective comes from low-degree “lower bounds”, which
characterize thresholds below which all low-degree polynomials fail. Under the
low-degree conjecture, this further implies all polynomial-time algorithms fail

Further Reading

• A. Wein, “Computational Complexity of Statistics: New Insights from
Low-Degree Polynomials,” June 2025.

• Y. Wu and J. Xu, “Statistical Inference on Graphs: Selected Topics,”
https://people.duke.edu/~jx77/stats-graphs.pdf. Lecture notes

https://people.duke.edu/~jx77/stats-graphs.pdf

