Towards a mathematical foundation of federated learning: a statistical perspective

Jiaming Xu
The Fuqua School of Business
Duke University

Joint work with
Lili Su (Northeastern) and Pengkun Yang (Tsinghua)

IISA Conference, June 1, 2023
Modern data generation and collection

- New norm of data generation and processing
- Cellular applications: millions – billions of users
Modern data generation and collection

- New norm of data generation and processing
- Cellular applications: millions – billions of users
- Paradigm shift from centralized learning - Data privacy
Federated learning

Example: Gboard (Google keyboard) [HRM+18]

- Data privacy: training models without seeing your data
Example: Gboard (Google keyboard) [HRM+18]

- Data privacy: training models without seeing your data
- **Caveat**: information leakage from model update!
Challenges in federated learning

- Massive scale (data, computation, communication)
Challenges in federated learning

- Massive scale (data, computation, communication)
- Heterogeneity
 - Computational resources
 - Data distribution
 - Data volume

This talk
Convergence and statistical efficiency of FL under data heterogeneity
Challenges in federated learning

- Massive scale (data, computation, communication)
- Heterogeneity
 - Computational resources
 - Data distribution
 - Data volume
- Unreliable communication
Challenges in federated learning

- Massive scale (data, computation, communication)
- Heterogeneity
 - Computational resources
 - Data distribution
 - Data volume
- Unreliable communication
- Privacy constraints
- ...

This talk

Convergence and statistical efficiency of FL under data heterogeneity
Challenges in federated learning

- Massive scale (data, computation, communication)
- Heterogeneity
 - Computational resources
 - Data distribution
 - Data volume
- Unreliable communication
- Privacy constraints
- ...
Popular federated learning algorithms

For every communication round

- Parameter server (PS) broadcast latest model
- Clients update model based on local data
 - FedAvg \cite{MMR+17}: run s steps of local gradient descent
 - FedProx \cite{LSZ+20}: solve a local program with a proximal term
- PS aggregates updated models from clients

Reasons:

- Communication efficiency
- Clients heterogeneity
Popular federated learning algorithms

For every communication round

- Parameter server (PS) broadcast latest model
- Clients update model based on local data
 - **FedAvg** [MMR+17]: run s steps of local gradient descent
 - **FedProx** [LSZ+20]: solve a local program with a proximal term
- PS aggregates updated models from clients

Reasons:

- Communication efficiency
- Clients heterogeneity

Failure of reaching stationary points

Linear regression: client i holds local dataset (X_i, y_i)

\[X_i \in \mathbb{R}^{n_i \times d}, \quad y_i \in \mathbb{R}^{n_i} \]

- Objective function of ordinary least squares (OLS):

\[
\min_{\theta} f(\theta) \triangleq \sum_{i=1}^{M} \| y_i - X_i \theta \|^2
\]
Failure of reaching stationary points

Linear regression: client i holds local dataset (X_i, y_i)

$$X_i \in \mathbb{R}^{n_i \times d}, \quad y_i \in \mathbb{R}^{n_i}$$

- Objective function of ordinary least squares (OLS):

$$\min_{\theta} f(\theta) \triangleq \sum_{i=1}^{M} \|y_i - X_i \theta\|^2$$

- Desired solution (equivalently, FedAvg with $s = 1$):

$$\hat{\theta}_{\text{OLS}} = \left(\frac{1}{M} \sum_{i=1}^{M} X_i^\top X_i \right)^{-1} \left(\frac{1}{M} \sum_{i=1}^{M} X_i^\top y_i \right)$$
Failure of reaching stationary points

- For linear regression [Pathak-Wainwright'20]

\[
\hat{\theta}_{\text{FedAvg}} = \left(\frac{1}{M} \sum_{i=1}^{M} X_i \top X_i \sum_{\ell=0}^{s-1} (I - \eta X_i \top X_i)^{\ell} \right)^{-1} \left(\frac{1}{M} \sum_{i=1}^{M} \sum_{\ell=0}^{s-1} (I - \eta X_i \top X_i)^{\ell} X_i \top y_i \right)
\]

\[
\hat{\theta}_{\text{FedProx}} = \left(I - \frac{1}{M} \sum_{i=1}^{M} (I + \eta X_i \top X_i)^{-1} \right)^{-1} \left(\frac{\eta}{M} \sum_{i=1}^{M} (I + \eta X_i \top X_i)^{-1} X_i \top y_i \right)
\]
Failure of reaching stationary points

