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Chapter 1

Introduction

Outline

• Introduction of the topics covered

• Curse of the high-dimension

• Blessings of the high-dimension

1.1 Topics will be covered

1.1.1 Data Clustering

Definition 1.1 (Clustering). Given data points x1, . . . , xn ∈ X , partition them into k groups/clusters.
See Fig. 1.1 for an illustration.

Figure 1.1: An illustration of clustering.

Note:

• X : Input data space, e.g., Euclidean space Rd.

• k: the number of clusters could be known a priori or need to be properly chosen.

Example 1.1 (Cluster species). Cluster n species into two clusters: plants or animals.

• Features of species, e.g., color (green or brown), movement (static or could move);
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• d: the total number of features available;

• xi ∈ Rd: the feature vector of specie i.

• k = 2.

Example 1.2 (Cluster customers). Cluster n customers into k clusters based on the their preferences.

• d: the total number of products;

• xi ∈ Rd denote the preference of customer i, where xij = 1 if i likes product j; xij = −1 if i
dislikes product j; xij = 0 if i has not purchased product j yet.

• k is unknown a priori.

Note: In Example 1.1, n could be large but d is relatively small, while in Example 1.2, both n and
d could be extremely large.

Question: How shall we cluster high-dimensional data?

1.1.2 Community Detection

Definition 1.2 (Community Detection/Graph Clustering). Given a (weighted) graph G = (V,E),
partition n vertices into k communties/clusters.

Note: Assortative community structure: communities are more densely connected internally than
externally (See Fig. 1.2); Disassortative community structure: the other way around.

Community detection in networks
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(a) (b)

Figure 1.2: A synthetic network. Panel (a): Nodes are placed arbitrarily with community structure
hidden. Panel (b): Nodes are grouped with community structure revealed.

Example 1.3 (Political blog network). The network formed by web blogs, where two blogs are
connected if there exist hyperlinks between them. See Fig. 1.3. for an illustration.

Example 1.4 (Facebook ego network). The friendship network formed by a person’s friends. All
the friends may form communities like family members, colleagues, college friends, and so on. One
would like to find the community partition of her/his friends. See Fig. 1.4 for an illustration.

Example 1.5 (Amazon product co-purchasing network). The network formed by Amazon products,
and two products are connected by an edge if they have been bought together for at least once.
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Figure 1.3: An illustration of a friendship ego network

Figure 1.4: An illustration of a friendship ego network
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Example 1.6 (Protein-protein interaction network). The network formed by proteins, and two
proteins are connected by an edge if they have been interacted with each other in a certain biological
process. See Fig. 1.5.

(a) (b)

Figure 1.5: A synthetic network. Panel (a): Protein interaction network. Panel (b): Protein
interaction network with functional community structure.

Question: How to detect communities in a large-scale network?

1.1.3 Submatrix localization

Definition 1.3 (Submatrix Localization). Given a large random matrix, find a submatrix with
atypical entries.

Example 1.7 (DNA microarray analysis). The DNA microarray data can be represented as a
matrix, with rows corresponding to different genes, columns corresponding to different samples, and
(i, j)-th entry recording the expression level of gene i in sample j. One is interested in finding a
group of genes that are differentially expressed in a set of patients. See Fig. 1.6.

Example 1.8 (Terrorist network detection). Given a communication network, one is interested in
identity the terrorist network with frequent communication. See Fig. 1.7 for illustration.

1.1.4 Covariance matrix estimation and Sparse PCA

Covariance matrix estimation plays a central role in statistics. It deals with the problem of how to
estimate the true covariance matrix based on observations of samples drawn from a multivariate
distribution. Estimation of covariance is useful for us to understand the correlation between different
variables, and is an important subroutine in many statistical analysis including regression and
classification.
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Figure 1.6: Gene expression matrix

(a) (b) (c)

Figure 1.7: The adjacency matrix of a network. Panel (a): The green submatrix corresponds to a
group of nodes which are more densely connected than the other part of the network. Panel (b):
The nodes are randomly permutated, so the entries of the green submatrix are dispersed over the
whole matrix. Panel (c): The green color is erased, and the goal is to find the underlying green
submatrix from the observation of the network.
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Recall that for a random vector X ∈ Rd, its mean is defined as E [X] = (E [X1] , . . . ,E [Xd]) and
its covariance matrix Σ ∈ Sd×d+ is defined as

Σij = Cov(Xi, Xj) = E [(Xi − E [Xi])(Xj − E [Xj ])] .

We can succinctly write Σ = E
[
(X − E [X])(X − E [X])>

]
.

Definition 1.4 (Covariance matrix estimation). Given n independent and identically distributed
samples x1, . . . , xn from a distribution in Rd with zero mean and unknown covariance matrix
Σ = E

[
x1x

>
1

]
∈ Sd×d+ , estimate the covariance matrix Σ.

Note: If E [x1] = 0, a standard estimator of Σ is the sample covariance matrix :

Σ̂ :=
1

n

n∑
i=1

xix
>
i .

Since E
[
xix
>
i

]
= Σ, the random matrix Σ̂ is an unbiased estimator of Σ, but how close the sample

covariance matrix Σ̂ is to the true covariance matrix Σ ?
The true covariance matrix admits an eigenvalue decomposition as Σ =

∑d
i=1 λiviv

>
i where

λ1 ≥ λ2 ≥ · · · . In many scenarios, we are not only interested in Σ itself, but also interested in its
leading eigenvectors corresponding to the few largest eigenvalues. These leading eigenvectors of Σ
are widely known as principal components. Note that

v1 = arg max
‖v‖2=1

v>Σv = arg max
‖v‖2=1

v>E
[
XX>

]
v = arg max

‖v‖2=1
E
[
(v>X)2

]
.

If E [X] = 0, then E
[
(v>X)2

]
= var(v>X). Hence, the first principal component v1 maximizes the

variance of projection X to v among all directions. See Fig. 1.8

Figure 1.8: PCA of a multivariate Gaussian distribution centered at (1, 3) with a standard deviation
of 3 in roughly the (0.866, 0.5) direction and of standard deviation 1 in the orthogonal direction.
The vectors shown are the eigenvectors of the covariance matrix scaled by the square root of
the corresponding eigenvalue. Refer to https://en.wikipedia.org/wiki/Principal_component_

analysis.
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A standard estimator of v1 is the first leading eigenvector of the sample covariance matrix Σ̂,
i.e.,

v̂1 = arg max
‖v‖2=1

v>Σ̂v.

Question: How close is v̂1 to v1?
In some applications, the principal components admit additional structures, e.g., sparsity.

Definition 1.5 (Sparse PCA). Assume the true covariance matrix Σ = βvv> + I with v ∈ Rd
such that ‖v‖2 = 1 and ‖v‖0 ≤ k, estimate the sparse principal component v from n i.i.d. samples
x1, . . . , xn?

Note: v is the first principal component of Σ corresponding to eigenvalue β + 1. where β can be
interpreted as the signal strength of v. If we neglect the sparsity constraint on v, i.e., ‖v‖0 ≤ k, then
one can just use the first leading eigenvector v̂1 of the sample covariance matrix Σ̂ as an estimator
v. Is it good enough? Can we do better by exploiting the sparsity constraint?

1.2 Overview of tools and techniques

Two central questions will be addressed in this course:

• How shall we characterize the limit above which the task of extracting information is funda-
mentally possible and below which it is fundamentally impossible?

• How shall we develop computationally efficient algorithms that attain the fundamental limit,
or understand the lack thereof.

Techniques

• Linear algebra: eigenvalue (singular value) decomposition. Note: In many scenarios, data can
be represented as matrix. In the example of clustering customers based on purchase history,
one can form data matrix with rows corresponding to customers, and columns corresponding
to products; In the example of community detection, graph can be represented using adjacency
matrix, where (i, j)-th entry equals one if vertices i and j are connected, and zero otherwise.

• Concentration inequalities. Note: Data contains noise which is often randomly distributed.

• Information and statistical theory. Used to characterize the fundamental limit of extracting
information from data.

• Algorithms design. For example, convex programming and belief propagation algorithms.

Note: The following standard asymptotic notations will be used in this course. Fro two sequences
of numbers an and bn, where bn > 0 for all sufficiently large n. Then

• an = O(bn) as n→∞ if there exist constants C and n0 such that |an| ≤ Cbn for all n ≥ n0.

• an = Ω(bn) as n→∞ if there exist constants c > 0 and n0 such that an ≥ cbn for all n ≥ n0.

• an = Θ(bn) as n→∞ if an = O(bn) and an = Ω(bn).

• an � bn if an = Θ(bn).

• an ∼ bn if an/bn → 1.
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• an = o(bn) as n→∞ if an/bn → 0.

• an = ω(bn) as n→∞ if an/bn →∞.

• an � bn if an ≥ 0 and an = o(bn).

Also, we say that a sequence of events En holds with high probability (w.h.p.), if P [En] → 1 as
n→∞.
Note: The following standard norms for vectors will be used. For a vector x ∈ Rd:

• L2 norm ‖x‖2 =
√∑n

i=1 x
2
i

• L0 norm ‖x‖0 = |{i : xi 6= 0}|.

• L1 norm ‖x‖1 =
∑n

i=1 |xi|.

• L∞ norm ‖x‖∞ = maxi∈[n] |xi|.

1.3 What can go wrong in high dimensions?

Curse in dimensionality

• Curse in computational efficiency.

In clustering or community detection problem, there are kn different partitions of n data
points, so enumerating all possible cluster partitions takes at least exponential time and thus
is computationally intractable.

In the submatrix localization problem, there are
(
n
s

)
different supports for s × s principal

matrices. Hence, if s scales with n, enumerating all possible supports is computational in-
tractable. Similarly, in the sparse PCA problem, there are

(
n
k

)
different supports for a k-sparse

principal component.

• Curse in statistical efficiency.

Substantially more samples are needed for estimation as dimension grows.

In the example of clustering customers based on their preferences, consider dot product 〈xi, xj〉
as a measure of the similarity between customer i and customer j. Suppose each customer
purchase m products out of d products uniformly at random. Then

E [# of products co-purchased by customers i and j] =
m2

d
.

Hence, m has to scale as
√
d so that 〈xi, xj〉 is not vanishing on expectation. However, in

practice, m may remain fixed as d increases.

In the sparse PCA problem, assume x1, . . . , xn
i.i.d.∼ N (0, βvv> + I) and let Σ̂ = 1

n

∑n
i=1 xix

>
i ∈

Sd×d+ . Let γ = d
n .

– If β ≤ √γ, then λ1(Σ̂)→ (1 +
√
γ)2 and 〈v1(Σ̂), v〉 → 0 almost surely.
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– If β >
√
γ, then λ1(Σ̂) → (1 + β)(1 + γ/β) and 〈v1(Σ̂), v〉 ≥ ε for some fixed constant

ε > 0 almost surely.

Note: The sharp change at threshold β =
√
γ is often referred as BBP phase transition. It

implies that

– Low dimension (d/n→ 0): For any fixed constant β > 0, λ1(Σ̂) is a consistent estimator
of v.

– High dimension (d/n → ∞): For any fixed constant β > 0, v1(Σ̂) is asymptotically
orthogonal to v.

1.4 What can help us in high dimensions

Structure hidden in the problems

• Low-rank structure: In the submatrix localization problem, if we assume that the entries
inside the hidden submatrix are independently and identically distributed as N (µ, 1), and the
entries outside of the hidden submatrix are i.i.d. as N (0, 1), then the expected value of the
whole matrix A is given by E [A] = µ1S1T , where S (T ) is the row (column) support of the
hidden matrix and 1S is the indicator vector of set S. We can see that E [A] has rank 1.

• Sparsity structure: In the submatrix localization problem, the principal eigenvector of E [A] is
proportional to the indicator vector of the support 1S and hence is |S|-sparse.

In the sparse PCA problem, the principal eigenvector of the true covariance matrix Σ is v
which is k-sparse.

Blessings of Dimensionality

• Concentration of measure.

Theorem 1.1 (Gaussian concentration inequality for Lipschitz functions). Let X ∼ N (0, Id),
and F : Rd → R be a 1-Lipchitz function (i.e., |F (x) − F (y)| ≤ ‖x − y‖2 for all x, y ∈ Rd).
Then for any t,

P [|F (X)− E [F (X)] | ≥ t] ≤ C exp(−ct2)

for some absolute constants C, c > 0.

In plain English, any 1-Lipchitz function of a standard Gaussian random vector, regardless of
the dimension, exhibits concentration like a scalar standard Gaussian random variable.

Example 1.9 (χ distribution). Take F (x) = ‖x‖2 and let X ∼ N (0, Id). Then

P [‖X‖2 − E [‖X‖2] ≥ t] ≤ C exp(−ct2).

Moreover, E [‖X‖2] ≤
√

E
[
‖X‖22

]
=
√
d. Hence, for any sequence ρd → ∞ as d → ∞,

P
[
‖X‖2 ≤

√
d+ ρd

]
→ 1. In fact, one can show P

[√
d− ρd ≤ ‖X‖2 ≤

√
d+ ρd

]
→ 1. In

other words, for high-dimensional standard Gaussian distribution, almost all probability mass
is concentrated around the shell at distance

√
d away from the origin.
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Example 1.10 (maximum of d i.i.d. N (0, 1) random variables). Take F (x) = max1≤i≤d xi
and let X ∼ N (0, Id). Then F is 1-Lipchitz (check) and thus

P
[

max
1≤i≤d

Xi − E
[

max
1≤i≤n

Xi

]
≥ t
]
≤ C exp(−ct2).

Moreover, one can show E [max1≤i≤dXi] ≤
√

2 log d (HW). Hence, for any sequence ρd →∞
as d→∞, P

[
max1≤i≤dXi ≤

√
2 log d+ ρd

]
→ 1.

Aside: Another heuristic way to derive
√

2 log d. For any i, P [Xi ≥ x] ≈ e−x2/2. Since there
are d i.i.d. random variables X1, . . . , Xn, P [max1≤i≤dXi ≥ x] ≈ de−x2/2. Setting de−x

2/2 = 1,
we get that x =

√
2 log d.

Using the fact that −Xi has the same distribution as Xi, one can get that

P
[

min
1≤i≤d

Xi ≥ −
√

2 log d− ρd
]
→ 1.

Example 1.11 (Gaussian submatrix detection). Let A ∈ Rn×n denote a random matrix and

S × T ⊂ [n]× [n] denote the support of an s× s submatrix of A. Assume that Aij
i.i.d.∼ N (µ, 1)

for (i, j) ∈ S × T and Aij
i.i.d.∼ N (0, 1) for (i, j) /∈ S × T . where µ > 0. The goal is to estimate

the supports S and T from observation of A.

Method 1: Ignore the matrix structure and treat A as an n2-dimensional random vector. Pick
s2 entries in A with the s2 largest values, and declare those entries constitute the hidden
submatrix. This method works only if the minimum value of {Aij : (i, j) ∈ S × T} is strictly
larger than the maximum value of {Aij : (i, j) /∈ S × T}. Since with probability converging to
1,

min
(i,j)∈S×T

Aij ≥ µ−
√

2 log s2 − ρd,

and
max

(i,j)∈S×T
Aij ≤

√
2 log(n2 − s2) + ρd,

we need µ > 2ρd + 2
√

log s+
√

2 log(n2 − s2).

Method 2: For row i, its row sum ri :=
∑

j Aij ∼ N (sµ, n) if i ∈ S; otherwise, ri ∼ N (0, n).
Also, row sums are independent across different rows. Hence, one can estimate S by picking s
rows with the s largest row sums. Similarly, one can estimate T by picking s columns with
the s largest column sums. This method works only if the mini∈S ri > maxi/∈S ri. Since with
probability converging to 1,

min
i∈S

ri ≥ sµ−
√

2n log s− ρd,

and
max
i/∈S

ri ≤
√

2n log(n− s) + ρd,

we need sµ > 2ρd +
√

2n log s+
√

2n log(n− s).
We see that method 1 requires smaller µ than method 2 to succeed if s = o(

√
n), and vice

versa if s = ω(
√
n).
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• Asymptotics. By letting either d→∞ or n→∞, we often get sharp asymptotic limits.

Example 1.12 (Erdős-Rényi random graph). Let G(n, p) denote the Erdős-Rényi random
graph with n vertices and each pair of two vertices are connected by an edge with probability
p independently at random. Let p = a logn

n for a fixed constant a. Then as n→∞,

P [G is connected]→
{

1 if a > 1,
0 if a < 1.

(1.1)

Example 1.13 (The semi-circular law). Let A be a real, symmetric n× n matrix such that Aij
are independent for all i ≤ j, and Aij ∼ N (0, 1) for all i < j and Aii ∼ N (0, 2) for all i. Then the
eigenvalue histogram of 1√

n
A (more precisely, the empirical eigenvalue distribution) converges to

the semi-circular law µ(x) supported in [−2, 2]:

µ(x) =
1

2π

√
4− x2.

(a)

(b)

Figure 1.9: Panel (a): Histogram of the eigenvalues of a 1000 × 1000 symmetric matrix with
independent N (0, 1) entries. Refer to Benedek Valko’s course on random matrices http://www.

math.wisc.edu/~valko/courses/833/833.html. Panel (b): Semi-circular law distribution. Image
by Alan Edelman, MIT open courseware 18.996 / 16.399 Random Matrix Theory and Its Applications
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Chapter 2

k-means Clustering

Outline

• Optimization formulation of k-means

• Convergence of k-means

• Failure cases of k-means

2.1 Optimization formulation of k-means

Recall in the data clustering problem, we are given n data points x1, x2, . . . , xn ∈ X , and interested
in partitioning them into k clusters.

• A psuedo-distance d is a mapping from X × X to R+, i.e.., d : X × X → R+.

• k-partition of [n]: S1 ∪ S2 ∪ · · · ∪ Sk = [n] such that Si ∩ Sj = ∅ for all i 6= j.

• Center of a group S ⊂ [n]:

c(S) ∈ arg min
z∈X

{∑
i∈S

d(xi, z)

}
.

• Cost of a k-partition S = (S1, . . . , Sk):

c(S) :=

k∑
a=1

∑
i∈Sa

d (xi, c(Sa)) .

• Seek a k-partition S

min
S
c(S). (2.1)

Note: : It is important to constrain the number of clusters k in the minimization problem (2.1). If
instead the number of clusters is unconstrained, and one minimizes c(S) over all possible partitions
of [n], then the minimizer is trivially given by treating each data point as an individual cluster.
Determining a good choice of k from data is a non-trivial task in general.
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Algorithm 1 k-means clustering

1: Input: Data {xi}ni=1 and initial partition S.
2: Output: New partition S′.
3: (Update step): let ca = c(Sa) for 1 ≤ a ≤ k.
4: (Assignment step) for 1 ≤ a ≤ k,

S′a =

{
i ∈ [n] : a = arg min

b∈[k]
d(xi, cb)

}
.

5: Iterate steps 1–4 until c(S′) ≥ c(S)− ε.

Note: In the update step of Algorithm 1, we need subroutine:

c(S) ∈ arg min
z∈X

{∑
i∈S

d(xi, z)

}
.

• Quadratic distance. If X ≡ Rn and d(x, y) = ‖x− y‖22, then

c(S) =
1

|S|
∑
i∈S

xi .

See Fig. 20.4 in Mackay’s book [Mac03] for illustration of k-means clustering with quadratic
distance.

• Spherical distance. If X ≡ Sn−1 := {x ∈ Rn : ‖x‖2 = 1} and d(x, y) = 1− 〈x, y〉, then

c(S) =

∑
i∈S xi

‖∑i∈S xi‖2
.

• Kullback-Leibler divergence (KL divergence). If X ≡ Pm−1 := {x ∈ Rm+ :
∑

i x(i) = 1}and

d(x, y) = D(x‖y) :=
∑m

j=1 x(j) log x(j)
y(j) , then

c(S) =
1

|S|
∑
i∈S

xi.

Proof. To solve minz∈X
{∑

i∈S d(xi, z)
}
, consider its Lagrangian function

L(z, λ) :=
∑
i∈S

d(xi, z) + λ(
∑
j

z(j)− 1). (2.2)

Differentiate L(z, λ) with respect to z(j) gives that

∂L(z, λ)

∂z(j)
= −

∑
i∈S

xi(j)
1

z(j)
+ λ.

Set ∂L(z,λ)
∂z(j) = 0 gives that

z(j) =
1

λ

∑
i∈S

xi(j), ∀1 ≤ j ≤ m.

Since
∑

j z(j) = 1, it follows that λ = |S| and hence the optimal z∗ is given by z∗ =
1
|S|
∑

i∈S xi.
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Note: Properties of D(x‖y):

1. D(x‖y) ≥ 0 with equality if and only if x = y.

Proof.

D(x‖y) =
∑
j

y(j)
x(j)

y(j)
log

x(j)

y(j)
≥

∑
j

x(j)

y(j)
y(j)

 log

∑
j

x(j)

y(j)
y(j)

 = 0,

where the inequality follows from the convexity of x log x and Jensen’s inequality, and it
becomes equality if and only if x(j)

y(j) does not depend on j, i.e., x = y.

2. D(x‖y) 6= D(y‖x) in general (convince yourself by constructing examples).

3. D(x‖y) is convex in (x, y).

Proof. By definition, one can check that for any convex function f : R+ → R, (p, q)→
qf
(
p
q

)
is convex on R2

+. Let f(x) = x log x. It follows that (p, q)→ p log p
q is convex on

R2
+. Hence, D(x‖y) is jointly convex in x and y.

Here is an alternative proof of (2.2) using the non-negativity of D(x‖y). Let y = 1
|S|
∑

i∈S xi.

Then for any z ∈ Pm−1,

∑
i∈S

(D(xi‖z)−D(xi‖y)) =
∑
i∈S

 m∑
j=1

xi(j) log
y(j)

z(j)

 = |S|
m∑
j=1

y(j) log
y(j)

z(j)
= |S|D(y‖z) ≥ 0.

2.2 Convergence of k-means

Proposition 2.1. 1. If St+1 = St, then St+` = St for all ` ≥ 1.

2. The cost c(St) is non-increasing in t.

3. k-means halts after at most kn iterations.

Proof. Claim 1 follows immediately from the algorithm description.
For Claim 2, define

C̃(S, c) =
k∑
a=1

{∑
i∈Sa

d(xi, ca)

}
.

Denote centers at iteration t by ct. Then by the update step, c(St) = minc C̃(St, c) and by the
assignment step, C̃(St+1, ct) = minS C̃(S, ct). It follows that

c(St+1) ≤ C̃(St+1, ct) ≤ C̃(St, ct) ≤ c(St).
Claim 3 follows from Claim 1 and the fact that there are at most kn different k-partitions of

[n].

Note: From the proof of Claim 2, k-means algorithm can be viewed as an alternating minimization
algorithm, which minimizes the cost function C̃(S, c) over k-partitions S and cluster centers c in an
alternating fashion.
Note: Although k-means algorithm halts after at most kn iterations, the outcome of the algorithm
depends on the initial condition. See Figure 20.4 Mackay’s book [Mac03] for an example.
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2.3 Failure case of k-means

• Cluster sizes are unbalanced. See Figure 20.5 in Mackay’s book [Mac03].

• Distance metric d does not capture the shape of clusters well. See Figure 20.6 in Mackay’s
book [Mac03].

Note: To be precise, the two failure cases listed above are caused by improper choice of objective
function in (2.1).
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Chapter 3

Model-based Approach to Clustering

Outline

• Model-based approach to clustering

• Maximum likelihood estimation

• Expectation-Maximization (EM) algorithm

• Spectral relaxation

Announcement

• Scribing assignment (due next Wednesday)

• Office hour: Mon 4:00-6:00 pm

3.1 Probabilistic approach to clustering (Model-based approach)

3.1.1 Recall: k-means clustering from an optimization point of view

Example 3.1. (Cost function)

C (S
¯
) =

k∑
a=1

∑
i∈Sa

d (xi, C (Sa)) (3.1)

• Second summation: the sum of variation within cluster

• First summation: the sum of all possible clusters

• C (S
¯
) can be viewed as the total variation within clusters.

Optimization-based approach

– props: make few assumptions on data {xi}

– cons: proposed objective function is heuristic without theoretical roots.
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3.1.2 Model-based approach (general recipe)

• come up a probabilistic (statistical) model for {Xi}ni=1

• principled approach to estimate the parameters from data

– props: not heuristic→, and do not need guess

– cons: need assumptions to the generating process of data. In particular, assume that data
come from some particular model

3.1.3 Mixture density for clustering

Definition 3.1 (Mixture density for clustering). Given data points X1, . . . , Xn ∼ P (X | C1, . . . , Ck)
(i.i.d.),

P (X | C1, . . . , Ck) =
1

k

k∑
a=1

q (X | Ca) (3.2)

where q (X | Ca) is a distribution for one cluster. Therefore, the mixture density for clustering is
defined as an average of all the possible k density functions. Here we assume each cluster have equal
weights 1/k for simplicity, and it is straightforward to generalize it to unequal weights.

Example 3.2 (Gaussian Mixture Model).

q(x | c) =
1

(2πσ2)
d
2

e−
1

2σ2
‖x−c‖22 (3.3)

where x, c ∈ Rd. This function is the d-dimensional Gaussian density function.

Note: An equivalent way to describe mixture model

• For each data point Xi, first generate its cluster label yi uniformly at random from [k].

• Conditional on the cluster label yi, draw Xi ∼ q(·|Cyi).

Proof of the equivalence: Suppose xi is drawn as above. Then

P (Xi | C1, . . . , Ck) =
∑
yi

P (Xi, yi | C1, . . . , Ck)

=
∑
yi

P (yi)P (Xi | yi, C1, . . . , Ck)

=
1

k

∑
yi

q (Xi | Cyi) ( ∵ yi is uniformly random)

(3.4)

which equals the probability density function of Xi in Definition 3.1.
Note:

• Xi: can be observed

• C1, . . . , Ck, yi: cannot be observed

Clustering is to estimate
(
{yi}ni=1 , {Ca}ka=1

)
from {Xi}ni=1.
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3.2 Estimation - Maximum likelihood estimation

3.2.1 Maximum likelihood estimation

We have

• observation: (X1, . . . , Xn) data points

• parameters of interest: (C1, . . . , Ck, y1, . . . , yk)

Likelihood function is defined as follows.

L
(
C
¯
, y
¯

)
, P

(
X1, . . . , Xn | C

¯
, y
¯

)
=

n∏
i=1

P
(
Xi | C

¯
, y
¯

) (3.5)

Maximum likelihood estimation is to maximize this likelihood function L
(
C
¯
, y
¯

)
over C

¯
, y
¯
:

max
C
¯
,y
¯

L
(
C
¯
, y
¯

)
By taking log function to the both sides of (3.5), we get log-likelihood function

logP
(
X1, . . . , Xn | C

¯
, y
¯

)
=

n∑
i=1

logP
(
Xi | C

¯
, y
¯

)
. (3.6)

Example 3.3 (Gaussian mixture model). Recall that the mixture density P
(
Xi | C

¯
, y
¯

)
is as follows:

P
(
Xi | C

¯
, y
¯

)
=

1

(2πσ2)
d
2

e−
1

2σ2
‖xi−Cyi‖

2
2 (3.7)

Note that 1

(2πσ2)
d
2

does not depend on partition. Therefore, it is just constant in terms of C
¯

and y
¯
.

Taking log function to (3.7), we have

logP
(
X1, . . . , Xn | C

¯
, y
¯

)
= − 1

2σ2

n∑
i=1

‖xi − Cyi‖22 + Const (3.8)

Maximum likelihood estimation for (3.8) is equivalent for solving the following minimization problem.

MLE⇔ min
C
¯
,y
¯

n∑
i=1

‖xi − Cyi‖22

⇔ min
y
¯

min
C
¯

n∑
i=1

‖xi − Cyi‖22
(3.9)

Fix the cluster label. Then (3.9) is equivalent to,

min
yi

n∑
i=1

‖xi − C (Sa) ‖22 (3.10)

where Sa = {j : yj = a} , C(Sa) = 1
Sa

∑
i∈Sa Xi, which is the average of data points in the cluster.

Hence, under the Gaussian mixture model, MLE is equivalent to the optimization-based approach,
where we aim to minimize the cost function c(S

¯
).
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3.2.2 Another formulation of MLE

We have

• observation: (X1, . . . , Xn)

• parameters: (C1, . . . , Cn)

• Treat (y1, . . . , yn) as missing data.

Consider Gaussian mixture model for simplicity.

P (X1, . . . , Xn | C1, . . . , Ck) =
n∏
i=1

P (Xi | C1, . . . , Ck)

=
n∏
i=1

(
1

k

k∑
a=1

q (xi | Ca)
)

=

n∏
i=1

(
1

k

k∑
a=1

1

(2πσ2)
d
2

e−
1

2σ2
‖xi−Cyi‖

2
2

) (3.11)

By taking log function, we have the following log-likelihood function,

logP (X1, . . . , Xn | C
¯

) =

n∑
i=1

log

(
1

k

k∑
a=1

e−
1

2σ2
‖xi−Cyi‖

2
2

)
+ Const, (3.12)

where the constant term does not depend on the parameters C
¯

. Note that (3.12) is not concave in
cluster centers (C

¯
).

Exercise: Show that f(x) = log
(

1 + e−x
2
)

is not concave in X.

