Fundamental Limits for Community Detection

Jiaming Xu¹

Joint work with Yudong Chen², Bruce Hajek¹, Yihong Wu¹

¹ECE, University of Illinois at Urbana-Champaign

²EECS, University of California, Berkeley

October 15, 2014

Community detection in networks

Given a network

- e.g. friendship networks on facebook
- e.g. protein-protein interaction networks

Community detection in networks

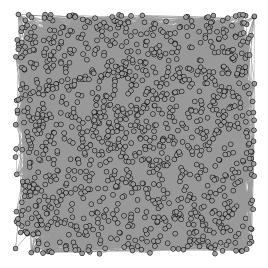
Given a network

- e.g. friendship networks on facebook
- e.g. protein-protein interaction networks
- Task: Identify groups of similar nodes (communities)
 - Existence of edge or not indicates similarity
 - Communities: Densely-connected internally

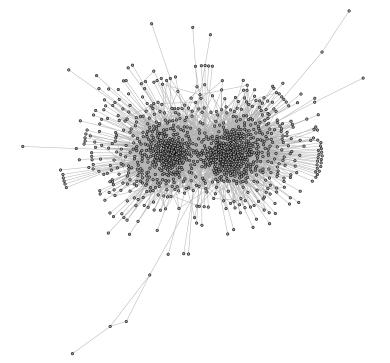
Community detection in networks

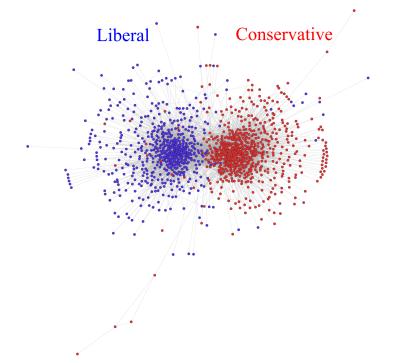
Given a network

- e.g. friendship networks on facebook
- e.g. protein-protein interaction networks
- Task: Identify groups of similar nodes (communities)
 - Existence of edge or not indicates similarity
 - Communities: Densely-connected internally
- Graph clustering: Identify densely-connected groups of nodes



Political blog Network [Adamic and Glance '05]





Statistical and computational challenges

- From a statistical perspective
 - A large number of (small) communities
 - The observed network is sparse

Statistical and computational challenges

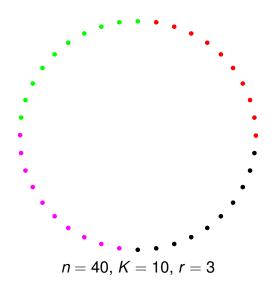
- From a statistical perspective
 - A large number of (small) communities
 - The observed network is sparse
- From a computational perspective
 - Large solution space

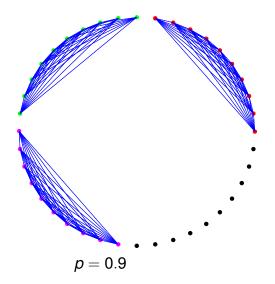
Statistical and computational challenges

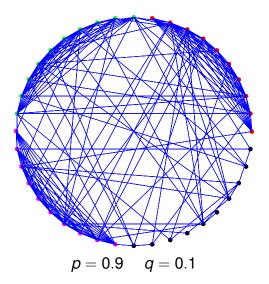
- From a statistical perspective
 - A large number of (small) communities
 - The observed network is sparse
- From a computational perspective
 - Large solution space

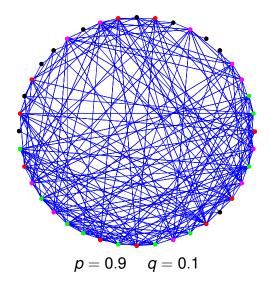
Question

• Is there a computationally efficient and statistically optimal community detection algorithm?

