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Community detection in networks

@ Given a network

e e.g. friendship networks on facebook
@ e.g. protein-protein interaction networks

@ Task: ldentify groups of similar nodes (communities)

o Existence of edge or not indicates similarity
o Communities: Densely-connected internally

@ Graph clustering: Identify densely-connected groups of nodes



Political blog Network [Adamic and Glance '05]
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Statistical and computational challenges

@ From a statistical perspective

o A large number of (small) communities
e The observed network is sparse

@ From a computational perspective
e Large solution space

@ Is there a computationally efficient and statistically optimal
community detection algorithm?




Planted Cluster Model

n=40,K=10,r=3
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Cluster recovery as structured matrix recovery

0

True clusters True cluster matrix Y*



Cluster recovery as structured matrix recovery

0

True clusters True cluster matrix Y*

@ Binary: Y* € {0,1}™"

@ Low rank: rank(Y*) =r < n

@ Sparse: # of ones in Y* is rK? < n?
@ Positive semi-definite: Y* >~ 0
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Cluster recovery as structured matrix recovery

True cluster matrix Y* Adjacency matrix A

Yf S A—Y )
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Cluster recovery under planted cluster model

@ Model parameters n,K,r,p,q

e n = # of nodes, K = size of clusters, r = # of clusters
e p = in-cluster edge probability
@ (q =cross-cluster edge probability

@ Cluster recovery becomes more difficult with

o Smaller K
@ Smallerporp—q
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Related work on cluster recovery

Planted cluster model covers several classical planted models
@ Planted clique [McSherry '01]: r=1,p=1,0< g < 1
@ Planted dense subgraph [Arias-Castro-Verzelen’13] : r =1,
O<g<p<
@ Planted partition [Condon-Karp '01] /Stochastic blockmodel
[Holland et al. '83] : n=rK




Related work on cluster recovery

@ Special case: Two clusters of size n/2
alogn __ blogn
=4z

o [Abbe et al. 14, Mossel et al. '14] Assume p = ===, q
Exact recovery is possible if and only if

K(vP—/q)* > logn

o [Decelle et al. '11, Mossel et al. '12 ’13, Massoulié *13] Assume
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Related work on cluster recovery

@ Special case: Two clusters of size n/2
alogn __ blogn
=4z

o [Abbe et al. 14, Mossel et al. '14] Assume p = ===, q
Exact recovery is possible if and only if

K(vP—/q)* > logn

o [Decelle et al. '11, Mossel et al. '12 ’13, Massoulié *13] Assume
p=2qg= g. Correlated recovery is possible if and only if

n

K(p—qP?>p+q

Two fundamental limits unclear in general

@ Information limit: In which regime is exact recovery possible
(impossible)?

@ Computational limit: In which regime is exact recovery
computationally easy (hard)?
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@ Information limit: Necessary and sufficient conditions for cluster
recovery
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inequality
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Proof: Y* — A — Y. Show /(Y*; A) < H(Y*) and use Fano’s
inequality
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Sufficient conditions for maximum likelihood estimation

Maximum likelihood estimator: ¥ = argmaxy P(A|Y)
Y- AV
If p > g, maximum likelihood estimation reduces to
max A;Y; <+ # ofin-cluster edges
2 Z;: i Yij i g
s.t. Y is a cluster matrix with r clusters of size K

Q: When Y* is the optimal solution to MLE?



Sufficient conditions for maximum likelihood estimation
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Sufficient conditions for maximum likelihood estimation

information limit

p=cq=06(n"°)
> (X

o 1

Proof: Concentration inequality + union bound (needs non-trivial
counting)



AiYy = f(Y
max Zj: iYi (Y)

s.t. Y is a cluster matrix with r clusters of size K



max AiYi =1fY
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s.t. Y is a cluster matrix with r clusters of size K

Define Hamming distance dy( Y, Y™)
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max AiYi =1fY
P S A )
s.t. Y is a cluster matrix with r clusters of size K

Define Hamming distance dy( Y, Y™)

Given dy(Y,Y*) =t
@ log |Vt <tlogn/K
© logP{f(Y) = f(Y*)} S
—tD(plq)
So need K - D(p||q) Z logn

Space of all cluster matrices
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Information limit for cluster recovery

Theorem (Informal)
Exact cluster recovery is possible if and only if

K- D(qllp) 2 log(rK) and K- D(pl|q) Z logn, (1)

@ g = p: (2) simplifiesto K(p — g)? > q(1 — q)logn
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Key idea in information limit

S~Bin(K—-1,p) T;~Bin(K,Qq) T,

e P{S< T} < e—Kmin{D(qllp),D(pl|q)}
o P{S<max{Ty,..., T,_1}} < r. e Kmin{D(allp).D(pllq)}
@ P{S <max{Ty,..., T,_4} for all nodes} < nr.e~Kmin{D(qglp).D(plla)}

o If Kmin{D(ql|/p), D(pllq)} = log n, then for every node, its color is
the same as the most representative color among its neighbors
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Information limit for cluster recovery

Theorem (Informal)
Exact cluster recovery is possible if and only if

K- D(qllp) 2 log(rK) and K- D(p|q) 2 logn, (2)

@ g = p: (2) simplifies to K(p — q)?> = q(1 — q)logn

@ [Abbe et al. '14, Mossel et al. '14] p = alogn/n, g = blog n/n:
Exact recovery is possible if and only if K(\/p — /§)? > logn