Note: When k = 1, the exponential term is eliminated and only the quadratic term remains, so it
is a convex function. But when k > 1, it is neither convex or concave.

3.3 Expectation-Maximization (EM) algorithm

Note: We use the concept of covariance discussed in last lecture.

3.3.1 General problem formulation

We are interested in parameter θ = (θ1, . . . , θk), the cluster center.
Suppose that we observe one data point (X1, y1) ∼ Pθ, where X1 is an observation, whereas y1 is a
hidden observation. Denote this y1 as a hidden cluster label. There is no loss of generality in this
assumption, since we generated data points independently.
Define loss function l (θ) as follows.

l (θ) , l (θ | X1) = − logP (X1 | θ)

= − log

(∑
y1

P (X1, y1|θ)
)

(3.13)

Note:
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• We will minimize the loss function for all the possible θ.

• Due to the existence of summation inside the log in the last term, the loss function is nonconvex
as well as nonconcave.

How can we deal with (3.13)? To do this, the idea is to move
∑

to the outside of log.

l (θ) = − log

(∑
y1

P (X1, y1 (θ))

)

= − log
∑
y1

P
(
y1 | X1, θ

t
) P (X1, y1 | θ)
P (y1 | X1, θt)

= − log

(
EY1∼P (·|X1,θt)

[
P [X1, Y1 | θ]
P [Y1 | X1, θt]

])
(3.14)

Here, P
(
y1 | X1, θ

t
)

is the probability of hidden cluster label y1 conditional on X1 and the current
estimate θt of θ. Also, since − log is a convex function for R+, by Jensen’s inequality,

l (θ) = − log

(
EY1∼P (·|X1,θt)

[
P [X1, Y1 | θ]
P [Y1 | X1, θt]

])
≤ −EY1∼P (·|X1,θt) log

[
P [X1, Y1 | θ]
P [Y1 | X1, θt]

]
= −

∑
y1

P
(
y1 | X1, θ

t
)

log
P [X1, y1 | θ]
P [y1 | X1, θt]

, Q
(
θ | θt

)
(3.15)

Here, Q
(
θ | θt

)
is a function of θ, which gives an upper bound of l (θ) for all θ.

Remark If logP (X1, Y1 | θ) is concave in θ, then Q
(
θ | θt

)
is convex in θ.

Question Why Q? (Why should we choose particular Q function?)

Claim
Q
(
θ | θt

)
= l (θ) +D

(
P
(
· | y1, θ

t
)
‖P (· | X1, θ)

)
(Note that D

(
P
(
· | y1, θ

t
)
‖P (· | X1, θ)

)
is the KL divergence between probability distribution

P
(
· | y1, θ

t
)

and P (· | X1, θ) ).

Implication

• Q
(
θ | θt

)
≥ l (θ) (always upper bound)

• Q
(
θ | θt

)
|θ=θt = l (θ) |θ=θt (∵KL divergence is zero at θt)

Recall D (x‖y) =
∑n

i=1 xi log xi
yi

Note that KL divergence is not symmetric(i.e. D (x‖y) 6= D (y‖x)). That’s why here we use
‖ instead of , .
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• ∇θQ
(
θ | θt

)
|θ=θt = ∇θl (θ) |θ=θt , which is equivalent to

∇θD
(
P
(
· | y1, θ

t
)
‖P (· | X1, θ)

)
|θ=θt = 0. (3.16)

Proof: Since D
(
P
(
· | y1, θ

t
)
‖P (· | X1, θ)

)
is nonnegative, we have a local minimum at θ = θt,

and thus its derivative at θ = θ∗ must be zero.

Proof of claim. Revisit the definition of Q
(
θ | θt

)
.

Q
(
θ | θt

)
, −

∑
y1

P
(
y1 | X1, θ

t
)

log
P [X1, y1 | θ]
P [y1 | X1, θt]

= l (θ)−
∑
y1

P
(
y1 | X1, θ

t
)

log
P [y1 | X1, θ]

P [y1 | X1, θt]

(3.17)

In the first row, P (X1, y1 | θ) is equal to P (X1 | θ)P (y1 | X1, θ). Since P (X1 | θ) does not depend
on y1, it can be moved out of summation. Also, in the second row, the minus(−) can enter inside
the summation, and then it becomes KL divergence. That is,

Q
(
θ | θt

)
= l (θ) +D

(
P
(
· | X1, θ

t
)
‖P (· | X1, θ)

)
(3.18)

Figure 3.1: Iterative process of computing new θt

3.3.2 EM algorithm

• Input: Data {Xi}ni=1, initial estimate of θ, θ0

• Output: estimate of θ, θ?

For t ∈ {0, 1, . . .} do

E-step: Compute P
(
y1 | X1, θ

t
)

M-step: θt+1 = arg minθQ
(
θ | θt

)
Note:

• E-step is the expectation step. By doing this step, Q
(
θ | θt

)
is computed.
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• Through M-step, minimization step, we get new θt+1.

From Fig 3.1, we can see that EM algorithm is a special case of Majorization-Minimization(MM).

Proposition 3.1 (Convergence of EM). We have the following properties.

• l(θ0) ≥ l(θ1) ≥ ... ≥ l(θt) ≥ ...⇒ l(θ0) ≥ 0 and thus limt→∞ l(θ
t) exists.

• if θt+1 = θt ⇒ ∇θl(θt) |θ=θt= 0.

• Let θ∗ be a limiting point of θt. Under some regularity conditions (see for details), we have
∇θl(θt) |θ=θ∗= 0

Note: EM algorithm is very similar to k-means in that way that its quality depends on where the
initial estimate is.

3.3.3 EM in Gaussian Mixture Clustering

• θ = (C1, C2, ..., Ck)

• yi is cluster label of xi

p(yi|xi, θt) =
p(xi, yi, θ

t)

p(xi, θt)
=

p(xi, yi, θ
t)∑

y(xi, y, θ
t)

(3.19)

With Gaussian mixture, it gives that

p(yi|xi, θt) =
1
ke
− 1

2σ2
‖xi−Ctyi‖

2
2∑

y
1
ke
− 1

2σ2
‖xi−Cty‖22

And the Q
(
C
¯
| C

¯
t
)

is,

Q(C
¯
|C
¯
t) = −

n∑
i=1

∑
yi

p(yi|xi, Ct) log(
p(xi, yi|c)
p(yi|xi, ct)

)

=
1

2σ2

n∑
i=1

∑
yi

p(yi|xi, Ct)‖xi − Cyi‖+ const,

(3.20)

where the constant term here does not depend on C
¯

. To compute the new center Ct+1
a , we take

partial derivative of Q(C
¯
|C
¯
t) with respect to Ca, and get that

Ct+1
a =

∑
i
p(yi = a|xi, Ct)xi∑
i
p(yi = a|xi, Ct)

. (3.21)

Note:

• θt is the current estimate of parameter.

• p(yi|xi, Ct) is the probability that each data point Xi belongs to the cluster with cluster label
yi.

• Ct+1 is a weighted average of data points xi with weights given by p(yi|xi, Ct).
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3.3.4 Summary

E-Step: Calculate the following probability.

p(yi|xi,C
¯
t) =

e−
1

2σ2
‖xi−Cyi‖

2
2∑

y
exp−

1
2σ2
‖xi−Cy‖22

(3.22)

M-step: Then the new center is decided as follows.

Ct+1
y =

∑
i
p(yi|xi, Ct)xi∑
ip(yi|xi, Ct)

(3.23)

Note:

• It is also known as ”soft” k-means. At the E-step, we compute the probability that each data
point belong to each cluster, whereas the ”hard” k-means decide whether each data point
belong to the cluster or not.

• If σ2 → 0, then p(yi|xi, ct)→ 1yi∈arg min ‖xi−cty‖2 (assume it has a unique minimizer). In this
case, EM algorithm acts like ”hard” k-means.

• If we want to output what cluster a certain data point belongs to in the end, we could find yi
that maximizes the probability p(yi|xi, ct).

3.3.5 Failure Cases of k-means objective function

We mentioned two failure cases of the k-means objective function c(S
¯
).

1. unequal cluster size. To deal with unequal cluster sizes, we could introduce

• π1, π2, ..., πk
p(yi = a) = πa

• σ1, σ2, ..., σk are different for different clusters.

Hence, all the unknown parameters to estimate are given by (c1, ..., ck, π1, ..., πk, σ1, ..., σk)

2. shapes are not ”spherical”

• Note that previously we assume Xi are generated from a “spherical” Gaussian.

p(xi|cyi , σyi) ∝
1

(2πσ2
yi)

d/2
e
− 1

2σ2yi

‖x−cyi‖
2
2

E[XiX
T
i ] = σ2

yiId×d

(3.24)

• As you can see, the “spherical” Gaussian assumption results in the sphere shape of the
data. To deal with more general case, we can consider more general covariance. That is,
the covariance matrix does not have to be proportional to the identity matrix any longer.

E
[
XiX

T
i

]
=


(σ

(1)
yi )2

(σ
(2)
yi )2

. . .

(σ
(d)
yi )2


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In this case, all the unknown parameters (c1, ..., ck, π1, ..., πk, σ
(1)
1 , ..., σ

(d)
1 , ..., σ

(1)
k , ..., σ

(d)
k )

Caveat: As above, we have a total of 2k + kd unknown parameters. In the high-dimensional
regime where d is comparable to or larger than the number of samples n, then the number of
unknown parameters may exceed the amount of data available, and we might run into the
problem of over-fitting. Intuitively speaking, with so many unknown parameters, we have
enough freedom to perfectly fit the observed data, and this perfect fit may not have any
predictive power.

In the clustering setting, put one cluster exactly on one data point and let its variance go to
zero you can obtain an arbitrarily large likelihood. Hence, the maximum likelihood methods
including EM will break down by finding highly tuned models that fit part of the data perfectly.
Please refer to Section 22.4 in Mackay’s book [Mac03] for more details.

To deal with clustering in high-dimensional, we are going to introduce a new method called
spectral clustering.

3.4 Spectral Clustering

We first derive a spectral method by starting from k-means objective function.

3.4.1 Specture Relaxation of k-means

Recall: Quadratic Distance Setting

min
k−partition

k∑
a=1

∑
i∈Sa

‖xi − c(Sa)‖22 (3.25)

The objective function of (3.25) can be rewritten as:

k∑
a=1

∑
i∈Sa

‖xi − c(Sa)‖22 =
k∑
a=1

∑
i∈Sa

‖xi −
1

|Sa|
∑
j∈Sa

xj‖22

=
k∑
a=1

∑
i∈Sa

‖xi‖2 − 1

|Sa|
∑
j∈Sa

xj‖2


=

k∑
a=1

∑
i∈Sa

‖xi‖2 −
k∑
a=1

1

|Sa|
‖
∑
i∈Sa

xj‖22

(3.26)

Since the former summation of the last row of (3.26) is not related to how the clustering comes,
this problem is the same as

max
k−partition

k∑
a=1

1

|Sa|
‖
∑
j∈Sa

xj‖22. (3.27)

We define

Xn×d =


x>1
x>2
...
x>n

 ∈ Rn×d. (3.28)
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Denote 1Sa as an indicated vector of cluster a. That is,

1Sa(i) =

{
1 if i ∈ Sa,
0 otherwise.

(3.29)

So we have, ∑
i∈Sa

xi = X> · 1Sa = (x1, ..., xn) · 1Sa .

With this result, we have

k∑
a=1

1

|Sa|
‖
∑
j∈Sa

xj‖22 =
k∑
a=1

1

|Sa|
‖xT · 1Sa‖22

=
k∑
a=1

1

|Sa|
〈xT · 1Sa , xT · 1Sa〉

=

k∑
a=1

1

|Sa|
1TSax · xT 1Sa

=
k∑
a=1

(
1Sa√
|Sa|

)T
x · xT

(
1Sa√
|Sa|

)
(*)

Note:

•
(

1Sa√
|Sa|

)
acts like a normalized indicator vector, so its norm is 1.

• Consider XXT .

XXT =

X
T
1
...
XT
n

(X1 · · ·Xn

)

=

< X1, X1 > < X1, X2 > · · · < X1, Xn >
. . .

< Xn, Xn >


As you can see, it can be interpreted as a pairwise similarity matrix. As two points get closer,
the inner product becomes larger.

Recall Tr(A) =
n∑
i=1

Aii. If A and B are two n× d matrix, we have

〈A,B〉 , Tr(ATB) = Tr(BAT ).

Let’s continue to see (*).

(∗) =

k∑
a=1

Tr

(
1Sa√
|Sa|

x · xT
1TSa√
|Sa|

)

=
k∑
a=1

Tr

(
x · xT ,

1Sa1TSa√
|Sa|

√
|Sa|

)

= 〈x · xT ,
k∑
a=1

1Sa1TSa
|Sa|

〉
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Define Y as follows.

Y :=
k∑
a=1

1Sa1TSa
|Sa|

(3.30)

We call Y cluster matrix as it can be viewed as a matrix representation of cluster structure. When
the rows (columns) from the same clusters are arranged together, Y is a diagonal-block matrix:
In general, Y is a randomly permuted diagonal-block matrix. Using Y , maximizing the k means

objective is equivalent to

max 〈XXT , Y 〉
s.t. Y is indeed a valid cluster matrix.

(3.31)

In plain language, we would like to maximize the sum of total similarities within clusters among all
valid k-partitions.

Definition 3.2. (Spectral relaxation)

max 〈XXT , Y 〉
s.t. Y =

k∑
a=1

UaU
T
a

where ‖Ua‖2 = 1 and Ua ⊥ Ub for a 6= b

(3.32)

Note:

• The first constraint,
k∑
a=1

UaU
T
a , is expressed as an eigen-value decomposition. Note that

rank(Y ) = k.

• To tell that (3.32) is a relaxation of (3.31), we need to show that (3.32) has a larger feasible

set. In particular, suppose Y is a valid cluster matrix, then because Y =
k∑
a=1

1Sa1TSa
|Sa| , certainly

Y satisfy the constraints in (3.32).

To see how should we solve (3.32), consider the following two cases.

• case 1: k = 1

max
‖U‖2=1

〈XXT , UUT 〉 = max
‖U‖2=1

UTXXTU = λ1(XXT ) (3.33)
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Here, λ1 is the largest eigenvalue, and we use u1 to denote the corresponding eigen-vector.
So, the maximizer is u1(XXT ).

• case 2: k > 1
Suppose XX> admits the following eigenvalue decomposition:

XXT =
n∑
i=1

λiuiu
T
i , (3.34)

where λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, and ui is an eigenvector corresponding to λi. Then the optimal
solution of spectral relaxation problem is

Y ∗ =
k∑
i=1

uiu
T
i (3.35)

Note: Let Ŷ denote the output of the spectral relaxation. If Ŷ is exactly a valid cluster matrix,
then we are done. However, in general, Ŷ will not be a valid cluster matrix. To get a valid clustering
from Ŷ , we will run a second step. We will discuss it later in this course.

In then next lecture, we will rigorously show the optimal solution of the spectral relaxation
program is indeed given by Y ∗.
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Chapter 4

Singular value decomposition and
Spectral clustering

Recap:

• EM algorithm for Gaussian mixture model

• Spectral relaxation of K means

Plan ahead:

• SVD

• Spectral clustering under Gaussian mixture

• Davis-Kahan sin θ theorem

• Concentration inequalities

4.1 Singular Value Decomposition

Recap of eigenvalue decomposition:

Let A denote an n × n symmetric matrix A. We say that u ∈ Rn is an eigenvector of A
corresponding to the eigenvalue λ if Au = λu.

The eigenvalue decomposition of A is given as follows:

A =

n∑
i=1

λiuiu
T
i

λ1 ≥ · · ·λn ∈ R

where ui ∈ Rn, ‖ui‖2 = 1, ui⊥uj , ∀i 6= j. We can also write the decomposition succinctly as

A = UΛUT , UTU = I,

where U = [u1, u2, . . . , un], and Λ = diag{λ1, . . . , λn}.
If A ∈ Rm×n with m 6= n, then the definitions of eigenvalues and eigenvectors will not apply. In

this case, we need to introduce the singular value decomposition.
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Definition 4.1 (SVD). We sat u ∈ Rm and v ∈ Rn are left singular vector and right singular
vector, respectively, and σ ∈ R+ is the corresponding singular value, if they together satisfy

Av = σu

uTA = σvT

In plain english, when we right multiply A by v, we get back u scaled by σ. Similarly, when we
left multiply A by u>, we get back v scaled by σ.
Note: According to the definition, u>Av = σ‖v‖22 = σ‖u‖22. Hence, one can assume ‖u‖2 = ‖v‖2 = 1
without loss of generality in the definition of singular vectors.

4.1.1 Best Fit Vector

This subsection gives the geometric meanings of singular vectors and singular values.
Consider v∗ ∈ arg max‖v‖2=1 ‖Av‖22, where

Av =

A
T
1
...
ATm

 v =

< A1, v >
...

< Am, v >

 ,

where Ai denotes the i-th row of A. Note that the projection of Ai on v is given by < Ai, v > v,
and the squared length of the projection is < Ai, v >

2.
Therefore, ‖Av‖22 is the sum of the squared length of projections of rows of A on v and thus v∗ is
the direction which maximizes the sum of the squared length of projections. Also, by Pythagorean
theorem,

‖Ai‖22 =< Ai, v >
2 +dist2(Ai, v)

Hence, equivalently, v∗ is the closest one-dimensional linear subspace to the rows of A in terms of
the sum of the squared distances. For this reason, we call v∗ the best-fit vector of rows of A.

The following proposition gives a connection between singular vectors and the best fit vector.

Proposition 4.1. The vector v∗ is an eigenvector of A>A corresponding to the largest eigenvalue.
Moreover, v∗ is a singular vector of A and ‖Av∗‖2 is the largest singular value of A.

Proof.

‖Av∗‖22 =< Av,Av >

= vTATAv, (4.1)

Notice that ATA ∈ Rn×n and it’s symmetric. So we can apply the eigenvalue decomposition:

A>A =

n∑
i=1

λiviv
>
i ,

where λi are real eigenvalues of ATA and λ1 ≥ · · · ≥ λn. Also, A>A is positive semi-definite and
thus λn ≥ 0.
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Plugging the eigenvalue decomposition of A>A into (4.1), we get that

vTATAv =
n∑
i=1

λiv
T viv

T
i v

=
n∑
i=1

λi(v
T vi)

2

So to get v∗, it’s equivalent to solve

max
n∑
i=1

λi(v
T vi)

2

s.t.
n∑
i=1

(vT vi)
2 = 1

Since all λi’s are non-negative, the optimal solution is given by v∗ = v1, and the optimal value is
given by ‖Av∗‖22 = λ1. Therefore,

ATAv∗ = λ1v
∗

Define u∗ = Av∗√
λ1

and σ1 =
√
λ1 = ‖Av∗‖.

It follows from the last displayed equation that

ATu∗ = σ1v
∗

By definition of u∗

Av∗ = σ1u
∗

Therefore, σ1 is a singular value of A, and u∗ and v∗ are the corresponding left and right singular
vectors, respectively.

To see σ1 is the largest singular value, consider any singular value τ of A, and its corresponding
left and right singular values x and y. Then by definitions of singular vectors and values, we have
A>Ay = σ2y. Hence, σ2 ≤ λ1, i.e., τ ≤ σ1.

4.1.2 Best Fit Subspace

From best fit vector to best fit subspace. In this section, we find the best fit subspace of dimension
k for rows of A via a greedy algorithm.

Theorem 4.1. Define Vk = span{v1, v2, · · · , vk}, where

v1 ∈ arg max
‖v‖2=1

‖Av‖22

v2 ∈ arg max
‖v‖2=1,v⊥v1

‖Av‖22
...

vk ∈ arg max
‖v‖2=1,v⊥v1,··· ,vk−1

‖Av‖22
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with ties broken arbitrarily. Let λi = ‖Avi‖22 for 1 ≤ i ≤ k. Then

1. Vk ∈ arg maxV :dim(V )≤k
∑n

i=1 dist
2(Ai, V ), where dist(x, V ) = miny∈V ‖x− y‖2.

2. A>A =
∑n

i=1 τixix
>
i denote its eigenvalue decomposition with τ1 ≥ τ2 ≥ · · · ≥ τn ≥ 0. Then

v1, . . . , vk can be chosen so that vi = xi and λi = τi for all 1 ≤ i ≤ k.

Proof. We first prove Claim 1. Base case k = 1 has already been proved in Proposition 4.1.
Assume Vk−1 is indeed optimal (best fit subspace with dimension ≤ k − 1).
Suppose V ′k is an optimal subspace of dim(V ′k) = k. There exists an orthonormal basis of V ′k, given
by w1, · · · , wk such that wk⊥Vk−1 (Convince yourself such a basis indeed exists).
By definition of vk,

‖Awk‖2 ≤ ‖Avk‖2
By optimality of Vk−1 (induction hypothesis),

k−1∑
i=1

‖Awi‖2 ≤
k−1∑
i=1

‖Avi‖2

By optimality of V ′k,

k∑
i=1

‖Awi‖2 ≤
k∑
i=1

‖Avi‖2

By the above three inequalities, we can see they are all equalities. In particular,
∑k

i=1 ‖Awi‖2 =∑k
i=1 ‖Avi‖2, and thus Vk is also optimal.
Next, we prove claim 2 using again the induction method. Base case k = 1 follows from

Proposition 4.1. Suppose the claim is true for k − 1. We prove it also holds for k. Consider
max‖v‖2=1,v⊥v1,...,vk−1

‖Av‖22. By induction hypothesis, vi = xi for 1 ≤ i ≤ k − 1, the maximization
problem is equivalent to

max
v

n∑
i=k

τi(v
Txi)

2

s.t.
n∑
i=k

(vTxi)
2 = 1

Therefore, xk is an optimal solution and τ2 is the optimal value. Hence, we could choose vk = xk
and λk = τk.

Proposition 4.2. Let v1, · · · , vn be formed by the greedy algorithm above, then the following holds,

1.

σ1 , ‖Av1‖2 ≥ σ2 , ‖Av2‖2
...

, σ2 = ‖Av2‖2
> σr+1 , ‖Avr‖2 = · · · = σn , ‖Avn‖2 = 0,

where r is some integer in [n].
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2.

A =
r∑
i=1

σiuiv
T
i

where ui ,
Avi
σi

for σi > 0. Moreover, ui⊥uj ,∀i 6= j and ‖ui‖2 = 1. In particular, ui and vi
are the left and right singular vectors corresponding to σi, respectively.

Proof. Claim 1 follows from the construction of {v1, . . . , vn}.

We prove Claim 2. Since {v1, · · · , vn} form an orthonormal basis for Rn, we have

Ai =
n∑
l=1

< Ai, vl > vl

=

r∑
l=1

< Ai, vl > vl,

where the second equality holds because σr+1 = · · · = σn = 0. Hence, we can rewrite A as

A =


∑n

l=1 < A1, vl > vTl
...∑n

l=1 < Am, vl > vTl


=

< A1, v1 > · · · < A1, vr >
...

. . .
...

< Am, v1 > · · · < Am, vr >


v

T
1
...
vTr


Also by definition of ui,

ui =
Avi
σi

=
1

σi

< A1, vi >
...

< Am, vi >


We can further rewrite A as

A =
(
u1σ1 · · · urσr

)v
T
1
...
vTr


=
(
u1 · · · ur

)σ1

. . .

σr


v

T
1
...
vTr


, UΣV T

To prove ui⊥uj , ∀i 6= j, recall that Theorem 4.1 shows that

ATAvi = λivi
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Thus we have

< ui, uj > =
1

σiσj
vTi A

TAvj

=
λj
σiσj

vTi vj

= 0

Moreover, < ui, ui >= 1. It follows that u>i A = σiv
>
i . Hence, ui and vi are left and right singular

vectors corresponding to singular values σi, respectively.

4.1.3 Compact form and Full version of SVD

Proposition 4.2 shows that A = UΣV T for Σ ∈ Rr×r, U ∈ Rm×r and V ∈ Rr×n. Notice that
r ≤ min{m,n} (convince yourself it is indeed the case). Such a decomposition is known as the the
singular value decomposition of A in compact form.

Full version of SVD−→ Take (u1, u2, ....ur) and concatenate it to get Ũ = (u1, u2, ....um) which
forms an orthonormal basis for Rm. Similarly Ṽ = (v1, v2, .....vn) is obtained which is an orthonormal
basis for Rn.

Ũ ∈ Rm×m, Ṽ ∈ Rn×n, ŨT Ũ = Ũ ŨT = Im×m, Ṽ T Ṽ = Ṽ Ṽ T = In×n.

4.1.4 Norms of A

1. Frobenius Norm of A : ‖A‖2F , 〈A,A〉 =
∑

ij A
2
ij .

2. Spectral Norm of A : ‖A‖2 , σ1 where σi are s.t. σ1 ≥ σ2 ≥ ... ≥ σr > 0; σr+1 = ... = σn = 0.

Note: One can show that ‖A‖2F =
∑n

j=1 σ
2
j . To see this, note that ‖A‖2F =

∑m
i=1 ‖Ai‖22 and

σ2
j = ‖Avj‖22 for j = 1, . . . , n. Hence,

∑n
j=1 σ

2
j equals the sum of the squared length of the

projections of {Ai}mi=1 to the space spanned by {v1, . . . , vn}, which is Rn. Clearly, the projection of
Ai to Rn is itself. Hence,

∑m
i=1 ‖Ai‖22 =

∑n
j=1 σ

2
j .

4.1.5 Spectral relaxation of k-means problem:

Recalling from the spectral relaxation of k-means:

max〈XXT , Y 〉

s.t. (1) Y =
∑k

i=1 UiU
T
i
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(2) ‖Ui‖2 = 1 ∀i and Ui ⊥ Uj ∀i 6= j.

Proposition 4.3. Suppose XXT =
∑n

i=1 λiŨiŨ
T
i such that λ1 ≥ λ2... ≥ λn. Then the optimal

solution Y ∗ =
∑k

i=1 ŨiŨ
T
i .

Proof.

〈XXT , Y 〉 =
k∑
i=1

〈XXT , UiU
T
i 〉

=
k∑
i=1

UTi XX
TUi

=

k∑
i=1

∥∥XTUi
∥∥2

2

Thus, the spectral relaxations of k-means aims to find the k-dimensional, best-fit subspace for
rows of X>. Hence, the optimal solutions are given by the top k right singular vectors of X>, or
equivalently, the top k left singular vectors of X, or equivalently, the top k eigenvectors of XX>

(proved by Theorem 4.1).

Here is another way to view the spectral-relaxations of k-means.
Given a data matrix X and a partition S = (S1, S2, , , Sk) where C(Sa) = 1

|Sa|
∑

i∈Sa Xi is the
cluster center of the cluster Sa, the cost function associated is given as:

C(S) =

k∑
a=1

{∑
i∈Sa

‖Xi − C(Sa)‖22

}

Let W denote the subspace given by span{C(S1), C(S2), ....C(Sk)} ⊆ Rd.

Then: Cost function associated with the partition S :

C(S) ≥
n∑
i=1

(dist(Xi,W ))2

≥
n∑
i=1

(dist(Xi, V ))2

=

r∑
j=k+1

σ2
j ,

where the fist inequality follows from the definition of the dist; V = (v1, v2, ...vk) are the top-k right
singular vectors of the data matrix

X =

X
T
1
...
XT
n

 ,
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and hence the second inequality follows from that V is a k-dimensional best-fit subspace of {Xi}ni=1;
the last inequality follows because

n∑
i=1

(dist(Xi, V ))2 =

n∑
i=1

‖Xi‖22 −
k∑
j=1

‖Xvj‖22

=

n∑
j=1

σ2
j −

k∑
j=1

σ2
j .

This method is a relaxation of the k-means problem, since a lower bound on the cost function
C(S) is obtained: C(S) ≥∑r

j=k+1 σ
2
j .

4.2 Spectral clustering under Gaussian mixture model

In this section, we derive the spectral clustering from a model-based perspective. We shall focus on a
special case of Gaussian mixture model with 2 clusters, i.e., k = 2. The first cluster center is taken to
be µ1 = µ and the second cluster center is µ2 = −µ. The same idea applies to more general settings.

Let

X ,

X1
...
Xn

 ∈ Rn×d

be the data matrix (Xi ∈ Rd), where Xi
i.i.d.∼ 1

2N (µ, σ2Id×d) + 1
2N (−µ, σ2Id×d).

Suppose X1, X2 are 2 data points from the same cluster with mean µ i.e. with the same cluster
center µ. Then the expected squared L2 distance between the two points is calculated as:

E[‖X1 −X2‖22] = E[‖(X1 − µ)− (X2 − µ)‖22]

= E[‖X1 − µ‖22] + E[‖X2 − µ‖22]

= 2σ2d

Now suppose X1, X2 are from 2 different clusters say X1 ∼ N (−µ, σ2Id×d) and X2 ∼ N (µ, σ2Id×d).
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Then the expected squared L2 distance between the two points in this case is :

E[‖ X1 −X2 ‖22] = E[‖ (X1 + µ)− (X2 − µ)− 2µ ‖22]

= 4 ‖ µ ‖22 + 2σ2d

Here the additional term of 4 ‖ µ ‖22 captures the separation between the two cluster centers.
Intuitively speaking, if the cluster center separation ‖µ‖2 is much larger than the typical deviation
σ2d, then two data points are far away if they are from two different clusters, and close by otherwise.
This suggests a simple algorithm to cluster data points by thresholding the pairwise distances.

