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Data Heterogeneity in Federated Learning

• Unbalanced data partition

• Non-identical data distribution



Existing Approaches for Data Heterogeneity

• Common model [Li-Sau-Zaheer-Sanjabi-Talwalkar-Smith ’20, Su-X.-Yang ’21,...]:
only work with moderate heterogeneity

• Fully personalized model [Smith-Chiang-Sanjabi-Talwalkar ’17,

Marfoq-Neglia-Bellet-Kameni-Vidal ’21, ...]: non-convex formulation, no
convergence/generalization theory

• Clustered models [Sattler-Müller-Samek ’20, Ghosh-Hong-Yin-Ramchandran ’19,

Ghosh-Chung-Yin-Ramchandran ’20,...]



Existing Approaches for Data Heterogeneity

• Common model [Li-Sau-Zaheer-Sanjabi-Talwalkar-Smith ’20, Su-X.-Yang ’21,...]:
only work with moderate heterogeneity

• Fully personalized model [Smith-Chiang-Sanjabi-Talwalkar ’17,

Marfoq-Neglia-Bellet-Kameni-Vidal ’21, ...]: non-convex formulation, no
convergence/generalization theory

• Clustered models [Sattler-Müller-Samek ’20, Ghosh-Hong-Yin-Ramchandran ’19,

Ghosh-Chung-Yin-Ramchandran ’20,...]



Existing Approaches for Data Heterogeneity

• Common model [Li-Sau-Zaheer-Sanjabi-Talwalkar-Smith ’20, Su-X.-Yang ’21,...]:
only work with moderate heterogeneity

• Fully personalized model [Smith-Chiang-Sanjabi-Talwalkar ’17,

Marfoq-Neglia-Bellet-Kameni-Vidal ’21, ...]: non-convex formulation, no
convergence/generalization theory

• Clustered models [Sattler-Müller-Samek ’20, Ghosh-Hong-Yin-Ramchandran ’19,

Ghosh-Chung-Yin-Ramchandran ’20,...]



Clustered Federated Learning

• Most previous works are heuristic and lack of convergence
guarantees
• Limited theoretical study under stringent assumptions

[Ghosh-Chung-Yin-Ramchandran ’20]

I Good initialization
I Balanced and high-volume of local data
I Sample splitting across iterations

This talk

A new algorithm that achieves global convergence from any initialization
despite of unbalanced cluster and data partitions



Clustered Federated Learning

• Most previous works are heuristic and lack of convergence
guarantees
• Limited theoretical study under stringent assumptions

[Ghosh-Chung-Yin-Ramchandran ’20]

I Good initialization
I Balanced and high-volume of local data
I Sample splitting across iterations

This talk

A new algorithm that achieves global convergence from any initialization
despite of unbalanced cluster and data partitions



Outline of the Remainder

1 Model setup

2 Our two-phase algorithm

3 Theoretical guarantees

4 Summary and concluding remarks



Our Model: Mixed Regression

PS

𝒟ଵ 𝒟ଶ 𝒟ெ𝒟𝑖

• One parameter server + M
clients partitioned into k hidden
clusters

• Each client i has ni local data
points Di = {xij , yij}:

yij =
〈
xij , θ

∗
zi

〉
+ ζij , j ∈ [ni]

• Model parameters (θ∗1, . . . , θ
∗
k)

• Cluster label zi = ` w.p. p`

• Feature vector xij ∈ Rd:
independent, sub-Gaussian,

E
[
xijx

>
ij

]
= Σ`, if zi = `

• noise ζij : independent,
sub-Gaussian
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Our Two-phase FL algorithm

1 Obtain coarse estimates of model parameters (θ∗1, . . . , θ
∗
k) via

Federated moment descent

2 Iteratively estimate cluster label and refine local model estimate via
either FedAvg or FedProx



Moment Descent: General Idea

• Powerful idea for clustering under mixture model [Moitra-Valiant ’10,

Li-Liang ’18]

• Goal: generate a sequence of estimators {θi,t} approaching θ∗zi :