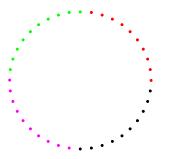




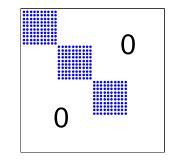




Cluster recovery as structured matrix recovery

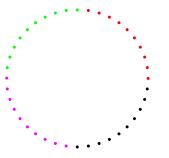


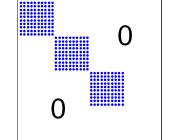
True clusters



True cluster matrix Y*

Cluster recovery as structured matrix recovery

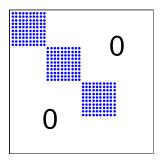




True clusters

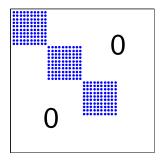
True cluster matrix Y*

- Binary: $Y^* \in \{0, 1\}^{n \times n}$
- Low rank: rank(Y^*) = $r \ll n$
- Sparse: # of ones in Y^* is $rK^2 \ll n^2$
- Positive semi-definite: $Y^* \succeq 0$

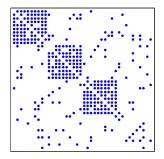


True cluster matrix Y*

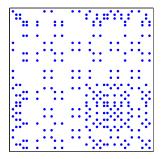
Cluster recovery as structured matrix recovery



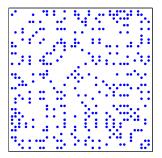
True cluster matrix Y*



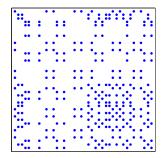
Adjacency matrix A



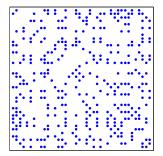
True cluster matrix Y*



Adjacency matrix A



True cluster matrix Y*



Adjacency matrix A

$$Y^* \longrightarrow A \longrightarrow \widehat{Y}$$

Cluster recovery under planted cluster model

• Model parameters *n*, *K*, *r*, *p*, *q*

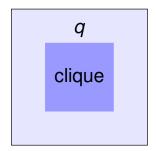
- n = # of nodes, K = size of clusters, r = # of clusters
- p =in-cluster edge probability
- *q* =cross-cluster edge probability

• Model parameters *n*, *K*, *r*, *p*, *q*

- n = # of nodes, K = size of clusters, r = # of clusters
- p = in-cluster edge probability
- q = cross-cluster edge probability
- Cluster recovery becomes more difficult with
 - Smaller K
 - Smaller p or p q

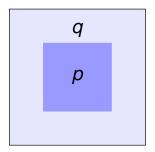
Planted cluster model covers several classical planted models

Planted clique [McSherry '01] : r = 1, p = 1, 0 < q < 1</p>



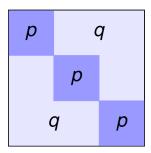
Planted cluster model covers several classical planted models

- Planted clique [McSherry '01] : *r* = 1, *p* = 1, 0 < *q* < 1
- Planted dense subgraph [Arias-Castro-Verzelen '13] : r = 1, 0 < q < p < 1



Planted cluster model covers several classical planted models

- Planted clique [McSherry '01] : r = 1, p = 1, 0 < q < 1</p>
- Planted dense subgraph [Arias-Castro-Verzelen '13]: r = 1, 0 < q < p < 1
- Planted partition [Condon-Karp '01] /Stochastic blockmodel [Holland et al. '83] : n = rK



- Special case: Two clusters of size n/2
 - [Abbe et al. '14, Mossel et al. '14] Assume $p = \frac{a \log n}{n}, q = \frac{b \log n}{n}$. Exact recovery is possible if and only if

$$K(\sqrt{p}-\sqrt{q})^2>\log n$$

• [Decelle et al. '11, Mossel et al. '12 '13, Massoulié '13] Assume $p = \frac{a}{n}, q = \frac{b}{n}$. Correlated recovery is possible if and only if

$$K(
ho-q)^2 >
ho+q$$

- Special case: Two clusters of size n/2
 - [Abbe et al. '14, Mossel et al. '14] Assume $p = \frac{a \log n}{n}, q = \frac{b \log n}{n}$. Exact recovery is possible if and only if