4.3 Simple Thresholding Algorithm

Given {Xi}ni=1 and a threshold value τ . This algorithm computes ‖Xi −Xj‖2. If ‖Xi −Xj‖2 ≤ τ
then Xi, Xj are assigned to the same cluster. Else they are assigned to different clusters. There
could be instances when the assignment is inconsistent and at those times the algorithm fails.

As we point out earlier, the algorithm works fine if the separation between the clusters (i.e.
4 ‖ µ ‖22 ) is much larger than the typical deviations. The following HW question rigorously proves
this.

HW question: Let τ0 = 2σ
(√

d+
√

2(1 + ε)1/4d1/4 log1/4 n
)

for a small constant ε > 0. If

‖µ‖2 ≥ τ0 and τ ∈ [τ0, 2‖µ‖2 − τ0], then the simple thresholding algorithm outputs the correct

clustering with probability at least 1− ne−ε2d/4.

Notice that the sufficient condition for the simple thresholding algorithm to succeed needs the cluster
center separation ‖µ‖2 to scale as

√
d, while often implementation of clustering of data points is

done on very high dimensions. Therefore one would like to get rid of the dependence on dimension d.

Idea to get rid of dependence on d: Suppose there is a genie who reveals the true clus-
ter center µ to the algorithm. Then each of the data points can be projected on the 1-dimensional
subspace spanned by µ; this reduces the effective dimension of the problem. Note that the projection
of Xi on the subspace spanned by µ is given by 〈Xi, µ〉.
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If Xi lies in the first cluster (mean -µ), then 〈Xi, µ〉 follows N (−||µ||22, σ2) and if it is in the
second cluster (with mean µ) then 〈Xi, µ〉 follows N (‖µ‖22 , σ2). To see this, suppose that Xi is in
the first cluster. Then we have 〈Xi, µ〉 = −‖µ‖22 + 〈Zi, µ〉, where Zi ∼ N (0, σ2Id×d).

HW question: If µ is known and ‖µ‖2 ≥ 2σ
√

2 log(n), then the simple thresholding algorithm
applied on 〈Xi, µ〉 with a proper choice of threshold τ outputs the correct clustering with high
probability. (Recall that n is the total number of data points).

In order to get rid of the dependence of the algorithm on d, it was assumed that the cluster
centers are somehow known, but in reality the cluster center µ, i.e., the direction in which Xi

needs to be projected, is not known. In such a case, we might want to try random projections, i.e.,
projecting data points to some random directions.

4.3.1 Random projections

Originally Xi ∈ Rd and the goal is to project these Xi on Rl, where 1 ≤ l < d.

Take a matrix A ∈ Rl×d s.t. 1 ≤ l < d. Suppose Ai,j
i.i.d.∼ N (0, 1

d) and let X
′
i = AXi ∈ Rl,

which represents the data point after projection. Similarly, let µ
′

= Aµ ∈ Rl, which represent the
centers after projection.

Conditional on µ′ and A : X ′i is approximately distributed as 1
2N (µ′, σ2Il×l) + 1

2N (−µ′, σ2Il×l).

Now the separation between the cluster centers is given as:

E
[∥∥ µ′∥∥2

2

]
= E

[
‖Aµ‖22

]
= E[

l∑
j=1

〈Aj., µ〉2 ]

=

l∑
j=1

E[ 〈Aj., µ〉2 ]

=

l∑
j=1

‖µ‖22
d

=
l ‖µ‖22
d

Aj. is the jth row of A. It is seen that cluster center separation shrinks by a factor of l
d .

For threshold algorithm : ‖µ′‖2 ≥ 2σ
√
l (after projection).

⇐⇒
√

l
d ‖µ‖2 ≥ 2σ

√
l

⇐⇒ ‖µ‖2 ≥ 2σ
√
d

=⇒ Random projection does not help in getting ride of dependency on d. In the next lecture, we
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will see that spectral projection, which projects data points to the top singular vectors of X, will
help.
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Chapter 5

Analysis of Spectral Clustering

Outline

• Review of Singular Value Decomposition

• Spectral Clustering under Gaussian Mixture Model (continued from previous lecture)

• Analysis of spectral clustering

5.1 Review of Singular Value Decomposition (SVD)

Recall from previous lecture that we give singular value decomposition of a matrix A as A =∑n
i=1 σiuiv

T
i where σ1 ≥ σ2 · · · ≥ σn are singular values and u1, u2, . . . , un and v1, v2, . . . , vn are

corresponding left and right singular vectors respectively. Below we present a summary of some of
the results related to geometric interpretation of SVD that we discussed in previous lecture:

• We can interpret leading right singular vector (v1) of A as the best-fit vector for rows of
A. It is also the leading eigenvector of ATA. Leading singular value (σ1) can be viewed as
sum of the length of the projections of rows of A onto the linear subspace spanned by v1 i.e.
‖Av1‖2 = σ1.

• Previous result extends to higher dimensions i.e. best-fit k−dimensional subspace for rows of
A is given by span{v1, v2, . . . , vk} where

v1 ∈ arg max
‖v‖2=1

‖Av‖22

v2 ∈ arg max
v⊥v1
‖v‖2=1

‖Av‖22

...

vk ∈ arg max
v⊥v1,...v⊥vk−1

‖v‖2=1

‖Av‖22

• Collection of v1, v2, . . . vk can be chosen as the top-k eigenvectors of ATA.

• ui’s are defined as ui = Avi
σi

. This combined with the previous property implies that ui ⊥ uj if
i 6= j and ‖ui‖2 = 1.
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• A =
∑n

i=1 σiuiv
T
i =

∑r
i=1 σiuiv

T
i for some 1 ≤ r ≤ n assuming σr+1 = · · · = σn = 0. In this

case, let row(A)denote the row space of A. Then row(A) = span{v1, v2, . . . , vr}.
• Frobenius norm (‖A‖F ) is defined as ‖A‖2F =

∑n
j=1 σ

2
j =

∑n
j=1 ‖Avj‖22 =

∑m
j=1 ‖Ai.‖22 =∑m

i=1

∑n
j=1A

2
ij where Ai. is ith row of A. Second equality holds because σj = ‖Avj‖2 and

third equality holds because of the previous property.

5.2 Spectral Clustering under Gaussian Mixture Model

Recall that if we know the cluster mean µ a priori then we can project our sample points to span{µ}.
This can help us in reducing the dimension of the problem (in the simple example of 2 clusters we
can reduce d− dimensions to 1−dimension). However, in general we don’t have prior knowledge of
µ. As discussed in the previous lecture, we could try a random projection but we showed that it
doesn’t help. Here, we’ll discuss another projection scheme called “Spectral projection”.

5.2.1 Spectral Projection

We’ll start with our basic example of 2 clusters centered at µ and −µ and variance σ. Then, we’ll
extend the model to more general case.

Idea We have been given below information:

X =


X1

X2
...
Xn


Xi

i.i.d.∼ 1

2
N (µ, σ2Id×d) +

1

2
N (−µ, σ2Id×d)

Based on this we can say that

E[X] =

First Cluster


Second Cluster





−µT
−µT

...
−µT
µT

...
µT


= Left Singular Vector





−1
−1
...
−1
1
...
1


µT
}

Right Singular vector

Observe that points from first cluster contribute −µT in first expected value matrix and points
from second cluster contribute µT in first expected value matrix. This matrix can be further
decomposed into vectors of {−1, 1}n and µT which can be treated as left singular vector and right
singular vector (upon normalization) of E[X] respectively. This gives us intuition that if X is “close”
to E[X] then we would expect the leading right singular vector of X to be close to µ. Note that
E[X] is rank 1 matrix however X may not be rank 1. Now suppose,

X =

r∑
i=1

σiuiv
T
i

Xv1 = σ1u1
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If X is close to E[X] then u1 would be close to


−1
...
...
1

. We can treat the problem of clustering Xi as

problem of clustering u1 and this gives us an algorithm.

5.2.2 Spectral clustering algorithm for k = 2, µ1 = −µ, µ2 = µ

1. Compute the leading left singular vector of X say it is given by u1.

2. If

(a) u1,i < 0 assign Xi to the first cluster

(b) u1,i > 0 assign Xi to the second cluster

(c) u1,i = 0 assign Xi an arbitrarily chosen cluster

We can easily generalize our results for a general clustering problem following Gaussian mixture
model with k clusters centered at µ1, µ2, . . . , µk respectively. We can again check that,

E[X] =

First Cluster

{
Second Cluster

{
...

k-th Cluster

{



µT1
...
µT2
...
µTk
...


= Left Singular Vectors





1 0 . . . 0
1 0 . . . 0
...

...
...

...
0 1 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1




µT1
µT2
...
µTk


 Right Singular vectors

Column i of the matrix containing left singular vectors (up to normalization) acts as an indicator
vector (1Si) for cluster i. The matrix itself is known as ”membership matrix”. It is easy to extend
our previous algorithm to deal with general case.

5.2.3 Spectral clustering algorithm in general case

1. Compute SVD of X i.e. X =
∑r

i=1 σiuiv
T
i .

2. U = [u1, u2, . . . uk] ∈ Rn×k.

3. Run k−means on the rows of U .

Clustering U is easy if U is close to membership matrix.
Note:

• We are treating [µT1 , µ
T
2 , . . . , µ

T
k ]T as right singular vectors up to normalization. However,

they may not be orthogonal to each other. Our assumption still works because we are only
interested in the space spanned by them.

• Recall our spectral relaxation of k-means problem:

Ŷ = arg max < XXT , Y > such that Y =

r∑
i=1

wiw
T
i , ‖wi‖2 = 1, wi ⊥ wj∀ i 6= j
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Optimal solution for above is Y ∗ =
∑k

i=1 uiu
T
i = UUT where u1, . . . , uk are top k left singular

vectors of X and U = [u1, u2, . . . , uk]. Notice how U appears in the spectral clustering
algorithm as well.

5.3 Analysis of Spectral Clustering

Algorithms mentioned in previous section depend on our assumption that X is close to E[X]. In
this section, we’ll try to quantify this closeness. We will be using Davis-Kahan’s sin−θ theorem to
analyze spectral clustering. But before we move there, we’ll define some notation. Lets say we have
two matrix A and B such that

B = A+ ∆

where ∆ is called perturbation. Suppose that A and B have a decomposition which is similar to
SVD and is given by :

A = E

[
A0 0
0 A1

]
G =

[
E0 E1

] [A0 0
0 A1

] [
GT0
GT1

]
B = F

[
B0 0
0 B1

]
H =

[
F0 F1

] [B0 0
0 B1

] [
HT

0

HT
1

]
where

A ∈ Rm×n, E ∈ Rm×m, G ∈ Rn×n, E0 ∈ Rm×k, E1 ∈ Rm×m−k, G0 ∈ Rk×n, G1 ∈ Rn−k×n

B ∈ Rm×n, F ∈ Rm×m, H ∈ Rn×n, F0 ∈ Rm×k, F1 ∈ Rm×m−k, H0 ∈ Rk×n, H1 ∈ Rn−k×n

A0 ∈ Rk×k, A1 ∈ Rm−k×n−k, B0 ∈ Rk×k, B1 ∈ Rm−k×n−k

assume

EET = ETE = Im×m

GGT = GTG = In×n

F TF = FF T = Im×m

HTH = HHT = In×n

clearly

A = E0A0G
T
0 + E1A1G

T
1

B = F0B0H
T
0 + F1B1H

T
1

In our case, we can view A = E[X] and B = X. Our goal would be to define a distance d(E0, F0)
between E0 and F0 and upper bound it as a function of ∆. Davis-Kahan’s sin−θ theorem helps us
in doing that. But before we move to actual theorem we’ll define some specific distances and look
into their properties.

5.3.1 Projection distance

Definition 5.1.
dp(E0, F0) , ||E0E

T
0 − F0F

T
0 ||2

Lemma 5.1. dp(E0, F0) = ‖F T1 E0‖2 = ‖ET0 F1‖2
Proof. Left for homework.

To get the intuition behind above lemma we can take a simple example where E0 and F0 are
one dimensional and we know that F1 ⊥ F0. Hence, the arrangement looks like below:

45



It is easy to see that ‖E0E
T
0 − F0F

T
0 ‖2 = ‖F T1 E0‖2 = sin θ. Notice, how we can denote projection

distance in terms of sin θ. We’ll generalize this notion and present a way to view the projection
distance in terms of principal angles. Let,

ET0 F0 = U cos ΘV T

where

Θ =


θ1

θ2

. . .

θk


and

cos Θ =


cos θ1

cos θ2

. . .

cos θk


with

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θk ≤
π

2

We can do this because E0F0 are basis with singular values less than or equal to 1. Also, note that
U, V ∈ O(k) where O(k) is set of k × k orthonormal matrices. In our one dimensional example
above ET0 F0 = cos θ.

Lemma 5.2.
‖F T1 E0‖2 = ‖ sin Θ‖2 = sin θk
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Proof.

‖F T1 E0‖2 = ‖ET0 F1F
T
1 E0‖

1
2
2

= ‖ET0 (I − F0F
T
0 )E0‖

1
2
2

= ‖ET0 E0 − ET0 F0F
T
0 E0‖

1
2
2

= ‖Ik×k − U cos ΘV TV cos ΘUT ‖
1
2
2

= ‖Ik×k − U cos2 ΘUT ‖
1
2
2

= ‖Ik×k − cos2 Θ‖
1
2
2

= ‖ sin2 Θ‖
1
2
2

= ‖ sin Θ‖2
= sin θk

Second equality holds because FF T = Im×m, third and fourth equalities use SVD of ET0 F0 and
fifth and sixth equalities hold because left and right multiplication by U and UT respectively only
causes rotation which doesn’t affect the spectral norm.

5.3.2 Spectral distance

Definition 5.2 (Spectral distance).

ds(E0, F0) , min
Q,R∈O(k)

‖E0Q− F0R‖2

= min
R∈O(k)

‖E0 − F0R‖2

The equality holds because we can interpret Q and R as rotation matrices. Let E0, F0 be any
vectors in R2, then we only need to multiply one of the two vectors by −1 to get the quantity to be
minimized.

Lemma 5.3.

ds(E0, F0) = ‖2 sin
Θ

2
‖2 = 2 sin

θk
2

Proof.

d2
s(E0, F0) = min

R∈O(k)
‖E0 − F0R‖22

= min
R∈O(k)

‖(E0 − F0R)>(E0 − F0R)‖2

= min
R∈O(k)

‖E>0 E0 −R>F>0 E0 − E>0 F0R+R>F>0 F0R‖2

= min
R∈O(k)

‖I −R>F>0 E0 − E>0 F0R+ I‖2

= min
R∈O(k)

‖2I −R>V cos ΘU> − U cos ΘV >R‖2

= min
R∈O(k)

‖U>(2I −R>V cos ΘU> − U cos ΘV >R)U‖2

= min
R∈O(k)

‖2I − U>R>V cos Θ− cos ΘV >RU‖2
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Let R′ , V >RU . Since the product of two orthogonal matrices is also an orthogonal matrix, we
have R′ ∈ O(k). Next, we bound the quantity d2

s(E0, F0) on the both sides. On the one hand, we
have

d2
s(E0, F0) = min

R′∈O(k)
‖2I − (R′)> cos Θ− cos ΘR′‖2

≤ ‖2I − 2 cos Θ‖2
= 2(1− cos Θk)

= 4 sin2 θk
2

The inequality holds by letting R′ be a feasible solution, i.e. Ik×k. On the another hand, we have

d2
s(E0, F0) = min

R′∈O(k)
‖2I − (R′)> cos Θ− cos ΘR′‖2

= min
R′∈O(k)

(
max
‖x‖2=1

x>(2I − (R′)> cos Θ− cos ΘR′)x

)
≥ min

R′∈O(k)
x>(2I − (R′)> cos Θ− cos ΘR′)x

≥ min
R′∈O(k)

2− 2e>k (R′)> cos Θe>k

= min
R′∈O(k)

2− 2R′kk cos θk

= 2− 2 cos θk

= 4 sin2 θk
2

The second inequality is true by letting x , ek.

Corollary 5.1.
dp(E0, F0) ≤ ds(E0, F0) ≤

√
2dp(E0, F0)

Proof. By Lemma 5.2, we have dp(E0, F0) = sin θk = 2 sin θk
2 cos θk2 . From Lemma 5.3 , we have

ds(E0, F0) = 2 sin θk
2 . Since 0 ≤ θk ≤ 1, then 1√

2
≤ cos θk2 ≤ 1. Therefore we have

dp(E0, F0) ≤ ds(E0, F0) ≤
√

2dp(E0, F0).

5.3.3 Davis-Kahan sin-Θ Theorem

Theorem 5.1 (Davis-Kahan sin-Θ Theorem). Let Sval(A0) and Sval(B1) be the set of singular
values of A0 and B1, respectively. If Sval(A0) ⊆ [0, α] and Sval(B1) ⊆ [α+ δ,∞) for some α ∈ R
and δ > 0, then we have

dp(E0, F0) ≤ ‖4‖2
δ

(5.1)

In the theorem, δ is called the spectral gap. Before going to prove the theorem, we discuss an
application of Davis-Kahan sin-Θ Theorem in spectral clustering.
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Example 5.1 (Application of D-K sin-Θ theorem in spectral cluster). Recall in the two clusters
setting, cluster one centers at −µ ∈ Rd, cluster two at µ ∈ Rd, the matrix X ∈ Rn×d is the data
matrix. Let A , X, B , E [X], and 4 , X − E [X]. Then, we have a SVD of A

A = σ1u1v
>
1 +

r∑
i=2

σiuiv
>
i ;

and

B =



−1
−1
...
−1
1
...
1


µ =



−1√
n
−1√
n
...
1√
n
...
1√
n


(
√
n‖µ‖2)

µ>

‖µ‖2
, β(

√
n‖µ‖2)

µ>

‖µ‖2
,

where

β ,



−1√
n
−1√
n
...
1√
n
...
1√
n
.


The goal is to derive an upper bound of the distance between β and singular vector u1 in term of
X − E [X]. We can apply the Davis-Kahan sin-Θ Theorem (Theorem 5.1) ,with E0 = β, F0 = u1,

A1 =


σ2

σ3

. . .

σr

 and B0 =
√
n‖µ‖2 and obtain

dp(β, u1) ≤ ‖X − E [X] ‖2
δ

,

where a lower bound of δ is given as below. We need to obtain a upper bound of the singular
value set {σ2, . . . , σr}. From the Weyl’s Theorem, we know |σi(A)− σi(B)| ≤ ‖A−B‖2. Thus the
singular value set {σ2, . . . , σr} is bounded by ‖4‖2. Hence, δ ≥ √n‖µ‖2 − ‖4‖2 and we have

dp(β, u1) ≤ ‖X − E [X] ‖2
δ

≤ ‖4‖2√
n‖µ‖2 − ‖4‖2

.

We need one more lemma to prove the Davis-Kahan sin-Θ Theorem.

Lemma 5.4. Let P ∈ Rn×n, Q ∈ Rm×m, X ∈ Rn×m and Y ∈ Rm×n. Assume ‖P‖2 ≤ α and
‖Q−1‖2 ≤ 1

α+δ from some α ∈ R+ and δ ∈ R+. Let C , XQ− PY , then we have

‖C‖2 ≥ (α+ δ)‖X‖2 − α‖Y ‖2

49



Proof. First, we have ‖C‖2 = ‖XQ− PY ‖2 ≥ ‖XQ‖2 − ‖PY ‖2 by the subadditivity of a norm.
Then, we derive a lower bound of ‖XQ‖2:

‖X‖2 = ‖XQQ−1‖2
≤ ‖XQ‖2‖Q−1‖2
≤ ‖XQ‖2

1

α+ δ
,

where the second inequality holds because for any two matrices A,B, ‖AB‖2 ≤ ‖A‖2‖B‖2. Thus,
‖XQ‖2 ≥ (α + δ)‖X‖2. We also have a upper bound of ‖PY ‖2 ≤ ‖P‖2‖Y ‖2 ≤ α‖Y ‖2. Hence,
‖C‖2 ≥ (α+ δ)‖X‖2 − α‖Y ‖2.

Proof of Davis-Kahan sin-Θ Theorem. Recall

A =
[
E0 E1

] [A0 0
0 A1

] [
G>0
G>1

]
B =

[
F0 F1

] [B0 0
0 B1

] [
H>0
H>1

]
4 = B −A

Then since E,F ∈ O(m) and G,H ∈ O(n)

E>0 4H1 = E>0 (B −A)H1

= E>0 BH1 − E>0 AH1

= E>0 F1B1 −A0G0H1

Let E>0 F1 be X, B1 be Q, A0 be P , G0H1 be Y , by Lemma 5.4, we have

‖4‖2 ≥ ‖E>0 4H1‖2 ≥ (α+ δ)‖E>0 F1‖2 − α‖G>0 H1‖2.

Similarly, we have

‖4‖2 ≥ ‖F>1 4G0‖2 ≥ (α+ δ)‖G>0 H1‖2 − α‖E>0 F1‖2.

Let t1 = ‖G>0 H1‖2 and t2 = ‖E>0 F1‖2. Thus, t1 ≤ αt2+‖4‖2
α+δ and t2 ≤ αt1+‖4‖2

α+δ . Therefore

max{t1, t2} ≤ ‖4‖2δ . By Lemma 5.1, dp(E0, F0) ≤ ‖4‖2δ .

50



Chapter 6

Concentration Inequalities

Outline

• Recap of Spectral Clustering

• Concentration inequalities

6.1 Spectral Clustering (cont’d.)

Recap: Under the Gaussian mixture clustering with two clusters of cluster centers given by µ and
−µ, respectively, we observe a data matrix A ∈ Rn×d.

Figure 6.1: Dimension of A.

After proper arrangement of rows and columns, the mean of A has the following decomposition:

E[A] =



−1
−1
−1
.
.
.
1
1
1


µT =



−1√
n
−1√
n
−1√
n

.

.

.
1√
n

1√
n


(
√
n‖µ‖2)

µT

‖u‖2
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Define ∆ = A− E[A].
Let u1 denote the leading (left) singular vector of A and let ū1 denote the leading (left) singular
vector of E [A]. Notice that

√
nū1 is a vector in {±}n.

Applying Davis-Kahan sin-θ theorem, we have

dp (u1, ū1) ≤ ‖∆‖2√
n‖µ‖2 − ‖∆‖2

Since σ2(E[A]) = 0, by Weyl’s theorem we get tgat

σ2(A) ≤ σ2(E[A]) + ‖∆‖2 = ‖∆‖2.

Hence we have,

ds (u1, ū1) ≤
√

2 · dp (u1, ū1)

≤
√

2
‖∆‖2√

n‖µ‖2 − ‖∆‖2

where ds (u1, ū1) = min{‖u1 − ū1‖2, ‖u1 + ū1‖2}.
Recall that in spectral clustering,

û1 , Sign(u1). (6.1)

Without loss of generality, assume that ds(u1, ū1) = ‖u1 − ū1‖2. If not we can take ũ1 = −u1, then
ds(ũ1, ū1) = ‖ũ1 − ū1‖2 and clustering through the sign of ũ1 is equivalent to clustering through the
signs of u1.

Our goal is to bound the number of misclassified data points. We have,

dH(
√
nū1, û1) ,

n∑
i=1

1{√nū1,i 6= û1,i} (number of different coordinates)

≤
n∑
i=1

(√
nū1,i −

√
nu1,i

)2
= n‖ū1 − u1‖22
= n · d2

s(u1, ū1),

where the second inequality holds because if
√
nū1,i 6= û1,i, then

√
nū1,i and

√
nu1,i have different

signs, and thus |√nū1,i −
√
nu1,i| ≥ |

√
nū1,i| = 1.

Therefore,
1

n
dH(
√
nū1, û1) ≤ 2‖∆‖22

(
√
n‖u‖2 − ‖∆‖2)

2 (6.2)

The expression in the left hand side of the inequality above can be interpreted as the fraction of

misclassified data points. Inequality (6.2) implies that 1
ndH(

√
nū1, û1)→ 0 if

√
n ‖u‖2
‖∆‖2 →∞ .

Notice that A is a random matrix and thus ∆ is a random matrix In order to bound ‖∆‖2, we will
next introduce some concentration inequalities results.
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6.2 Concentration Inequalities

6.2.1 Markov Inequality

Theorem 6.1 (Markov’s inequality). Given a non negative random variable X with E[X] < ∞,
we have

P (X ≥ t) ≤ E[t]/t.

The proof of the Markov inequality is left to the reader. Although the Markov inequality is
simple, it turns out that it is the “mother” of many concentration inequalities that we are going to
derive.

6.2.2 Moment Method

The Markov inequality only involves the first moment of X. When higher moments of X are
available, we could derive tighter concentration bounds:

Theorem 6.2 (Moment method). Suppose X is a random variable with E[|X − E[X]|k] < ∞.
Then for any t > 0,

P{|X − E[X]| ≥ t} ≤ E[|X − E[X]|k]
tk

.

Recall that the moment generating function (MGF) of a random variable X is defined as

ϕx(t) , E[etX ]

= E

[ ∞∑
k=0

(tX)k

k!

]

=
∞∑
k=0

E[Xk]tk

k!
,

where we here interchange the summation and expectation (needs to be justified). As we can see,
the moment generating function involves the moments E[Xk] of the random variable X for all
k ∈ N. It turns out that we can derive a concentration inequality in terms of the MGF of X.

Theorem 6.3 (Chernoff’s Bound). Suppose X has ϕx(λ) <∞ for |λ| ≤ b and E [X] = µ. Then,

P [X − µ ≥ t] ≤ exp

(
− sup
λ∈[0,b]

{λ(t+ µ)−MX(λ)}
)

P [X − µ ≤ −t] ≤ exp

(
− sup
λ∈[−b,0]

{λ(µ− t)−MX(λ)}
)

where MX(λ) , logE[eλ(x−u)] is the log moment generating function of X.

Proof. For any λ ∈ [0, b],

P{X − µ > t} = P{eλ(X−µ) > eλt} apply Markov’s inequality to get

≤ e−λtE[eλ(X−µ)] ∀t ≥ 0

= exp (− (λt+ λµ−MX(λ))) ,

Minimizing the right hand side of the last display over λ ∈ [0, b] gives the desired bound. The
desired bound for P [X − µ ≤ −t] follows similarly.
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Example 6.1 (Normal random variable). Let X ∼ N(µ, σ2). We have E[eλ(X−µ)] = e
1
2
λ2σ2

and

P{X − µ ≥ t} ≤ exp

(
− sup
λ∈[0,∞)

{λt− λ2σ
2

2
}
)

= exp

(
− t2

2σ2

)
.

and similarly, P{X − µ ≤ −t} ≤ exp
(
− t2

2σ2

)
. Thus, by the union bound,

P{|X − µ| ≥ t} ≤ 2 exp

(
− t2

2σ2

)
.

Recall that P{X − µ ≥ t} = Q(t/σ), where Q(x) = 1√
2π

∫∞
x e−y

2/2dy. In homework 1, we

introduce a lower bound to Q(x) as Q(x) ≥
(
1− 1

x2

)
e−x

2/2

x
√

2π
. Hence, we have that

P{|X − µ| ≥ t} ≥ 2

(
1− σ2

t2

)
σ

t
√

2π
exp

(
− t2

2σ2

)
.

Hence, the tail probability P{|X − µ| ≥ t} decays in t as exp(−t2). Such a decaying tail is called
“Gaussian tail”. In the next subsection, we will identify a class of random variables which has a fast
decaying tail than Gaussian tail.

6.2.3 Sub-gaussian Random Variables

Definition 6.1 (Sub-gaussian random variable). A random variable X is sub-gaussian with mean

µ, if ∃ σ ∈ R s.t E[eλ(X−µ)] ≤ e 1
2
σ2λ2 .

Note: In the definition above if X is normal then σ = sd(X).

Proposition 6.1. If X is sub-gaussian (µ, σ2) then,

P{X − µ ≥ t} ≤ e
−t2
2σ2 (6.3)

and

P{X − µ ≤ t} ≤ e
−t2
2σ2 (6.4)

Combining inequalities 6.3 and 6.4 and union bound yields,

P{|X − µ| ≤ t} ≤ 2e
−t2
2σ2 .

Proof. The proof directly follows from the Gaussian example.

Note: Proposition 6.1 implies that sub-gaussian random variables decay at least as fast as a Gaussian
tail.

Example 6.2 (Rademarker random variable). Let X be a Rademarker random variable defined as

X ∼
{

1 with probability 1/2

−1 with probability 1/2.
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Then we get,

E[eλ(X−µ)] = E[eλX ]

=
1

2
eλ +

1

2
e−λ (using taylor expansion we get)

≤ 1

2

∞∑
k=0

(
λk

k!
+

(−λ)k

k!

)
(the odd terms cancel to give)

=
∑

k=even

λk

k!

=

∞∑
k=0

λ2k

(2k)!

≤ 1 +

∞∑
k=1

λ2k

2kk!
(since (2k)! ≥ 2k k! ∀ k ≥ 1)

= 1 +
∞∑
k=1

(λ
2

2 )k

k!

= e
λ2

2 .

Hence the Rademarker random variable X is sub-gaussian with σ = 1.

Example 6.3 (Bounded Random Variables). Suppose X is zero mean random variable, taking
values over [a, b]. Then X is sub-gaussian with (µ = 0, σ = b− a).