- For linear regression [Pathak-Wainwright'20]

\[
\hat{\theta}_{\text{FedAvg}} = \left(\frac{1}{M} \sum_{i=1}^{M} X_i^\top X_i \sum_{\ell=0}^{s-1} (I - \eta X_i^\top X_i)\ell \right)^{-1} \\
\left(\frac{1}{M} \sum_{i=1}^{M} \sum_{\ell=0}^{s-1} (I - \eta X_i^\top X_i)\ell X_i^\top y_i \right)
\]

\[
\hat{\theta}_{\text{FedProx}} = \left(I - \frac{1}{M} \sum_{i=1}^{M} (I + \eta X_i^\top X_i)^{-1} \right)^{-1} \\
\left(\frac{\eta}{M} \sum_{i=1}^{M} (I + \eta X_i^\top X_i)^{-1} X_i^\top y_i \right)
\]

- **Failure** of reaching stationary points: \(\hat{\theta}_{\text{Fed}} \neq \hat{\theta}_{\text{OLS}} \)
Failure of reaching stationary points

- For linear regression [Pathak-Wainwright'20]

\[
\hat{\theta}_{\text{FedAvg}} = \left(\frac{1}{M} \sum_{i=1}^{M} X_i^\top X_i \sum_{\ell=0}^{s-1} (I - \eta X_i^\top X_i)^\ell \right)^{-1} \\
\left(\frac{1}{M} \sum_{i=1}^{M} \sum_{\ell=0}^{s-1} (I - \eta X_i^\top X_i)^\ell X_i^\top y_i \right)
\]

\[
\hat{\theta}_{\text{FedProx}} = \left(I - \frac{1}{M} \sum_{i=1}^{M} (I + \eta X_i^\top X_i)^{-1} \right)^{-1} \\
\left(\frac{\eta}{M} \sum_{i=1}^{M} (I + \eta X_i^\top X_i)^{-1} X_i^\top y_i \right)
\]

- Failure of reaching stationary points: \(\hat{\theta}_{\text{Fed}} \neq \hat{\theta}_{\text{OLS}} \)
- Many attempts to fix the optimization gap [KKM+20, PW20, GHR21, …]
Question
Do they really fail? FedAvg and FedProx are still the prevailing algorithms despite the theoretical gap.
Theory behind practice

Question
Do they really fail? FedAvg and FedProx are still the prevailing algorithms despite the theoretical gap.

- Model: \(y_i = X_i \theta^* + \xi_i \)
Theory behind practice

Question
Do they really fail? FedAvg and FedProx are still the prevailing algorithms despite the theoretical gap.

- Model: \(y_i = X_i \theta^* + \xi_i \)
Theory behind practice

Question

Do they really fail? FedAvg and FedProx are still the prevailing algorithms despite the theoretical gap.

- Model: $y_i = X_i \theta^* + \xi_i$
Theory behind practice

Question
Do they really fail? FedAvg and FedProx are still the prevailing algorithms despite the theoretical gap.

- Model: \(y_i = X_i \theta^* + \xi_i \)

- Why FedAvg and FedProx can achieve low estimation errors despite their failure of reaching stationary points?
Plugging the model $y_i = X_i \theta^* + \xi_i$:

$$\hat{\theta}_{\text{OLS}} = \theta^* + \left(\frac{1}{M} \sum_{i=1}^{M} X_i^\top X_i \right)^{-1} \left(\frac{1}{M} \sum_{i=1}^{M} X_i^\top \xi_i \right)$$

$$\hat{\theta}_{\text{FedAvg}} = \theta^* + \left(\frac{1}{M} \sum_{i=1}^{M} X_i^\top X_i \sum_{\ell=0}^{s-1} (I - \eta X_i^\top X_i)^\ell \right)^{-1} \left(\frac{1}{M} \sum_{i=1}^{M} \sum_{\ell=0}^{s-1} (I - \eta X_i^\top X_i)^\ell X_i^\top \xi_i \right)$$

Observation: Both (and also FedProx) are unbiased estimator of θ^* with different variances.
Statistical perspective: unbiasedness

