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Community detection in networks

Given a network
e.g. friendship networks on facebook
e.g. protein-protein interaction networks

Task: Identify groups of similar nodes (communities)

Existence of edge or not indicates similarity
Communities: Densely-connected internally

Graph clustering: Identify densely-connected groups of nodes
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Statistical and computational challenges

From a statistical perspective
A large number of (small) communities
The observed network is sparse

From a computational perspective

Large solution space

Question
Is there a computationally efficient and statistically optimal
community detection algorithm?
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Planted Cluster Model

n = 40, K = 10, r = 3
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Cluster recovery as structured matrix recovery

True clusters

0

0

True cluster matrix Y ∗

Binary: Y ∗ ∈ {0,1}n×n

Low rank: rank(Y ∗) = r � n
Sparse: # of ones in Y ∗ is rK 2 � n2

Positive semi-definite: Y ∗ � 0
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Cluster recovery under planted cluster model

Model parameters n,K , r ,p,q
n = # of nodes, K = size of clusters, r = # of clusters
p = in-cluster edge probability
q =cross-cluster edge probability

Cluster recovery becomes more difficult with

Smaller K
Smaller p or p − q
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Related work on cluster recovery

Planted cluster model covers several classical planted models
Planted clique [McSherry ’01] : r = 1, p = 1, 0 < q < 1

Planted dense subgraph [Arias-Castro-Verzelen ’13] : r = 1,
0 < q < p < 1
Planted partition [Condon-Karp ’01] /Stochastic blockmodel
[Holland et al. ’83] : n = rK
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Related work on cluster recovery

Special case: Two clusters of size n/2
[Abbe et al. ’14, Mossel et al. ’14] Assume p = a log n

n ,q = b log n
n .

Exact recovery is possible if and only if

K (
√

p −
√

q)2 > log n

[Decelle et al. ’11, Mossel et al. ’12 ’13, Massoulié ’13] Assume
p = a

n ,q = b
n . Correlated recovery is possible if and only if

K (p − q)2 > p + q

Two fundamental limits unclear in general
Information limit: In which regime is exact recovery possible
(impossible)?
Computational limit: In which regime is exact recovery
computationally easy (hard)?
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1 Cluster recovery under planted cluster model

2 Information limit: Necessary and sufficient conditions for cluster
recovery

3 Computational limit

4 Empirical study



Necessary conditions for cluster recovery
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?

Proof: Y ∗ −→ A −→ Ŷ . Show I(Y ∗; A) . H(Y ∗) and use Fano’s
inequality
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Sufficient conditions for maximum likelihood estimation

Maximum likelihood estimator: Ŷ = arg maxY P(A|Y )

Y ∗ −→ A −→ Ŷ

If p > q, maximum likelihood estimation reduces to

max
Y

∑
i,j

AijYij ← # of in-cluster edges

s.t. Y is a cluster matrix with r clusters of size K

Q: When Y ∗ is the optimal solution to MLE?
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Y

∑
i,j

AijYij := f (Y )

s.t. Y is a cluster matrix with r clusters of size K

Define Hamming distance dH(Y ,Y ∗)

Y
t

Vt
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Space of all cluster matrices

Given dH(Y ,Y ∗) = t

log |Vt | . t log n/K
logP{f (Y ) ≥ f (Y ∗)} .
−tD(p‖q)

So need K · D(p‖q) & log n
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Theorem (Informal)
Exact cluster recovery is possible if and only if

K · D(q‖p) & log(rK ) and K · D(p‖q) & log n, (1)

q � p: (2) simplifies to K (p − q)2 & q(1− q) log n
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Key idea in information limit

•

• • • • • • • • •
S ∼ Bin(K − 1,p) T1 ∼ Bin(K ,q) T2

P{S < T1} .
P{S < max{T1, . . . ,Tr−1}} . r · e−K min{D(q‖p),D(p‖q)}

P{S < max{T1, . . . ,Tr−1} for all nodes} . nr ·e−K min{D(q‖p),D(p‖q)}

If K min{D(q‖p),D(p‖q)} & log n, then for every node, its color is
the same as the most representative color among its neighbors
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Exact cluster recovery is possible if and only if