Note: The proof of the claim above involves using the so-called symmetrization technique, which
consists of creating an independent copy of the random variable X, then using Jensen’s inequality
to pull out the expectation.

Proof. Since X is a zero mean random variable, E[eλ(X−µ)] = E[eλX ].

E[eλ(X−µ)] = E[eλ(X−E[X′])] where X ′ is an independent copy of the random variable X

= EX [eλEX′ (X−X
′)]

≤ EXEX′ [eλ(X−X′)] by Jensen’s inequality

= EXX′Eε[e
λε(X−X′)] where ε is a Rademarker variable independent of X and X ′

≤ EXX′ [e
1
2
λ2(X−X′)2 ]

≤ e 1
2
λ2(b−a)2 since X and X ′ are bounded.

It follows then that X is sub-gaussian with (µ = 0, σ = b− a).

Note: The above proof based on symmetrization may not yield the smallest value of σ. To see this,
recall that for Rademacher random variable, we showed that it is subgaussian with σ = 1, while the
above symmetrization proof only shows that it is subgaussian with σ = 2. However, for most of
time, we care about the scaling instead of the precise constants, the symmetrization technique will
be sufficient and very useful.
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Recall that if x1, . . . , xn are independent Gaussian, then the sum
∑n

i=1 xi is also Gaussian. The
following result generalizes the above property to sub-gaussian random variables.

Proposition 6.2. Suppose x1, . . . , xn are independent and xi is sub-gaussian (µi, σi), then
∑n

i=1 xi
is sub-gaussian (

∑n
i=1 µi,

∑n
i=1 σi)

Proof.

E[eλ(
∑n
i=1 xi−

∑n
i=1 µi)]

= E[eλ(
∑n
i=1(xi−µi)]

=
n∏
i=1

E(eλ(xi−µi)) (xi
′s are independent)

≤
n∏
i=1

e
1
2
λ2σ2

i

= e
1
2
λ2(

∑n
i=1 σ

2
i )

Proposition 6.2 immediately implies a concentration inequality for sum of independent sub-
gaussian random variables, which is known as Hoeffding’s inequality when they are bounded random
variables.

Theorem 6.4 (Hoeffding’s inequality). Suppose x1, . . . , xn are independent and xi is sub-gaussian(µi, σi),
then

P{
n∑
i=1

(xi − µi) ≥ t} ≤ e
− t2

2
∑n
i=1

σ2
i

In particular, if xi is supported over [ai, bi], then

P{
n∑
i=1

(xi − µi) ≥ t} ≤ e
− t2

2
∑n
i=1

(bi−ai)2

The following theorem gives equivalent conditions for a random variable to be sub-gaussian.

Theorem 6.5. Suppose X is sub-gaussian with mean 0, then the following are equivalent.

1. E[eλX ] ≤ eλ
2σ2

2 for a constant σ.

2. ∃ a constant c and Z ∼ N(0, τ2), such that

P{|X| ≥ s} ≤ cP{|Z| ≥ s},∀s ≥ 0

3. ∃ a constant θ ≥ 0, such that E[X2k)] ≤ (2k)!
2kk!

θ2k.

4. E[e
λX2

2σ2 ] ≤ 1√
1−λ ,∀λ ∈ [0, 1]

The proof is left as homework. The second property says that Z decays as fast as a Gaussian
tail. The third property yields that (

E[X2k)]
) 1

2k � θ
√

2k.

Motivated by this scaling behavior, we can define a sub-Gaussian norm of X.
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Definition 6.2 (Sub-Gaussian norm). Thus sub-gaussian norm of X, denoted by ‖X‖ψ2 , is defined
as

‖X‖ψ2 = sup
p≥1

(E [X])1/p

√
p

.

Note: It can be easily verified that sub-gaussian norm is indeed a valid norm. Since properties 1
and 3 and equivalent, it follows that

‖X‖ψ2 � σ.

6.2.4 Sub-exponential random variables

Although the class of sub-gaussian random variables is quite wide, it leaves out some useful random
variables which have tails decaying slower than Gaussian (heavier tails than Gaussian tail). One
such an example is a standard exponential random variable.

Example 6.4. Exponential random variable X ∼ exp(λ):

P{X ≥ s} = e−λs, ∀s > 0.

We see that the tail probability P{X ≥ s} decays in s exponentially as exp(−s) as opposed to the
Gaussian tail exp(−s2). Such a exponential decaying tail is called “exponential” tail.

To cover random variables with exponential tails, we consider a class of sub-exponential random
variables which have tails decaying at least as fast as an exponential tail.

Definition 6.3 (Sub-exponential). Random variable X with mean µ is sub-exponential if ∃ ν > 0
and α > 0 such that

E[eλ(X−µ)] ≤ e ν
2λ2

2 for all |λ| ≤ 1

α
.

Note: The MGF of a sub-exponential random variable X has similar upper bound as in the
sub-Gaussian case; the only difference is that the upper bound only holds in a small neighborhood
of 0. Clearly, sub-gaussian(µ, σ) is sub-exponential with mean µ, ν = σ, and α = 0

Example 6.5 (χ2 distribution). If Z ∼ N(0, 1) and X = Z2, then X is called χ2 random variable
with E[X] = E[Z2] = 1.

E[eλ(X−µ)]

= E[eλ(Z2−1)]

= e−λE[eλZ
2
]

=

{
e−λ 1√

1−2λ
if λ < 1

2

∞ if λ ≥ 1
2 .

Since e−λ 1√
1−2λ

≤ e2λ2 when |λ| ≤ 1
4 , X is sub-exponential with ν2 = 4, and α = 4.

Theorem 6.6 (Sub-exponential tail bound). Suppose X is sub-exponential (ν, α), then

P{X ≥ µ+ t} ≤
{
e−

t2

2ν2 if 0 ≤ t ≤ ν2

α

e−
t
2α if t > ν2

α .
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Note: Sub-exponential random variables satisfy large deviation inequalities similar to ones for
sub-gaussian. The difference is that two tails have to appear here: They have Gaussian tails when
the deviation t is relatively small comparing to ν2/α, and have exponential-tail when t is relatively
large.

Proof.

P{X ≥ µ+ t}

≤ exp

(
− sup
λ∈[0, 1

α
]

{λt− logE[eλ(X−µ)]}
)

(Chernoff’s bound)

≤ exp

(
− sup
λ∈[0, 1

α
]

{λt− 1

2
λ2ν2}

)
(X is sub-exponential)

Define g(λ, t) = λt− 1
2λ

2ν2

To get the maximum value of g(λ, t), let ∂g(λ,t)
∂λ = t− λν2 = 0, then we have λ = t

ν2
.

Case 1. t
ν2
≤ 1

α , i.e., 0 ≤ t ≤ ν2

α

sup
λ∈[0, 1

α
]

g(λ, t) = g(
t

ν2
, t) =

t2

2ν2

thus

exp

(
− sup
λ∈[0, 1

α
]

{λt− 1

2
λ2ν2}

)
= e−

t2

2ν2

Case 2. t
ν2
> 1

α , i.e., t >
ν2

α

sup
λ∈[0, 1

α
]

g(λ, t) = g(
1

α
, t) =

t

α
− 1

2α2
ν2 =

t

2α

thus

exp

(
− sup
λ∈[0, 1

α
]

{λt− 1

2
λ2ν2}

)
= e−

t
2α

Idea: If I have bounds on moments of X, then can I derive tail bounds? This motivates us to
consider the following Bernstein’s condition on moments of X.

Definition 6.4 (Bernstein’s condition). Given a random variableX with E [X] = µ and E
[
(X − µ)2

]
=

σ2, we say it satisfies Bernstein’s condition with parameter b > 0, if E[|X − µ|k] ≤ 1
2k!σ2bk−2.

Proposition 6.3. If X with E [X] = µ and E
[
(X − µ)2

]
= σ2 satisfies Bernstein’s condition with

parameter b > 0. Then X is sub-exponential with (
√

2σ, 2b).
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Proof.

E[eλ(X−µ)]

=

∞∑
k=0

λkE[(X − µ)k]

k!
(Taylor’s expansion)

= 1 +
λ2E[(X − µ)2]

2!
+

∞∑
k=3

λkE[(X − µ)k]

k!

≤ 1 +
λ2

2!
σ2 +

∞∑
k=3

λkσ2bk−2

2
(Apply Bernstein’s condition)

= 1 +
λ2σ2

2
+
λ2σ2

2

∞∑
k=3

(λb)k−2 (∗)

If λ < 1
b , i.e., λb < 1 then

∑∞
k=3(λb)k−2 = λb

1−λb . Therefore,

(∗) ≤ 1 +
λ2σ2

2
(1 +

λb

1− λb)

= 1 +
λ2σ2

2

1

1− λb
≤ eλ

2σ2

2
1

1−λb (Since 1 +X ≤ eX) (∗∗)

Assume λ ≤ 1
2b , then 1− λb ≥ 1

2 . It follows that

(∗∗) ≤ eλ2σ2
= e

λ2

2
(
√

2σ)2 ,

so X is sub-exponential with (
√

2σ, 2b).

Note: Combining the above proposition and Theorem 6.6, we immediately get tail bounds for
random variables satisfying the Bernstein’s condition. It turns out that we can sharp the tail bounds
a bit by directing plugging the upper bound (∗∗) on MGF of X into the Chernoff bound, which
gives the so-called Bernstein’s inequality.

Theorem 6.7 (Bernstein’s inequality). If X with E [X] = µ and E
[
(X − µ)2

]
= σ2 satisfies

Bernstein’s condition with parameter b > 0, then

P{|X − µ| ≥ t} ≤ 2e
− t2

2(σ2+bt) ≤

2e
− t2

2(c+1)σ2 if t ≤ cσ2

b

2e
− t

2(1+1/c) if t ≥ cσ2

b ,

where c is a constant.

Proof. By plugging the upper bound (∗∗) on MGF of X into the Chernoff bound, we get that

P{X − µ ≥ t} ≤ exp

(
− sup
λ∈[0,1/b)

{
λt− λ2σ2

2(1− λb)

})
= exp

(
− t2

2(σ2 + bt)

)
,

where the last equality holds because by setting λ = t
bt+σ2 .
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An important example of a random variable satisfying the Bernstein’s condition is the bounded
random variable.

Example 6.6 (Bounded random variable). Assume E[X] = µ, E[|X − µ|2] = σ2 ≤ b2, and
|X − µ| ≤ b. Then

E[|X − µ|k]] ≤ E[|X − µ|2]bk−2 = σ2bk−2, ∀k ≥ 3.

Therefore, X satisfies the Bernstein’s condition with parameter b. It follows from Bernstein’s
inequality that

P{|X − µ| ≥ t} ≤ 2e
− t2

2(σ2+bt) ≤

2e
− t2

2(c+1)σ2 if t ≤ cσ2

b

2e
− t

2(1+1/c) if t ≥ cσ2

b ,

Note: It is instructive to compare the Bernstein’s inequality with the Hoeffding’s inequality for
bounded random variables. Recall that by Hoeffding’s inequality,

P{X − µ ≥ t} ≤ e−
t2

8b2 .

Notice that Bernstein’s inequality involves both σ and b, while Hoeffding’s inequality only involves
b. If t ≤ cσ2

b , then Bernstein’s inequality shows that X has Gaussian tail exp(−t2/σ2), while
Hoeffding’s inequality shows that X has Gaussian tail exp(−t2/b2). In the case where σ2 � b2,
Bernstein’s inequality gives substantially tighter bounds than Hoeffding’s inequality. Intuitively,
that is because Bernstein’s inequality utilizes the variance information, while Hoeffding’s inequality
does not not.
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Chapter 7

Matrix Concentration Inequalities

Plan ahead:

• Sub-exponential random variable

• Gaussian concentration inequality

• Slepian’s comparison inequality and concentration inequality for Gaussian random matrices

7.1 Review of Sub-exponential random variables

Definition 7.1 (Sub-exponential (ν, α)). A random variable X with E [X] = µ is sub-exponential
with parameter (ν, α) if:

E[e(λ(X−µ))] ≤ e ν
2λ2

2 ; for |λ| ≤ 1

α

By plugging the above upper bound to MGF of X into Chernoff’s bound, and optimizing over
the exponent, we get the following tail bounds (The detailed derivation is given in the last lecture).

Sub-exponential tail bounds :

P[X ≥ µ+ t] ≤
{
e
−t2
2ν2 if t ∈ [0, ν

2

α ]

e
−t
2α if t ≥ ν2

α .

Note: X has either Gaussian tail or exponential tail depending on how large the deviation t is.

Definition 7.2 (Bernstein’s condition). Given a random variable with E[X] = µ and var(X) = σ2.
It is said that X satisfies Bernstein’s condition (BC) with parameter b > 0 if for k ≥ 3:

E[|X − µ|k] ≤ 1

2
k!σ2b(k−2)

Proposition 7.1. If X satisfies Bernstein’s condition with parameter b > 0, then X is sub-
exponential with parameters (

√
2σ, 2b). It further follows that

P[X ≥ µ+ t] ≤
{
e
−t2
4σ2 if t ∈ [0, σ

2

b ]

e
−t
4b O.W

Proof. The proof is given in the last lecture.
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We can get a slightly tighter bound by directly invoking the Chernoff’s bound.

Proposition 7.2 (Bernstein’s inequality). If X satisfies BC with b > 0, then

P[X ≥ µ+ t] ≤ e
−t2

2(σ2+bt) .

Note: One can easily check that

e
−t2

2(σ2+bt) ≤
{
e
−t2
4σ2 if t ∈ [0, σ

2

b ]

e
−t
4b O.W

Proof. Recall that in the last lecture, we have showed that if X satisfies BC with parameter b > 0,
then

E
[
eλ(X−µ)

]
≤ exp

(
λ2σ2

2(1− λb)

)
.

Directly plugging in the above bound to Chernoff’s bound, and optimizing over the exponent, we
get the desired result.

Example 7.1 (Bounded random variable.). Give a bounded random variable X with E[X] = µ,
var(X) = σ2, and |X−µ| ≤ b. We have shown in the last lecture that X satisfies BC with parameter
b. By Bernstein’s inequality,

P[X − µ ≥ t] ≤ e
−t2

2(σ2+bt)

We can also invoke Hoeffding’s inequality to get that

P[X − µ ≥ t] ≤ e
−t2
8b2 .

Notice that if 0 ≤ t ≤ σ2

b and σ � b, then Bernstein’s inequality implies a Gaussian tail with a
faster decaying rate than Hoeffding’s inequality.

7.1.1 Sum of independent sub-exponential random variables

Recall that in the last lecture, we have shown that sum of independent sub-gaussian random variables
is also sub-gaussian. The following theorem gives the similar conclusion for sub-exponential random
variables.

Theorem 7.1. If X1 . . . Xn are independent random variables where Xi’s are sub-exponential
(νi, αi) with mean µi. Then

∑n
i=1Xi is sub-exponential with (ν∗, α∗), where ν2

∗ =
∑n

i=1 ν
2
i and

α∗ = max1≤i≤nαi.

Proof. Note that

E[eλ
∑n
i=1(Xi−µi)] =

n∏
i=1

E[eλ(Xi−µi)]

≤
n∏
i=1

e
λ2ν2i

2 ∀|λ| < 1

α∗

= e
λ2

∑n
i=1(ν

2
i )

2 ∀|λ| < 1

α∗
,

where the first equality holds because Xi’s are independent.
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Note: Theorem 7.1 together with sub-exponential tail bounds immediately imply that

P[

n∑
i=1

(Xi − µi) ≥ t] ≤

 e
−t2

2ν2∗ if t ∈ [0, ν
2
∗
α∗

]

e
−t
2α∗ O.W

Example 7.2 ( χ2 distribution). . Suppose Xi are i.i.d random variables with Xi ∼ N (0, 1), 1 ≤
i ≤ n. Let Y =

∑n
i=1X

2
i = ‖X‖22 ∼ χ2(n). Recall X2

i is sub-exponential (2, 4) (check last lecture).
Then Theorem 7.1 implies that Y =

∑n
i=1X

2
i is sub-exponential(ν∗, α∗), where ν2

∗ = 4n and α∗ = 4.

=⇒ P[Y − n ≥ t] ≤
{
e
−t2
8n if t ∈ [0, n]

e
−t
8 if t ≥ n

Note: Recall that in the first homework, we outline a derivation to show that P[‖X‖22 ≥ n
1−ε ] ≤ e

−ε2n
4

for any ε ∈ [0, 1].

Example 7.3 (Binomial distribution). Suppose Xi are i.i.d random variables with Xi ∼ Bern(p)
for 1 ≤ i ≤ n. Let Y =

∑n
i=1X

2
i , then Y ∼ Binom(n, p). Since Xi is a bounded random variable, it

satisfies BC with b = 1. It follows that Xi is sub-exponential with parameter (
√

2σ, 2b) Hence Y is
sub-exponential and thus

P[Y − np ≥ t] ≤
{
e

−t2
4np(1−p) if t ∈ [0, np(1− p)]
e
−t
4 O.W

7.1.2 Application: maximum degree in Erdős - Rényi random graph G(n, p)

Given n nodes and for each pair of nodes we connect them with probability p.

Definition 7.3 (Erdős - Rényi random graph G(n, p)). Suppose there are n vertices indexed by
[n]. We generate a random graph G in the following way. For each pair of two vertices i and j, they
are connected by an edge independently at random with probability p.

If there is an edge between i and j, then we say i is neighbor of j and j is neighbor of i. Let
di denote the number of neighbors of node i. Then di ∼ Binomial(n− 1, p). We are interested in
deriving a high probability bound to dmax = max1≤i≤n di, i.e., to find a threshold τn s.t. dmax ≤ τ(n)
with probability tending to 1 as n −→∞. We assume p is bounded away from 1 and consider the
following three cases.

Case 1: np = ω(log(n)) ⇐⇒ np
log(n) →∞ as n→∞. Since di ∼ Binom(n− 1, p), it follows that

=⇒ P[di − (n− 1)p ≥ t] ≤
{
e

−t2
4(n−1)p(1−p) if t ∈ [0, (n− 1)p(1− p)]
e
−t
4 O.W

Notice that di are identically distributed (but not independent). Using the union bound, we have

P[dmax > τ(n)] = P[ max
1≤i≤n

(di) > τn]

≤
n∑
i=1

P[di > τn]

= nP[d1 > τ(n)].
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We would like to have nP[d1 > τn]→ 0 as n→∞; hence we could choose τn so that P[d1 > τ(n)] ≤
1

n1+ε . Therefore, let

e
−t2

4(n−1)p(1−p) =
1

n1+ε
⇐⇒ t = 2

√
(1 + ε)(n− 1)p(1− p) log(n)

It remains to check if the above value of t is in [0, (n − 1)p(1 − p)]. This is indeed true because
np

log(n) →∞ as n→∞. Therefore,

τn = (n− 1)p+ 2
√

(1 + ε)(n− 1)p(1− p) log(n) ∼ (1 + o(1))np.

Case 2 : np = a log(n) for a constant a > 0. Notice that p = alog(n)
n −→ 0 as n −→∞. If we

stick to our previous choice of τn, i.e., τn = 2
√

(1 + ε)(n+ 1)p(1− p)log(n), then we have:

t ≤ (n− 1)p(1− p)

⇐⇒ 2
√

(1 + ε)log(n) ≤
√

(n− 1)p(1− p) ∼
√
a log(n)

⇐⇒ a > 4(1 + ε)

Hence, our previous choice of τn only works if a > 4(1 + ε).
Instead, we look at the sub-exponential tail of Binomial distribution. We need to ensure

t
4 ≥ (1+ε) log(n). and t > (n−1)p(1−p) ∼ a log(n). Therefore, we choose t = max{4(1+ε), a} log(n).
Hence,

Pr{max
1≤i≤n

di > (n− 1)p+ t} ≤ 1

nε
→ 0

It follows that

τ(n) = (n− 1)p+ max{4(1 + ε), a} log(n) ∼ (a+ max{4(1 + ε, a}) log(n).

Case 3 : p = a
n , where a is constant. This case is left as a homework problem.

Finally, we remark that if we use Hoeffding’s inequality, we ge that

Pr{di − np ≥ t} ≤ e−
t2

2n

and thus τ(n) = (n− 1)p+
√

2(1 + ε)n log(n). We see that Bernstein’s inequality implies tighter
bound than Hoeffding’s inequality. The reason is that Hoeffding’s inequality does not utilize the
variance information.

7.2 Gaussian Concentration Inequality, Slepian Comparison in-
equality, and Gaussian random matrix

Recall the Gaussian concentration inequality.

Theorem 7.2. Suppose Xi
iid∼ N(0, 1) for 1 ≤ i ≤ d. let f to be 1-Lipschitz function Rd → R with

respect to the Euclidean Norm. Then for all t > 0,

P [|f(X)− E [f(X)] | ≥ t] ≤ 2e−
t2

2
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Applying the Gaussian concentration inequality, we have the following concentration inequality
for the spectrum norm of a Gaussian random matrix.

Theorem 7.3. Suppose A ∈ Rn×d is a Gaussian random matrix with Aij
i.i.d.∼ N (0, 1). Then

P [||A||2 − E [||A||2] ≥ t] ≤ 2e−
t2

2 .

Proof. It suffices to check that f(A)
∆
= ||A||2 is 1-Lipschitz. Indeed, ||A−B||2 ≤ ||A−B||F .

To derive a high-probability bound on ‖A‖2, it remains to bound E [||A||2]. We need Slepian’s
Comparison Inequality for this.

Theorem 7.4 (Slepian’s comparison inequality). Consider two centered Gaussian Process (XS)S∈T
and (YS)S∈T , where T is a given set. Suppose E[(Xs −Xt)

2] ≤ E[(Ys − Yt)2] for all (s, t) ∈ T × T ,
Then

E
[
sup
s∈T

Xs

]
≤ E

[
sup
s∈T

Ys

]
.

Intuitively speaking, E[(Xs −Xt)
2] ≤ E[(Ys − Yt)2] implies that Y is more volatile than X, and

hence we would expect E
[
sup
s∈T

Ys

]
is larger than E

[
sup
s∈T

Xs

]
.

Applying Slepian’s comparison inequality, we have the following bound on E [‖A‖2].

Theorem 7.5. Suppose A ∈ Rn×d is a Gaussian random matrix with Aij
i.i.d.∼ N (0, 1). Then

E[||A||2] ≤ √n+
√
d.

Note: By combining Theorem 8.1 and Theorem 8.2, we get that Pr{||A||2 ≥
√
n+
√
d+ t} ≤ 2e−

t2

2 .

Proof. Recall that
||A||2 = sup

||v||2=1
||Av||2 = sup

||v||2=1,||u||2=1
uTAv.

Define Xuv , uTAv for all ‖u‖2 = 1 and ‖v‖2 = 1. Fix u, v, ũ, ṽ with unit norms. Then

E[(Xuv −Xũṽ)
2] = E[(uTAv − ũTAṽ)2]

(a)
= E[(〈uT v,A〉 − 〈ũT ṽ, A〉)2]

= E[(〈uT v − ũT ṽ, A〉)2]

= E[
∑
i,j

Ai,j(u
T v − ũT ṽ)2

i,j ]

= E[
∑
i,j

∑
i′,j′

Ai,jAi′,j′(u
T v − ũT ṽ)i,j(u

T v − ũT ṽ)i′,j′ ]

=
∑
i,j

E(A2
i,j)(u

T v − ũT ṽ)2
i,j

= ||uT v − ũT ṽ||2F
≤ ||u− ũ||22 + ||v − ṽ||22.

where (a) holds because uTAv =< uvT , A >= Tr(vuTA) = Tr(uTAv).
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Define Yu,v = 〈u, g〉+ 〈v, h〉, where g ∼ N (0, In×n) and h ∼ N (0, Id×d), and g is independent of
h. Then

E[(Yuv − Yũṽ)2] = E[(

N(0, ||u− ũ||22 + ||v − ṽ||22)︷ ︸︸ ︷
< u− ũ, g > + < v − ṽ, h >)2]

= ||u− ũ||22 + ||v − ṽ||22,

where the second equality holds because 〈g, u− ũ〉 ∼ N(0, ||u− ũ||22) and 〈h, v− ṽ〉 ∼ N(0, ||v− ṽ||22),
and they are independent to each other. Hence, we have E[(Xuv −Xũṽ)

2] ≤ E[(Yuv − Yũṽ)2].
Furthermore,

E[ sup
||v||2=1,||u||2=1

Yuv] = E[ sup
||v||2=1,||u||2=1

{〈u, g〉+ 〈v, h〉}]

= E[||g||2 + ||h||2],

≤
√
E[||g||22] +

√
E[||h||22]

≤ √n+
√
d

where the second equality holds because the optimal u and v are given by u = g
||g||2 and v = h

||h||2 .
The desired conclusion follows by applying Slepian’s comparison inequality.
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Chapter 8

Spectral clustering and Laplacian
matrices

Outline

• Concentration inequality for Gaussian random matrix

• Spectral clustering algorithm based on Laplacian matrix

8.1 Concentration inequality for Gaussian random matrix (cont’d)

8.1.1 Brief review

Theorem 8.1. Given Aij
iid∼ N (0, 1), we have

Pr {| ‖A‖2 − E [‖A‖2] |> t} ≤ 2e
−t2
2 .

It implies that ‖A‖2 has a Gaussian tail behavior.

Theorem 8.2. Given Gaussian random matrix A ∈ Rn×d, we have

E [‖A‖2] ≤ √n+
√
d.

Theorem 8.1 and Theorem 8.2 imply that

Pr
{
‖A‖2 ≥

√
n+
√
d+ t

}
≤ 2e−t

2/2.

Therefore, when the deviation t gets bigger, the probability becomes smaller. In particular, let
t = tn, and assume that tn →∞ as n→∞. Then we get that with probability converging to 1,

‖A‖2 ≤
√
n+
√
d+ tn,

In plain english, ‖A‖2 is likely to be smaller than
√
n+
√
d+ tn.

Remark Is
√
n+
√
d+ tn a tight upper bound? The following simple analysis shows that the upper

bound is tight up to constant factors. Consider ‖A‖2 as the sum of squared length of projections of
rows of A to best-fit vector v. That is,

‖A‖22 = max
‖v‖2=1

‖Av‖22

≥ ‖Ae1‖22,
(8.1)
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where e1 ∈ Rd is a unit vector whose first element is equal to 1 and the other elements are all zero.
In fact, we can use any other basis vector ei. Then ‖Ae1‖22 = ‖A·1‖22, which is the squared length
of the first column of A, and follows chi-squared distribution with n degree of freedom (χ2(n))
(Recall that chi-squared random variable is expressed as the summation of squared normal random
variables). In addition, we have shown in the previous lectures that chi-squared random variable is
also highly concentrated on its mean, and thus ‖A‖2 %

√
n with high probability. Note that the

same argument is applied for AT . Hence, we have

‖A‖2 % max
{√

n,
√
d
}

with high probability. Thus, we see that the upper and lower bounds of ‖A‖2 differ by at most a
constant factor. In plain english, ‖A‖2 is roughly on the same order as the length of the row or
column vector of A. Notice that we have assumed that A has independent entries. It is easy to see
that without such independence assumption, ‖A‖2 could be much larger than the length of the row
or column vector of A, for example, when all rows or columns of A are identical.

8.2 Spectral clustering under Gaussian mixture model (revisited)

In the previous class, we learned that the fraction of misclassified nodes is bounded as,

(Fraction of misclassified nodes) ≤ 2‖∆‖22
(
√
n‖µ‖2 − ‖∆‖2)

2 ,

where ∆ = X − E [X]. Note that X ∈ Rn×d is the data matrix, and µ is the cluster center under

Gaussian mixture model. Notice that ∆ij
iid∼ N(0, σ2). Then by plugging in the previous result, we

have
‖∆‖2 ≤ σ

(√
n+
√
d+ tn

)
,

and σ behaves as a scaling factor. From this result, if
√
n‖µ‖2 � σ(

√
n+
√
d+ tn), then the fraction

of misclassified nodes goes to zero with high probability. Hence, we say spectral clustering achieves
approximate cluster recovery under sufficient condition

√
n‖µ‖2 � σ(

√
n+
√
d+ tn) .

If the dimension of dataset, d, is proportional to n, the number of data points (i.e. d = αn, where α
is a fixed constant), we have

‖µ‖2 � σ

(
1 +
√
α+

tn√
n

)
.

Note that tn goes to ∞ arbitrarily slowly as n → ∞. Then tn√
n

goes to zero as n → ∞. As a

result, we see that the cluster separation ‖µ‖2 does not have to scale with dimension d anymore. In
contrast, recall that in the previous lectures, we have shown that a naive thresholding algorithm
needs ‖µ‖2 to scale with

√
d.

8.3 Spectral clustering based on Laplacian matrix

Plan

• In this lecture, we will introduce weighted similarity graph and its Laplacian matrices for
spectral clustering

• In the next lecture, we will introduce stochastic block model, which is a simple probabilistic
model to generate similarity (unweighted) graph.
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8.3.1 Motivation for spectral clustering based on Laplacian matrix

Recall that we have learnt spectral clustering based on data matrix X ∈ Rn×d; it involves singular
value decomposition of X or eigenvalue decomposition of XX> and X>X.