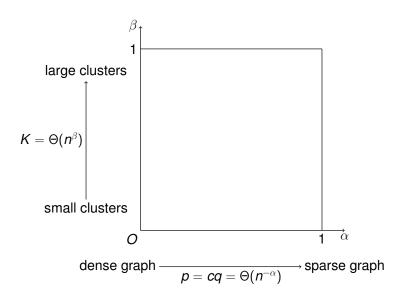
$$K(\sqrt{p}-\sqrt{q})^2>\log n$$

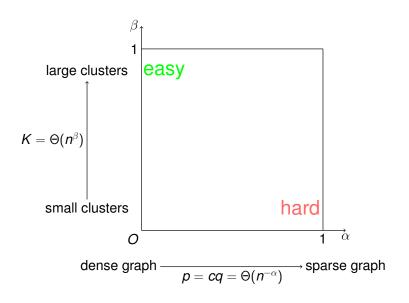
• [Decelle et al. '11, Mossel et al. '12 '13, Massoulié '13] Assume $p = \frac{a}{n}, q = \frac{b}{n}$. Correlated recovery is possible if and only if

$$K(p-q)^2 > p+q$$

Two fundamental limits unclear in general

- Information limit: In which regime is exact recovery possible (impossible)?
- Computational limit: In which regime is exact recovery computationally easy (hard)?





Cluster recovery under planted cluster model

- Information limit: Necessary and sufficient conditions for cluster recovery
- Omputational limit
- Empirical study

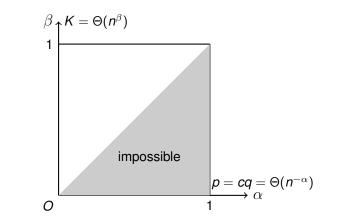
Necessary conditions for cluster recovery

$$\beta \wedge K = \Theta(n^{\beta})$$

$$p = cq = \Theta(n^{-\alpha})$$

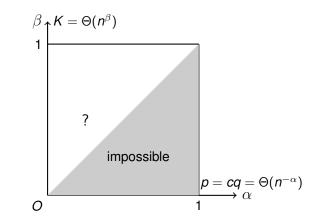
$$p = cq = \Theta(n^{-\alpha})$$

Necessary conditions for cluster recovery



Proof: $Y^* \longrightarrow A \longrightarrow \hat{Y}$. Show $I(Y^*; A) \leq H(Y^*)$ and use Fano's inequality

Necessary conditions for cluster recovery



Proof: $Y^* \longrightarrow A \longrightarrow \hat{Y}$. Show $I(Y^*; A) \leq H(Y^*)$ and use Fano's inequality

Sufficient conditions for maximum likelihood estimation

Maximum likelihood estimator: $\hat{Y} = \arg \max_{Y} \mathbb{P}(A|Y)$

$$Y^* \longrightarrow A \longrightarrow \hat{Y}$$

Maximum likelihood estimator: $\hat{Y} = \arg \max_{Y} \mathbb{P}(A|Y)$

$$Y^* \longrightarrow A \longrightarrow \hat{Y}$$

If p > q, maximum likelihood estimation reduces to

$$\max_{Y} \quad \sum_{i,j} A_{ij} Y_{ij} \quad \leftarrow \# \text{ of in-cluster edges}$$

s.t. Y is a cluster matrix with r clusters of size K

Maximum likelihood estimator: $\hat{Y} = \arg \max_{Y} \mathbb{P}(A|Y)$

$$Y^* \longrightarrow A \longrightarrow \hat{Y}$$

If p > q, maximum likelihood estimation reduces to

$$\max_{Y} \sum_{i,j} A_{ij} Y_{ij} \leftarrow \# \text{ of in-cluster edges}$$

s.t. Y is a cluster matrix with r clusters of size K

Q: When *Y*^{*} is the optimal solution to MLE?