K · D(q‖p) & log(rK ) and K · D(p‖q) & log n, (2)

q � p: (2) simplifies to K (p − q)2 & q(1− q) log n

[Abbe et al. ’14, Mossel et al. ’14] p = a log n/n,q = b log n/n:
Exact recovery is possible if and only if K (

√
p −√q)2 > log n

[Decelle et al. ’11, Mossel et al. ’12 ’13, Massoulié ’13]
p = a/n,q = b/n: Correlated recovery is possible if and only if
K (p − q)2 > p + q

Question
Q: Is the information limit efficiently achievable in general?
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1 Cluster recovery under planted cluster model

2 Information limit: Necessary and sufficient conditions for cluster
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3 Computational limit
A polynomial-time cluster recovery algorithm

Complexity theoretic lower bounds

4 Empirical study



Polynomial-time recovery: Convex relaxation of MLE

rank(Y ∗) = r � n
Nuclear norm ‖ · ‖∗ (sum of singular values) is a convex surrogate
for rank function: ‖Y ∗‖∗ = rK

A convex relaxation of MLE

max
Y

∑
ij

AijYij

s.t. ‖Y‖∗ ≤ rK∑
ij

Yij = rK 2, Yij ∈ [0,1].
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O
α

β

1

1

p = cq = Θ(n−α)

K = Θ(nβ)

impossible
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Conjecture on computational limit: No polynomial-time algorithm
succeeds beyond the green regime
Spectral barrier prevents spectrum of A revealing clusters
[Nadakuditi-Newman ’12]
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Complexity theoretic lower bounds conditional on Planted Clique
hardness



Planted Clique hardness

H0 : Ber(γ) vs H1 : Ber(1)

K

K

Ber(γ)

Intermediate regime: log n� K �
√

n, γ = Θ(1)

detection is possible but believed to have high computational
complexity

many (worst-case) hardness results assuming Planted Clique
hardness with γ = 1

2
detecting sparse principal component [Berthet-Rigollet ’13]
detecting sparse submatrix [Ma-Wu ’13]
cryptography [Applebaum et al. ’10]: γ = 2− log0.99 n
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Conditional hardness for recovering a single cluster

Assuming Planted Clique hardness for any constant γ > 0
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Proof step 1: Recovery is “harder” than detection
Proof step 2: Detecting a single cluster in the red regime is at
least as hard as detecting a clique of size K = o(

√
n)
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Detection of a single cluster

H0 : Ber(q) vs H1 : Ber(p)
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Each node is included in S with probability K
n

Complexity theoretic lower bounds
Reduced from Planted Clique in polynomial time
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`
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Assign edges with
distributions P,Q

1 P7→

H0 : Ber(γ)

H1 : Ber(1) (in-clique)

(1− γ)Q + γP

P (in-cluster)

How to choose P,Q?
Matching H0: (1− γ)Q + γP = Bin(`2,q)
Matching H1 approximately: P ≈ Bin(`2,p) in total variation distance
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Empirical study on political blog network

Pre-processing: Ignore directions and select the largest
connected component with 1222 nodes, 16,714 edges

Convex relaxation of ML estimation

max
Y

∑
i<j

(Aij − λ)Yij

s.t. Y � 0,Yii = 1, ∀i
Yij ∈ [0,1], ∀i 6= j

Solve for Ŷ and use k-means with k = 2 on Ŷ
Theory suggests q < λ < p [Chen et al. ’13, Cai and Li ’14]
Choose λ = median degree

n and fraction of mis-classified nodes:
ε = 195/1222 ≈ 0.16
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Degree distribution of political blog network

High degree variation: Max degree 351, mean degree 27, median
degree 13



Convex relaxation of MLE with degree correction

Given a random graph uniformly chosen with a fixed degree
sequence {di}

P[Aij = 1] ≈
didj∑

k dk

Choose λij =
di dj∑

k dk
and let Bij = Aij − λij ,∀i 6= j

max
Y

∑
i<j

BijYij

s.t. Y � 0,Yii = 1, ∀i
Yij ∈ [0,1], ∀i 6= j

B is known as modularity matrix [Newman ’06]
Fraction of mis-classified nodes: ε = 62/1222 ≈ 0.05
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