Here, we introduce a more general setup for spectral clustering. Define a similarity matrix
S ∈ Rn×n between every pair of data points. The component Sij characterizes similarity between
data points Xi· and Xj·, where Xi· denotes the ith row of X.

Example 8.1. 1. S = XXT .
Each component Sij is the inner product of xi and xj . Notice that the spectral clustering
algorithm discussed in the previous lectures deals with this similarity matrix.

2. Define S with

Sij = exp

{
− 1

2σ2
‖Xi· −Xj·‖22

}
.

This function has the form of Gaussian density function, and it is called as Gaussian kernel
function with σ. When the two data points Xi· and Xj· differ a lot, the corresponding
similarity score Sij gets smaller, and vice versa.
A crucial parameter is σ: when σ becomes larger, Sij is less sensitive to the difference between
xi and xj , and vice versa.

The similarity matrix can be equivalently viewed as a similarity graph.

Definition 8.1 (Similarity graph). Given a similarity matrix S, let G denote a weighted graph,
where each node i corresponds to a data point i; every pair of two nodes i and j are connected by
an edge with edge weight Sij . In this case S is called weighted adjacency matrix of graph G.

Note that the defined similarity graph G is a complete graph (every pair of two nodes are
connected). Often, we may apply a truncation procedure to sparsify G. There are two possible
truncation procedures. Let A ∈ Rn×n denote the similarity matrix after truncation:

• Aij = 1Sij≥ε, where ε is a given threshold.

• Aij = Sij1Sij≥ε

Equivalently, by truncating, in graph G, two nodes i and j are connected if and only if Sij ≥ ε.
In the first case, A is a binary matrix, and thus graph G after truncation becomes an unweighted
graph.

There are at least two reasons why truncation is used in practical.

1. It can potentially remove a bit of noise;

2. A is sparse and computation of A is faster. For instance, eigenvalue decomposition of A gets
faster.

Example 8.2 (A clustering example for truncation). Let us see why truncation could possibly
remove noise by considering the following example, depicted in Fig. 8.1. In this example, the data
distribution clearly does not come from Gaussian mixture model. There are two possible clusters,
one given by the “out” ring, and the other given by the “inner ring”. Two clusters have very close
cluster centers. Hence, the spectral clustering developed under GMM does not work well any more.

To deal with this, we may apply truncation. Two data points i and j are connected, i.e., Aij > 0,
if and only if Sij ≥ ε. By carefully picking the threshold ε, one can get that data points in the same
cluster are densely connected, while data points in different clusters are loosely connected, even
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Figure 8.1: An example of two clusters: one consists of data points in the out ring; the other consists
of data points in the inner ring.

though not every pair of data points in the same cluster is connected. We call edges which connect
data points in two different clusters cross links. Fig. 8.2 shows that there are few cross-links after
proper truncation.

Figure 8.2: Construction of cross links between inner and outer ring

An important question is: can we recover clusters from A? Let us consider two cases:

1. There is no cros link. In this case, we can classifies the inner and outer ring very easily by
finding the two connected components.

2. There are a few cross links. In this case, we will use spectral clustering based on Laplacian
matrix of a graph.
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8.3.2 Weighted graph and its Laplacian matrices

Consider a general symmetric matrix A ∈ Rn×n with Aii = 0 and all Aij ≥ 0. Let G denote a graph
with n nodes, where nodes i and j are connected if and only if Aij > 0, and when they are connected,
Aij is the edge weight for edge (i, j). Notice that there is a one-to-one correspondence between A

Figure 8.3: Node i and j are connected with edge weight Aij

and G , and A is called (weighted) adjacency matrix of graph G. When A is a binary matrix, there
is no weight on the edge and A only represents whether the two points are the neighbors. In this
case, A is simply called adjacency matrix of G.

Consider the following diagonal matrix D:

D =

d1

. . .

dn

 ,

and its ith elements are defined as di =
∑n

j=1Aij for i ∈ {1, . . . , n}. If Aij ∈ {0, 1}, then di
represents the number of neighbors of node i. Hence di is called degree of node i, and D is called
degree matrix.

Definition 8.2. (Laplacian matrix) There are three possible versions of Laplacian matrix.

1. unnormalized version:

L = D −A, (unnormalized)

where A is a weighted adjacency matrix defined previously.

2. normalized version: Assume that D has no zero diagonal elements. With this D,

Ln = D−
1
2LD−

1
2

= I −D− 1
2AD−

1
2 ,

(normalized)

where

D−
1
2 =


1√
d1

0 · · · 0

0 0
. . . 0

0 0 · · · 1√
dn


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3. random walk version:

Lrw = D−1L

= I −D−1A = D−
1
2LnD

1
2

(randomwalk)

Note For undirected graph G, A is symmetric (i.e., Aij = Aji). Hence, L and Ln are also
symmetric, but Lrw may not be symmetric.

Question

1. Why is this called Laplacian?

Recall: For a scalar function f(x) : R→ R, Laplacian operator is simply defined as,

∇2f(x) ,
d2f(x)

(dx)2
. (8.2)

We consider a (unweighted) line graph G with n nodes. Each node is associated with a value
xi, and the values at any two neighboring nodes differ by δx, i.e., xi+1 − xi = δx for all
1 ≤ i ≤ n− 1.

Figure 8.4: Each point in G has two neighbors

Assume n is large and δx is small. With this notation, we can approximate the derivative of f
at xi and xi−1 respectively as,

f ′(xi) ≈
f(xi+1)− f(xi)

δx
,

f ′(xi−1) ≈ f(xi)− f(xi−1)

δx
.

Then the second derivative at xi can be approximated as,

∇2f(xi) = f ′′(xi) ≈
f ′(xi)− f ′(xi−1)

δx

≈ f(xi−1) + f(xi+1)− 2f(xi)

(δx)2
.

(8.3)

Now consider the unnormalized Laplacian matrix L = D−A, where A is the adjacency matrix
of the line graph G. We have
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L

f(x1)
...

f(xn)

 =


...

2f(xi)− f(xi−1)− f(xi+1)
...

 , (8.4)

since every ith node has (i− 1)th and (i+ 1)th nodes as its neighbors, so its degree is equal
to 2 for i = 2, . . . , n. By comparing (12.2) and (8.4), we can observe that the ith element of
(8.4) is approximately −∇2f(xi)(δx)2.

2. Why is Lrw called random walk version?

To answer for this question, let’s see what the random walk is.

Definition 8.3. (Randomwalk on Graph G) We say X0, X1, . . . , Xt, . . . is random walk on graph
G with corresponding A if

P (Xt+1 = j | Xt = i) ,
1

di
Aij .

In other words, the random walk on undirected graph is a Markov chain defined on the graph,
which jumps over the nodes at each time setp, and the probability of which node jumping to
only depends on the current node that it is at. Denote Pij as the transition probability matrix
for random walk. That is,

Pij ,
1

di
Aij .

Since D is a diagonal matrix, it is easy to see that Lrw = I − P . Hence L is called random
walk version of Laplacian.

8.3.3 Properties of Laplacian matrices

In this subsection, we characterize some properties of Laplacian matrices.

Proposition 8.1. Recall L = D −A and Ln = I −D− 1
2AD−

1
2 . Then, for any v ∈ Rn, we have

v>Lv =
1

2

∑
i,j

Aij(vi − vj)2

and

v>Lnv =
1

2

∑
i,j

Aij

(
vi√
di
− vj√

dj

)2

.

Note: Given any v ∈ Rn, let vi denote the value associated with node i. Then, the proposition
shows that L and Ln characterize the quadratice difference between node values weighted by the
edge weights.

Proof.

v>Lv = v>(D −A)v =
∑
i

div
2
i −

∑
i,j

Aijvivj

=
1

2

 n∑
i=1

div
2
i − 2

∑
i,j

Aijvivj +

n∑
j=1

djv
2
j

 =
1

2

∑
i,j

Aij(vi − vj)2
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The following proposition characterizes eigenvalues and eigenvector of Laplacian matrices.

Proposition 8.2. Consider a connected graph G, and let L be the unnormalized Laplacian matrix
and Ln be the normalized Laplacian matrix. Then

1. If G is connected, then 0 = λ1(Ln) < λ2(Ln) ≤ · · · ≤ λn(Ln) and similarly, 0 = λ1(L) <
λ2(L) ≤ · · · ≤ λn(L).

2. Let u1 be the eigenvector corresponding to λ1(Ln). Then u1,i ∝
√
di. Similarly, let ũ1 be the

eigenvector corresponding to λ1(L). Then ũ1 is parallel to the all-one vector.

3.

λ2(Ln) = min
z

1

2

∑
i,j

Aij(zi − zj)2

s.t.
n∑
i=1

dizi = 0

n∑
i=1

diz
2
i = 1

Proof. By Proposition 8.1, Ln is a positive semidefinite matrix and u>1 Lnu1 = 0. Thus, 0 =
λ1(Ln) ≤ λ2(Ln) ≤ · · · ≤ λn(Ln), and u1 is an eigenvector corresponding to λ1(Ln). Similar
conclusions hold for L.

We next show λ2(Ln) > 0. It suffices to show that v>Lnv > 0 for all v ⊥ u1. We prove it by
contradiction. Suppose there exists a v ⊥ u1 and v>Lnv = 0. Fix any node i 6= 1 in graph G. Since
G is connected, then there must exist a path from 1 to i. Suppose the edges on the path are given
by (1 = i1, i2), (i2, i3), . . . , (ik−1, ik = i). Then Ai1,i2 > 0, . . . , Aik−1,ik > 0. Thus, v>Lnv = 0 implies

v1√
d1

=
vi1√
di1

, · · · , vik−1√
dik−1

=
vik√
dik

.

Therefore v1√
d1

= vi√
di

. Since i is arbitrarily chosen, we have that for all i,

vi√
di
≡ v1√

d1
,

which contradicts the assumption that v ⊥ u1.
Finally, we give a characterization of λ2(Ln). By definition, λ2(Ln) = min‖v‖2=1,v⊥u1 v

>Lnv.
We have

v ⊥ u1 ⇔
n∑
i=1

viu1i = 0⇔
n∑
i=1

vi
√
di = 0.

Let zi = vi√
di

. Then v ⊥ u1 ⇔
∑

i zidi = 0. Moreover ‖v‖2 = 1 ⇔ ∑n
i=1 diz

2
i = 1. Also, by

Proposition 8.1, v>Lnv = 1
2

∑
i,j Aij(zi − zj)2.

Next, we will derive an analogy of the Proposition 8.2 for a graph G with k connected components.
Let S1, . . . , Sk denote the k connected components of G. Then [n] = S1 ∪ S2 · · · ∪ Sk, Si ∩ Sj = ∅,
and ASi,Sj = 0 for i 6= j, where AS,T , (Aij)(i,j)∈S×T . Thus, the normalized Laplacian matrix for
G has the following diagonal-block structure:
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Ln =

L
(1)
n

. . .

L
(k)
n

 ;

where L
(j)
n is the normalized Laplacian matrix for jth component of the graph G. The following

proposition immediately follows.

Proposition 8.3.

{λi(Ln)}ni=1 =
{
λi(L

(1)
n )
}

1≤i≤|S1|

⋃{
λi(L

(2)
n )
}

1≤i≤|S2|

⋃
· · ·
{
λi(L

(k)
n )
}

1≤i≤|Sk|
.

In particular, we have

λ1 = λ2 = · · · = λk = 0 < λk+1 ≤ · · · ≤ λn
and there are k orthogonal eigenvectors corresponding to zero eigenvalue, which are given by

u1, . . . , uk with
u`,i = c`1i∈S`

√
di, 1 ≤ ` ≤ k;

where c` is a normalization constant dependent on `. In particular,

u1 =



c1

√
d1

...
c1
√
d|S1|
0
0
...
0


u2 =



0
0
...

c2
√
d|S1|+1
...

c2
√
d|S1|+|S2|

0
...


· · · uk =



0
0
...

ck
√
dn−|Sk|+1

...
ck
√
dn


.

Let Un×k , [u1, u2 · · · , uk]. Then,

Ui· =


(c1

√
di), 0, 0, · · · ) i ∈ S1

(0, c2

√
di, 0, · · · ) i ∈ S2

· · · · · ·
(0, · · · , 0, ck

√
di) i ∈ Sk

We can normalize Ui· to have a unit norm:

Zi· ,
Ui·
‖Ui·‖2

=


(1, 0, 0, · · · ) i ∈ S1

(0, 1, 0, · · · ) i ∈ S2

· · · · · ·
(0, · · · , 0, 1) i ∈ Sk

Note

• By Proposition 8.3, the number of zero eigenvalues is exactly the same as the number of
connected components.
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• One can recover the k-connected components by clustering n rows {Ui·}ni=1.

• Since k zero eigenvalues implies k multiplicity, eigenvectors are not uniquely determined. In
particular,

Claim 8.1. Let R ∈ O(k, k), and let [ũ1, · · · , ũk] = [u1, · · · , uk]R. Then, {ũ1, . . . , ũk} are
also orthogonal eigenvectors of Ln corresponding to zero eigenvalue.
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Chapter 9

Spectral clustering in graphs

Outline

• Review of spectral clustering with Laplacian matrix

• Spectral Clustering Algorithm

• Spectral Clustering to identify k-dense clusters

• Analysis of spectral clustering with k-dense clusters

• Probablistic models for generating graphs

9.1 Review of spectral clustering with Laplacian matrix

In the last lecture we discussed that we can write normalized Laplacian matrix for a graph with
k-connected components (Figure 9.1) as a block diagonal matrix.

Figure 9.1: A k-connected graph (Each circle is a connected component)

In particular, by properly ordering rows/columns, the normalized Laplacian matrix for the above
graph can be written in the form:
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Ln =


L

(1)
n

L
(2)
n

. . .

L
(k)
n

 (9.1)

where L
(i)
n is a normalized Laplacian for connected component Si. As discussed in the last

lecture, we get one zero eigenvalue from each of k connected components and correspondingly
k-orthogonal eigenvectors can be written as {u1, u2, . . . , uk}. More precisely,

u1 =



c1

√
d1

c1

√
d2

...
c1
√
d|S1|
0
0
...
0


, . . . , uk =



0
0
...
0

ck
√
dn−|Sk|+1

...

...
ck
√
dn


, (9.2)

where c` is the normalization constant for cluster `.
We can construct a matrix Un×k = [u1 u2 . . . uk], where the rows of matrix U are given by

Ui. =


(c1

√
di, 0, 0, . . . , 0) if i ∈ S1

...

(0, 0, . . . , 0, ck
√
di) if i ∈ Sk

(9.3)

We can further normalize Ui. and define Zi. as

Zi. ,
Ui.
‖Ui.‖2

=


eT1 if i ∈ S1

...

eTk if i ∈ Sk,
(9.4)

where e1, . . . , ek are standard basis vectors for Rk. Interestingly, we observe that Z has k distinct
rows, and Zi· is e` if i is from S`. Hence, we can easily recover the k connected components by
putting identical rows of Z into one component.

9.2 Spectral Clustering algorithm

The analysis in the previous section suggests the following spectral clustering algorithm for
recovering k connected components.

Proposition 9.1. If G has k connected components, then Algorithm 2 exactly outputs these k-
connected components.
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Algorithm 2 Spectral clustering based on normalized Laplacian matrix

1: Input: A ∈ Rn×n or equivalently graph G, and k.
2: Output: k-partition of [n].

3: Construct Ln = I −D− 1
2AD−

1
2 .

4: Compute {u1, u2, . . . , uk} as k orthogonal eigenvectors corresponding to 0 eigenvalue of Ln
5: Let Un×k = [u1 u2 . . . uk] and normalize rows of U by

Zi. ,
Ui.
‖Ui.‖2

(9.5)

6: Cluster the rows of Z using k-means and output the k-partition.

Proof by plot. Consider a graph with 2 connected components i.e. k = 2. The rows of Z are located
at e1 or e2, depending on which connected component it belongs to. See figure 9.2

Figure 9.2: Spectral clustering with k = 2 in ideal case

Then if we pick e1 and e2 as initial cluster centers, then k-means exactly recover the 2 connected
components.

Note: There is a caveat. The eigenvectors corresponding to zero eigenvalue are not unique, i.e., the
set {u1, u2, . . . , uk} is not unique. We can have any

[ũ1, ũ2, . . . , ũk] , [u1, u2, . . . , uk]R (9.6)

as eigenvectors corresponding to zero eigenvalue, where R ∈ Ok×k is an orthogonal rotation matrix
i.e. RRT = RTR = Ik×k. More compactly,

Ũ = UR (9.7)

Z̃ = ZR (9.8)

(9.9)

where rows of Z̃ are given by:

Z̃i. =


eT1 R if i ∈ S1

...

eTkR if i ∈ Sk
(9.10)
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Notice that Z̃ still has k distinct rows. All the rows of Z̃ are exactly located at e>1 R, . . . , e
>
k R. In

other words, the cluster centers are only rotated by rotation matrix R. We can still easily exactly
recover the k-connected components by putting identical rows of Z̃ into same component.

Figure 9.3: Spectral clustering with k = 2 in when eigenvectors are rotated by R

Note: We can see that we may not need the k-means to exactly recover the k-connected components.
Instead, we can simply put those i’s with same row vectors Z̃i, into same cluster. Since rows of

Z̃ corresponding to nodes from cluster ` are exactly located at e>` R for 1 ≤ ` ≤ k, this simple
procedure succeeds. As we will see in the next section, in the case where the graph G has k-dense
clusters instead of k-connected components, rows of Z̃ corresponding to nodes from cluster ` are
clustered around but not exactly located at e>` R, and in this case, we will use k-means to cluster

rows of Z̃.

9.3 Spectral clustering to identify k-dense clusters

Till now we have been working with the ideal case where we had a graph G with k connected
components but now we’ll deal with more challenging problem where G has k-dense clusters instead
of k-connected components. The case with k-dense clusters can be viewed as a perturbation of the
ideal case with k-connected components. In particular,

1. there exist cross-links between clusters

2. nodes inside a cluster may not be connected
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Figure 9.4: 3-dense clusters (each circle is a dense cluster but may not be connected)

Note: What happens when we apply the previous spectral algorithm to find k-dense cluster? If
there exist few cross-links and clusters are well-connected, we expect that all the rows of Z̃ are
clustered around e>1 R, . . . , e

>
k R. In the simple case with k = 2, rows of Z̃ corresponding to nodes

from cluster 2 center around e>2 R, and rows of Z̃ corresponding to nodes from cluster 1 center
around e>1 R. An illustration is shown below (see also reference [Mon15]):

Figure 9.5: Spectral clustering to identify k-dense cluster (illustration)

Certainly, the amount of deviation from centers e>1 R and e>2 R will depend on how many cross-
links there are and how well the clusters are connected inside. In the next section, we quantify such
dependency using Davis-Kahan sin-θ theorem.

9.4 Analysis of spectral clustering with k-dense cluster

Given a graph G with k dense clusters. Suppose it is “close” to a graph Ḡ with exactly k connected
components. More formally, let Ln and L̄n denote the normalized Laplacian matrices of G and Ḡ,
respectively. We can measure the closeness between G and Ḡ by using the difference between their
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Laplacian matrices, i.e.,

Ln = L̄n + ∆ (9.11)

Suppose Ln has the following eigenvalue decomposition.

Ln =
n∑
i=1

λiuiu
T
i (9.12)

0 = λ1 ≤ λ2 ≤ · · · ≤ λn, (9.13)

where u1, u2, . . . uk are the eigenvectors of Ln corresponding to the k smallest eigenvalues. Similarly,
let

L̄n =
n∑
i=1

λ̄iūiū
T
i (9.14)

0 = λ̄1 ≤ λ̄2 ≤ · · · ≤ λ̄n, (9.15)

where ū1, ū2, . . . , ūk are eigenvectors of L̄n corresponding to 0 eigenvalue. We can apply Davius-
Kahan Theorem to measure the distance between the eigen-spaces U and Ū , where

Un×k = [u1 u2 . . . uk] (9.16)

Ūn×k = [ū1 ū2 . . . ūk]. (9.17)

(9.18)

In particular,

ds(U, Ū) , min
Q∈O(k,k)

‖U − ŪQ‖2 ≤
√

2‖∆‖2
δ

(9.19)

(9.20)

where δ = λk+1(Ln)− λk(L̄n) is called spectral gap. Since Ḡ has k connected components,

λ̄1 = λ̄2 = · · · = λ̄k = 0 (9.21)

and thus δ = λk+1(Ln).
Pictorially,

From Weyl’s theorem,

δ = λk+1(Ln) ≥ λk+1(L̄n)− ‖∆‖2 (9.22)

⇒ min
Q∈O(k,k)

‖U − ŪQ‖2 ≤
√

2‖∆‖2
λk+1(L̄n)− ‖∆‖2

(9.23)

82



Note: It is evident that for U and ŪQ to be close, we need λk+1(L̄n) to be much larger than ‖∆‖2.
In HW3, we have shown that λk+1 is related to the edge expansion of graph Ḡ through Cheeger’s
inequality. A larger λ̄k+1 means the connected components are more well connected. Also, ‖∆‖2
characterizes the perturbation. If graph G is close to Ḡ, then ‖∆‖2 tends to be small.
Note: We can further derive a bound on the difference between U and ŪQ in terms of Frobenius
norm. In particular, note that U and ŪQ both are at most rank k matrices and hence U − ŪQ is
at most rank-2k matrix. This means that,

‖U − ŪQ‖F ≤
√

2k‖U − ŪQ‖2, (9.24)

as now we can have at most 2k non-zero singular values and each is bounded above by the largest
singular value. Therefore,

min
Q∈O(k,k)

‖U − ŪQ‖F ≤
√

2k
√

2‖∆‖2
λk+1(L̄n)− ‖∆‖2

(9.25)

⇒ min
Q∈O(k,k)

1

n
‖U − ŪQ‖2F ≤

2k‖∆‖22
n(λk+1(L̄n)− ‖∆‖2)2

(9.26)

⇒ min
Q∈O(k,k)

1

n

n∑
i=1

‖Ui − (ŪQ)i‖22 ≤
2k‖∆‖22

n(λk+1(L̄n)− ‖∆‖2)2
(9.27)

Note that ‖Ui − (ŪQ)i‖2 measures the deviation of Ui from the cluster center (ŪQ)i. A small
1
n

∑n
i=1 ‖Ui − (ŪQ)i‖22 means that the average deviation of Ui’s from the k cluster centers is small,

as shown in Fig. 9.3 for k = 2.
We are left to quantify λk+1(L̄n) and ‖∆‖2. In the next section, we will introduce probabilistic

models for graph G, so that λk+1(L̄n) and ‖∆‖2 can be characterized using concentration inequalities.

9.5 Random graph models for graph clustering

Analogues to Gaussian mixture model for clustering, we will introduce some probabilistic model to
generate graph G. In particular, we will introduce Stochastic Block model, also known as Planted
Partition model. Before that, we first briefly mention the motivations for graph clustering.

9.5.1 Motivations for graph clustering

There are at least two motivations to study graph clustering. One is that as we just discussed,
the problem of data clustering can be turned into a problem of clustering (weighted) graph by
constructing similarity matrix between data points. The other is network analysis. In practice, we
often observe various forms of networks, such as social networks and biological networks. In many
cases, these networks have community structure, where nodes form clusters, and there are more
edges inside the clusters than across clusters. For example, in social networks, the communities
may correspond to group of people who share similar interests, and people with similar interests are
more likely to be friends. In protein-protein interaction network, the communities may correspond
to functional groups of proteins, and proteins with similar biological functions are more likely to
interact with each other. It is thus of great interest to discover the hidden community structure
(clusters) from observation of graph.
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9.5.2 Inhomogeneous Random Graph

Recall that we have already introduced Erdős-Rényi random Graphs (ER Random Graphs) which
are named after Paul Erdős and Alfred Rényi. This model is also denoted by G(n, p), where there
are n vertices in total and every pair of two vertices is connected independently at random with
probability p. Observe that in G(n, p), edge probabilities are homogeneous and it does not capture
the community structure.

We next consider an inhomogeneous model denoted by G(n, Pn×n), where there are n vertices
and every pair of two different vertices i and j is connected by an edge independently at random
with probability Pij . Note that P is a symmetric matrix. In the special case where Pij = p for
i 6= j, it reduces to G(n, p). The inhomogeneous model G(n, P ) is quite general, but it still does not
capture the community structure in networks.
To deal with this issue, we may assume P has the following property:

Pij =


p, if i, j from the same cluster

q, if i, j from two different cluster

0, if i = j

where 0 ≤ q ≤ p ≤ 1. Thus the edge probabilities within clusters are p and edge probabilities across
clusters are q. Since p ≥ q, it captures the fact that nodes from the same cluster are more likely to
be connected than nodes from different clusters. As a result, the graph G will have clusters that
are densely connected inside and loosely connected across. Some special cases for matrix P are of
interest:

1. p = 1 and q = 0: The graph G are formed by disjoint cliques.

2. p = q: It reduces to the E-R random graph model

Edge probabilities within clusters may not all be the same; similarly, edge probabilities across
clusters may not all be the same as well. Thus we have the following definition of SBM in the more
general case.

Definition 9.1 (Stochastic block model). Let C∗1 , C
∗
2 , . . . C

∗
k denote a k-partition of [n]. Let

U ∈ [0, 1]n×k denote the cluster membership matrix, where Uis = 1 if and only if i ∈ C∗s . Let
B ∈ [0, 1]k×k denote the symmetric, connectivity matrix between clusters, where Bst is the edge
probability between nodes in C∗s and C∗t . Define P = UBU>, i.e., Pij = Bs,t if i ∈ C∗s and j ∈ C∗t .
Conditional on C∗1 , C

∗
2 , . . . C

∗
k , we generate a random graph G with adjacency matrix A, where

Aii = 0 for all i, and Aij = Aji
i.i.d.∼ Bern(Pij) for i < j.

Note that if Bst = p if s = t and Bst = q for s 6= t, then it reduces to the previous simple (p, q)
model.

We have not specified how to generate cluster partition C∗1 , . . . , C
∗
k yet. Let us first focus on

the special case where k = 2. Denote xi ∈ {±1} as the cluster label of node i, where xi = 1 means
node i belongs to C∗1 , and xi = −1 means node i belongs to C∗2 . We can consider the following two
possible distributions for x.

1. Binomial-sized partition model: xi
i.i.d.∼ 1

2δ1 + 1
2δ−1, where δx denote the delta measure at point

x. In other words, xi is independently and uniformly drawn from {±}.

2. Equal-sized partition model: x is uniformly drawn from {y ∈ {±1}n :
∑n

i=1 yi = 0}.
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Note: In the first case, xi’s are i.i.d., while in the second distribution, xi’s are not independent
due to the equal-size constraint. Moreover, in the first case, the size of any one of the cluster is
distributed as Binom(n, 1/2). That is why we call the first case Binomial-sized partition model. It
follows from concentration inequality for binomial distribution that the cluster sizes are bounded
between n/2−√nρn and n/2 +

√
nρn with high probability, where ρn →∞ arbitrarily slowly.

We can generalize the cluster label to k ≥ 2 communities as follows. Denote xi ∈ [k] as the
cluster label of node i, where xi = s means node i belongs to C∗s for 1 ≤ s ≤ k. We can consider
the following two possible distributions for x:

1. Binomial-sized partition model: xi
i.i.d.∼ Unif {1, 2, . . . , r}.

2. Equal-sized partition model: x is uniformly drawn from {y ∈ [k]n : |{i : yi = s}| = n/k,∀1 ≤
s ≤ k}.

Remark 9.1 (Conditional independent but marginally dependent ). Notice that {Aij} are inde-
pendently drawn conditional on x, however, {Aij} are not independent marginally. In particular,
one can check that if p > q, then

P (Ajk = 1|Aij = 1, Aik = 1) > P (Ajk = 1),

which shows {Aij} are not independent.

9.5.3 Spectral clustering for binary symmetric SBM

In this section, we introduce the spectral clustering fro binary symmetric SBM. For ease of exposition,

we focus on the binary symmetric case where k = 2, and B =

[
p q
q p

]
. We are interested in recovering

the underlying clusters based on observation of G and knowledge of k, p, q.
We assume x is generated according to the equal-sized partition model, i.e., |C∗1 | = |C∗2 | = n

2 .
Then

Pn×n = E[A] =

(
pJn

2
×n

2
qJn

2
×n

2

qJn
2
×n

2
pJn

2
×n

2

)
− pIn×n,

where J denotes the all-one matrix, and I denotes the identity matrix. If we know E[A], then the
problem is trivial. However, the point is we do not know E[A], but only observe A.
The key observation is that spectrum of E[A] contains cluster information. More specifically,

E[A]− p+ q

2
J =

(
p−q

2 Jn
2
×n

2

q−p
2 Jn

2
×n

2
q−p

2 Jn
2
×n

2

p−q
2 Jn

2
×n

2

)
− pI

=
p− q

2
Y ∗ − pI,

where Y ∗ = xx> is the partition matrix and x is the underlying true label vector. In particular,
Y ∗ij = 1 if i and j are from the same cluster and Y ∗ij = −1 if i and j are from two different clusters.

Note that Y ∗ has rank 1 with the leading eigenvalue given by n and the leading eigenvector given
by x/

√
n. Since A is a noisy version of E [A], we hope that the leading eigenvector of E [A]− p+q

2 J
is close to x/

√
n. This leads to the following simple spectral algorithm.
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Algorithm 3 Spectral algorithm for binary symmetric SBM

1: Compute the leading eigenvector of A− p+q
2 J denoted by u.