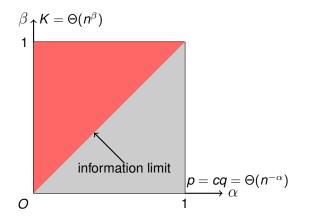
Sufficient conditions for maximum likelihood estimation

$$\beta \wedge K = \Theta(n^{\beta})$$

$$p = cq = \Theta(n^{-\alpha})$$

$$0 \qquad 1$$

Sufficient conditions for maximum likelihood estimation



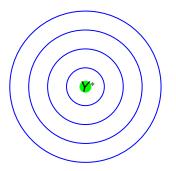
Proof: Concentration inequality + union bound (needs non-trivial counting)

$$\max_{\mathbf{Y}} \quad \sum_{i,j} A_{ij} Y_{ij} := f(\mathbf{Y})$$

s.t. Y is a cluster matrix with r clusters of size K

$$\begin{array}{ll} \max_{Y} & \sum_{i,j} A_{ij} Y_{ij} := f(Y) \\ \text{s.t.} & Y \text{ is a cluster matrix with } r \text{ clusters of size } K \end{array}$$

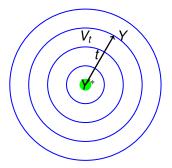
Define Hamming distance $d_H(Y, Y^*)$



Space of all cluster matrices

$$\begin{array}{ll} \max_{Y} & \sum_{i,j} A_{ij} Y_{ij} := f(Y) \\ \text{s.t.} & Y \text{ is a cluster matrix with } r \text{ clusters of size } K \end{array}$$

Define Hamming distance $d_H(Y, Y^*)$



Space of all cluster matrices

Given $d_H(Y, Y^*) = t$

•
$$\log |V_t| \lesssim t \log n/K$$

• $\log \mathbb{P}\{f(Y) \ge f(Y^*)\} \lesssim -tD(\rho ||q)$

So need $K \cdot D(p \| q) \gtrsim \log n$

Exact cluster recovery is possible if and only if

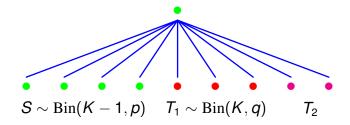
 $K \cdot D(q \| p) \gtrsim \log(rK)$ and $K \cdot D(p \| q) \gtrsim \log n$,

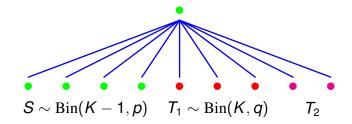
(1)

Exact cluster recovery is possible if and only if

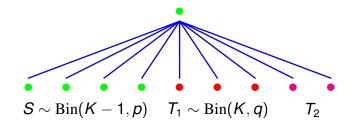
 $K \cdot D(q \| p) \gtrsim \log(rK)$ and $K \cdot D(p \| q) \gtrsim \log n$,

• $q \simeq p$: (2) simplifies to $K(p-q)^2 \gtrsim q(1-q)\log n$

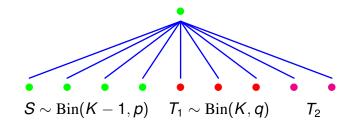




• $\mathbb{P}{S < T_1} \lesssim ?$

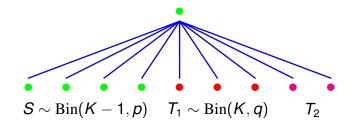


• $\mathbb{P}\{S < T_1\} \lesssim e^{-K\min\{D(q\|p), D(p\|q)\}}$



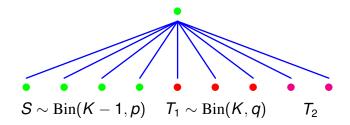
•
$$\mathbb{P}{S < T_1} \lesssim e^{-K \min{D(q \parallel p), D(p \parallel q)}}$$

• $\mathbb{P}{S < \max{T_1, \dots, T_{r-1}}} \lesssim r \cdot e^{-K \min{D(q \parallel p), D(p \parallel q)}}$