Plugging the model $y_i = X_i \theta^* + \xi_i$:

$$\hat{\theta}_{\text{OLS}} = \theta^* + \left(\frac{1}{M} \sum_{i=1}^{M} X_i^\top X_i \right)^{-1} \left(\frac{1}{M} \sum_{i=1}^{M} X_i^\top \xi_i \right)$$

$$\hat{\theta}_{\text{FedAvg}} = \theta^* + \left(\frac{1}{M} \sum_{i=1}^{M} X_i^\top X_i \sum_{\ell=0}^{s-1} (I - \eta X_i^\top X_i)^\ell \right)^{-1} \left(\frac{1}{M} \sum_{i=1}^{M} \sum_{\ell=0}^{s-1} (I - \eta X_i^\top X_i)^\ell X_i^\top \xi_i \right)$$

Observation

Both (and also FedProx) are unbiased estimator of θ^* with different variances.
Model: $f_i^* \in \mathcal{H}$ for some RKHS \mathcal{H} on client $i \in [M]$,

$$y_{ij} = f_i^*(x_{ij}) + \xi_{ij} \quad j = 1, \ldots, n_i$$

Let $N = \sum_{i=1}^{M} n_i$ is the total number of data points.
Understanding FedAvg and FedProx

Model: $f_i^* \in \mathcal{H}$ for some RKHS \mathcal{H} on client $i \in [M]$,

$$y_{ij} = f_i^*(x_{ij}) + \xi_{ij} \quad j = 1, \ldots, n_i$$

Let $N = \sum_{i=1}^{M} n_i$ is the total number of data points

Algorithm: at communication round t

- Parameter server (PS) broadcast f_{t-1}
Understanding FedAvg and FedProx

Model: $f_i^* \in \mathcal{H}$ for some RKHS \mathcal{H} on client $i \in [M],$

$$y_{ij} = f_i^*(x_{ij}) + \xi_{ij} \quad j = 1, \ldots, n_i$$

Let $N = \sum_{i=1}^{M} n_i$ is the total number of data points

Algorithm: at communication round t

- Parameter server (PS) broadcast f_{t-1}
- Local update $f_{i,t}$ based on empirical risk function

$$\ell_i(f) = \frac{1}{2n_i} \sum_{j=1}^{n_i} (f(x_{ij}) - y_{ij})^2$$
Understanding FedAvg and FedProx

Model: $f_i^* \in \mathcal{H}$ for some RKHS \mathcal{H} on client $i \in [M],$

$$y_{ij} = f_i^*(x_{ij}) + \xi_{ij} \quad j = 1, \ldots, n_i$$

Let $N = \sum_{i=1}^{M} n_i$ is the total number of data points

Algorithm: at communication round t

- Parameter server (PS) broadcast f_{t-1}
- Local update $f_{i,t}$ based on empirical risk function

$$\ell_i(f) = \frac{1}{2n_i} \sum_{j=1}^{n_i} (f(x_{ij}) - y_{ij})^2$$

- Global update by model averaging

$$f_t = \sum_{i=1}^{M} w_i f_{i,t}, \quad w_i = n_i/N$$
Local updates of FedAvg and FedProx

FedAvg: one-step local gradient descent $G_i(f) = f - \eta \nabla \ell_i(f)$

$$f_{i,t} = G^s_i(f_{t-1}) \triangleq (G_i \circ \cdots \circ G_i)(f_{t-1})$$

FedProx:

$$f_{i,t} = \arg\min_{f \in \mathcal{H}} \ell_i(f) + \frac{1}{2\eta} \|f - f_{t-1}\|_{\mathcal{H}}^2$$
Iteration in RKHS

Representer in RKHS: \(k_x = k(\cdot, x) \)

\[\langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x), \quad \forall f \in \mathcal{H} \]
Iteration in RKHS

Representer in RKHS: \(k_x = k(\cdot, x) \)

\[
\langle f, k(\cdot, x) \rangle_H = f(x), \quad \forall f \in H
\]

Local operators

\[
\mathcal{L}_i f \triangleq f - \frac{\eta}{n_i} \sum_{j=1}^{n_i} f(x_{ij}) k_{x_{ij}}, \quad \tilde{\mathcal{L}}_i f \triangleq f + \frac{\eta}{n_i} \sum_{j=1}^{n_i} f(x_{ij}) k_{x_{ij}}.
\]
Iteration in RKHS

Representer in RKHS: \(k_x = k(\cdot, x) \)

\[
\langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x), \quad \forall f \in \mathcal{H}
\]

Local operators

\[
L_i f \triangleq f - \frac{\eta}{n_i} \sum_{j=1}^{n_i} f(x_{ij}) k_{x_{ij}}, \quad \tilde{L}_i f \triangleq f + \frac{\eta}{n_i} \sum_{j=1}^{n_i} f(x_{ij}) k_{x_{ij}}.
\]