2: Take sign(u) as the cluster label.

Remark 9.2. Instead of applying spectral algorithm on adjacency matrix A, we could also apply
spectral clustering on Laplacian matrix. The two versions all belong to the general class of spectral
method. In the relatively dense graph case, the two versions are almost equivalent. To see this,
assume n(p+ q) � log n, then we have shown that node degrees di are concentrated around the
average degree np+q2 with high probability, and thus D is close to np+q2 I. Thus the eigenvectors of
Laplacian matrices are almost the same as eigenvectors of A.

86



Chapter 10

Concentration of random graphs

Outline

• Review of spectral clustering under binary symmetric SBM

• Analysis of spectral clustering

• Concentration of random graph

10.1 Review of Spectral clustering under binary symmetric stochas-
tic block model (SBM)

First we talk about the setup of binary symmetric SBM. We have two communities denoted by C∗1
and C∗2 , where C∗1 represents the set of nodes in the first community and C∗2 is the set of nodes in
the second community. Let’s assume that these two communities have equal size |C∗1 | = |C∗2 | = n/2,
where n is the total number of nodes in the graph. We also assume that (C∗1 , C

∗
2 ) is uniformly chosen

over all possible equal-sized partitions at random. Conditional on the underlying true communities
C∗1 and C∗2 , the edge connection probability is defined as

P (Aij = 1) =

{
p if i and j are from the same community

q o.w.

Where Aij is the adjacency matrix and by convention Aii = 0. The goal is to infer the true
underlying partition C∗1 and C∗2 , given (A, p, q).

Last time we have introduced the spectral clustering. Recall that

E[A]− p+ q

2
J + pI =

p− q
2

Y ∗,

where J is the all 1 matrix and Y ∗ is the partition matrix such that

Y ∗ =

[
1 −1
−1 1

]
⊗ Jn/2×n/2 =

[
Jn/2×n/2 −Jn/2×n/2
−Jn/2×n/2 Jn/2×n/2,

]
= xxT

where ⊗ denotes the Kronecker product and x is the underlying true cluster label. It follows that
the leading eigenvector of Y ∗ is given by ū , x/‖x‖2. Hence, E [A] contains the underlying cluster
information. However, we do not observe E[A]; instead we observe A, which motivates us to use
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Algorithm 4 Spectral algorithm for binary symmetric SBM

1: Compute the leading eigenvector of A− p+q
2 J + pI, denoted by u.

2: Output x̂ , sign(u) as the estimated cluster label vector.

spectral clustering.

In this lecture, we will introduce

1. Analysis of spectral clustering using Davis-Kahan theorem.

2. Concentration of random graph (through the adjacency matrix).

10.2 Analysis of spectral clustering using D-K theorem

We will follow exactly the same road map that we used to analyze the spectral clustering for
Gaussian mixture model. We expect that u is close to the leading eigenvector of Y ∗ given that
‖A− E [A] ‖2 is small. Recall that ū = x√

n
is the leading eigenvector of Y ∗.

Theorem 10.1 (Upper bound on mislcassifcation rate of spectral clustering). The fraction of nodes
misclassified by the spectral clustering satisfies

1

n
dH(x̂, x) ,

1

n

n∑
i=1

1{x̂i 6=xi} ≤
2‖A− E [A] ‖22

(n(p− q)/2− ‖A− E [A] ‖2)2 .

In particular, if (p−q)n
‖A−E[A]‖2 →∞, then 1

ndH(x̂, x)→∞, i.e., the fraction of nodes misclassified by x̂
vanishes.

Proof. Recall that in lecture 6, we have shown that

1

n
dH(x̂, x) ,

1

n

n∑
i=1

1{x̂i 6=xi} ≤ d2
s(u, ū).

Hence, to prove the theorem, it reduces to upper bound d2
s(u, ū). By Davis-Kahan sin-θ theorem,

ds(u, ū) , min{‖ u− ū ‖2, ‖ u+ ū ‖2} ≤
√

2 ‖ ∆ ‖2
δ

,

where

∆ = A− p+ q

2
J + pI− p− q

2
Y ∗

= A− E[A] + E[A]− p+ q

2
J + pI− p− q

2
Y ∗ = A− E[A]

and

δ = λ1

(
p− q

2
Y ∗
)
− λ2

(
A− p+ q

2
J + pI

)
=
p− q

2
n− λ2

(
∆ +

p− q
2

Y ∗
)
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with λ1 denotes the largest eigenvalue and λ2 denotes the second largest eigenvalue. By Weyl’s
theorem,

λ2

(
∆ +

p− q
2

Y ∗
)
≤ λ2

(
p− q

2
Y ∗
)

+ ‖ ∆ ‖2

=‖ ∆ ‖2

It follows that

δ ≥ p− q
2

n− ‖ ∆ ‖2
Hence, we get that

ds(u, ū) ≤
√

2 ‖ ∆ ‖2
p−q

2 n− ‖ ∆ ‖2
,

which completes the proof.

10.3 Concentration of random graphs

As we shown in the last section, the fraction of nodes misclassified by the spectral clustering crucially
depends on ‖A− E [A] ‖2. In this section, we study the concentration of A. Recall that {Aij} are
independent conditional on Y ∗, and

Aij ∼
{
Ber(p) if Y ∗ij = 1, i.e., i and j are from the same cluster

Ber(q) if Y ∗ij = −1, i.e., i and j are from two different clusters

It follows that E [A] is (To be precise, it should be E [A|Y ∗]; for ease of exposition, we omit the
conditioning.)

E [A] =

[
p q
q p

]
⊗ Jn/2×n/2 − pI =

[
pJn/2×n/2 qJn/2×n/2
qJn/2×n/2 pJn/2×n/2

]
− pI.

Since Aij − E [Aij ] is bounded by 1, and has zero mean, it is sub-Gaussian (µ = 0, σ = 2). One
can show that with high probability, ‖A− E [A] ‖2 .

√
n. However, this bound is not tight when p

is small. We will derive a tighter bound when p, q → 0 based on Matrix Bernstein’s inequality.

Theorem 10.2 (Matrix Bernstein’s Inequality). Let {Xi}Ni=1 denote n× n symmetric, independent
random matrices with mean 0 and ‖ Xi ‖2≤ L. Let S =

∑N
i=1Xi. Then

P [‖ S ‖2≥ t] ≤ 2n exp

{
− t2

2σ2 + 2Lt
3

}
,

where σ2 ,‖∑N
i=1E[X2

i ] ‖2 . It futher follows that

P
[
‖S‖2 ≥

√
2σ2u+

2

3
Lu

]
≤ 2ne−u.

Remark 10.1. Matrix Bernstein’s inequality is formalized very recently, and pioneered by [Ahlswede-
Winter],..., and [J. Tropp]. If N = 1, it reduces to the Bernstein’s inequality in the scalar case.

The following lemma upper bounds ‖ A− E [A] ‖2 via Matrix Bernstein Inequality.
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Lemma 10.1 (Concentration inequality for A). Suppose that A is a symmetric matrix such that
Aii = 0, and Aij are independently distributed over [0, 1] for i < j. Let σ2 = maxi

∑
j 6=i var(Aij).

Then

P
[
‖A− E [A] ‖2 ≥

√
2σ2u+

2

3
u

]
≤ 2ne−u.

Proof. First, write A− E [A] as a summation of independent, symmetric random matrices:

A− E [A] =
∑
i<j

(Aij − Āij)
(
eie
>
j + eje

>
i

)
.

Let Ā , E [A]. Notice that Aij − Āij ’s are independent random variables for i < j. Let Xij ,
(Aij − Āij)(eie>j + eje

>
i ). Then

‖ Xij ‖2 =‖ (Aij − Āij)(eieTj + eje
T
i ) ‖2

≤‖ eieTj + eje
T
i ‖2

≤ 1

Furthermore,

E[X2
ij ] = E[(Aij − Āij)2(eie

T
j + eje

T
i )2]

= V ar(Aij)(eie
T
j + eje

T
i )2

= V ar(Aij)(eie
T
i + eje

T
j )

It follows that ∑
i<j

E[X2
ij ] =

∑
i<j

V ar(Aij)(eie
T
i + eje

T
j )

=
1

2

∑
i 6=j

V ar(Aij)(eie
T
i + eje

T
j )

=
∑
i 6=j

V ar(Aij)(eie
T
i )

Hence

σ2 =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


∑

j 6=1 var(A1j) ∑
j 6=2 var(A2j)

. . . ∑
j 6=n var(Anj)


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

= max
i

∑
j 6=i

var(Aij).

The lemma follows by invoking matrix Bernstein’s inequality.

Corollary 10.1. Suppose that A is a symmetric matrix such that Aii = 0, and Aij are independently
distributed as Bern(Pij) for i < j. Let σ2 = maxi

∑
j 6=i Pij(1−Pij) ≤ maxi

∑
j 6= iPij , maxi E [di].

Then

P
[
‖A− E [A] ‖2 ≥

√
2σ2u+

2

3
u

]
≤ 2ne−u.

In particualr, it follows that

P
[
‖A− E [A] ‖2 ≤

√
2σ2(1 + ε) log(n) +

2

3
(1 + ε) log(n)

]
≥ 1− 2n−ε.
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Example 10.1. Let’s take a look at some special cases of Pij .
Case 1: (Pij = p, ∀ i 6= j). In this case, A ∼ G(n, p). It follows that

‖A− E[A]‖2 ≤
√

2 np(1− p)(1 + ε) log(n) +
2

3
(1 + ε) log(n)

.
√
np log(n) + log(n) (ignoring the constants)

Hence,

‖A− E[A]‖2 .

{√
np log(n) np = ω(log(n))

log(n) np = O(log(n)).

Case 2: P =

[
p q
q p

]
⊗ Jn/2×n/2 with p ≥ q. In this case, A is the adjacency matrix of the

binary symmetric SBM. We have that

‖A− E[A]‖2 ≤
√
n(p(1− p) + q(1− q))(1 + ε) log(n) +

2

3
(1 + ε) log(n)

.
√
np log(n) + log(n)

Question: Is the bound ‖A− E [A] ‖2 derived from matrix Bertein’s inequality tight or not ?
Answer: Here we give an intuitive argument by considering A ∼ G(n, p). Recall that if B ∈ Rn×d
is a Gaussian random matrix such that Bij = Bji

i.i.d.∼ N (0, σ2) for i < j and Bii
i.i.d.∼ N (0, 2σ2). Then

‖B‖2 ≤ σ(
√
n+
√
d+ ρn) with probability converging to 1, where ρn →∞ as n→∞ arbitrarily

slowly. In the Bernoulli case, var(Aij) ≤ p. If we expect (A−E[A]) to behave like Gaussian random
matrix B, then we would have ‖A − E[A]‖2 .

√
np with high probability. If this is true, this

means that we could possibly get rid of the extra
√

log n factor in the upper bound derived from
matrix Bertein’s inequality when np = Ω(log n). We will show later that this is indeed the case
if np = ω(log n). On the other hand, it turns out that we cannot significantly improve the bound
derived from matrix Bernstein’s inequality. To see this, observe that

‖A− E[A]‖2 ≥ max
i
‖Ai· − E[Ai·].‖2 = max

i

√∑
j 6=i

(Aij − p)2 =
√

(1− 2p)dmax,

where Ai,· denotes the i-th row of A and dmax is the maximum node degree.

• In the regime np = Ω(log n), we have shown that maxi di concentrates around np. It follows
that with high probability, ‖A− E[A]‖2 ≥ √np, which shows that the bound derived from

matrix Bernstein’s inequality: ‖A−E[A]‖2 .
√
np log(n) is suboptimal by at most an

√
log n

factor.

• In the regime np = o(log n), we have shown that maxi di is at least on the order of logn
log(logn/(np)) ,

which is ω(np). It follows that ‖A− E[A]‖2 ≥
√

logn
log(logn/(np)) = ω(

√
np). In this case, we see

that ‖A− E[A]‖2 behaves significantly differently from Gaussian random matrix B. As we
will show later, this leads to the failure of spectral clustering in the relatively sparse regime
np = o(log n).

The following theorem gives the desired concentration inequality for Bernoulli random matrix A.
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Theorem 10.3 (Concentration of Bernoulli random matrix A in the dense regime). Suppose A is

a symmetirc matrix such that Aii = 0 and Aij
i.i.d.∼ Bern(Pij) for i < j. Suppose Pij(1− Pij) ≤ r and

nr = Ω(log(n)). Then for any c > 0, there exists an c′ > 0 such that

‖A− E[A]‖2 ≤ c′
√
nr,

with probability 1− n−c, where c, c′ are absolute constants.

Remark 10.2. The above bound improves the bound derived from the matrix Bertein’s inequality
by getting rid of the extra

√
log(n) factor.

The condition nr = Ω(log(n)) is crucial. As we argued for A ∼ G(n, p), ‖A− E [A] ‖2 = ω(
√
np)

if np = o(log n).

Proof. The proof is left as a homework problem.

Theorem 10.4 (Concentration of Bernoulli random matrix A in the sparse regime). Suppose
A ∼ G(n, p) and np = o(log n) and p = n−1+o(1). With probability converging to 1,

‖A− E[A]‖2 &

√√√√ log(n)

log( log(n)
np )

.

Remark 10.3. Notice that log(n)

log(
log(n)
np

)
= ω(

√
np) and hence ‖A− E[A]‖2 = ω(

√
np). This is due to

the fact that ‖A − E[A]‖2 &
√
dmax and in the sparse regime, dmax does not concentrate around

E [di] np; instead it is at least on the order of log(n)

log(
log(n)
np

)
with high probability. The proof of the

theorem is left as homework.

Here, we give a short summary on the concentration results of Bernoulli random matrix in the
special case A ∼ G(n, p):

‖A− E[A]‖2 =

{
O(
√
np) if np = Ω(log(n)) (dense graph regime)

ω(
√
np) if np = o(log(n)) (sparse graph regime)

Armed with the concentration results of Bernoulli random matrix, we are ready to state the
sufficienit conditions for spectral clustering in misclassifying a vanishing fraction of nodes.

Theorem 10.5 (Sufficient condition for spectral clustering in the dense regime). Suppose np =
Ω(log(n)). If n(p− q)/√np→∞, then 1

ndH(x, x̂)→ 0 as n→∞ with high probability.

Proof. Recall that
1

n
dH(X̂,X) ≤ 2‖∆‖2(p−q

2 n− ‖∆‖2
)

and in the dense regime np = Ω(log n), ‖A − E[A]‖2 .
√
np with high probability. Therefore,

1
ndH(X̂,X)→ 0 under the condition that (p−q)n√

np →∞.

Remark 10.4. The sufficiet condition n(p − q)/√np → ∞ is known as spectral condition. It is
crucial to assume np = Ω(log n) here. If instead np = o(log n), since ‖A− E [A] ‖2 = ω(log n), the
spectral condition is n(p− q)/√np→∞ not sufficient for the success of the spectral clustering. We
could use the matrix Bernstein’s inequality to show that ‖A− E [A] ‖2 . log n in the sparse regime

np = o(log n) and then 1
ndH(x̂, x) → 0, provided that (p−q)n

log(n) → ∞. However, since np = o(log n),
such condition is never satisifed.
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The above discussion immediately leads to the following two fundamental questions, which will
be addressed in the next lecture:

1. Relatively dense regimes (np = Ω(log(n)): Can we do better than spectral clustering? Is it
possible to succeed even when the spectral condition is unsatisifed?

2. In the relatively parse case (np = o(log(n))): Can we hope to recover the communities when

the spectral condition (p−q)n√
np →∞ is satisifed?
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Chapter 11

SDP clustering with stochastic block
models

11.1 Brief recap of concentration of random graphs and spectral
clustering

In the last lecture, we have discussed the concentration of random graphs. We observe two different
behavior depending on whether the graph is dense or sparse. Specifically, let A ∼ G(n, p). Then

‖A− E[A]‖2 =

{
O(
√
np), if np = Ω(log n)

w(
√
np), if np = o(log n).

It readily implies that for the binary symmetric stochastic block model, in the dense regime with
np = Ω(log n), the fraction of nodes misclassified by spectral clustering converges to 0, provided
that the following spectral condition is satisfied as n→∞:

n(p− q)√
np

→∞.

The above spectral condition can be intuitively understood as a measure of signal-to-noise ratio:
the numerator n(p− q) is roughly the second largest eigenvalue of E [A], or the largest eigenvalue of
E [A] − (p + q)/2J + pI, which characterizes the signal strength, because the leading eigenvector
of E [A] − (p + q)/2J + pI is parallel to the true cluster label vector; the denominator is roughly
‖A− E [A] ‖2, which captures the noise magnitude. When the spectral condition is satisfied, the
signal strength is much larger than the noise magnitude, and thus the leading eigenvector of centered
adjacency matrix A− (p+ q)/2J + pI is approximately parallel to the true cluster label vector.

In contrast, in the sparse regime with np = o(log n), because ‖A − E [A] ‖2 = ω(
√
np), the

spectral condition is no longer sufficient for the spectral method to achieve a vanishing fraction of
misclassified nodes. In this lecture, we will introduce the semidefinite programming relaxation of
MLE, which is able to achieve a vanishing fraction of misclassified nodes when the spectral condition
is satisfied even in the sparse regime.

Example 11.1. In this example, we generate a binary SBM with 1000 nodes partitioned into two
equal-sized clusters uniformly at random. We first focus on the dense regime p = logn

n and q = p/8.
Fig. 11.1 shows the adjacency matrix A. Fig 11.2 shows the leading eigenvector u of the centered
adjacency matrix A− p+q

2 J + pI. We can see that the sign vector of u is strongly correlated with
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Figure 11.1: n = 1000, p = logn
n , q = p

8 . Left: adjacency matrix A; Right: A with rows and columns
sorted according to the true cluster label.
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Figure 11.2: Top: the eigenvector u corresponding to the largest eigenvalue of A − p+q
2 J + pI.

Bottom: u sorted according to the true cluster label.

the true cluster label vector. In particular, if we sort u according to the true cluster label with the
first 500 coordinates corresponding to one cluster, and the next 500 coordinates corresponding to
the other cluster, then most of the first 500 coordinates of u are positive, while most of the next 500
coordinates of u are negative. Hence, the estimated cluster label vector x̂ = sign(u) is close to the
true cluster label vector.

Next, we shift our focus to the sparse regime where p =
√

logn
n and q = p

8 . Fig. 11.3 shows the
adjacency matrix A. Fig. 11.4 shows the leading eigenvector u of the centered adjacency matrix
A− p+q

2 J + pI. We can see that the sign vector of u is no longer correlated with the true cluster
label vector. Moreover, u turns out to be very spiky with few entries of large magnitudes. Fig. 11.5
shows the clustering result if we insist on using x̂ = sign(u) to estimate the clusters. The fraction of
misclassified nodes is 45.30%, which is no much better than randomly guessing. Moreover, we see
that one cluster estimated by x̂ is in fact a small dense subgraph. It is this small dense subgraph
that induces the spiky eigenvector u.
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Figure 11.3: n = 1000, p =
√

logn
n , q = p

8 . Left: adjacency matrix A; Right: A with rows and
columns sorted according to the true cluster label
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Figure 11.4: Top: the eigenvector u corresponding to the largest eigenvalue of A − p+q
2 J + pI.

Bottom: u sorted according to the true cluster label.
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Figure 11.5: Left: A with rows and columns sorted according to the true cluster label. Right: A
with rows and columns sorted according to the estimated cluster label vector.
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11.2 Semi-definite relaxation of MLE

For ease of expose, we will focus on binary symmetric SBM with two equal-sized clusters chosen
uniformly at random. The general case will be left as homework. Let us first consider the maximum
likelihood estimation. In particular, we treat the cluster label vector x ∈ {±1}n as the parameter to
learn from the observation of A. Hence, the ML estimator can be formulated as

max
x

P [A|x]

s.t. xi ∈ {±1}, i ∈ [n]

x>1 = 0,

where we impose the constraint x>1 = 0 because we assume the two clusters have equal sizes. Since
the edges are independently generated conditionally on the cluster label vector x, the likelihood
function has the following simple product form:

P [A|x] =
∏
i<j

P [Aij |xi, xj ]

=
∏
i<j
xi=xj

pAij (1− p)1−Aij
∏
i<j
xi 6=xj

qAij (1− q)1−Aij .

It follows that the log likelihood function is

logP (A|x) =
∑
i<j
xi=xj

(Aij log p+ (1−Aij) log(1− p)) +
∑
i<j
xi 6=xj

(Aij log q + (1−Aij) log(1− q))

=
∑
i<j

xixj + 1

2
(Aij log p+ (1−Aij) log(1− p)) +

∑
i<j

1− xixj
2

(Aij log q + (1−Aij) log(1− q))

=
1

2

∑
i<j

Aijxixj

 log
p(1− q)
q(1− p) +

1

2

∑
i<j

xixj

 log
(1− p)
1− q + terms independent of x,

where the second equality holds because (xixj + 1)/2 = 1{xi=xj} and (1 − xixj)/2 = 1{xi 6=xj},
and in the third equality, the remaining terms are independent of x. It is simple to check that∑

i<j xixj = −n/2 and thus does not depend on x because x>1 = 0 and xi ∈ {±1}. Hence, in the
case of p > q, the ML estimation is equivalent to solving

max
x

∑
i,j

Aijxixj

s.t. x ∈ {±}n∑
xi = 0, (11.1)

which is also equivalent to the following MIN BISECTION problem:

min
x

∑
i,j

Aij
1− xixj

2

s.t. x ∈ {±}n∑
xi = 0.
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Notice that the objective function
∑

i,j Aij
1−xixj

2 is equal to twice the number of cross edges from
cluster +1 to cluster −1. Hence, MLE is equivalent to minimum bisection problem, which minimizes
the number of crossing edges among all equal-sized bi-partitions. Notice that MIN BISECTION is
NP-hard in the worst case. However, since in our problem, the adjacency matrix A is randomly
generated according to the stochastic block model. It is still possible to efficiently solve the problem
with high probability despite of the NP-hardness in the worst case. This leads to the following
interesting question: how to derive a polynomial time procedure from MLE (11.1)?

11.2.1 First idea: spectral relaxation

Recall that we have discussed spectral relaxation of minimizing k-means objective in Lecture 3.
Similar idea can be also used to obtain spectral relaxation of MLE (11.1). In particular, we replace
the integer constraint x ∈ {±1}n in (11.1) by the L2 norm constraint ‖x‖2 =

√
n. This leads to the

following constrained eigenvalue maximization problem:

max
x

x>Ax

s.t.
∑
i

xi = 0

‖x‖2 =
√
n

We can further relax the problem by putting the hard constraint
∑
xi = 0 as a Lagrangian regularizer

in the objective function:

max
x

x>
(
A− p+ q

2
J + nI

)
x

s.t. ‖x‖2 ∈
√
n. (11.2)

The optimal solution of (11.2) is nothing but the leading eigenvector of A− p+q
2 J + nI, and thus

can be efficiently computed. Hence, spectral relaxation of MLE recovers the spectral clustering
algorithm that we discussed earlier. Notice that the objective function in (11.2) is non-convex in x,
and hence spectral relaxation is a non-convex relaxation of MLE.

11.2.2 Second idea: SDP relaxation

In this section, we introduce a convex relaxation of MLE based on semidefinite programming (SDP).
First, recall that x>Ax = Tr(x>Ax) = Tr(Axx>). Let Y = xxT . Then x>Ax = 〈A, Y 〉. Moreover,
Yii = 1 is equivalent to xi ∈ {±1} and 〈Y,J〉 = 0 is equivalent to x>1 = 0. Therefore, MLE (11.1)
can be equivalently recast as

max
Y,x
〈A, Y 〉

s.t. Y = xx>

Yii = 1, i ∈ [n]

〈J, Y 〉 = 0. (11.3)

Notice that the matrix Y = xx> is a rank-one positive semidefinite matrix. If we relax this condition
by dropping the rank-one restriction, we obtain the following convex relaxation of MLE, which is a
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semidefinite program:

Ŷ = arg max
Y
〈A, Y 〉

s.t. Y � 0

Yii = 1, i ∈ [n]

〈J, Y 〉 = 0. (11.4)

We remark that (11.4) does not rely on any knowledge of the model parameters except that p > q;
for the case p < q, we replace arg max in (11.4) by arg min. The SDP program (11.4) can be
efficiently solved in polynomial-time algorithm.

Remark 11.1. Curious reader may wonder why SDP relaxations could succeed in the sparse regime
while spectral methods fail. To understand the distinction between SDP relaxation (11.4) and
spectral relaxation (11.2), let us further relax the SDP program (11.4) by replacing the diagonal
constraint Yii = 1,∀i ∈ [n] by Tr(Y ) =

∑
i Yii = n:

max
Y
〈A, Y 〉

s.t. Y � 0

Tr(Y ) = n

〈J, Y 〉 = 0.

We can further relax the problem by putting the hard constraint 〈J, Y 〉 = 0 into the objective
function as a Lagrangian regularizer:

max
Y
〈A− p+ q

2
J + pI, Y 〉

s.t. Y � 0

Tr(Y ) = n. (11.5)

It is easy to check that (11.5) is equivalent to the spectral relaxation (11.2), More precisely, the
optimal solution of (11.5) is given by Y = nuu>, where u is the leading eigenvector of A− p+q

2 J +pI.
Therefore, the crucial difference between SDP relaxation (11.4) and spectral relaxation (11.2) is
that SDP relaxation constraints Yii = 1 for each i, while the spectral relaxation only constraints∑

i Yii = n. In the sparse graph regime, the leading eigenvector u of A− p+q
2 J + pI turns out to

be very spiky with few coordinates with extremely large magnitudes |ui|. By letting Y = nuu>,
Y certainly satisfies the constraint

∑
i Yii = n, but violates the constraint Yii = 1 for all i ∈ [n].

Hence, the SDP relaxation has the regularization effect by preventing the spiky eigenvectors from
maximizing the objective function.

Next, we introduce the analysis of SDP relaxation (11.4). Let Y ∗ = (x∗)(x∗)> denote the true
partition matrix, where x∗ is the true cluster label vector. We are interested in the following two
questions:

1. When is Ŷ close to Y ∗?

2. When is Ŷ exactly equal to Y ∗?

In the next section, we address the first question by deriving a high-probability bound on ‖Ŷ −Y ∗‖2F .
The second question will be addressed in the next lecture.
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11.3 Analysis of SDP relaxations for weak recovery

In this section, we present the analysis of SDP relaxations, which is adapted from [GV15]. The key
in the analysis is the application of Grothendieck’s inequality [Gro53, LP68] that we will introduce
later.

Lemma 11.1. For any positive semidefinite matrix Y � 0 such that Yii ≤ 1 for all i ∈ [n], we have
|Yij | ≤ 1.

Proof. Since Y � 0, we can write Y = UU>, where U ∈ Rn×n with i-th row of U given by u>i . Then
Yij = 〈ui, uj〉. Since Yii ≤ 1 for all i ∈ [n], we have ‖ui‖2 ≤ 1 for all i ∈ [n]. By Cauchy-Schwartz
inequality, |Yij | ≤ ‖ui‖2‖uj‖2 ≤ 1.

Lemma 11.2. Assume p > q. Let Ŷ denote the optimal solution to SDP relaxation (11.4). Then

‖Ŷ − Y ∗‖2F ≤
8

p− q sup
Y�0,Yii=1

∣∣〈A− Ā, Y 〉∣∣.
Proof. By the optimality of Ŷ , we have

0 ≤ 〈A, Ŷ − Y ∗〉
= 〈Ā, Ŷ − Y ∗〉+ 〈A− Ā, Ŷ − Y ∗〉. (11.6)

For the first term in (11.6), since Ā = E(A) = p−q
2 Y ∗ + p+q

2 J− pI, and Ŷ and Y ∗ are feasible to
SDP relaxation (11.4), it follows that

〈Ā, Ŷ − Y ∗〉 =
p− q

2
〈Y ∗, Ŷ − Y ∗〉.

where we used the identities 〈J, Ŷ − Y ∗〉 = 0 and 〈I, Ŷ − Y ∗〉 = 0. It follows from the last two
displayed equations that

p− q
2
〈Y ∗, Ŷ − Y ∗〉 ≤ 〈A− Ā, Ŷ − Y ∗〉

≤ |〈A− Ā, Ŷ 〉|+ |〈A− Ā, Y ∗〉|
≤ 2 sup

Y�0,Yii=1
|〈A− Ā, Y 〉|,

where the last inequality follows because both Ŷ and Y ∗ are feasible solutions. Finally, notice that

‖Y ∗ − Ŷ ‖2F = ‖Y ∗‖2F + ‖Ŷ ‖2F − 2〈Y ∗, Ŷ 〉 ≤ 2n2 − 2〈Y ∗, Ŷ 〉 ≤ 2〈Y ∗, Y ∗ − Ŷ 〉,

where we used the fact that |Ŷij | < 1 which follows from Lemma 11.1. The conclusion readily follows
by combining the last two displayed equations.

Remark 11.2. The proof steps in Lemma 11.2 are used very often in controlling the estimation
error of an estimator given by the optimal solution of a certain optimization problem. It starts with
the optimality condition, and followed by breaking the objective function difference into two terms:
one is associated with the signal part, and the other is associated with the noise part.