•
$$\mathbb{P}\{S < T_1\} \lesssim e^{-K \min\{D(q \| p), D(p \| q)\}}$$

• $\mathbb{P}\{S < \max\{T_1, \dots, T_{r-1}\}\} \lesssim r \cdot e^{-K \min\{D(q \| p), D(p \| q)\}}$
• $\mathbb{P}\{S < \max\{T_1, \dots, T_{r-1}\}\$ for all nodes $\} \lesssim nr \cdot e^{-K \min\{D(q \| p), D(p \| q)\}}$



•
$$\mathbb{P}{S < T_1} \lesssim e^{-K\min{D(q\|p), D(p\|q)}}$$

- $\mathbb{P}\{S < \max\{T_1, ..., T_{r-1}\}\} \lesssim r \cdot e^{-K \min\{D(q \| p), D(p \| q)\}}$
- $\mathbb{P}\{S < \max\{T_1, \ldots, T_{r-1}\} \text{ for all nodes}\} \lesssim nr \cdot e^{-K \min\{D(q \parallel p), D(p \parallel q)\}}$
- If K min{D(q||p), D(p||q)} ≥ log n, then for every node, its color is the same as the most representative color among its neighbors

Information limit for cluster recovery

Theorem (Informal)

Exact cluster recovery is possible if and only if

 $K \cdot D(q \| p) \gtrsim \log(rK)$ and $K \cdot D(p \| q) \gtrsim \log n$,

(2)

• $q \simeq p$: (2) simplifies to $K(p-q)^2 \gtrsim q(1-q)\log n$

Exact cluster recovery is possible if and only if

 $K \cdot D(q \| p) \gtrsim \log(rK)$ and $K \cdot D(p \| q) \gtrsim \log n$,

(2)

- $q \simeq p$: (2) simplifies to $K(p-q)^2 \gtrsim q(1-q)\log n$
- [Abbe et al. '14, Mossel et al. '14] $p = a \log n/n$, $q = b \log n/n$: Exact recovery is possible if and only if $K(\sqrt{p} - \sqrt{q})^2 > \log n$

Exact cluster recovery is possible if and only if

 $K \cdot D(q \| p) \gtrsim \log(rK)$ and $K \cdot D(p \| q) \gtrsim \log n$,

(2)

- $q \simeq p$: (2) simplifies to $K(p-q)^2 \gtrsim q(1-q)\log n$
- [Abbe et al. '14, Mossel et al. '14] $p = a \log n/n$, $q = b \log n/n$: Exact recovery is possible if and only if $K(\sqrt{p} - \sqrt{q})^2 > \log n$
- [Decelle et al. '11, Mossel et al. '12 '13, Massoulié '13]
 p = a/n, q = b/n: Correlated recovery is possible if and only if
 K(p-q)² > p + q

Exact cluster recovery is possible if and only if

 $K \cdot D(q \| p) \gtrsim \log(rK)$ and $K \cdot D(p \| q) \gtrsim \log n$,

(2)

- $q \simeq p$: (2) simplifies to $K(p-q)^2 \gtrsim q(1-q)\log n$
- [Abbe et al. '14, Mossel et al. '14] $p = a \log n/n$, $q = b \log n/n$: Exact recovery is possible if and only if $K(\sqrt{p} - \sqrt{q})^2 > \log n$
- [Decelle et al. '11, Mossel et al. '12 '13, Massoulié '13] p = a/n, q = b/n: Correlated recovery is possible if and only if $K(p-q)^2 > p+q$

Question

Q: Is the information limit efficiently achievable in general?

Cluster recovery under planted cluster model

Information limit: Necessary and sufficient conditions for cluster recovery

Computational limit

- A polynomial-time cluster recovery algorithm
- Complexity theoretic lower bounds

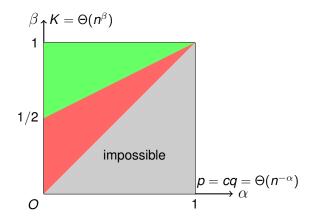
- rank(Y^*) = $r \ll n$
- Nuclear norm || · ||_{*} (sum of singular values) is a convex surrogate for rank function: || Y^{*} ||_{*} = rK