Proposition (Su-X.-Yang ’21)

\[
f_t = L f_{t-1} + y \cdot \Psi,
\]

where \(\Psi_i : \mathcal{X} \mapsto \mathbb{R}^{n_i}, \Psi = (w_1 \Psi_1, \ldots, w_M \Psi_M) : \mathcal{X} \mapsto \mathbb{R}^N, \)

\[
L = \begin{cases}
\sum_{i=1}^{M} w_i L_i^S & \Psi_i = \begin{cases}
\frac{\eta}{n_i} \sum_{\tau=0}^{s-1} L_i^\tau k_{x_i} & \text{FedAvg}, \\
\frac{\eta}{n_i} \tilde{L}_i^{-1} k_{x_i} & \text{FedProx}.
\end{cases}
\end{cases}
\]

Evolution of in-sample prediction

Review of classical kernel gradient descent (FedAvg with $s = 1$):

$$f_t(x) = (I - \eta K_x)f_{t-1}(x) + \eta K_x y,$$

where $(K_x)_{ij} = \frac{1}{N} k(x_i, x_j)$ is the normalized Gram matrix.

Proposition (Su-X.-Yang '21)

$$f_t(x) = \left[I - \eta K_x P \right] f_{t-1}(x) + \eta K_x y,$$

where $P \in \mathbb{R}^{N \times N}$ is a block-diagonal matrix whose i-th diagonal block of size $n_i \times n_i$ is

$$P_{ii} = \left\{ \sum_{\tau = 0}^{s-1} \left[I - \eta K_x \right]_{\tau} \right\} \text{ for FedAvg}, \left[I + \eta K_x \right]_{\tau-1} \text{ for FedProx}.$$
Evolution of in-sample prediction

Review of classical kernel gradient descent (FedAvg with $s = 1$):

$$f_t(x) = (I - \eta K_x)f_{t-1}(x) + \eta K_x y,$$

where $(K_x)_{ij} = \frac{1}{N} k(x_i, x_j)$ is the normalized Gram matrix.

Proposition (Su-X.-Yang '21)

$$f_t(x) = [I - \eta K_x P] f_{t-1}(x) + \eta K_x Py,$$

where $P \in \mathbb{R}^{N \times N}$ is a block-diagonal matrix whose i-th diagonal block of size $n_i \times n_i$ is

$$P_{ii} = \begin{cases} \sum_{\tau=0}^{s-1} [I - \eta K_{x_i}]^\tau & \text{for FedAvg,} \\ [I + \eta K_{x_i}]^{-1} & \text{for FedProx.} \end{cases}$$

Evolution of in-sample prediction

Review of classical kernel gradient descent (FedAvg with $s = 1$):

$$f_t(x) = (I - \eta K_x)f_{t-1}(x) + \eta K_x y,$$

where $(K_x)_{ij} = \frac{1}{N} k(x_i, x_j)$ is the normalized Gram matrix.

Proposition (Su-X.-Yang ’21)

$$f_t(x) = [I - \eta K_x P]f_{t-1}(x) + \eta K_x Py,$$

where $P \in \mathbb{R}^{N \times N}$ is a block-diagonal matrix whose i-th diagonal block of size $n_i \times n_i$ is

$$P_{ii} = \begin{cases}
\sum_{\tau=0}^{s-1}[I - \eta K_{x_i}]^\tau & \text{for FedAvg,} \\
[I + \eta K_{x_i}]^{-1} & \text{for FedProx.}
\end{cases}$$

Key to proof: show $\mathcal{L} f(x) = (I - \eta K_x P) f(x)$
Convergence analysis

Key: eigenvalues of $I - \eta K_x P$ (asymmetric)
Convergence analysis

Key: eigenvalues of $I - \eta K_x P$ (asymmetric)

- Analysis similar to graph Laplacians:

 $$\text{eigenvalues of } K_x P \leftrightarrow \text{eigenvalues of } P^{1/2} K_x P^{1/2}$$
Convergence analysis

Key: eigenvalues of $I - \eta K_x P$ (asymmetric)

- Analysis similar to graph Laplacians:

$$\text{eigenvalues of } K_x P \iff \text{eigenvalues of } P^{1/2} K_x P^{1/2}$$

- Stability:

$$\gamma \triangleq \eta \max_{i \in [M]} \|K_{x_i}\| < 1 \implies \text{eigenvalues of } I - \eta K_x P \in [0, 1]$$
Convergence analysis