θi,t+1 = θi,t + ηi,tri,t

• Decrease

Var

(〈
xij , θ

∗
zi

〉
− θi,t︸ ︷︷ ︸

residual error

)
= ‖Σ1/2

zi (θ∗zi − θi,t)‖
2
2

• Choose ri,t positively correlated with Σzi(θ
∗
zi − θi,t)

• (yij − 〈xij , θi,t〉)xij is an unbiased estimator of Σzi(θ
∗
zi − θi,t)

• However, need Ω(d) local data points at client i to well estimate
Σzi(θ

∗
zi − θi,t) =⇒ Unaffordable in FL with limited local data
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Our idea: Federated Moment Descent

Σଶሺ𝜃ଶ∗ െ 𝜃௜,௧ሻ

Σଵሺ𝜃ଵ∗ െ 𝜃௜,௧ሻ

1 Pool data from clients to
estimate

Ui,t ≈ span{Σ`(θ
∗
`−θi,t) : ` ∈ [k]}

2 Project local data onto Ui,t to
estimate ri,t

• Reduce estimation from d-dim to k-dim ⇒ only need Ω̃(k) local
data points (anchor clients)

• To cover all k clusters, only need Ω̃(k) such anchor clients

• Similar idea was used for meta-learning [Kong-Somani-Song-Kakade-Oh

’20], but without using moment descent
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Federated Moment Descent in Action

PS

Step 1: Choose a set A of anchor clients at random



Federated Moment Descent in Action

PS

𝜃௜,௧ , 𝑖 ∈ 𝐴

Step 2: Broadcast {θi,t, i ∈ A} to a subset St of non-anchor clients



Federated Moment Descent in Action

PS

Estimate subspace 𝑈௜,௧ , 𝑖 ∈ 𝐴
via orthogonal iteration

Step 3: Estimate Ui,t ≈ span{Σ`(θ
∗
` − θi,t) : ` ∈ [k]} based on the top-k

singular vectors of

Yi,t =
1

|St|
∑
i′∈St

ε(xi′1, yi′1, θi,t)ε(xi′2, yi′2, θi,t)
>, ε(x, y, θ) , (y − 〈x, θ〉)x



Federated Moment Descent in Action

PS

Send 𝑈௜,௧ to anchor client 𝑖

Step 4: Send the estimated k-dim subspace Ui,t to each anchor client i



Federated Moment Descent in Action

PS

Each anchor client 𝑖 locally 
estimates descent direction 𝑟௜

Step 5: Let ri,t = Ui,tβi,t, where βi,t is the leading singular vector of

Zi,t =
1

|Di,t|
∑
j∈Di,t

(
U>i,tε(xij , yij , θi,t)

)(
U>i,tε(x

′
ij , y

′
ij , θi,t)

)>



Federated Moment Descent in Action

PS

Update and 
upload 𝜃௜,௧ାଵ

Step 6: Update and upload

θi,t+1 = θi,t + ηi,tri,t



Federated Moment Descent in Action

PS

PS clusters 𝜃௜,் and outputs cluster centers

Step 7: Cluster {θi,T , i ∈ A} by thresholding on ‖θi,T − θi′,T ‖2 and

output k cluster centers as θ̂



Theoretical Guarantee for Phase 1

pmin = min
`∈[k]

p`, M = # of clients

MA = # of anchor clients, nA = # of data points per anchor client

Theorem (Su-X.-Yang ’22)

Let ε be a small but fixed constant. Suppose that

M ≥ p−2minΩ̃(d), MA ≥ Ω̃(k), nA = Ω̃(k).

With high probability, starting from any initialization θ0, Phase 1 outputs
θ̂ in O(1) iterations:

d
(
θ̂, θ∗

)
, min

π
max
`∈[k]
‖θ̂π(`) − θ∗`‖2 ≤ ε.