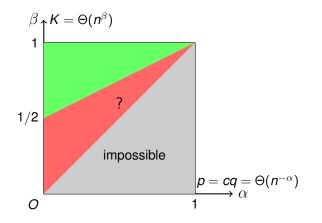
• rank(
$$Y^*$$
) = $r \ll n$

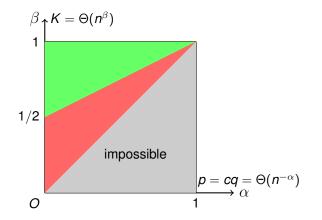
- Nuclear norm || · ||_{*} (sum of singular values) is a convex surrogate for rank function: || Y^{*} ||_{*} = rK
- A convex relaxation of MLE

$$\begin{array}{l} \max_{Y} \sum_{ij} A_{ij} Y_{ij} \\ \text{s.t. } \|Y\|_{*} \leq rK \\ \sum_{ij} Y_{ij} = rK^{2}, \ Y_{ij} \in [0,1]. \end{array}$$

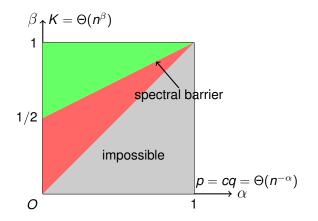
$$\beta \wedge K = \Theta(n^{\beta})$$
1
impossible
$$p = cq = \Theta(n^{-\alpha})$$
0
1



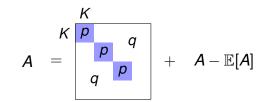


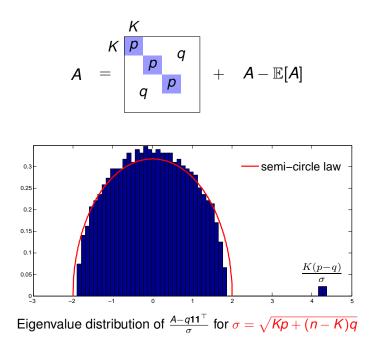


Conjecture on computational limit: No polynomial-time algorithm succeeds beyond the green regime



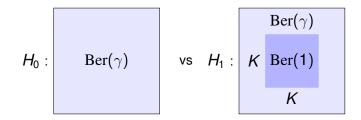
- Conjecture on computational limit: No polynomial-time algorithm succeeds beyond the green regime
- Spectral barrier prevents spectrum of *A* revealing clusters [Nadakuditi-Newman '12]





Complexity theoretic lower bounds conditional on Planted Clique hardness

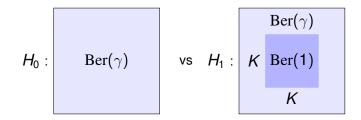
Planted Clique hardness



Intermediate regime: $\log n \ll K \ll \sqrt{n}$, $\gamma = \Theta(1)$

 detection is possible but believed to have high computational complexity

Planted Clique hardness

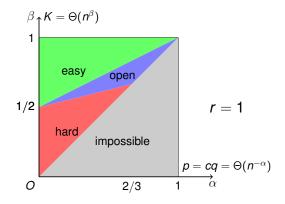


Intermediate regime: $\log n \ll K \ll \sqrt{n}, \gamma = \Theta(1)$

- detection is possible but believed to have high computational complexity
- many (worst-case) hardness results assuming Planted Clique hardness with $\gamma = \frac{1}{2}$
 - detecting sparse principal component [Berthet-Rigollet '13]
 - detecting sparse submatrix [Ma-Wu '13]
 - cryptography [Applebaum et al. '10]: $\gamma = 2^{-\log^{0.99} n}$

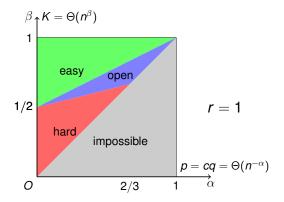
Conditional hardness for recovering a single cluster