In view of Lemma 11.2, to get a high-probability upper bound to ‖Ŷ − Y ∗‖2F , we are left to
derive a high-probability upper bound to the quantity supY�0,Yii=1

∣∣〈A− Ā, Y 〉∣∣. This quantity is
not easy to control, because of the supreme taken over the positive semidefinite cone. The key is to
use the Grothendieck’s inequality.
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Theorem 11.1 (Grothendieck’s Inequality). Suppose B ∈ Rn×n satisfies

sup
s,t∈{±1}n

|s>Bt| ≤ 1,

then there exists a constant KG such that

sup
S,T∈Rn×n

∣∣Tr(S>BT )
∣∣ ≤ KG,

where S =

S
>
1
...
S>n

 and T =

T
>
1
...
T>n

 with ‖Si‖2 = 1 and ‖Ti‖2 = 1.

Remark 11.3. Notice that KG is known as Gothendieck’s constant. It has been proved that
KG ≤ π

2ln(1+
√
n)
≤ 1.783. Determining the exact value of KG is still an open problem. It is

instructive to write

S>BT = (S1, S2, ..., Sn)B

T
>
1
...
T>n

 =
∑
i,j

Bi,j〈Si, Tj〉

Comparing to s>Bt =
∑

i,j Bi,jsitj , we can see that S>BT is a multi-dimensional extension of

s>Bt, where for each (i, j) pair, the scalar si is replaced by Si ∈ Rn and scalar tj is replaced by
Tj ∈ Rn. Because of this, by definition KG ≥ 1.

It turns out that sups,t∈{±1}n |s>Bt| is equal to ‖B‖∞→1, where the ‖·‖∞→1 is defined as follows.

Definition 11.1 ( Infinity to one norm ). For a matrix B ∈ Rn×n, ‖B‖∞→1 is defined as

‖B‖∞→1 , sup
y∈Rn,‖y‖∞≤1

‖By‖1

It is simple to check that
‖B‖∞→1 = sup

x,y∈{±1}n
|x>By|.

Armed with the powerful Grothendieck’s inequality, it becomes straightforward to bound
supY�0,Yii=1

∣∣〈B, Y 〉∣∣ for any symmetric matrix B.

Lemma 11.3. For any symmetric matrix B ∈ Rn×n,

sup
Y�0,Yii=1

∣∣〈B, Y 〉∣∣ ≤ KG sup
x,y∈{±1}n

|x>By| = KG‖B‖∞→1.

Proof. Since Y � 0, we can write Y = UUT such that

U =

U
T
1
...
UTn


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with |Ui‖2 = 1. It follows that

sup
Y�0,Yii=1

∣∣〈B, Y 〉∣∣ = sup
‖Ui‖2=1

|〈B,UUT 〉|

≤ sup
‖Ui‖2=1

∑
i,j

Bi,j〈Ui, Uj〉

≤ sup
‖Ui‖2=1,‖Vj‖2=1

∑
i,j

Bi,j〈Ui, Vj〉

≤ KG sup
x,y∈{±1}

∑
i,j

Bi,jxiyj ,

where the last inequality follows from Grothendieck’s inequality.

By plugging B = A− Ā into Lemma 11.3, we get the following corollary.

Corollary 11.1.

sup
Y�0,Yii=1

|〈A− Ā, Y 〉| ≤ KG sup
x,y∈{±1}n

|xT (A− Ā)y| = KG‖A− Ā‖∞→1

Remark 11.4. It is instructive to compare ‖A − Ā‖∞→1 with ‖A − Ā‖2 in the sparse regime.
Specifically, in the sparse regime with np = Ω(1) and np = o(log n), we have argued that ‖A− Ā‖2 =
ω(
√
np). In contrast, ‖A− Ā‖∞→1 = O(

√
np). In fact, by definition ‖A− Ā‖∞→1 is the supreme of

x>(A− Ā)y over all x, y ∈ {±}n; hence spiky vectors do not affect ‖A− Ā‖∞→1. On the contrary, as
we commented before, those spike vectors indeed induce large values of ‖A− Ā‖2. This insensitivity
of ‖A− Ā‖∞→1 with respect to spiky vectors results in the robustness of SDP in the sparse regime.

In view of Corollary 11.1, we are left to bound the quantity supx,y∈{±1}n |x>(A − Ā)y|. This

quantity can be viewed as the maximum of 22n dependent random variables, which can be bounded
using the union bound together with concentration inequality for each random variable. Notice that
for fixed x and y, x>(A− Ā)y can be written as a sum of independent, bounded random variables;
hence we can use the Bernstein’s inequality to bound the tail of x>(A− Ā)y. In particular, we have
the following lemma.

Lemma 11.4. With probability at least 1− 2(2
e )2n,

sup
x,y∈{±1}n

|xT (A− Ā)y| ≤
(

2
√

2(p+ q)n+
8

3

)
n.

Proof. As discussed above, the proof is based on Bernstein’s inequality and the union bound, and
will be left as homework.

By Combining Lemma 11.2, Corollary 11.1, and Lemma 11.4, we get the following theorem.

Theorem 11.2. Assume p > q. Let Ŷ denote the optimal solution to SDP relaxation (11.4). Then
with probability at least 1− 2(2

e )2n,

‖Ŷ − Y ∗‖2F ≤
8KG

p− q

(
2
√

2(p+ q)n+
8

3

)
n.

The above theorem gives a high-probability upper bound on ‖Ŷ − Y ∗‖2F . However, Ŷ does not

directly yield clusters. Since Ŷ is close to Y ∗ and the leading eigenvector of Y ∗ is parallel to the
true cluster label vector, we can use the leading eigenvector of Ŷ to estimate clusters, as we did for
the spectral clustering. More specifically, we have the following lemma.
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Lemma 11.5. Let u be the eigenvector of Ŷ corresponding to the eigenvalue with the largest
magnitude and x̂ = sign(u). Then

1

n
min{dH(x∗, x̂), dH(−x∗, x̂)} ≤ 8||Ŷ − Y ∗||2F

n2
.

We are considering the minimum Hamming distance with respect to x∗ and −x∗ in Lemma 11.5,
because by symmetry, there is no way to correctly tell whether the true cluster label is x∗ or −x∗.
The proof of Lemma 11.5 relies on the Davis-Kahan sinθ theorem and will be left as homework.

By combining Theorem 11.2 with Lemma 11.5, we have the following corollary.

Corollary 11.2. Suppose n(p−q)√
np → 0 and n(p− q)→∞ as n→∞. Then

1

n
min{dH(x∗, x̂), dH(−x∗, x̂)} → 0.

11.4 Two recovery goals

In the previous lectures, we have been focusing on achieving a vanishing fraction of misclassified
nodes. In this section, we formally introduce two recovery goals. Notice that it is impossible to tell
whether the true cluster label is x∗ or −x∗.
Definition 11.2 (Weak Recovery). Let dH denote the Hamming distance. In the binary stochastic
block model with true cluster label vector denoted by x∗, we say an estimated cluster label vector x̂
achieves weak recovery, if as n→∞

1

n
min{dH(x∗, x̂), dH(−x∗, x̂)} → 0, in probability. (11.7)

Since 0 ≤ 1
n min{dH(x∗, x̂), dH(−x∗, x̂)} ≤ 1, convergence in probability is equivalent to conver-

gence in L1. In other words, (11.7) is equivalent to

1

n
E [min{dH(x∗, x̂), dH(−x∗, x̂)}]→ 0.

Definition 11.3 (Exact Recovery). In the binary stochastic block model with true cluster label
vector denoted by x∗, we say an estimated cluster label vector x̂(A) achieves exact recovery, if as
n→∞,

P [x̂ ∈ {x∗,−x∗}]→ 1.

For weak recovery, we have shown that:

• Spectral clustering achieves weak recovery in the dense regime np = Ω(log n) if n(p−q)√
np →∞.

• SDP achieves weak recovery if n(p−q)√
np →∞ and n(p− q)→∞.

In the next lecture, we will discuss the information-theoretic limits of weak recovery and exact
recovery, as well as how to achieve exact recovery efficiently using SDP.
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Chapter 12

Exact recovery via SDP clustering

This lecture:

• Weak and exact Recovery

• When does SDP achieve exact recovery

12.1 Review of weak and exact recovery

Consider the binary symmetric SBM with n nodes and two equal-sized clusters, where x∗ ∈ {±1}n
denotes the true cluster label vector. Recall the following two notations of recovery of x∗ based on
the observed adjacency matrix A.

Definition 12.1. (Weak Recovery) Let x̂(A) be the estimated cluster label and x∗(A) be the true
cluster label. We say x̂(A) achieves weak recovery of x∗(A) if as n→∞,

1

n
min{dH(x̂, x∗), dH(x̂,−x∗)} −→ 0 ; converge in probability

Note : Since 1
n min{dH(x̂, x∗), dH(x̂,−x∗)} is bounded, convergence in probability implies L1

convergence, i.e.

1

n
E[min{dH(x̂, x∗), dH(x̂,−x∗)}] −→ 0.

Definition 12.2. (Exact Recovery) We say X̂(A) achieves exact recovery of X∗ if

P[x̂ ∈ {x∗,−x∗}] −→ 1; as n −→∞

Clearly, exact recovery is stronger than weak recovery.
Recall : It was shown in the last lecture that SDP achieves weak recovery if

n(p− q) −→∞ and
n(p− q)√

np
−→∞

In this lecture, we will study when SDP achieves exact recovery.
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12.2 Exact Recovery via SDP

Recall the SDP relaxations of MLE derived in the last lecture:

max
Y

〈A, Y 〉

s.t. Y � 0

Yii = 1

〈Y,J〉 = 0

(12.1)

Let Y ∗ = x∗(x∗)> be a true cluster partition matrix, and denote Ŷ as the optimal solution of (12.1).
Notice that one can recover x∗ up to a global sign flip from Y ∗. Hence, The exact recovery of x∗ is
equivalent to the exact recovery of Y ∗. Therefore, we would like to understand when P[Ŷ = Y ∗]→ 1
as n→∞ (exact recovery).

We assume p = a log(n)
n and q = b log(n)

n , where a > b > 0 are two fixed constants. Notice that if
the observed graph has isolated nodes (nodes with zero degree), then there is no way to tell which
cluster those isolated nodes are from and hence exact recovery is fundamentally impossible. It turns
out that p has to scale as log(n)

n so that with high probability, the observed graph does not contain
any isolated node. More pecisely, we have the following claim.

Lemma 12.1. Consider the binary symmetric SBM with two equal-sized clusters. If a+b
2 < 1, then

w.h.p., there are about n1−a+b
2 isolated nodes.

The proof will be left as homework excercise. In fact, it is easy to compute the expected number
of isolated nodes. Specifically,

P(di = 0) = (1− p)n2−1(1− q)n2 ;

=

(
1− a log(n)

n

)n
2
−1(

1− b log(n)

n

)n
2

; (1− x) ∼ e−xfor small x

= exp

(
−
(n

2
− 1
) a log(n)

n
− n

2

b log(n)

n

)
= exp

(
−a+ b

2
log(n)

)
It follows that

E[number of isolated nodes] = E

[
n∑
i=1

1di=0

]

=

n∑
i=1

E [1di=0]

=
n∑
i=1

P[di = 0]

= n× exp

((
−a+ b

2

)
log(n)

)
= n1−a+b

2 .

(12.2)
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Remark 12.1. We have argued that in expectation, there are about n1−a+b
2 isolated nodes. Such

an argument is known as first moment method. Notice that we cannot immediately conclude that

with high probability, there are about n1−a+b
2 isolated nodes. It is because there might be some

rare event of small probability with overwhelmingly large number of isolated nodes, and on all the
other events, the number of isolated nodes is small. To exclude such an rare event exists, we need
to use the second moment method.

Lemma 12.1 implies that a+b
2 < 1 is necessary for exact recovery. Is this condition sufficient? It

turns out that exact recovery requires a stronger condition.

Theorem 12.1. If
√
a−
√
b >
√

2, then P[Ŷ = Y ∗] = 1− n−Ω(1) as n −→∞.

Theorem 12.2. If
√
a−
√
b <
√

2 then for any possible estimator Ŷ (A), P[Ŷ = Y ∗]→ 0 as n→∞.

Theorem 12.1 and Theorem 12.2 together imply that SDP attains the optimal exact recovery
threshold. Next, we will first present the proof of Theorem 12.1. The high-level proof idea is to
construct a set of dual variables and show that they together with Y ∗ satisfy the KKT conditions
of the SDP program with high probability.

12.2.1 Dual certificate lemma and its proof

The following lemma provides a set of determinstic conditions on the dual variables to guarantee
that Y ∗ is the unique solution to the SDP.

Lemma 12.2. (Dual Certificate Lemma) Suppose there exists D∗ = diag(d∗i ) and λ∗ ∈ R such
that S∗ = D∗ −A+ λ∗J satisfies

S∗ � 0 (12.3)

λ2(S∗) > 0 (12.4)

S∗x∗ = 0, (12.5)

where λ2(S∗) denotes the second smallest eigenvalue of S∗. Then Y ∗ is the unique optimal solution
to the SDP.

The conditions in the dual cerficate lemma in fact correspond to the so-called KKT conditions
of the SDP program. More specifically, define the dual variables corresponding to each constraint of
the SDP as follows.

max
Y

〈A, Y 〉

s.t. Y � 0 −→ S � 0

Yii = 1 −→ D = diag(di)

〈Y,J〉 = 0 −→ λ ∈ R

Then the so-called Lagrangian function is defined as:

L(Y, S,D, λ) , 〈A, Y 〉+ 〈S, Y 〉 − 〈D,Y − I〉 − λ〈Y,J〉 (12.6)

The KKT conditions are given by

1. First order condition: ∂L(Y )
∂Y |Y=Y ∗ = A+ S −D − λJ = 0 ⇐⇒ S = D −A+ λJ

2. Complementary Slackness: 〈S, Y ∗〉 = 0. Note that Y ∗ = x∗(x∗)> and S � 0. It follows that
〈S, Y ∗〉 = 0 ⇐⇒ Sx∗ = 0.
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The extra condition λ2(S∗) > 0 in the dual certficate lemma is used to guarantee that the optimal
solution of SDP is unique.

Proof of Dual Certificate Lemma. For any feasible solution Y of SDP,

L(Y, S∗, D∗, λ∗) = 〈A, Y 〉+ 〈S∗, Y 〉 − 〈D∗, Y − I〉 − λ∗〈Y,J〉.

Since Y is feasible, it follows that

〈D∗, Y − I〉 =
∑
i

d∗i (Yii − 1) = 0,

and 〈Y,J〉 = 0. Moreover, since Y � 0, its eigenvalue decomposition can be written as

Y =
n∑
i=1

λiuiu
T
i ; 0 ≤ λ1 ≤ λ2 · · · ≤ λn,

Hence,

〈S∗, Y 〉 =
n∑
i=1

λi〈uiuTi , S〉

=
n∑
i

λiu
T
i Sui ≥ 0,

where the last equality holds by trace operation, which states Tr(uiu
T
i S) = Tr(uTi Sui) = uTi Sui.

Using these results, we have

〈A, Y 〉 ≤ L(Y, S∗, D∗, λ∗)

= 〈S∗ −D∗ +A− λ∗J, Y 〉+ 〈D∗, I〉
= 〈D∗, I〉
= 〈D∗, Y ∗〉
= 〈S∗ +A− λ∗J, Y ∗〉 ; since〈S∗, Y ∗〉 = 〈J, Y ∗〉 = 0

= 〈A, Y ∗〉

As a result, 〈A, Y 〉 ≤ 〈A, Y ∗〉 and hence Y ∗ is the optimal.
Next we show the uniqueness of Y ∗. Let Ỹ be an optimal solution to the SDP, one wants to

show that Ỹ = Y ∗. Notice that

〈S∗, Ỹ 〉 = 〈D∗ −A+ λ∗J, Ỹ 〉
= 〈D∗ −A, Ỹ 〉
= 〈D∗ −A, Y ∗〉 ; since〈A, Ỹ 〉 = 〈A, Y ∗〉 and D∗ is diagonal.

= 〈S∗, Y ∗〉
= 0.

Since S∗ � 0 and λ2(S∗) > 0, Ỹ must be a multiple of x∗(x∗)>. Moreover, since Ỹii = 1,
Ỹ = x∗(x∗)> = Y ∗.
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12.2.2 Proof of Theorem 12.1

With the dual cerficiate lemma, we are ready to prove Theorem 12.1.

Proof of Theorem 12.1. We use the same notation as dual certificate lemma. Note that S∗ =
D∗ −A+ λ∗J. Then S∗x∗ = 0 is equivalent to

0 = D∗x∗ −Ax∗ + λ∗Jx∗.

Since x∗ is assumed to represent equal-sized partition, Jx∗ = 0, thus, D∗x∗ = Ax∗. It follows that

d∗ix
∗
i =

∑
j 6=i

Aijx
∗
j .

Since x∗i , x
∗
j ∈ {±1}, we have

d∗i =
∑
j 6=i

Aijx
∗
jx
∗
i

=

 ∑
j 6=i,x∗j=x∗i

Aij −
∑

j 6=i,x∗j 6=x∗i

Aij

 .
Note that ∑

j 6=i,x∗j=x∗i

Aij ∼ Bin(
n

2
− 1, p),

and ∑
j 6=i,x∗j 6=x∗i

Aij ∼ Bin(
n

2
, q).

So we are left to check that with high probability, λ2(S∗) > 0, or more specifically,

P
[

inf
x⊥x∗,‖x‖2=1

xTS∗x > 0

]
≥ 1− n−Ω(1). (12.7)

Fix any x ⊥ x∗, ‖x‖2 = 1. By the definition of S∗, we have

xTS∗x = xT (D∗ −A+ λ∗J)x

= xT (D∗ − Ā+ λ∗J)x+ xT (Ā− x)x,
(12.8)

where

Ā , E [A] =
p− q

2
Y ∗ +

p+ q

2
J− pI.

Therefore, it follows from (12.8) that

xTS∗x = xT
(
D∗ − p− q

2
Y ∗ − p+ q

2
J + pI + λ∗J

)
x+ xT (Ā− x)x

= xTD∗x+

(
λ∗ − p+ q

2

)
xTJx+ p+ xT (Ā−A)x.

(12.9)
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Since xTJx is always nonnegative, by choosing any λ∗ such that λ∗ ≥ p+q
2 , it follows from (12.9)

that

xTS∗x ≥ xTD∗x+ xT (Ā−A)x+ p.

≥ xTD∗x+ p− ‖A− Ā‖2
≥ min

i
d∗i + p− ‖A− Ā‖2,

where the second last inequality is due to xT (Ā−A)x ≥ λmin(Ā−A) ≥ −‖Ā−A‖2. Next, there
are two tasks remaininig. In particular, we need to argue that with high probability,

1. mini d
∗
i is “large”.

2. ‖A− Ā‖2 is “small”.

First Task

Let’s first compute the expectation of d∗i :

E[d∗i ] = E

 ∑
j 6=i,xj 6=xi

Aij −
∑

j 6=i,xj 6=xi

Aij


=
(n

2
− 1
)
p− n

2
q

=
(n

2
− 1
) a log n

n
− n

2

b log n

n
∼ 1

2
(a− b) log n.

Therefore, in expectation, d∗i is on the order of log n. The next lemma bounds the tail probability
of d∗i ≤ logn

log logn for each fixed i.

Lemma 12.3. Let X ∼ Bin
(
n
2 − 1, a logn

n

)
, R ∼ Bin

(
n
2 ,

b logn
n

)
, and assume that these two random

variables are independent (i.e., X ⊥ R). Then it follows that

P
{
X −R ≤ log n

log logn

}
≤ n−

(
√
a−
√
b)2

2
+o(1),

The proof of the lemma is based on Chernoff’s bound and will be left as homework. By
Lemma 12.3, we have

P
{

min
i
di ≤

log n

log logn

}
≤ P

{
∃i s.t. d∗i ≤

log n

log log n

}
≤

n∑
i=1

P
{
d∗i ≤

log n

log log n

}
= n · n−

(
√
a−
√
b)2

2
+o(1)

= n1− (
√
a−
√
b)2

2
+o(1) = n−Ω(1).

Since
√
a−
√
b >
√

2 by the assumption, with probability at least 1− n−Ω(1), mini d
∗
i ≥ logn

log logn .
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Second Task

In homework 4, we have proved a high-probability upper bound on ‖A− Ā‖2. In particular,

Lemma 12.4. For any c > 0, there exists c′ > 0 such that

P
{
‖A− Ā‖2 ≤ c′

√
np
}
≥ 1− n−c.

Proof of positiveness of λ2(S)

Now, we are ready to finish the proof of (12.7). Define event E as

E , {min
i
d∗i ≥

log n

log logn
} ∩ {‖A− Ā‖2 ≤ c′

√
np}.

Since

P
{

min
i
d∗i ≤

log n

log log n

}
≤ n−Ω(1)

and
P
{
‖A− Ā‖2 ≥ c′

√
np
}
≤ n−c,

it follows from union bound that P [E ] ≥ 1− n−Ω(1) − n−c. On event E , for all sufficiently large n,

inf
x⊥x∗,‖x‖2=1

xTS∗x ≥ log n

log log n
+ p− c′

√
log n ≥ p, (12.10)

Hence on event E , all the conditions of dual certificate lemma are satisifed and thus Ŷ = Y ∗.
Therefore,

P
[
Ŷ = Y ∗

]
≥ P [E ] ≥ 1− n−Ω(1) − n−c = 1− n−Ω(1).

Note: Let us summarize what we have ve discussed so far.

• Dual certificate lemma provides a set of deterministic conditions to cerfity Y ∗ is the unique
optimal solution to the SDP program.

• We construct D∗, λ∗, and S∗, which satisfy the conditions in the dual certificate lemma. In
particular, S∗x∗ = (D∗ − A + λ∗J)x∗ = 0 is equivalent to d∗i =

∑
j 6=iAijx

∗
ix
∗
j . Notice that

d∗i corresponds to the number of node i’s neighors in its own cluster minus the number of
node i’s neigbhors in the other cluster. As we will show later, d∗i is closely related to the
information-theoretic lower bounds of exact recovery. In particular, we will prove that if there
exists a node i from cluster + and node j from cluster − such that d∗i < −1 and d∗i < −1, then
the maximum likelihood estimator of x∗ will not coincide with the true cluster label vector x∗.

12.3 Information-theoretic lower bounds for exact recovery

In this section, we aim to prove Theorem 12.2. We start by proving that the maximum likelihood
estimator is always optimal in minizing the probability of error when the underlying parameter is
uniformly distributed.

Let us consider a general parameter estimaiton setting. Let θ∗ denote the true parameter which
is drawn from a parameter space Θ. Let Y denote the observation and p(y|θ) denote a conditional
probability kernal such that Y ∼ p(·|θ∗ = θ). The goal is to estimate θ∗ based on Y . More formally,
we aim to develop an estimator θ̂(Y ) as a funcdtion of Y so that θ̂(Y ) is close to θ∗.
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Figure 12.1: General parameter estimation setting

Example 12.1. (Binary symmetric SBM)
Let’s see how binary symmetric SBM is adapted to the general parameter estimation procedure.
Note that Y in the Figure 12.1 is different from our partition matrix.

• θ∗: Y ∗ (partition matrix for underlying two clusters)

• Θ: Y =
{
Y : Y = xxT , x ∈ {±1}n ,∑n

i=1 xi = 0
}

(the set of all the possible partition matrices)

• P (y | θ): P (A‖Y ∗) (The probailistic way of genearating graph according to SBM)

• Y : adjacency matrix A

• θ̂: estimated partition matrix Ŷ

As we introduced before, the maximum likelihood estimator is defined as θ̂ML(y) = arg maxθ∈Θ P (y |
θ). The following theorem implies that the maximum likelihood estimator minimizes the probability
of error when θ∗ is uniformly generated from Θ.

Theorem 12.3. Suppose θ∗ is uniformly generated from Θ. Then for any estimator θ̂(y),

P
{
θ̂(Y ) = θ∗

}
≤ P

{
θ̂ML(Y ) = θ∗

}
.

In the next lecture, we will prove this theorem and use it to prove Theorem 12.2.
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Chapter 13

Information-theoretic lower bounds
for exact and weak recovery

Outline

• Information-theoretic lower bounds for exact recovery

• Information-theoretic lower bounds for weak recovery

13.1 Information-theoretic lower bounds for exact recovery

Let us first consider a general setting. Let θ∗ denote the true parameter drawn from a parameter
space Θ. Given θ∗ = θ, observation Z is generated according to a conditional probability distribution
P (z|θ). The goal is to estimate θ∗ based on observation Z. In particular, we would like to come up
an estimator θ̂(Z), which is as close to the ground truth θ∗ as possible.

θ∗ ∈ Θ −→ p(z|θ) −→ Z −→ θ̂(Z)

As we have discussed in the previous lectures, a classical estimator is the maximum likelihood
estimator which is given by

θ̂ML(Z) ∈ arg max
θ∈Θ

P [Z|θ∗ = θ] .

The following theorem shows that if θ∗ is uniformly generated from Θ, then ML estimator minimizes
the probability error among all possible estimators.

Theorem 13.1. If θ∗ is uniformly generated from Θ, then for any estimator θ̂(Z),

P
[
θ̂(Z) = θ∗

]
≤ P

[
θ̂ML(Z) = θ∗

]
.

Proof. In the following proof, we assume observation Z is discrete for ease of exposition; the same
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proof holds for continuous observation as well. Note that

P
[
θ̂(Z) = θ∗

]
(a)
=
∑
θ∈Θ

P
[
θ̂(Z) = θ|θ∗ = θ

]
P [θ∗ = θ]

(b)
=

1

|Θ|
∑
θ∈Θ

P
[
θ̂(Z) = θ|θ∗ = θ

]
(c)
=

1

|Θ|
∑
θ∈Θ

∑
z

P [Z = z|θ∗ = θ] 1{θ̂(z)=θ}

=
1

|Θ|
∑
z

∑
θ∈Θ

P [Z = z|θ∗ = θ] 1{θ̂(z)=θ}

where (a) holds dues to total probability formula; (b) follows because θ∗ is uniformly distribution by
assumption. For any fixed z, since

∑
θ∈Θ 1{θ̂(z)=θ} = 1, it follows that

∑
θ∈Θ

P [Z = z|θ∗ = θ] 1{θ̂(z)=θ} ≤ max
θ∈Θ

P [Z = z|θ∗ = θ] ,

where the equality is achieved when

θ̂(z) ∈ arg max
θ∈Θ

P [Z = z|θ∗ = θ] .

Therefore,

P
[
θ̂(Z) = θ∗

]
≤ 1

|Θ|
∑
z

max
θ∈Θ

P [Z = z|θ∗ = θ]

=
1

|Θ|
∑
z

∑
θ∈Θ

P [Z = z|θ∗ = θ] 1{θ̂ML(z)=θ}

= P
[
θ̂ML(Z) = θ∗

]
.

13.1.1 A common strategy for proving lower bounds for exact recovery

Recall that exact recovery requires that the probability of error vanishes. Since we have shown that
if θ∗ is uniformly generated from Θ, then ML estimator minimizes the probability error among all
possible estimators. Hence, to prove a lower bound for exact recovery, one can assume a uniform
prior of θ∗ and prove ML estimator fails under a certain condition. More specifically, we have the
following routine to prove a lower bound for exact recovery.

1. Suppose θ∗ is uniformly generated form Θ.

2. Identify an event F which is defined on the joint probability space of (θ∗, Z), such that for
any (θ, z) ∈ F , there exists θ′ ∈ Θ, θ′ 6= θ such that

P [Z = z|θ∗ = θ] < P
[
Z = z|θ∗ = θ′

]
.
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Note: If we can find such an event F , then for any realization (θ, z) ∈ F ,

=⇒ θ̂ML(z) 6= θ

=⇒ F ⊆ {θ̂ML(Z) 6= θ∗}
=⇒ P [F ] ≤ P

[
θ̂ML(Z) 6= θ∗

]
.

3. Show that P [F ] ≥ δ for some constant δ > 0.

Note: If we can successfully complete all above three steps, then we have shown that the probability
of error of maximum likelihood estimation is lower bounded by some positive constant δ. This
immediately implies that it is impossible for maximum likelihood estimator to achieve a vanishing
probability of error and hence the impossibility of exact recovery. The key in the above three steps
is to find such an event F with P [F ] ≥ δ, i.e., to find a typical failing event of maximum likelihood
estimation.

13.2 Information-theoretic lowers bound for exact recovery under
binary symmetric SBM

In this section, we illustrate how to carry out the common strategy for proving exact recovery lower
bounds by considering the binary symmetric SBM.

Theorem 13.2. Consider binary symmetric SBM G(n, p, q) with two equal-sized clusters. Let Y ∗

denote the partition matrix corresponding to the true cluster partition. Assume p = a logn
n , q = b logn

n

with a > b ≥ 0, where a and b are two constants. If
√
a−
√
b <
√

2, then for any estimator Ŷ , as
n→∞,

P
[
Ŷ = Y ∗

]
→ 0.

Note: Recall that we have shown in the previous lectures that SDP achieves exact recovery if√
a−
√
b >
√

2. Hence, the achievability result of SDP and impossibility result in Theorem 13.2
together imply that the information-theoretic limit for exact recovery under binary symmetric SBM
is
√
a−
√
b =
√

2, and it can be achieved efficiently in polynomial-time.