Phase 2: FedX + Clustering

• All clients iteratively estimate their cluster label and refine their
local model estimate via either FedAvg or FedProx

• At every iteration, clients reuse all local data, including those used
in the first phase
I Cruicial especially for data-scarce clients
I Lead to sophisticated interdependency - significant analysis challenge
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FedX + Clustering in Action

PS

Broadcast current estimate 𝜃௧

Step 1: Broadcast current estimate θt = (θ1,t, . . . , θk,t) to all clients



FedX + Clustering in Action

PS

Each client estimates its
cluster label based on 𝜃௧

Step 2: Each client i estimates its cluster label via ML decoder:

zi,t ∈ arg min
`∈[k]

Li(θt, `) ,
ni∑
j=1

(yij − 〈xij , θ`,t〉)2



FedX + Clustering in Action

PS

Each client update and upload its 
local model estimate 𝜃௜ȉ,௧

Step 3: Refine local model estimate θi·,t:

FedAvg(s): θi·,t = Gsi (θt) , where Gi(θ) = θ − η∇Li (θ, zi,t)

FedProx: θi·,t ∈ arg min
θ
Li (θ, zi,t) +

1

2η
‖θ − θt‖22



FedX + Clustering in Action

PS

Update global model estimate 𝜃௧ାଵ based on 𝜃௜ȉ,௧

Step 4: Update global model estimate

θt+1 =
M∑
i=1

wiθi·,t, where wi =
ni∑
i ni



Theoretical guarantee for Phase 2

Theorem (Su-X.-Yang ’22)

Suppose d(θT , θ
∗) ≤ ε. Then with high probability,

d(θt+1, θ
∗) ≤ (1− C1pmin) d(θt, θ

∗) + C2ν log
1

ν
, ∀t ≥ T,

where

ν ,
M∑
i=1

kwie
−C3ni

︸ ︷︷ ︸
avg clustering error

+C4

√
dk log k

M
(χ2(w) + 1)︸ ︷︷ ︸

uniform deviation

• χ2(w): chi-square divergence between w and uniform distribution

• If χ2(w) = O(1), then the uniform deviation is Õ(dk/M)
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Uniform Bounds on Clustering Errors

• Need to bound the total number of misclustered data points:∑
i

ni1{i is misclustered under θt } =
∑
i

ni1{fθt (xi,yi)≥0},

where fθ(x, y) is quadratic in θ

• Key challenge: θt and local data {xi, yi} are heavily dependent!

• Establish uniform bound on

sup
θ

∑
i

ni1{fθ(xi,yi)≥0}

• Need to control the VC dimension of polynomial concept class{
1{fθ(x,y)≥0} : θ ∈ Rdk

}
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Sign Patterns of Polynomials

Linear:
(
m
0

)
+
(
m
1

)
+ · · ·+

(
m
d

)

Quadratic: ?

Theorem (Milnor-Thom theorem)

The number of sign patterns of m d-variate polynomials of degree D is

at most
(
50Dm
d

)d
.

Implication: Since fθ(x, y) is quadratic in θ,

VC
{
1{fθ(x,y)≥0} : θ ∈ Rdk

}
= O(dk)
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Putting Two Phases Together: Global Convergence

Theorem (Su-X.-Yang ’22)

With high probability, starting from any initialization θ0, running Phase 1
with Θ(1) iterations and followed by Phase 2 with Θ(ρ−1 log(1/ν))
iterations outputs θ̂:

d(θ̂, θ∗) .
1

pmin
ν log

1

ν

• pmin captures the effect of unbalanced clusters

• ν captures the clustering error, which depends on the imbalance of
data partition



Numerical Comparisons

0 100 200 300 400 500
round

10 2

10 1

100
er

ro
r

Our
FedAvg
IFCA
Oracle

• IFCA [Ghosh-Chung-Yin-Ramchandran ’20]: stuck on error floor

• Oracle: IFCA initialized with true model parameters



Concluding Remarks

• Clustered federated learning under the mixed regression model

• Design a two-phase FL algorithm: Federated moment descent

• Prove the global convergence from any initialization even with
unbalanced cluster and data partitions

• Uniform bound on clustering errors based on VC dimension of
polynomial concept classes

Future work:

• General risk minimization setup beyond mixed regression

• System heterogeneity

• Security/privacy consideration

Reference
• L. Su, J. Xu, & P. Yang, Global Convergence of Federated Learning for Mixed

Regression. arXiv:2206.07279. To appear in Proceedings of NeurIPS 2022
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