Assuming Planted Clique hardness for any constant $\gamma > 0$

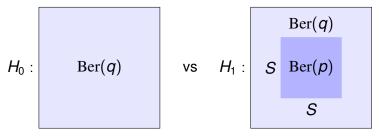


Conditional hardness for recovering a single cluster

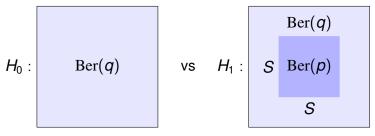
Assuming Planted Clique hardness for any constant $\gamma > 0$



- Proof step 1: Recovery is "harder" than detection
- Proof step 2: Detecting a single cluster in the red regime is at least as hard as detecting a clique of size $K = o(\sqrt{n})$



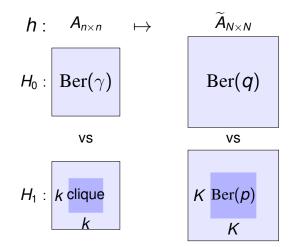
Each node is included in S with probability $\frac{K}{R}$

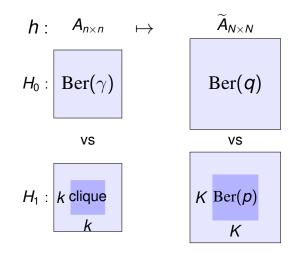


Each node is included in S with probability $\frac{\kappa}{n}$

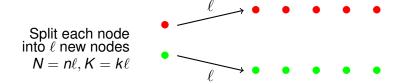
Complexity theoretic lower bounds

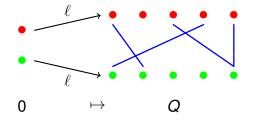
Reduced from Planted Clique in polynomial time





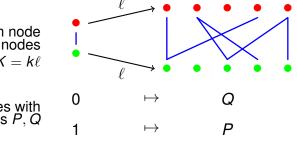
 $h: A \mapsto \widetilde{A}$ is agnostic to the clique and can be computed in P-time





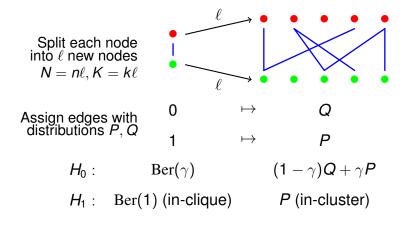
Split each node into ℓ new nodes $N = n\ell, K = k\ell$

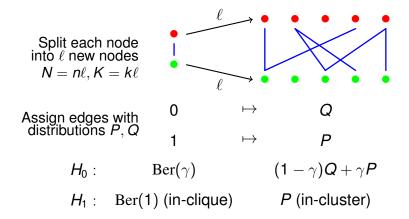
Assign edges with distributions *P*, *Q*



Split each node into ℓ new nodes $N = n\ell, K = k\ell$

Assign edges with distributions *P*, *Q*





How to choose *P*, *Q*?

Matching H_0 : $(1 - \gamma)Q + \gamma P = Bin(\ell^2, q)$ Matching H_1 approximately: $P \approx Bin(\ell^2, p)$ in total variation distance

Cluster recovery under planted cluster model

- Information limit: Necessary and sufficient conditions for cluster recovery
- Computational limit
- Empirical study

• Pre-processing: Ignore directions and select the largest connected component with 1222 nodes, 16, 714 edges

- Pre-processing: Ignore directions and select the largest connected component with 1222 nodes, 16,714 edges
- Convex relaxation of ML estimation

$$\max_{Y} \sum_{i < j} (A_{ij} - \lambda) Y_{ij}$$

s.t. $Y \succeq 0, Y_{ii} = 1, \forall i$
 $Y_{ij} \in [0, 1], \forall i \neq j$

• Solve for \widehat{Y} and use k-means with k = 2 on \widehat{Y}

- Pre-processing: Ignore directions and select the largest connected component with 1222 nodes, 16,714 edges
- Convex relaxation of ML estimation

$$\max_{Y} \sum_{i < j} (A_{ij} - \lambda) Y_{ij}$$

s.t. $Y \succeq 0, Y_{ii} = 1, \forall i$
 $Y_{ij} \in [0, 1], \forall i \neq j$

- Solve for \widehat{Y} and use k-means with k = 2 on \widehat{Y}
- Theory suggests $q < \lambda < p$ [Chen et al. '13, Cai and Li '14]