@ [Decelle et al. 11, Mossel et al. ’12 ’13, Massoulié '13]
p = a/n,q = b/n: Correlated recovery is possible if and only if

Klp-q9?>p+q

Q: Is the information limit efficiently achievable in general? \




© Computational limit
e A polynomial-time cluster recovery algorithm

o Complexity theoretic lower bounds
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Polynomial-time recovery: Convex relaxation of MLE

@ rank(Y*)=r<n

@ Nuclear norm || - || (sum of singular values) is a convex surrogate
for rank function: || Y*||. = rK

@ A convex relaxation of MLE

m\e}x ZU:A,]Y,]
st Y| < rK

Z Yj = rk?, Yj € [0,1].
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Polynomial-time recovery: Convex relaxation of MLE

B1K =06(n’)
1
1/2
impossible
p=cq=06(n-")
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@ Conjecture on computational limit: No polynomial-time algorithm
succeeds beyond the green regime



Polynomial-time recovery: Convex relaxation of MLE

LK =0(n?)
1
ectral barrier
1/2
impossible
p=cq=06(n-")
«
0] 1

@ Conjecture on computational limit: No polynomial-time algorithm
succeeds beyond the green regime

@ Spectral barrier prevents spectrum of A revealing clusters
[Nadakuditi-Newman ’12]



+ A-E[A




A = + A-E[A

— semi—circle law

I
3 4 5

fA—q11T
o

Eigenvalue distribution o foroc = \/Kp+ (n—K)qg



Complexity theoretic lower bounds conditional on Planted Clique
hardness J
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Planted Clique hardness

Ber(7)

Ho : Ber(7) vs H;:| K Ber(1)

K

Intermediate regime: logn < K < v/n, v = ©(1)
@ detection is possible but believed to have high computational
complexity
@ many (worst-case) hardness results assuming Planted Clique
hardness with v = J

o detecting sparse principal component [Berthet-Rigollet *13]
o detecting sparse submatrix [Ma-Wu '13]

e cryptography [Applebaum et al. *10]: v = 29

0.99 n



Conditional hardness for recovering a single cluster

Assuming Planted Clique hardness for any constant v > 0

BrK =06(n")
i

1/2

impossible

o 2/3 1«



Conditional hardness for recovering a single cluster

Assuming Planted Clique hardness for any constant v > 0

B1K = 6(n")
Nl

impossible
p=cq=0(n"*)
o 2/3 1 o

@ Proof step 1: Recovery is “harder” than detection

@ Proof step 2: Detecting a single cluster in the red regime is at
least as hard as detecting a clique of size K = o(y/n)



Detection of a single cluster

Ber(q)
H : Ber(Qq) vs H;:| S Ber(p)

S

Each node is included in S with probability %



Detection of a single cluster

Ber(q)
H : Ber(Qq) vs H;:| S Ber(p)

S

Each node is included in S with probability %

Complexity theoretic lower bounds
Reduced from Planted Clique in polynomial time
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h: Anxn — Anxn

Ho : | Ber(7) Ber(Qq)
Vs Vs

H; : |k clique K Ber(p)
k K

h:Aw Ais agnostic to the clique and can be computed in P-time
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Given an integer ¢, two probability distributions P, Q on {0,1,...,¢?}

Split each node |
into ¢/ new nodes
N=nt K=kt T

14
Agnogeesuiy 0 7 9
, ’ . p
Ho Ber(7) (1-7Q+~P
H, : Ber(1) (in-clique) P (in-cluster)

How to choose P, Q?

Matching Hp: (1 — v)Q + vP = Bin(¢?, q)
Matching H; approximately: P ~ Bin(¢2, p) in total variation distance
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Empirical study on political blog network

@ Pre-processing: Ignore directions and select the largest
connected component with 1222 nodes, 16,714 edges

@ Convex relaxation of ML estimation

mex Z(A,/ — )\) Y,'j
i<j

st Y=0,Y;=1Vi
Yj €[0,1], Vi#]

@ Solve for Y and use k-means with k = 2 on Y
@ Theory suggests g < A < p [Chen et al. 13, Cai and Li '14]

@ Choose )\ = Mediandegree o fraction of mis-classified nodes:
¢ =195/1222 ~ 0.16



Degree distribution of political blog network

High degree variation: Max degree 351, mean degree 27, median
degree 13

Degree Distribution
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Convex relaxation of MLE with degree correction

@ Given a random graph uniformly chosen with a fixed degree
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@ Given a random graph uniformly chosen with a fixed degree
sequence {d;}

d;d;
PlA;j = 1]~ ——
Ay =1] >k Gk
@ Choose \; = 2% and let Bj = Aj — \j, Vi # ]
| = S, d i = Ajj — Ajj
max ZB,-/Y,-/-
Y i<j
st Y=0,Y; =1V
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Convex relaxation of MLE with degree correction

@ Given a random graph uniformly chosen with a fixed degree
sequence {d;}

d;d;
PlA;j = 1]~ ——
Ay =1] >k Gk
@ Choose \; = 2% and let Bj = Aj — \j, Vi # ]
| = S, d i = Ajj — Ajj
max ZB,-/Y,-/-
Y i<j
st Y=0,Y; =1V

@ Bis known as modularity matrix [Newman ’06]
@ Fraction of mis-classified nodes: ¢ = 62/1222 ~ 0.05
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