Proof. Let Y = {Y : Y = xx>, x ∈ {±1}n,∑i xi = 0} denote the set of all possibly partition
matrices Assume Y ∗ is uniformly generated from Y.

We would like to identify an event F such that on this event F , the ML estimator does not
coincide with Y ∗. Recall that the ML estimation is to maximize the number of edges inside clusters.
If in the observed graph, one can find a node i in cluster +1 with more neighbors in cluster −1
than cluster +1, and similarly find a node j in cluster −1 with more neighbors in cluster +1 than
cluster −1, then one can swap the cluster memberships of those two nodes and increase the number
of edges inside clusters. Therefore, the existence of such two nodes i and j corresponds to a failing
event of ML estimator. More formally, we define event F as follows.

Let di ,
∑

j 6=iAijx
∗
ix
∗
j , x

∗ denotes the true cluster label vector, and Y ∗ = x∗(x∗)>. Then di
equals to the number of neighbors in its own cluster minus the numbers of neighbors in the other
cluster. Define

F1 = {∃i : x∗i = +1, di ≤ −2},
F2 = {∃j : x∗i = −1, dj ≤ −2}.
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and let F = F1 ∩F2. Next, we verify that on this event F , ML estimator will not coincide with the
true partition Y ∗. Indeed, on event F , there must a node ∃i0 such that x∗i0 = +1, di0 ≤ −2 and a
node j0 such that x∗j0 = −1, dj0 ≤ −2. Define

x′i =

{
−x∗i if i ∈ {i0, j0}
x∗i o.w

and Y ′ = (x′)(x′)>. Notice that x′ is a new cluster label vector by swapping the cluster memberships
of nodes i0 and j0. Hence Y ′ ∈ Y corresponds to a new partition matrix. We are left to check that
Y ′ indeed has a higher likelihood than Y ∗:

logP [A|Y ∗]− logP
[
A|Y ′

]
=

1

2
log

p(1− q)
q(1− p)

∑
i<j

Aij(x
∗
ix
∗
j − x′ix′j)


= log

p(1− q)
q(1− p) (di0 + dj0 + 2Ai0j0) < 0

where the last inequality follows because di0 ≤ −2 and dj0 ≤ −2.
Finally, we show that event F is typical, i.e., if

√
a−
√
b <
√

2, then P [F ]→ 1 as n →∞. Note
that di corresponds to the difference of two independent binomial random variables:

di ∼ Binom

(
n

2
,
a log n

n

)
− Binom

(
n

2
,
b log n

n

)
.

Then E [di] ∼ a−b
2 log n. The following proposition shows that there is a still a small chance that

di ≤ − logn
log logn .

Proposition 13.1.

P
[
di ≤ −

log n

log logn

]
≥ n−

(
√
a−
√
b)2

2
+o(1).

The following argument shows that with high probability, there exists a node i such that
di ≤ − logn

log logn , by assuming di’s are independent (notice that di’s are in fact dependent; we will see
how to relax this assumption later):

P [∃i : x∗i = +1, di ≤ −2]

= 1− P [∀i with x∗i = +1 : di > −2]

= 1−
∏

i:x∗i=+1

P [di > −2]

= 1−
∏

i:x∗i=+1

(1− P [di ≤ −2])

(a)

≥ 1−
∏

i:x∗i=+1

exp (−P [di ≤ −2]))

(b)

≥ 1−
∏

i:x∗i=1

exp

(
−n−

(
√
a−
√
b)2

2
+o(1)

)

= 1− exp

(
−1

2
n1− (

√
a−
√
b)2

2
+o(1)

)
→ 1, (13.1)
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where (a) holds due to 1− x ≤ e−x; (b) holds due to

P [di ≤ −2] ≥ P
[
di ≤ −

log n

log log n

]
≥ n−

(
√
a−
√
b)2

2
+o(1).

Hence, P [F1] → 1. Similarly, one can show that P [F2] → 1. Since F = F1 ∩ F2, it follows that
P [F ]→ 1.

Remark 13.1. Proposition 13.1 implies that

E

[
n∑
i=1

1{
di≤− logn

log logn

}
]
≥ n1− (

√
a−
√
b)2

2
+o(1) →∞,

where the last inequality holds due to
√
a−
√
b <
√

2. In other words, the expected number of i’s
such that di ≤ − logn

log logn is large. However, as we discussed in the previous lectures on the number of

isolated nodes, the expected number of i’s such that di ≤ − logn
log logn is large does not directly imply

that with high probability the number of i’s such that di ≤ − logn
log logn is large. One way to show this

is indeed the case is the celebrated second moment method.
The argument presented in (13.1) is another widely used method to show that indeed with high

probability, there exists an i such that di ≤ − logn
log logn , by assuming di’s are independent. However,

in SBM, di’s are in fact dependent because Aij appears in both di and dj . Please refer to [ABH16,
Section 5] for a technique to deal with the dependency.

Remark 13.2. Recall that in the proof of the achievability of SDP, we need mini di to be large
with high probability. In fact, we used the following concentration inequality:

P
[
di ≤

log n

log log n

]
≤ n−

(
√
a−
√
b)2

2
+o(1),

The above inequality together with Proposition 13.1, yield that

n−
(
√
a−
√
b)2

2
+o(1) ≤ P

[
di ≤ −

log n

log logn

]
≤ P

[
di ≤

log n

log log n

]
≤ n−

(
√
a−
√
b)2

2
+o(1).

13.3 Information-theoretic lower bounds for weak recovery

In this section, we will derive the information-theoretic lower bounds for weak recovery under binary
SBM. Notice that weak recovery requires a vanishing fraction of misclassified nodes, i.e.,

1

n
min{dH(x̂, x∗), dH(x̂,−x∗)} → 0 in probability.

For exact recovery, we reduce the task of proving information-theoretic lower bounds to proving
ML estimator fails. However, for weak recovery, ML estimator is not necessarily optimal in
minimizing the fraction of misclassified nodes. Hence, we cannot directly reduces the task of proving
information-theoretic lower bounds for weak recovery to proving ML estimator fails. Instead, we
will use genie-aided argument. More specifically, we assume that there is a genie which provides
some extra side information and try to reduce the original more complicated estimation problem to
a simpler one.
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Theorem 13.3. Assume p > q in the binary symmetric SBM G(n, p, q). If weak recovery is possible,

then n(p−q)√
np →∞.

Note: Recall that we have shown that SDP achieves weak recovery if n(p−q)√
np →∞. The achievability

result of SDP together with impossibility result in Theorem 13.3 imply that the information-theoretic
limit for weak recovery is given by n(p−q)√

np →∞ and it can be achieved efficiently in polynomial-time.

Proof. Fix any estimator x̂(A) which attains weak recovery. Then as n→∞, in probability,

1

n
min{dH(x̂, x∗), dH(x̂,−x∗)} → 0.

Since 1
n min{dH(x̂, x∗), dH(x̂,−x∗)} is a bounded random variable, it follows that as n→∞

E
[

1

n2
〈x̂, x∗〉2

]
=

1

n2
E
[∑
ij

x̂ix̂jx
∗
ix
∗
j

]
→ 1.

Intuitively, 1
n2 〈x̂, x∗〉2 measures the overlap between x̂ and x∗. Since

1

n2
E
[∑
ij

x̂ix̂jx
∗
ix
∗
j

]
=

n

n2
+
n(n− 1)

n2
E[x̂1x̂2x

∗
1x
∗
2],

it further follows that E[x̂1x̂2x
∗
1x
∗
2]→ 1, i.e., P [x̂1x̂2 = x∗1x

∗
2]→ 1. In other words, x̂ tells whether

node 1 and node 2 are in the same cluster correctly with probability converging to 1.
Next, we apply the genie-aided argument. For ease of exposition, we will assume that

x∗i
i.i.d.∼ Unif{+1,−1} (in this case, two clusters may not have equal sizes). Let x∗\1 denote the

true cluster label vector all nodes except node 1. Suppose there is a genie who reveals x∗\1 Let

X (A, x∗\1) denote the set of all possible estimators of x∗ which have access to both adjacency matrix

and side information x∗\1. Let X1(A, x∗\1) denote the set of all possible estimators of x∗1 which have
access to both adjacency matrix and side information x∗\1. Then we have

E[x̂1x̂2x
∗
1x
∗
2]

(a)

≤ max
x̃∈X (A,x∗\1)

E[x̃1x̃2x
∗
1x
∗
2]

(b)
= max

z∈X1(A,x∗\1)
E[zx∗1]

= max
z∈X1(A,x∗\1)

P [z = x∗1]− P [z 6= x∗1]

= 2P [zML = x∗1]− 1,

where (a) holds because x̂(A) ∈ X (A, x∗\1); (b) holds because for any x̃ ∈ X (A, x∗\1), one can define

z ∈ X1(A, x∗\1) such that z = x̃1 if x̃2 = x∗2 and z = −x̃1 if x̃2 = −x∗2. Then x̃1x̃2x
∗
1x
∗
2 = zx∗1; the

last equality holds by defining

zML ∈ arg max
x∈{±1}

P
[
A, x∗\1 | x∗1 = x

]
.

Combining the last two displayed equations yield that P [zML = x∗1]→ 1. Notice that

P
[
A, x∗\1 | x∗1 = x

]
= P

[
x∗\1 | x∗1 = x

]
P
[
A | x∗\1, x∗1 = x

]
= 2−(n−1)P

[
A | x∗\1, x∗1 = x

]
,
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where the last equality holds because x∗i
i.i.d.∼ Unif{+1,−1}. It follows that

zML ∈ arg max
x∈{1,−1}

P
[
A | x∗\1, x∗1 = x

]
,

i.e.,

zML =

{
+1 P

[
A | x∗\1, x∗1 = 1

]
≥ P

[
A | x∗\1, x∗1 = −1

]
−1 o.w..

Moreover,

logP
[
A | x∗\1, x∗1 = +1

]
− logP

[
A | x∗\1, x∗1 = −1

]
= log

p(1− q)
q(1− p)

∑
j 6=1

A1jx
∗
j

 .

Hence,

zML =

{
+1

∑
j 6=1A1jx

∗
j ≥ 0

−1 o.w..

Therefore,

P [zML = x∗1] = P

∑
j 6=1

Aijx
∗
jx
∗
1 ≥ 0

 = P [d1 ≥ 0] ,

where in the last equality we used d1 =
∑

j 6=1A1jx
∗
jx
∗
1. Since we have shown that P [zML = x∗1]→ 1,

it follows that P [d1 ≥ 0]→ 1.

Note that {A1jx
∗
1x
∗
j}j 6=1

i.i.d.∼ p
2δ1+ q

2δ−1+
(
1− p+q

2

)
δ0. By central limit theorem, 1√

n−1
d1 converges

in distribution to N (µ, σ2), where µ =
√
n− 1(p − q)/2 and σ2 = (p + q)/2 − (p − q)2/4. Hence,

P [d1 ≥ 0]→ 1 implies that P
[
N (µ, σ2) ≥ 0

]
→ 1, which further implies that µ

σ →∞, i.e., n(p−q)√
np →

∞. In Homework 5, we will rigorously justify the Gaussian approximation by applying Berry-Esseen’s
theroem.
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Chapter 14

Information Theoretic Methods

Outline

• f -divergence

• Data processing inequality [DPI] for f-divergence

• Mutual information bound (Fano’s inequality)

• Examples

14.1 f-divergence

Recall the stochastic block model with true cluster label vector X∗ and observed adjacency matrix
A. To recover cluster structure X∗ from A, we are essentially interested in distinguishing between
the conditional distribution PA|X∗=x and conditional distribution PA|X∗=x′ for different possible
cluster partitions x 6= x′. To this end, we need to characterize the distance between two different
probability distributions.

Definition 14.1 (f-divergence). Let P and Q be two probability distributions defined on a common
space. Then for any convex function f : (0,∞)→ R such that f is strictly convex at 1 and f(1) = 0,
the f-divergence of Q from P with P � Q (P absolutely continuous with respect to Q) is defined as:

Df (P ||Q) , EQ

[
f

(
dP

dQ

)]
(14.1)

Note:
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• We say that P � Q if for any measurable set E, Q(E) = 0⇒ P (E) = 0. If P � Q then we
can define the Radon-Nikodym derivative dP

dQ : P (E) =
∫
E
dP
dQdQ.

• We say f is strictly convex at 1, if ∀x, y ∈ (0, 1)∪(1,∞) and ∀λ ∈ (0, 1) such that λx+(1−λ)y =
1,

λf(x) + (1− λ)f(y) > f(1)

• An important property that we will use later is the so-called change of measure property:

EX∼P [g(x)] = EX∼Q

[
g(x)

dP

dQ

]
=

∫
g(x)

dP

dQ
dQ.

• We will often write dP
dQ simply as P

Q .

14.1.1 Examples of f-divergence: THE BIG FOUR

We will look at four most frequently used f -divergences.

1. KL-divergence: f(x) = x · log(x)

D(P ||Q) , EP

[
log

(
dP

dQ

)]
= EQ

[(
dP

dQ
log

dP

dQ

)]
.

Note that KL-divergence is not symmetric, i.e., D(P‖Q) 6= D(Q‖P ).

2. TV-divergence: f(x) = 1
2 |x− 1|

TV(P,Q) ,
1

2

∫
|P −Q|

=
1

2
EQ

[∣∣∣∣PQ − 1

∣∣∣∣]
= sup

E
(P (E)−Q(E)) .

Total variation divergence is symmetric, i.e., TV(P,Q) = TV(Q,P ).

3. χ2-divergence f(x) = (x− 1)2

χ2(P ||Q) , EQ

[(
P

Q
− 1

)2
]

=

∫ (
P

Q
− 1

)2

Q

=

∫ (
P 2

Q2
− 2

P

Q
+ 1

)
Q

=

∫
P 2

Q
− 1.

χ2-divergence is not symmetric.
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4. Squared Hellinger divergence f(x) = (
√
x− 1)2

H2(P,Q) , EQ

(√P

Q
− 1

)2


=

∫ (√
P −

√
Q
)2
.

Squared Hellinger divergence is symmetric.

The above four divergences appear frequently in the derivation of decision boundary for Hypoth-
esis testing problem and information limits for estimation problem. In fact, the four divergences
can be related to each other in various ways. See [Wu16, Chapter 5] for more details.

Theorem 14.1 (Properties of f -divergence). The following holds in general for f -divergence.

1. Non-Negativity: Df (P ‖ Q) ≥ 0 with equality iff P = Q.

Proof. Use the convexity of f and Jensen’s inequality.

2. Joint Convexity: (P,Q)→ Df (P ‖ Q) is jointly convex.

Proof. Check using the definition of convexity that the mapping (p, q)←→ qf(pq ) is jointly
convex. Then (P,Q)→ Df (P ‖ Q) is a linear combination of convex functions and therefore
convex.

3. Conditioning increases f-divergence : Define

Df (PY |X ‖ QY |X |PX) , EX∼PX
[
Df (PY |X ‖ QY |X)

]
.

Then we have

Df (PY ‖ QY ) ≤ Df (PY |X ‖ QY |X |PX) (14.2)
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Proof. Use Jensen inequality and the fact that Df (·, ·) is convex to get that

Df (PY ‖ QY ) = Df (EX∼PX [PY |X ] ‖ EX∼PX [QY |X ])

≤ EX∼PX
[
Df (PY |X ‖ QY |X)

]
= Df (PY |X ‖ QY |X |PX)

14.2 Data Processing Inequality

Figure 14.1: Data Processing

Theorem 14.2 (Data processing inequality). Suppose PY = EX∼PX [PY |X ] and QY = EX∼QX [PY |X ].
Then

Df (PX ‖ QX) ≥ Df (PY ‖ QY ) (14.3)

Note: To get the intuition behind the data processing inequality, consider the following hypothesis
testing problem, where given the observation X, we would like to determine whether the data is
generated by QX or PX .

H0 : X ∼ QX
H1 : X ∼ PX .

The data processing inequality in (14.3) implies that processing X makes it harder to distinguish
between the two hypotheses.

Proof of Theorem 14.2. Starting from the left hand of inequality (14.3), we have
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Df (PX ‖ QX) = EX∼QX

[
f

(
PX
QX

)]
.

(a)
= EQXY

[
f

(
PX · PY |X
QX · PY |X

)]
= EQY

[
EQX|Y

[
f

(
PXY
QXY

)]]
(b)

≥ EQY

[
f

(
EQX|Y

[
PXY
QXY

])]
(c)
= EQY

[
f

(
PY
QY

)]
= Df (PY ‖ QY ),

where (a) follows because
PX ·PY |X
QX ·PY |X

= PX
QX

; (b) holds due to the convexity of f and Jensen’s inequality;

(c) holds because

EQX|Y

[
PXY
QXY

]
= EQX|Y

[
PXY

QY ·QX|Y

]
.

=

∫
X
QX|Y

PXY
QY ·QX|Y

=
PY
QY

.

Example 14.1. PY |X is deterministic with Y = h(X) and h(X) = 1{X∈E}

Df (PX ‖ QX) ≥ Df (Bern(PX(E)) ‖ Bern(QX(E))) .

Example 14.2. X = (X1, X2) and PY |X is deterministic with Y = h(X) with h(X) = X1

Df (PX1,X2 ‖ QX1,X2) ≥ Df (PX1 ‖ QX1). (14.4)

14.3 Mutual Information Bound

An important quantity to measure the dependency between two random variables is the mutual
information.

Definition 14.2 (Mutual Information). Mutual Information is defined as the KL-divergence between
the joint distribution PXY and product of marginal distributions PXPY . More formally,

I(X;Y ) , D(PXY ‖PXPY ) (14.5)

Note: By convention, we use semicolon ; to separate two random variables X and Y in I(X;Y ),
emphasizing that I(X;Y ) is not a function of random variables X and Y themselves.
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14.3.1 Properties of Mutual Information

• I(X;Y ) = D(PY |X‖PY |PX) = EX∼PX [D(PY |X‖PY )]

• Symmetry: I(X;Y ) = I(Y ;X)

• Measure of dependency: I(X;Y ) ≥ 0 with equality iff X ⊥ Y

• If X,Y are discrete random variables. Then,

I(X;Y ) = H(Y )−H(Y |X) (14.6)

where H(Y ) is called entropy and H(Y |X) is called conditional entropy defined as

H(Y ) ,
∑
y

PY (y) log
1

PY (y)
(14.7)

H(Y |X) ,
∑
x

PX(x)
∑
y

PY |X=x(y) log
1

PY |X=x(y)
(14.8)

Example 14.3 (Entropy for Bernoulli random variable). Let X ∼ Bern(p), then

H(X) = p log
1

p
+ (1− p) log

1

1− p
, h(p) (14.9)

where h(p) is known as “binary entropy function”. Note that, h(p) attains maximum of log 2 at
p = 1

2 . Intuitively speaking, entropy is a measure of randomness. X contains no randomness for
p = 0 or p = 1 as it is completely determined and it contains maximum randomness for p = 1

2 .

14.3.2 Properties of Entropy

• H(X) ≥ 0

• H(X) ≥ H(Y |X) since I(X,Y ) ≥ 0

Example 14.4 (Binary symmetric channel). Let Y = X⊕Z where X ∼ Bern(δ) and Z ∼ Bern(ε)
such that X ⊥ Z. We are interested in computing I(X,Y ). As a simple case, I(X,Y ) = 0 when
ε = 1

2 because in this case X and Y become independent. For general case,

I(X;Y ) = H(Y )−H(Y |X)

= H(Y )−H(X ⊕ Z|X)

= H(Y )−H(X ⊕ Z ⊕X|X)

= H(Y )−H(Z|X)

= H(Y )−H(Z)

= h(δ(1− ε) + (1− δ)ε)− h(ε),

where the third equality holds because conditional on X, there is a one-to-one mapping from X ⊕Z
to X ⊕ Z ⊕X; the fifth equality holds because X ⊥ Z; the last equality holds by using (14.9).

Theorem 14.3 (Data processing inequality for mutual information). Let X
PY |X−−−→ Y

PZ|Y−−−→ Z
denote a Markov chain, i.e. Z ⊥ X|Y . Then, I(X;Z) ≤ I(X;Y ).

124



Proof. Note that,

I(X;Y ) = EX∼PX [D(PY |X‖PY )] (14.10)

I(X;Z) = EX∼PX [D(PZ|X‖PZ)] (14.11)

Consider a channel such as:

Using data processing inequality, we know that

D(PY |X=x‖PY ) ≥ D(PZ|X=x‖PZ)

⇒ EX∼PX [D(PY |X‖PY )] ≥ EX∼PX [D(PZ|X‖PZ)]

⇒ I(X;Y ) ≥ I(X;Z)

14.4 Mutual Information Bound

Consider a general statistical estimation problem, where

θ ∈ Θ
PX|θ−−−→ X → θ̂ :

θ is the underlying true parameter generated from the parameter space Θ with a prior distribution π,
X is the data generated according to PX|θ, and θ̂ is estimated parameter based on the observation

X. Let l(θ, θ̂) be a loss function between θ and θ̂. We are interested in designing optimal estimator

which achieves the minimum expected loss E
[
`(θ, θ̂)

]
.

The data processing inequality for mutual information yields a lower bound on the mutual
information between θ and X to attain a certain expected loss: letting R∗ = E[l(θ, θ̂)],

inf
P
θ̃|θ:E[l(θ;θ̃)]≤R∗

I(θ; θ̃) ≤ I(θ; θ̂) ≤ I(θ;X) (14.12)

Note that inf
P
θ̃|θ:E[l(θ,θ̃)]≤R∗ I(θ; θ̃) is minimum amount of mutual information needed to attain

an expected loss of R∗ and I(θ;X) is amount of information contained in data X about θ.
A well-known special case is the so-called Fano’s inequality.
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14.4.1 Fano’s inequality

Theorem 14.4 (Fano’s inequality). Assume θ ∈ Unif{θ1, θ2 . . . , θn}. For any estimator θ̂(X), let
Pe , Pr{θ̂ 6= θ}, then

Pe ≥ 1− log 2 + I(θ;X)

log n
(14.13)

Proof. Consider a channel as shown below,

Note that both output distributions will follow Bernoulli distribution with parameter Pr{θ 6= θ̂}.
However, for first distribution θ and θ̂ are independent and θ is drawn uniformly from {θ1, θ2, . . . , θn}.
Hence, Pr{θ 6= θ̂} = 1− 1

n . For second distribution, θ and θ̂ follow the joint distribution P
θθ̂

and

hence Pr{θ 6= θ̂} = Pe. Using mutual information bound,

I(θ,X) ≥ I(θ, θ̂) = D(P
θθ̂
‖Pθ.Pθ̂)

≥ D(Bern(1− 1

n
)‖Bern(Pe))

≥ − log 2 + log n− Pe log n.

After rearranging the terms,

Pe ≥ 1− log 2 + I(θ,X)

log n
.

To use the mutual information bound, a key challenge is to upper bound the mutual information
I(θ;X), especially when θ or X are high-dimensional.

Theorem 14.5 (Tensorization of MI). The mutual information can be decomposed as

I(X;Y ) = I(X1, . . . , Xk;Y ) = I(X1;Y ) + I(X2;Y |X1) + · · ·+ I(Xk;Y |X1, . . . , Xk−1). (14.14)

Moreover, when PY |X =
∏k
i=1 PYi|Xi, then

I(X;Y ) ≤
n∑
i=1

I(Xi;Yi) (14.15)

with equality if and only if Xi’s are independent.
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Proof. The proof of (14.14) is an easy application of the telescoping sum:

log
PY |X1,...,Xk

PY
= log

PY |X1

PY
+ log

PY |X1,X2

PY |X1

+ · · ·+ log
PY |X1,...,Xk

PY |X1,...,Xk−1

.

To show (14.15), note that if PY |X =
∏k
i=1 PYi|Xi , then

log
PY |X

PY
=

k∑
i=1

log
PYi|Xi
PYi

+ log

∏k
i=1 PYi
PY

.

Taking expectation over both hand sides of the last displayed equations yields that

I(X;Y ) = EX,Y
[
log

PY |X

PY

]
=

k∑
i=1

I(Xi;Yi)−D(PY ‖
k∏
i=1

PYi) ≤
k∑
i=1

I(Xi;Yi),

where the equality holds if and only Yi’s are independent, or equivalently, Xi’s are independent.

Note: When PY |X =
∏n
i=1 PYi|Xi , in view of (14.15), we can derive an upper bound on I(X;Y ) by

computing marginal mutual information I(Xi;Yi).
Another way to upper bound I(X;Y ) is through the so-called Golden formula.

Theorem 14.6 (Golden formula of MI).

I(X;Y ) = min
QY

D(PY |X‖QY |PX), (14.16)

where the minimum is achieved when QY = PY .

Proof. Note that

I(X;Y ) = D(PY |X‖PY |PX) = EPX,Y

{
log

[
PY |X

QY

QY
PY

]}
= D(PY |X‖QY |PX)−D(PY ‖QY ).

Note: In view of (14.16), by properly choosing QY , we can always get an upper bound I(X;Y ) ≤
D(PY |X‖QY |PX).

14.5 Two examples

In this section, we illustrate the power of mutual information bound through two simple examples.

14.5.1 Exact recovery under SBM with multiple communities

Consider SBM with n nodes with r clusters, where two nodes in the same clusters are connected
independently with edge probability p, and two nodes in two different clusters are connected

independently with edge probability q. Let xi
i.i.d.∼ Unif{1, 2, . . . , r} be the cluster label of node i. Let

p̄ = 1
rp+ r−1

r q denote the average edge probability. Let A denote the observed adjacency matrix.

Let d(p‖q) , D(Bern(p)‖Bern(q)) denote the binary KL-divergence.
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Theorem 14.7. If there exists an estimator x̂(A) such that P [x̂ 6= x] ≥ ε for some ε > 0, then

n

(
1

r
d(p‖p̄) + (1− 1

r
)d(q‖p̄)

)
≥ 2(1− ε) log r − 1

n
2 log 2, (14.17)

and

n
1

r
d(p‖q) ≥ 2(1− ε) log r − 1

n
2 log 2, (14.18)

then for any we have

Note:

• The necessary conditions in the theorem above are not sufficient when r = Θ(1). In particular,
when r = 2 and p = a log n/n and q = b log n/n,

d(p‖p̄) � d(q‖p̄) � d(p‖q) � log n

n
.

Hence both the necessary conditions (14.17) and (14.18) are satisfied. However, we know that
in this case the sharp information limit for exact recovery is given by

√
a−
√
b >
√

2.

• If pq = Θ(1) and p is bounded away from 1, then d(p‖q) � (p−q)2
q . Hence the necessary condition

(14.18) implies that K(p− q)2 & q log n
K . This necessary condition turns out to be tight up to

a constant factor if log n
K � log n. See [CX14] for more details.

Proof. The proof is an easy application of Fano’s inequality. Notice that x is uniformly chosen from
all rn possible cluster label vector. Hence,

ε ≥ Pe ≥ 1− log 2 + I(x;A)

log(rn)
.

It follows that
I(x;A) ≥ (1− ε)n log r − log 2.

To finish the proof, we need to upper bound I(x;A). Notice that PA|x =
∏
i<j PAij |xi,xj . Hence, in

view of (14.15), we get that

I(x;A) =
∑
i<j

I(xi, xj ;Aij =

(
n

2

)(
1

r
d(p‖p̄) + (1− 1

r
)d(q‖p̄)

)
which completes the proof of (14.17). Moreover, in view of (14.16),

I(x;A) = min
QA

D(PA|x‖QA|Px)

≤ D(PA|x‖Bern(q)⊗(n2)|Px)

(a)
=
∑
i<j

D(PAij |xi,xj‖Bern(q)|Pxi,xj )

=

(
n

2

)
1

r
d(p‖q),

where Bern(q)⊗(n2) denote the
(
n
2

)
product distribution of Bern(q); and (a) follows because PA|x =∏

i<j PAij |xi,xj is also a product distribution. The proof of (14.18) is complete.

128



14.5.2 Weak recovery under SBM with a single community

The mutual information bound can be also used to derive necessary conditions for weak recovery.
Consider the SBM with a single community, where K out of n nodes are in the community; two

nodes are connected independently with edge probability p if both of them are in the community,
and with edge probability q otherwise. Let xi = 1 if node i is in the community, and xi = 0
otherwise. Let A denote the observed adjacency matrix.

We are interested in weak recovery of x from A. In particular, for an estimator x̂(A), we say x̂
achieves weak recovery, if E [dH(x, x̂)] = o(K), i.e., the expected number of misclassified nodes is
o(K). Notice that if x̂ is the all-zero vector, then dH(x, x̂) = K.

Theorem 14.8. If weak recovery is possible, then

lim inf
n→∞

(K − 1)d(p‖q)
log n

K

≥ 2.

By assumption, there exists an estimator x̂ such that E [dH(x, x̂)] ≤ εnK with εn = o(1). Note
that

Proof.

I(x;A) ≥ I(x; x̂) ≥ min
x̃:E[dH(x̃;x)]≤εnK

I(x; x̃) ≥ (1 + o(1)) log
n

K
,

where the detailed justification for the last inequality can be found in [HWX15]. Moreover, in view
of (14.16),

I(x;A) ≤ D(PA|x‖Bern(q)⊗(n2)|Px) =

(
K

2

)
d(p‖q).

The conclusion follows by combining the last two displayed equations.
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