- Pre-processing: Ignore directions and select the largest connected component with 1222 nodes, 16,714 edges
- Convex relaxation of ML estimation

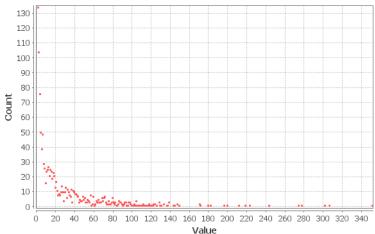
$$\max_{Y} \sum_{i < j} (A_{ij} - \lambda) Y_{ij}$$

s.t. $Y \succeq 0, Y_{ii} = 1, \forall i$
 $Y_{ij} \in [0, 1], \forall i \neq j$

- Solve for \widehat{Y} and use k-means with k = 2 on \widehat{Y}
- Theory suggests $q < \lambda < p$ [Chen et al. '13, Cai and Li '14]
- Choose $\lambda = \frac{\text{median degree}}{n}$ and fraction of mis-classified nodes: $\epsilon = \frac{195}{1222} \approx 0.16$

Degree distribution of political blog network

High degree variation: Max degree 351, mean degree 27, median degree 13



Degree Distribution

Convex relaxation of MLE with degree correction

 Given a random graph uniformly chosen with a fixed degree sequence {d_i}

$$\mathbb{P}[A_{ij}=1]\approx \frac{d_id_j}{\sum_k d_k}$$

Convex relaxation of MLE with degree correction

 Given a random graph uniformly chosen with a fixed degree sequence {d_i}

$$\mathbb{P}[A_{ij} = 1] \approx \frac{d_i d_j}{\sum_k d_k}$$
• Choose $\lambda_{ij} = \frac{d_i d_j}{\sum_k d_k}$ and let $B_{ij} = A_{ij} - \lambda_{ij}, \forall i \neq j$

$$\max_{Y} \sum_{i \leq i} B_{ij} Y_{ij}$$

s.t.
$$Y \succeq 0, Y_{ii} = 1, \forall i$$

 $Y_{ij} \in [0, 1], \forall i \neq j$

• B is known as modularity matrix [Newman '06]

Convex relaxation of MLE with degree correction

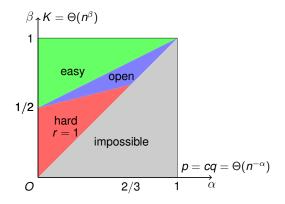
 Given a random graph uniformly chosen with a fixed degree sequence {d_i}

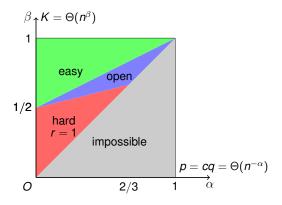
$$\mathbb{P}[A_{ij} = 1] pprox rac{d_i d_j}{\sum_k d_k}$$

• Choose
$$\lambda_{ij} = \frac{d_i d_j}{\sum_k d_k}$$
 and let $B_{ij} = A_{ij} - \lambda_{ij}, \forall i \neq j$

$$\begin{array}{l} \max_{Y} \sum_{i < j} B_{ij} Y_{ij} \\ \text{s.t.} \quad Y \succeq 0, Y_{ii} = 1, \forall i \\ Y_{ij} \in [0, 1], \ \forall i \neq j \end{array}$$

- B is known as modularity matrix [Newman '06]
- Fraction of mis-classified nodes: $\epsilon = 62/1222 \approx 0.05$





References

- Y. Chen & X. (2014) Statistical-Computational Tradeoffs in Planted Problems and Submatrix Localization with a Growing Number of Clusters and Submatrices. arXiv:1402.1267.
- B. Hajek, Y. Wu & X. (2014) Computational Lower Bounds for Community Detection on Random Graphs. arXiv:1406.6625.