Key: eigenvalues of $I - \eta K_x P$ (asymmetric)

- Analysis similar to graph Laplacians:

 $$\text{eigenvalues of } K_x P \iff \text{eigenvalues of } P^{1/2} K_x P^{1/2}$$

- Stability:

 $$\gamma \triangleq \eta \max_{i \in [M]} \|K_{x_i}\| < 1 \implies \text{eigenvalues of } I - \eta K_x P \in [0, 1]$$

- Condition number of P:

 $$\|P\| \|P^{-1}\| \leq \kappa \triangleq \begin{cases} \frac{\gamma s}{1-(1-\gamma)^s} & \text{for FedAvg,} \\ 1 + \gamma & \text{for FedProx.} \end{cases}$$
Explicit convergence results

\[f_t(x) = [I - \eta K_x P] f_{t-1}(x) + \eta K_x P y, \]

- Convergence in either RKHS norm or the \(L^2(\mathbb{P}_N) \) norm

\[\|f_t - f\|_N^2 \triangleq \frac{1}{N} \sum_{i=1}^{M} \sum_{j=1}^{n_i} (f_t(x_{ij}) - f(x_{ij}))^2 \]

- Explicit characterization of bias, variance, and heterogeneity
 - Covariate heterogeneity (a.k.a. covariate shift)
 - Response heterogeneity (a.k.a. concept shift)
 - Unbalanced data volume (a.k.a. quantity skew)
Early stopping and optimal rates

- Eigenvalues of the kernel matrix K_x

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N \geq 0$$
Early stopping and optimal rates

- Eigenvalues of the kernel matrix K_x
 \[\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N \geq 0 \]

- Empirical Rademacher complexity [Bartlett-Bousquet-Mendelson '05]
 \[R(\epsilon) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \min\{\lambda_i, \epsilon^2\}} \]
Early stopping and optimal rates

• Eigenvalues of the kernel matrix K_x

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N \geq 0$$

• Empirical Rademacher complexity [Bartlett-Bousquet-Mendelson '05]

$$R(\epsilon) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \min\{\lambda_i, \epsilon^2\}}$$

• Early stopping (bias-variance tradeoff):

$$T \triangleq \max\left\{ t \in \mathbb{N} : R\left(\frac{1}{\sqrt{\eta ts}}\right) \leq \frac{1}{\sqrt{2e\sigma\eta ts}} \right\}.$$
Early stopping and optimal rates

Theorem (Su-X.-Yang ’21)

For any $f \in \mathcal{H}$, $1 \leq t \leq T$,

$$
\mathbb{E}_\xi [\| f_t - f \|^2_N] \leq \frac{3\kappa}{2e\eta t s} (\| f_0 - f \|^2_\mathcal{H} + 1) + \frac{3\kappa}{N} \| \Delta f \|^2,
$$

where $\Delta f = (f_1^*(x_1), f_2^*(x_2), \cdots, f_M^*(x_M)) - f(x)$.
Theorem (Su-X.-Yang ’21)

For any \(f \in \mathcal{H} \), \(1 \leq t \leq T \),

\[
\mathbb{E}_{\xi} \left[\| f_t - f \|_2^2 \right] \leq \frac{3\kappa}{2e\eta ts} \left(\| f_0 - f \|_\mathcal{H}^2 + 1 \right) + \frac{3\kappa}{N} \| \Delta_f \|_2^2 ,
\]

where \(\Delta_f = (f_1^*(x_1), f_2^*(x_2), \ldots, f_M^*(x_M)) - f(x) \).

- Recover centralized rate (with \(f_i^* = f^* \)) [Raskutti-Wainwright-Yu’14]
Early stopping and optimal rates

Theorem (Su-X.-Yang ’21)

For any $f \in \mathcal{H}$, $1 \leq t \leq T$,

$$\mathbb{E}_\xi [\| f_t - f \|^2_N] \leq \frac{3\kappa}{2e\eta ts} (\| f_0 - f \|^2_\mathcal{H} + 1) + \frac{3\kappa}{N} \| \Delta f \|^2,$$

where $\Delta f = (f_1^*(x_1), f_2^*(x_2), \cdots, f_M^*(x_M)) - f(x)$.

- Recover centralized rate (with $f_i^* = f^*$) [Raskutti-Wainwright-Yu’14]
- Example: polynomial decay $\lambda_i \lesssim i^{-2\beta}$ for $\beta > 1/2$

Error rate: $(\sigma^2/N)^{2\beta/(2\beta+1)}$
Early stopping and optimal rates

Theorem (Su-X.-Yang ’21)

For any $f \in H$, $1 \leq t \leq T$,

$$
\mathbb{E}_\xi [\| f_t - f \|_N^2] \leq \frac{3\kappa}{2\epsilon\eta t} (\| f_0 - f \|_H^2 + 1) + \frac{3\kappa}{N} \| \Delta f \|_2^2,
$$

where $\Delta f = (f_1^*(x_1), f_2^*(x_2), \cdots, f_M^*(x_M)) - f(x)$.

- Recover centralized rate (with $f_i^* = f^*$) \[Raskutti-Wainwright-Yu’14\]
- Example: polynomial decay $\lambda_i \lesssim i^{-2\beta}$ for $\beta > 1/2$

Error rate: $(\sigma^2/N)^{2\beta/(2\beta+1)}$

- Minimax $L^2(\mathbb{P})$ rate with iid data (empirical process theory)
Convergence in RKHS norm for finite-rank kernels

Theorem (Su-X.-Yang ’21)

Suppose kernel k is of rank d. Then

$$
\mathbb{E}_\xi \left[\| f_t - \bar{f} \|_H^2 \right] \leq \left(1 - \frac{s \eta \lambda d}{\kappa} \right)^{2t} \| f_0 - \bar{f} \|_H^2 + \sigma^2 \frac{\kappa d}{N \lambda_d},
$$

where $\bar{f} = (\mathcal{I} - \mathcal{L})^{-1} \left((f_1^*(x_1), \ldots, f_M^*(x_M)) \cdot \Psi \right)$.

- f_t converges exponentially to \bar{f} that balances out heterogeneity
Convergence in RKHS norm for finite-rank kernels

Theorem (Su-X.-Yang ’21)

Suppose kernel k is of rank d. Then

$$
\mathbb{E}_\xi \left[\| f_t - \bar{f} \|^2_{\mathcal{H}} \right] \leq \left(1 - \frac{s \eta \lambda_d}{\kappa} \right)^{2t} \| f_0 - \bar{f} \|^2_{\mathcal{H}} + \sigma^2 \frac{\kappa d}{N \lambda_d},
$$

where $\bar{f} = (\mathcal{I} - \mathcal{L})^{-1} \left((f_1^*(x_1), \ldots, f_M^*(x_M)) \cdot \Psi \right)$.

- f_t converges exponentially to \bar{f} that balances out heterogeneity
- When $\lambda_d = \Omega(1)$, the estimation error is $O(d/N)$ and minimax-optimal
Convergence in RKHS norm for finite-rank kernels

Theorem (Su-X.-Yang ’21)

Suppose kernel k is of rank d. Then

$$
\mathbb{E}_\xi \left[\| f_t - \bar{f} \|_H^2 \right] \leq \left(1 - \frac{s\eta\lambda_d}{\kappa} \right)^{2t} \| f_0 - \bar{f} \|_H^2 + \sigma^2 \frac{\kappa d}{N\lambda_d},
$$

where $\bar{f} = (\mathcal{I} - \mathcal{L})^{-1} \left((f_1^*(x_1), \ldots, f_M^*(x_M)) \cdot \Psi \right)$.

- f_t converges exponentially to \bar{f} that balances out heterogeneity
- When $\lambda_d = \Omega(1)$, the estimation error is $O(d/N)$ and minimax-optimal
- We further show \bar{f} stays within bounded distance to f_j^*:

$$
\| \bar{f} - f_j^* \|_H \leq \| \Delta f_j^* \|_2 \sqrt{\frac{\kappa}{N\lambda_d}}.
$$
Federation gain

• \hat{f}_j is an estimator based on the local data

$$R_{j}^{\text{Loc}} = \inf_{\hat{f}_j} \sup_{f_j^*} \mathbb{E}_{x_j, \xi_j} \| \hat{f}_j - f_j^* \|_H^2$$
Federation gain

- \hat{f}_j is an estimator based on the local data
 \[
 R_{j}^{\text{Loc}} = \inf_{\hat{f}_j} \sup_{f_j} \mathbb{E}_{\mathbf{x}_j, \xi_j} \| \hat{f}_j - f_j^* \|_H^2
 \]

- f_t is the FL model after t rounds
 \[
 R_{j}^{\text{Fed}} = \inf_{t \geq 0} \sup_{f_j^* \in \mathcal{H}_B} \mathbb{E}_{\mathbf{x}, \xi} \| f_t - f_j^* \|_H^2
 \]
Federation gain

• \hat{f}_j is an estimator based on the local data

$$R_j^{Loc} = \inf_{\hat{f}_j} \sup_{f_j^*} \mathbb{E}_{x_j, \xi_j} \| \hat{f}_j - f_j^* \|_H^2$$

• f_t is the FL model after t rounds

$$R_j^{Fed} = \inf_{t \geq 0} \sup_{f_j^* \in \mathcal{H}_B} \mathbb{E}_{x, \xi} \| f_t - f_j^* \|_H^2,$$

• **Federation gain** (quantify the benefit of joining FL)

$$FG_j \triangleq \frac{R_j^{Loc}}{R_j^{Fed}}$$
Federation gain versus model heterogeneity

- Linear regression $y_j = x_j \theta_j^* + \xi_j$
- Diameter of model parameters $\Gamma = \max_{i,j \in [M]} \|\theta_i^* - \theta_j^*\|_2$
Federation gain versus model heterogeneity

- Linear regression $y_j = x_j \theta_j^* + \xi_j$
- Diameter of model parameters $\Gamma = \max_{i,j \in [M]} \|\theta_i^* - \theta_j^*\|_2$
- Theoretical lower bound
 \[
 \text{FG}_j \gtrsim \frac{\min\{\sigma^2 d/n_j, \|\theta_j^*\|^2\} + \max\{1 - n_j/d, 0\}\|\theta_j^*\|^2}{\sigma^2 d/N + \Gamma^2}
 \]
Federation gain versus model heterogeneity

- Linear regression \(y_j = x_j \theta_j^* + \xi_j \)
- Diameter of model parameters \(\Gamma = \max_{i,j}[M] \| \theta_i^* - \theta_j^* \|_2 \)
- Theoretical lower bound
 \[
 \text{FG}_j \gtrsim \min\{\sigma^2 d/n_j, \| \theta_j^* \|^2 \} + \max\{1 - n_j/d, 0\} \| \theta_j^* \|^2 \left/ \sigma^2 d/N + \Gamma^2 \right.
 \]
- \(d = 100, n_i = 50 \) (data scarce) or 500 (data rich)

![Data-scarce client graph](image1)

![Data-rich client graph](image2)

Data-scarce client
\(\Gamma \approx \sqrt{1 - n_j/d} ||\theta_j^*|| \)

Data-rich client
\(\Gamma \approx \sigma \sqrt{d/n_j} \)
Concluding remarks

• A theory of federated learning from statistical perspectives
• Methodologies from statistics are powerful for new challenges
• **Data heterogeneity:** algorithm with global convergence guarantee

Extensions

• Model personalization
• Client unavailability
• Adversarial attacks

References

Backup slides
Implications

• Dynamic of $f_t(x)$: Linear time invariant/Autoregression system
• Convergence of AR: eigenvalues of $I - \eta K_x P$
Implications

- Dynamic of $f_t(x)$: Linear time invariant/Autoregression system
- Convergence of AR: eigenvalues of $I - \eta K_x P$
- P is well-conditioned using sufficiently small learning rates
Implications

• Dynamic of $f_t(x)$: Linear time invariant/Autoregression system
• Convergence of AR: eigenvalues of $I - \eta K_x P$
• P is well-conditioned using sufficiently small learning rates

Example (Neural tangent kernels (NTKs))

K_x is positive definite provided that the input training data is non-parallel [Du-Zhai-Poczos-Singh'18], and

$$f_t(x) = (I - \eta K_x)^t f_0(x) + (I - (I - \eta K_x)^t)y.$$

Hence, $f_t(x)$ converges to y and thus attain zero training error for a properly small learning rate.
Proof idea of in-sample predictions

\[f_t(x) = \mathcal{L} f_{t-1}(x) + \Psi(x)y \]
\[= [I - \eta K_x P] f_{t-1}(x) + \eta K_x Py \]
Proof idea of in-sample predictions

\[f_t(x) = \mathcal{L} f_{t-1}(x) + \Psi(x)y \]
\[= [I - \eta K_x P] f_{t-1}(x) + \eta K_x P y \]

For FedAvg:

- \(\Psi = \frac{\eta}{N} \sum_{\tau=0}^{s-1} (\mathcal{L}_1^{\tau} k_{x_1}, \ldots, \mathcal{L}_M^{\tau} k_{x_M}) \)
- \(\mathcal{L}_i k_{x_i} = (I - \eta K_{x_i}) k_{x_i} \) (kernel method)
Proof idea of in-sample predictions

\[f_t(x) = \mathcal{L} f_{t-1}(x) + \Psi(x)y \]
\[= \left[I - \eta K_x P \right] f_{t-1}(x) + \eta K_x P y \]

For FedAvg:
- \(\Psi = \frac{\eta}{N} \sum_{\tau=0}^{s-1} (\mathcal{L}_1^\tau k_{x_1}, \ldots, \mathcal{L}_M^\tau k_{x_M}) \)
 \[\mathcal{L}_i k_{x_i} = (I - \eta K_{x_i}) k_{x_i} \quad \text{(kernel method)} \]
 \[\implies \mathcal{L}_i^\tau k_{x_i} = (I - \eta K_{x_i})^\tau k_{x_i} \]
Proof idea of in-sample predictions

\[f_t(x) = \mathcal{L} f_{t-1}(x) + \Psi(x) y \]
\[= [I - \eta K_x P] f_{t-1}(x) + \eta K_x P y \]

For FedAvg:

- \(\Psi = \frac{\eta}{N} \sum_{\tau=0}^{s-1} (\mathcal{L}_1^\tau k_{x_1}, \ldots, \mathcal{L}_M^\tau k_{x_M}) \)

\[\mathcal{L}_i k_{x_i} = (I - \eta K_{x_i}) k_{x_i} \quad \text{(kernel method)} \]
\[\Rightarrow \mathcal{L}_i^\tau k_{x_i} = (I - \eta K_{x_i})^\tau k_{x_i} \]
\[\Rightarrow \Psi(x) = \eta K_x P \]
Proof idea of in-sample predictions

\[f_t(x) = \mathcal{L} f_{t-1}(x) + \Psi(x) y \]
\[= [I - \eta K_x P] f_{t-1}(x) + \eta K_x P y \]

For FedAvg:

- \(\Psi = \frac{\eta}{N} \sum_{\tau=0}^{s-1} (\mathcal{L}_1^\tau k_{x_1}, \ldots, \mathcal{L}_M^\tau k_{x_M}) \)

\(\mathcal{L}_i k_{x_i} = (I - \eta K_{x_i}) k_{x_i} \) (kernel method)

\[\Rightarrow \mathcal{L}_i^\tau k_{x_i} = (I - \eta K_{x_i})^\tau k_{x_i} \]

\[\Rightarrow \Psi(x) = \eta K_x P \]

- Telescoping sum

\[f - \mathcal{L}_i^s f = \sum_{\tau=0}^{s-1} \mathcal{L}_i^\tau f - \mathcal{L}_i^{\tau+1} f = \sum_{\tau=0}^{s-1} \mathcal{L}_i^\tau \left(\frac{\eta}{n_i} \sum_{j=1}^{n_i} f(x_{ij}) k_{x_{ij}} \right) \]
Proof idea of in-sample predictions

\[f_t(x) = \mathcal{L} f_{t-1}(x) + \Psi(x)y \]

\[= [I - \eta K_x P] f_{t-1}(x) + \eta K_x Py \]

For FedAvg:

- \(\Psi = \frac{\eta}{N} \sum_{\tau=0}^{s-1} (\mathcal{L}_1^\tau k_{x_1}, \ldots, \mathcal{L}_M^\tau k_{x_M}) \)

\[\mathcal{L}_i k_{x_i} = (I - \eta K_{x_i}) k_{x_i} \quad \text{(kernel method)} \]

\[\Rightarrow \mathcal{L}_i^\tau k_{x_i} = (I - \eta K_{x_i})^\tau k_{x_i} \]

\[\Rightarrow \Psi(x) = \eta K_x P \]

- Telescoping sum

\[f - \mathcal{L}^s_i f = \sum_{\tau=0}^{s-1} \mathcal{L}_i^\tau f - \mathcal{L}_i^{\tau+1} f = \sum_{\tau=0}^{s-1} \mathcal{L}_i^\tau \left(\frac{\eta}{n_i} \sum_{j=1}^{n_i} f(x_{ij}) k_{x_{ij}} \right) \]

\[\Rightarrow f(x) - \mathcal{L} f(x) = \Psi(x) f(x) = \eta K_x P f(x) \]
Federation gain versus covariate heterogeneity

A data scarce client

A data rich client